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Abstract

The purpose of this note is to introduce primitive ideals of semigroups
and study some topological aspects of the corresponding structure spaces.
We show that every structure space of a semigroup is T0, quasi-compact,
and every nonempty irreducible closed subset has a unique generic point.
Moreover, such a structure space is Hausdorff if and only if every primitive
ideal of the semirgroup is minimal. Finally, we define continuous maps
between structure spaces of semigroups.
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1. Introduction

Since the introduction of primitive rings in [17], primitive ideals have shown their
immense importance in understanding structural aspects of rings and modules
[19, 27], Lie algebras [24], enveloping algebras [8, 21], PI-algebras [20], quantum
groups [22], skew polynomial rings [16], and others. In [18], Jacobson has in-
troduced a hull-kernel topology (also known as Jacobson topology) on the set
of primitive ideals of a ring, and has obtained representations of biregular rings.
This Jacobson topology also turns out to play a key role in representation of
finite-dimensional Lie algebras (see [8]).

Compare to the above algebraic structures, after magmas (also known as
groupoids), semigroups are the most basic ones. A detailed study of algebraic
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theory of semigroups can be found in one of the earliest textbooks [6] and [7] (see
also [11, 13, 15]), whereas specific study of prime, semiprime, and maximal ideals
of semigroups are done in [2, 4, 26, 28]. Furthermore, various notions of radicals
of semigroups have been studied in [1, 10, 29]. Readers may consider [5] for a
survey on ideal theory of semigroups.

The next question is of imposing topologies on various types of ideals of
semigroups. To this end, hull-kernel topology on maximal ideals of (commutative)
semigroups has been considered in [3], whereas the same on minimal prime ideals
has been done in [23]. Using the notion of x-ideals introduced in [3], although in
[14] a study of general notion of structure spaces for semigroups has been done,
but having the assumption of commutativity restricts it to only certain types of
ideals of semigroups, and hence did not have a scope for primitive ideals.

In [9], the spectrum of prime elements has been studied in the context of
a multiplicative lattice which itself consists of a semigroup structure. One can
further extend the theory developed there by defining ideals in a multiplicative
lattice; and by considering modules over such lattices, it is not hard to see that
the notion of primitive ideals can be studied over multiplicative lattices. All
these and some other aspects of primitive ideals of quantales (a special type of
multiplicative lattices) will be considered in the forthcoming paper [12].

The aim of this paper is to introduce primitive ideals of semigroups and endow
Jacobson topology on primitive ideals to study some topological aspects of them.
In order to have the notion of primitive ideals of semigroups, we furthermore
need a notion of a module over a semigroup. We hope this notion of primitive
ideals introduced here will in future shade some light on the structural aspects
of semigroups.

2. Primitive ideals

A semigroup is a tuple (S, ·) such that the binary operation · on the set S is
associative. For all a, b ∈ S, we shall write ab to mean a · b. Throughout this
work, all semigroups are assumed to be noncommutative. If a semigroup S has
an identity, we denote it by 1 satisfying the property: s1 = s = 1s for all s ∈ S.
If A and B are subsets of S, then by the set product AB of A and B we shall
mean AB = {ab | a ∈ A, b ∈ B}. If A = {a} we write AB as aB, and similarly
for B = {b}. Thus

AB = ∪{Ab | b ∈ B} = ∪{aB | a ∈ A}.

A left (right) ideal of a semigroup S is a nonempty subset a of S such that
Sa ⊆ a (aS ⊆ a). A two-sided ideal or simply an ideal is a subset which is both
a left and a right ideal of S. In this work the word “ideal” without modifiers
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will always mean two-sided ideal and we shall denote the set of all ideals of a
semigroup S by Ideal(S). If X is a nonempty subset of a semigroup S, then the
ideal 〈X〉 generated by X is the intersection of all ideals containing X. Therefore,

(1) 〈X〉 = X ∪XS ∪ SX ∪XSX.

We say an ideal a = 〈X〉 is of finite character if X is equal to the set-theoretic
union of all the ideals generated by finite subsets ofX (cf. definition in [3, Chapter
1, p. 4]). Note that in our context, all ideals are of finite character. This follows
from the fact that the property “being of finite character”, in our context, should
refers to the closure operator C(−) (see § 3), and then equation (1) in [3, Chapter
1, p. 4] becomes: for any subset X ⊆ S, we have 〈X〉 = ∪{〈F 〉 | F ⊆ X,F
finite}. But this is always true, namely the x-system of “classical” ideals is
of finite character, thanks to the fact that for any subset X ⊆ S, one has an
expression (1).

To define primitive ideals of a semigroup S, we require the notion of a module
over S, which we introduce now.

A (left) S-module is an abelian group (M,+, 0) endowed with a map S×M →
M (denoted by (s,m) 7→ sm) satisfying the identities

1. s(m+m′) = sm+ sm′;

2. (ss′)m = s(s′m);

3. s0 = 0,

for all s, s′ ∈ S and for all m,m′ ∈ M . Henceforth the term “S-module” without
modifier will always mean left S-module. If M , M ′ are S-modules, then an S-
module homomorphism from M into M ′ is a group homomorphism f : M → M ′

such that f(sm) = sf(m) for all s ∈ S and for all m ∈ M. A subset N of M is
called an S-submodule of the module M if

1. (N,+) is a subgroup of (M,+);

2. for all s ∈ S and for all n ∈ N , sn ∈ N.

If a is an ideal of S, then the additive subgroup aM of M generated by the
elements of the form {am | a ∈ a,m ∈ M} is an S-submodule. An S-module M
is called simple (or irreducible) if

1. SM = {
∑

simi | si ∈ S,mi ∈ M} 6= 0.

2. There is no proper S-submodule of M other than 0.

A (left) annihilator of an S-moduleM is AnnS(M) = {s ∈ S | sm = 0 for all m ∈
M}. When M = {m}, we write AnnS({m}) as AnnS(m).

Lemma 1. An annihilator AnnS(M) is an ideal of S.
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Proof. For all s ∈ S and for all x ∈ AnnS(M) we have (sx)m = s(xm) = s0 = 0.
Similarly, we have (xs)m = x(sm) = 0 because x ∈ AnnS(M) and sm ∈ M .

Let S be a semigroup. A nonempty proper ideal p of S is said to be primitive
if p = AnnS(M) for some simple S-module M . We denote the set of primitive
ideals of a semigroup S by Prim(S). Let us provide some examples of primitive
ideals of semigroups.

Example 2. Consider the semigroup S of 2 × 2 upper triangular matrices with
real entries under matrix multiplication. An ideal

p :=

{[

0 a
0 0

]

| a ∈ R

}

is a primitive ideal of S. The annihilator of the submodule consisting of scalar
multiples of the identity matrix is p.

Example 3. Consider the semigroup S = N0 ×N0 (non-negative integer pairs)
under componentwise addition. A primitive ideal of S is p := {(0, b) | b ∈ N0}.
The annihilator of the submodule generated by the action of S on the set {(a, 0) |
a ∈ N0} is AnnS({(a, 0) | a ∈ N0}) = p.

Example 4. Consider the semigroup S = (N,+), where N is the set of natural
numbers. Let M = (Z,+, 0) be the additive group of integers. Define the action
of S on M as n · m = nm for all n ∈ N and m ∈ Z. The trivial ideal 0 is a
primitive ideal of S.

Example 5. Let S be the semigroup of n×n non-negative integer matrices under
matrix multiplication. For M = (Rn,+, 0), where 0 is the zero vector, define the
action of S on M as A · v = Av for all A ∈ S and v ∈ R

n. The annihilator of M
is the set of matrices with a row of zeros, denoted as

AnnS(M) = {A ∈ S | ∃v 6= 0, Av = 0}.

A primitive ideal of S is p := {A ∈ S | some row of A is 0}.

Example 6. Consider the free semigroup S generated by two elements a and b
with the operation being string concatenation. Let M = (Z,+, 0) be the additive
group of integers. Define the action of S on M by the concatenation of strings
followed by addition, i.e., s ·m = sm, for all s ∈ S and m ∈ Z. A primitive ideal
of S is p := {s ∈ S | b does not appear in s}.

A nonempty proper ideal q of a semigroup S is said to be prime if for any
two ideals a, b of S and ab ⊆ q implies a ⊆ q or b ⊆ q, where the product ab of
ideals a and b is defined to be the set of all finite sums

∑

iαjα (where iα ∈ a,
jα ∈ b).

The proof of the following result is easy to verify.
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Lemma 7. If a and b are any two ideals of a semigroup, then ab ⊆ a ∩ b.

The following proposition gives an alternative formulation of prime ideals of
semigroups. For a proof, see [26, Lemma 2.2].

Proposition 8. Suppose S is a semigroup. Then the following conditions are
equivalent:

1. q is a prime ideal of S. item aSb ⊆ q implies a ∈ q or b ∈ q for all a, b ∈ S.

Primitive ideals and prime ideals of a semigroup are related as follows.

Proposition 9. Every primitive ideal of a semigroup is a prime ideal.

Proof. Suppose p is a primitive ideal and p = AnnS(M) for some simple S-
module M . Let a, b /∈ AnnS(M). Then am 6= 0 and bm′ 6= 0 for some m,m′ ∈ M.
Since M is simple, there exists an s ∈ S such that s(bm′) = m. Then

(asb)m′ = a(s(bm′)) = am 6= 0,

and hence asb /∈ AnnS(M). Therefore, AnnS(M) is a prime ideal by Lemma 8.

In the next section we talk about Jacobson topology on the set of primitive
ideals of a semigroup and discuss about some of the topological properties of the
corresponding structure spaces.

3. Jacobson topology

We shall introduce Jacobson topology in Prim(S) by defining a closure operator
for the subsets of Prim(S). Once we have a closure operator, closed sets are
defined as sets which are invariant under this closure operator1. Suppose X is a
subset of Ideal(S). Set DX =

⋂

q∈X q. We define the closure of the set X as

(2) C(X) = {p ∈ Prim(S) | p ⊇ DX} .

If X = {x}, we will write C({x}) as C(x). We wish to verify that the closure
operation defined in (2) satisfies Kuratowski’s closure conditions and that is done
in the following

Proposition 10. The sets {C(X)}X⊆Ideal(S) satisfy the following conditions:

1. C(∅) = ∅,

2. C(X) ⊇ X,

1The origin of Kuratowski’s closure operator on the set of primitive ideals of a ring can be
traced back to [18].
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3. C(C(X)) = C(X),

4. C(X ∪ Y ) = C(X) ∪ C(Y ).

Proof. The proofs of (1)–(3) are straightforward, whereas for (4), it is easy to see
that C(X∪Y ) ⊇ C(X)∪C(Y ). To obtain the the other inclusion, let p ∈ C(X∪Y ).
Then

p ⊇ DX∪Y = DX ∩ DY .

Since DX and DY are ideals of S, by Lemma 7, it follows that

DXDY ⊆ DX ∩ DY ⊆ p.

Since by Proposition 9, p is prime, either DX ⊆ p or DY ⊆ p This means either
p ∈ C(X) or p ∈ C(Y ). Thus C(X ∪ Y ) ⊆ C(X) ∪ C(Y ).

The set Prim(S) of primitive ideals of a semigroup S topologized (the Jacob-
son topology) by the closure operator defined in (2) is called the structure space of
the semigroup S. It is evident from (2) that if p 6= p′ for any two p, p′ ∈ Prim(S),
then C(p) 6= C(p′). Thus

Proposition 11. Every structure space Prim(S) is a T0-space.

Theorem 12. If S is a semigroup with identity then the structure space Prim(S)
is quasi-compact.

Proof. Suppose that {Kλ}λ∈Λ is a family of closed sets of the structure space
Prim(S) such that

⋂

λ∈Λ Kλ = ∅. This implies that the ideal
∨

λ∈ΛDKλ
generated

by {DKλ
}
λ∈Λ must be equal to S. Indeed:

∨

λ∈ΛDKλ
6= S implies there exists a

maximal ideal m in S such that DKλ
⊆ m for all λ ∈ Λ, whence m ∈

⋂

λ∈Λ Kλ, a
contradiction. Therefore, in particular, 1 = x1 · · · xn, where xi ∈ DKλi

(1 6 i 6
n). Hence,

∨

n

i=1 DKλi
= S. This subsequently implies

⋂

n

i=1Kλi
= ∅. By finite

intersection property, we then have the desired quasi-compactness.

Recall that a nonempty closed subsetK of a topological space X is irreducible
if K 6= K1 ∪ K2 for any two proper closed subsets K1,K2 of K. A maximal
irreducible subset of a topological space X is called an irreducible component
of X. A point x in a closed subset K is called a generic point of K if K = C(x).

Lemma 13. The irreducible closed subsets of a structure space Prim(S) are of
the form: {C(p)}p∈Prim(S).

Proof. Since {p} is irreducible, so is C(p). Suppose C({a}) is an irreducible closed
subset of Prim(S) and a /∈ Prim(S). Here, by C({a}), we mean C(X) with DX =
{a}. This implies there exist ideals b and c of S such that b * a and c * a, but
bc ⊆ a. Then

C(〈a, b〉) ∪ C(〈a, c〉) = C(〈a, bc〉) = C(a).

But C(〈a, b〉) 6= C(a) and C(〈a, c〉) 6= C(a), and hence C(a) is not irreducible.
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Proposition 14. Every irreducible closed subset of Prim(S) has a unique generic
point.

Proof. The existence of generic point follows from Lemma 13, and the uniqueness
of such a point follows from Proposition 11.

In the following proposition, we will find examples of irreducible components
of a structure space.

Proposition 15. If p is a minimal primitive ideal of S, then C(p) is an irreducible
component of a structure space Prim(S). The converse also holds.

Proof. If C(p) is not a maximal irreducible subset of Prim(S), then there exists a
maximal irreducible subset C(p′) with p′ ∈ Prim(S) such that C(p) ( C(p′). This
implies that p ∈ C(p′) and hence p′ ( p, contradicting the minimality property
of p. To show the converse, let K be an irreducible component. By Lemma 13,
K = C(p) for some primitive ideal p. If p is not minimal, then there is a primitive
ideal q properly contained in p. Then, K ( C(q), contradicting the maximality
of K.

While the next corollary provides a characterization of Hausdorff structure
spaces of semigroups, the author, however, hasn’t encountered any examples of
semigroups where Prim(S) is not Hausdorff.

Corollary 16. A structure space Prim(S) is Hausdorff if and only if every prim-
itive ideal of S is minimal.

Recall that a semigroup is called Noetherian if it satisfies the ascending chain
condition on its ideals, whereas a topological space X is called Noetherian if the
descending chain condition holds for closed subsets of X. A relation between these
two notions is shown in the following

Proposition 17. If a semigroup S is Noetherian, then Prim(S) is a Noetherian
space.

Proof. It suffices to show that a collection of closed sets in Prim(S) satisfies the
descending chain condition. Let C(a1) ⊇ C(a2) ⊇ · · · be a descending chain of
closed sets in Prim(S). Once again, by C({a}), we mean C(X) with DX = {a}.
Then, a1 ⊆ a2 ⊆ · · · is an ascending chain of ideals in S. Since S is Noetherian,
the chain stabilizes at some n ∈ N. Hence, C(an) = C(an+k) for any k. Thus
Prim(S) is Noetherian.

Corollary 18. The set of minimal primitive ideals in a Noetherian semigroup is
finite.
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Proof. By Proposition 17, Prim(S) is Noetherian, thus Prim(S) has a finitely
many irreducible components. By Proposition 15, every irreducible closed subset
of Prim(S) is of form C(p), where p is a minimal primitive ideal. Thus C(p) is
irreducible components if and only if p is minimal primitive. Hence, S has only
finitely many minimal primitive ideals.

Proposition 19. Suppose φ : S → T is a semigroup homomorphism and define
the map φ∗ : Prim(T ) → Prim(S) by φ∗(p) = φ−1(p), where p ∈ Prim(T ). Then
φ∗ is a continuous map.

Proof. To show φ∗ is continuous, we first show that f−1(p) ∈ Prim(S), whenever
p ∈ Prim(T ). Note that φ−1(p) is an ideal of S and a union of kerφ-classes (see [11,
Proposition 3.4]. Suppose p = AnnT (M) for some simple T -module. Then φ−1(p)
is the annihilator of the simple T -module M obtained by defining sm := φ(s)m.
Therefore f−1(p) ∈ Prim(S). Now consider a closed subset C(a) of Prim(S),
where by C(a), we mean C(X) with DX = {a}. Then for any q ∈ Prim(T ), we
have:

q ∈ φ
−1

∗ (C(a)) ⇔ φ−1(q) ∈ C(a) ⇔ a ⊆ φ−1(q) ⇔ q ∈ C(〈φ(a)〉),

and this proves the desired continuity of φ∗.
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[29] Š. Schwarz, Intersections of maximal ideals in semigroups, Semigroup Forum 12(4)
(1976) 367–372.
https://doi.org/10.1007/BF02195942

Received 28 November 2023
Revised 4 April 2024

Accepted 5 April 2024

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1007/BF02195942
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

