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Abstract

The concept of D-filters is introduced in an Almost Distributive Lattice
(ADL) and studied their properties. An equivalency is established between
the minimal prime D-filters of an ADL and its quotient ADL with respect
to a congruence. Finally, some properties of prime D-filters and minimal
prime D-filters of an ADL are studied topologically.
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1. INTRODUCTION

The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy
and Rao [9] as a common abstraction of many existing ring theoretic general-
izations of a Boolean algebra on one hand and the class of distributive lattices
on the other. In that paper, the concept of an ideal in an ADL was introduced
analogous to that in a distributive lattice and it was observed that the set of
all principal ideals of an ADL forms a distributive lattice. This provided a path
to extend many existing concepts of lattice theory to the class of ADLs. The
concept of normal lattices was introduced by Cornish, in [2]. In [6] Rao and
Ravi Kumar, introduced the concept of a minimal prime ideal belonging to an
ideal of an ADL and studied their important properties. In [7], the concept of
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a normal ADL was given by Rao and Ravi Kumar. In that, authors have given
equivalent conditions for an ADL to become normal in terms of its annulets. The
notion of D-filters in lattices was introduced and studied their properties in [4]
by Kumar et al. In that paper, a set of equivalent conditions was established for
every proper D-filter of a lattice to become a prime D-filter. In this paper, the
concepts of D-filters and prime D-filters are introduced in an ADL and studied
their properties. A set of equivalent conditions is derived for every proper D-filter
of an ADL to become a prime D-filter. We proved that every maximal D-filter
of an ADL is a prime D-filter. Also, proved that for any prime D-filter M of an
ADL R, OP(M) ={z € R| z € (a,D), for some a € R\ M} is the intersection
of all minimal prime D-filters contained in M. After that, we introduced the
concept of D-normal ADL and it characterized in terms of relative annihilators
with respect to a filter D. Derived an equivalency between the minimal prime
D-filters of an ADL and its quotient ADL with respect to a congruence. Studied
some topological properties of the space of all prime D-filters and the space of
all minimal prime D-filters of an ADL.

2. PRELIMINARIES

In this section, we recall certain definitions and important results from [5] and
[9], those will be required in the text of the paper.

Definition [9]. An algebra R = (R,V,A,0) of type (2,2,0) is called an Almost
Distributive Lattice (abbreviated as ADL), if it satisfies the following conditions:

Example 1. Every non-empty set X can be regarded as an ADL as follows. Let
xg € X. Define the binary operations V, A on X by

xVy={z if x#x, yif z=mz9; zANy={Y if x#uxg, xoif z= .

Then (X, V,A,zg) is an ADL (where z( is the zero) and is called a discrete
ADL.
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If (R,V,A,0) is an ADL, for any a,b € R, define a < b if and only if a = a A D
(or equivalently, a V b = b), then < is a partial ordering on R.

Theorem 2 [9]. If (R,V,A,0) is an ADL, for any a,b,c € R, we have the
following:

1) avVb=a<aNb=1D
2) avVb=beaNb=a
3) A is associative in R
4) aNbANc=bANaANc
5 (avb)Ac=(bVa)Ac
6) aV(bAc)=(aVb)A(aVc)

7) an(aVb)=a, (aAb)Vb=bandaV (bANa)=a
8) aA

a

a=a and aVa=a.

S

(
(
(
(
(
(
(
(

It can be observed that an ADL R satisfies almost all the properties of a
distributive lattice except the right distributivity of V over A, commutativity of
V, commutativity of A. Any one of these properties make an ADL R a distributive
lattice.

As usual, an element m € R is called maximal if it is a maximal element in
the partially ordered set (R, <). That is, for any a € R, m < a = m = a.

As in distributive lattices [1, 3|, a non-empty subset I of an ADL R is called
an ideal of Rifavb e I and aAx € [ for any a,b € [ and x € R. Also, a
non-empty subset F' of R is said to be a filter of Rif aAb € F and xVa € F for
a,b € F and x € R.

The set J(R) of all ideals of R is a bounded distributive lattice with least
element {0} and greatest element R under set inclusion in which, for any I,J €
J(R), I N J is the infimum of I and J while the supremum is given by IV J :=
{aVvb|aeclbe J} A proper ideal(filter) P of R is called a prime ideal
(filter) if, for any z,y € R, x Ay € P(xVy € P) = x € P or y € P. A proper
ideal(filter) M of R is said to be maximal if it is not properly contained in any
proper ideal(filter) of R. It can be observed that every maximal ideal (filter) of R
is a prime ideal (filter). Every proper ideal(filter) of R is contained in a maximal
ideal (filter). For any subset S of R the smallest ideal containing S is given by
(S]:={(Vi— si)Az | s; € S,x € Rand n € N}. If S = {s}, we write (s] instead of
(S] and such an ideal is called the principal ideal of R. Similarly, for any S C R,
[S):={zV (AL, s)|si€SzeRand ne N} If S = {s}, we write [s) instead
of [S) and such a filter is called the principal filter of R.

For any a,b € R, it can be verified that (a|V (b] = (aVb] and (a]A (b] = (aADb].
Hence the set (J7/(R),V,N) of all principal ideals of R is a sublattice of the
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distributive lattice (J(R),V,N) of all ideals of R. Also, we have that the set
(F(R),V,N) of all filters of R is a bounded distributive lattice.

Theorem 3 [6]. Let R be an ADL with maximal elements. Then P is a prime
ideal of R if and only if R\ P is a prime filter of R.

Definition [5]. An ADL R is said to be an associate ADL, if the operation V is
associative on R.

Definition [8]. For any nonempty subset A of an ADL R, define A* = {x €
R|aNz=0for all a € A}. Here A* is called the annihilator of A in R.

For any a € R, we have {a}* = (a]*, where (a] is the principal ideal generated
by a. An element a of an ADL R is called dense element if (a]* = {0} and the
set D of all dense elements in ADL is a filter if D is non-empty.

3. D-FILTERS OF ADLSs

In this section, the concepts of D-filters and prime D-filters are introduced in
an ADL and studied their properties. A set of equivalent conditions is derived
for every proper D-filter of an ADL to become a prime D-filter. It is observed
that every maximal D-filter of an ADL is a prime D-filter and also observed that
OP (M) is the intersection of all minimal prime D-filters contained in prime D-
filter M. The concept of D-normal ADLs is introduced and it is characterized in
terms of relative annihilators with respect to a filter D. An equivalency is derived
between minimal prime D-filters of an ADL and its quotient ADL with respect
to a congruence.

Definition. A filter G of R is said to be a D-filter of R if D C G.
Now we have the example of D-filter of an ADL.

Example 4. Let R = {0,1,2,3,4,5,6,7} and define V, A on R as follows:

AO11(213]4]5]6]|7 VIi0j1]2]3|4|5|6]|7
0/0(0]0;0{0|0]0]O0 00123 |4|5|6|7
11011234567 1j1)j1(1j1y1j1)1(1
2101112134567 2121212122222
310(313(13(0(0]13]60 313111213126/ 6
410145104 |5|7|7 4141111114414
5104510145 |7|7 5151212125525
6106637767 6161261266
T10|7|7|0|7|7|7|7 717111264567
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Then (R,V, A) is an ADL. Clearly, we have that D = {1,2,6} and G =
{1,2,3,6} are filters of R satisfying D C G. Therefore G is a D-filter of R.

It is easy to verify the proof of the following result.

Lemma 5. For any non-empty subset A of an ADL R, [A) V D is the smallest
D-filter of R containing A.

We denote [A)V D by AP, ie., AP = [A)VD. For, A = {a}, we denote simply
(a)P for {a}P. Clearly, we have that (a)” is the smallest D-filter containing a,
which is known as the principal D-filter generated by a.

Lemma 6. For any two elements x,y of an ADL R with mazimal element m,
we have the following:

z)P = D if and only if x € D.

Proof. (1) Now (0)P =[0)vD=RVD=R.

(2) Now (m)? = [m)Vv D = {m} Vv D C D. Clearly, we have D C (m)P.
Therefore D = (m)P

(3) Let z < y. Then [y) C [z). Now (y)” = [y)vD C [z)VD = 2. Therefore

()" C ()P
(4) Clearly, we have that [z Ay) = [2) V [y). Now, (zAy)P =[x Ay) VD =
[2)V[y)VD = ([2)vD)V([y)vD)) = (x)PV(y)P. Therefore (zAy)? = (z)7V ()"
(5) Since < xVy and y < yVz and hence [zVy) C [z) and [yVz) C [y). Since

[xVy)=[yVz), we get that [xVy) C [x)N]y). Let t € [z)N[y). Then ¢ € [z) and
t € [y). That implies tVae =t and tVy = t. Now tA(xVy) = (tAx)V(tAY) = zVy.
That implies ¢ V (z V y) =t and hence t € [z V y). Therefore [x) N [y) C [z V y).
Thus [zVy) = [£)N[y). Now (zVvy)P =zvy)vD =[z)Nn[y]VvD =
(2) v D) ([) v D) = ()P 1 (4)°. Hence (2 v 5)” = () 1 (3)".

(6) Assume that (z)” = D. Then [z) V D = D. That implies [z) C D and
hence x € D. Conversely, assume that € D. Then [z) C D. This implies that
[z)VD C D. Since D C [z)V D, we get that D = [x)V D. Therefore (z)” = D. m

We denote F(R), TP (R) and FFPT(R) as the set of all filters, D-filters and
principal D-filters of an ADL R, respectively.

Theorem 7. F”(R) forms a distributive lattice contained in F(R), and FFPF(R)
forms a sublattice of FP(R).
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Definition. An D-filter @ is said to be proper if @ C R. A proper D-filter @ is
said to be maximal if it is not properly contained in any proper D-filter of R. A
proper D-filter Q of an ADL R is said to be a prime D-filter if @) is prime filter
of R.

Example 8. Consider a distributive lattice L = {0, a,b,¢,1} and discrete ADL

A=A{0,d}.
Tl

Clearly, R = A x L = {(0/,0), (0, a), (0/,b), (', ¢), (', 1), (', 0), (', a), (a’, ),
t =

D

(a',c),(a’,1)} is an ADL with zero element (0,0’). Clearly, the dense se
{(d’,¢),(a’,1)}. Consider the D-filters

By ={(0, ), (0, 0), (0, 1), (a', a), (a', 1), (a/, )}

Fy ={(0,0),(0,¢), (0, 1), (d, 1), (d, b), (', ¢)}

F3 = {(a ’a)v(alvc) ( )}

Fy= {(a 7b)7(a 70)7( )}
Fs ={(0,0),(d, ), (', 1), (0", 1) }.

Clearly, Fy is a prime D-filter. But F3 is not a prime D-filter, because
(0',a) v (a',b) = (d’,c) € D, but (0',a) ¢ F3 and (d’,b) ¢ F3.

Theorem 9. For any D-filter Q of R, the following conditions are equivalent:
(1) @ is a prime D-filter

(2) for any two D-filters G,H of RGNH CQ=GCQ or HCQ

(3) foranyz,y e R, ()’ Nn(y)P CQ=2€Q oryecqQ.

Proof. (1)=(2): Assume (1). Let G and H be two D-filters of R such that
GNH C Q. We prove that G C Q or H C Q. Suppose G € Q and H ¢ Q.
Choose z,y € R such that x € G\ Q and y € H \ Q. By our assumption we have
that © Vy ¢ Q. Since x € G,y € H, which gives z Vy € GN H C Q. Therefore
xVy € Q, we get a contradiction. Thus G C Q or H C Q.

(2)=(3): Assume (2). Let z,y € R with ()P n (y)? C Q. Since (z)”
and (y)P are D-filters of R, and by our assumption, we get that (z)? C Q or
(y)P € Q. Hence z € Q or y € Q.
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(3)=(1): Assume (3). Let z,y € R with  Vy € Q. Since Q is a D-filter, we
have that (2)” N (y)? = (zVy)P C Q. By our assumption, we get that x € Q or
y € Q. Hence (@ is prime. [ |

Theorem 10. Every maximal D-filter of an ADL R is a prime D-filter.

Proof. Let N be a maximal D-filter of R. Let a,b € R with a ¢ N and b ¢ N.
Then N V (a)? = R and N Vv (b)? = R. That implies R = N V ((a)” N
BMP) = Nv(avbP. If avb € N then N = R, we get a contradiction.
Therefore a Vb ¢ N and hence N is prime. ]

Corollary 11. Let Ny, No, N3,..., N, and N be mazximal D-filters of an ADL
R with (;_; N; € N, then N; C N, for some j € {1,2,3,...,n}.

Theorem 12. A proper D-filter Q of an ADL R is a prime D-filter if and only
if R\ Q is a prime ideal such that (R\ Q)N D = .

Proof. Assume that @ is a prime D-filter of R. Clearly, R\ @ is a prime ideal
of R. We prove that (R\Q)ND = (. If (R\Q)ND # 0, choose z € (R\ Q)N D.
That implies x € D C @, which gives a contradiction. Hence (R\ Q)N D = (.
Conversely, assume that R\ @ is a prime ideal of R such that (R\ Q)N D = 0.
Clearly, @ is a prime filter of R and D C R\ (R\ Q) = Q. Therefore @ is a prime
D-filter of R. [ |

Theorem 13. Let G be a D-filter of an ADL R, and K be any non-empty subset
of R, which is closed under the operation V such that G N K = (. Then there
exists a prime D-filter Q of R containing G such that Q N K = ().

Proof. Let K be a non-empty subset of R, which is closed under the operation
V such that GN K = . Consider § = {H | H is an D-filter of R,G C H
and H N K = (}. Clearly, it satisfies the hypothesis of the Zorn’s lemma and
hence § has a maximal element say (). That is, @) is a D-filter of R such that
GCQand QN K = (. Let z,y € R be such that z Vy € Q. We prove that
r € Qory € Q. Suppose that ¢ @ and y ¢ Q. Then clearly Q V ()" and
Q V (y)P are D-filters of R such that Q@ € Q V (z)” and Q € Q V (y)”. Since
Q is maximal in §, we get that (Q V (z)P)N K # 0 and (Q V (y)P) N K # 0.
Choose s € (QV (z)P)N K and t € (Q V (y)?) N K. Then s € (Q V (x)?),
t € (QV (y)P) and s,t € K. Since K is closed under V, we get sVt € K. Now
sVt ={QV (@)P}n{QVv Pt =QVv{®)PnwP}=QV (= Vvy?P. Since
rVy € Q, we get that sVt € Q. Since s Vi € K, we get that sVt e QN K,
which is a contradiction to Q N K = (). Therefore either z € Q or y € Q. Thus Q
is a prime D-filter of R. [ |

Corollary 14. For any D-filter G of an ADL R with x ¢ G, there exists a prime
D-filter Q of R such that G C Q and x ¢ Q.
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Corollary 15. For any D-filter G of an ADL R, G = ({Q | Q is a prime
D-filter of R and G C Q}.

Corollary 16. D is the intersection of all prime D-filters of R.

Proof. Let @ be any prime D-filter of R. Clearly, we have that D C (| Q. Let
@ be any prime D-filter of an ADL R and = € (| Q. Suppose x ¢ D. Then there
exists prime ideal N such that x € N and N N D = (). That implies x ¢ R\ N
and D C R\ N. Therefore R\ N is a prime D-filer of R and « ¢ R\ N, which is
a contradiction. Therefore € D and hence (1Q C D. Thus D = Q. |

Theorem 17. In an ADL the following are equivalent:
(1) Ewvery proper D-filter is prime

(2) FP(R) is a chain

(3) FFPE(R) is a chain.

Proof. (1)=(2): Assume (1). Clearly (§”(R),C) is a poset. Let S and T be
two proper D-filters of R. By (1), we have that S NT is a prime D-filter of R.
Since SNT C SNT,weget SCSNTCTorTCSNT CS. Hence FP(R) is
a chain.

(2)=-(3): It is obvious.

(3)=(1): Assume that (3). Let G be a proper D-filter of R. We prove that
G is prime. Let z,y € R such that (z)? N (y)? C G. By our assumption, we get
that (z)P C (y)? or (y)P C (x)P. That implies x € (z)P = ()’ N (y)”? C G or
y € (y)? = ()P N (y)P C G. Therefore G is a prime D-filter of R. |

Now we introduce the concept of a relative annihilator in the following defi-
nition.

Definition. For any nonempty subset S of R, define (S,D) ={a € R|sVa € D,
for all s € S}. We call this set as relative annihilator of S with respect to the
filter D.

For S = {s}, we denote ({s}, D) by (s, D).
Lemma 18. If S,T are nonempty subsets of an ADL R, then we have the fol-
lowing:
) (R, D) =D = ({0}, D)
(D,D) =R
( D)
(S,D) is a D-filter of R
SCDiff(S,D)=R

(1

(2
(3
(4
(

)
) D
)
5)
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(6) S C T implies (T, D) C (S,D) and ((S,D),D) C (T, D), D)
(7) S<((S,D),D)

(8) ((($,D),D),D) = (S,D)

(9) (5,D)=([5),D)

(10) Miea(Si, D) = (Uen Si, D)

(11) (S,D) C (SNT,(T,D))

(12) If S C T then (S,(T,D)) = (S,D)

(13) (SUT,D) C (S,(T,D)) C(SNT,D)

(14) (S,(S,D)) = (S, D).

Proof. (1) Let x € (R, D). Then aVz € D, for all a € R. That implies xVz € D.
So that € D. Hence (R,D) C D. Let x € D. Then aV z € D, for all a € R.
Thus x € (R, D). Therefore D C (R, D) and hence (R, D) = D. Clearly, we have
that ({0}, D) = D.

(2) Let x € D. Then x Va € D, for all a € R. Since z V a € D, for all
x € D, we get that a € (D, D), for all a € R. Therefore R C (D, D) and hence
R=(D,D).

(3) Let z € D. Then yVx € D, for all y € R. Then a V x € D, for all
a € S C R. That implies « € (S, D). Therefore D C (5, D).

(4) Let a,b € (S,D). Then s Va,sVb € D, for all s € S. This implies
(s Va)A(sVb) € D. Therefore sV (a Ab) € D. Hence a ANb € (S,D). Let
a€ (S,D)and be R witha <b. Then sVae Dand sVa<sVb,forall sesS.
Since sVa € D and D is a filter, we get sVb € D. Hence b € (S, D), for all s € S.
Thus (S, D) is a filter of R. Since D C (S, D), we get that (S, D) is a D-filter
of R.

(5) Suppose (S,D) = R. Then 0 € (S, D). That implies a = a VvV 0 € D, for
all a € S. Hence a € D, for all a € S. Therefore S C D. Conversely, assume that
S C D. Let x € R. Since D is a filter, we get aVx € D, for all a € S C D. Hence
x € (S, D). Therefore (S,D) = R.

(6) Suppose S C T. Let a € (T,D). Then t Va € D, for all t € T. Since
S C T, we get that s Va € D, for all s € S. That implies a € (S, D). Therefore
(T, D) C (S,D) and hence ((S,D),D) C ((T, D), D).

(7) Let € (S, D). Then sV x € D, for all s € S. That implies =V s € D, for
all z € (S, D). That implies s € ((S, D), D), for all s € S. Thus S C ((S, D), D).

(8) By (7), we have that (((S,D),D),D) C (S,D). Let = ¢ (((S,D), D), D).
Then there exists an element a ¢ ((S,D), D) such that a Vx ¢ D. Since S C
((S,D), D), we have that a ¢ S. So that avVz ¢ D and s ¢ S. Therefore z ¢ (S, D),
it concludes that (S, D) C (((S, D), D), D). Thus (((S, D), D), D) = (S, D).

(9) Since S C [S), we get that ([S), D) C (S, D). Let € (S, D). ThenaVax €
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D, for all a € S C [S). That implies = € ([S), D). Therefore (S,D) C ([S), D).
Therefore (S, D) C ([S), D). Hence (S, D) = ([S), D).

(10) Since S; € ;e n Sis forall i € A, we get that ({J;ca Si, D) € (S5, D), for
all i € A. That implies (J;ca Si, D) € Niena(Si, D). Let 2 € (;c A (Si, D). Then
x € (S;, D), for all i € A. That implies a V2 € D, for all a € S; C |JS;. That
implies ;e (S5, D) € (Ujen Si, D). Therefore ();ca (Si, D) = (U;en Si, D).

(11) Since D is a filter in R, we have that D C (T, D) and hence we get that
(S,D) C (S,(T,D)). Since SNT C S, we get that (S,(T,D)) C (SNT,(T,D)).
Therefore (S,D) C (SNT,(T,D)).

(12) Let S,T be two non empty subsets of R such that S C T. Since D C
(T, D), we have that (S, D) C (S, (T, D)). Let z € (S, (T, D)). Then aVz € (T, D),
for all @ € S. That implies a V x € (S, D), for all @ € S. Since a V x € (S, D),
we get that sV (a V) € D, for all s € S and hence a Vx € D, for all a € S.
Therefore z € (S, D) and hence (S, (T, D)) C (S, D). Thus (S, (T, D)) = (S, D).

(13) Clearly, we have that (SUT,D) C (S,D) and D C (T, D). So that
(S,D) C (S,(T,D)). Also SNT C S. It follows that (S, (T, D)) C (SNT,D).
Therefore (SUT, D) C (S,(T,D)) C (SNT,D).

(14) It is clear by (12). ]

Proposition 19. Let S and T be any two filters of and ADL R. Then we have
the following:

(1) (S,D)n((S,D),D)=D

(2) (SvVT,D)=(S,D)n(T,D)

3) (§NT,D),D) C ((S,D),D)N((T,D),D).

Proof. (1) We have that D C (S, D) N ((S,D),D). Let =z € (S,D) N ((S, D), D).
Then z € (S,D) and = € ((S,D),D). Since z € ((S,D),D)), we have that
aVx € D, for all a € (S,D). Since x € (S,D), we get that z € D and hence
(S,D)n((S,D),D) C D. Thus (S,D) N ((S,D),D) = D.

(2) Clearly, S € SvT and T C SV T. Then (SVT),D) C (S,D) and
(SvT),D) C (T,D). That implies ((SV T),D) C (S,D) N (T,D). Let = €
(S,D)N (T,D). Then = € (S,D) and = € (T,D). That implies s Vz € D, for
all s € Sand t Vo € D, for all t € T. That implies (s V x) A (t Vz) € D and
have (s At)Vax € D. Since s € S and t € T, we get s At € SV T. Therefore
(shnt)Vzxz e D, forall sANt € SV T. That implies x € (S V T, D). Therefore
(S,D)N(T,D) C (SVT,D). Hence (S,D)N(T,D) = (SVT,D,).

(3) Since SNT C S and SNT C T, we get that (S,D) C (SNT,D)
and (T,D) C (SN T, D). That implies ((SNT,D),D) C ((S,D),D) and ((SN
T,D),D) C ((T,D),D). Hence ((SNT,D),D) C ((S,D),D)n((T,D),D). m

Theorem 20. For any non-empty subset S of an ADL R, (S, D) = (\,cg([s), D).
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Proof. Let x € [\,cq([s),D). Then 2 € ([s),D), for all s € S. That implies
tVaz e D, foralltels)and for all s € S. It follows that s Vo € D for all s € S.
Therefore x € (S, D). Hence z € (,cg([5), D) C (S, D). Let s be any element of
S. Take t € [s). Then t Vs =t. Now, x € (S,D). That implies s V x € D, for
all s € S. Sothat t VsVa € D, for all t € [s) and for all s € S. That implies
tVa e D, foralte[s)and for all s € S. So that [s) Vo C D, for all s € S.
That implies z € ([s), D), for all s € S. Therefore x € [,cg([s), D) and hence

(8, D) € Nyeg([s), D). Thus (S, D) = ,cq([s), D). ]

Corollary 21. Let x € R and S be arbitrary subset of R. Then (S,[z)) =
Naes (@, [)).

Corollary 22. For any x,y € R we have the following:
1) ([z),D) = (z,D)

(2) e<y=(z,D) C(y,D)

3) (zAy,D) = (x,D)N(y,D)

(4) ((zVy,D),D) = ((z,D),D) N ((y, D), D)

(5) (z,D)=R< z€D.

Theorem 23. Let G be a D-filter of an ADL L. Then we have
(1) GNn(G,D)=D
(2) (GVv(G,D)),D)=D.

Proof. (1) It is clear.

(2) Clearly, (G V (G,D)),D) C (G,D)n ((G,D),D). Let a € (G,D) N
((G,D),D). Let be GV (G, D). Then b = ¢ Ad, for some ¢ € G and d € (G, D).
That implies a Ve € D and aVd € D. Now aVb =aV (cAd) = (aVec)A
(avd) e D, forall be GV (G, D). Therefore a € ((GV (G, D)), D) and hence
(G,D) N ((G,D),D) C ((GV (G,D)),D). Thus D = (G, D) N ((G,D),D) =
((GV(G,D)),D). ]

Lemma 24. Let Ry and Ry be two ADLs with zero elements 0 and 0’ respectively.
Then for any (z,y) € Ry X Rg, we have the following:

(1) (z,9)" = (a)" x (y)*
(2) (z,y)* =(0,0') iff (z)* = {0} and (y)* = {0'}
3) ((z,y),D) = (a,D) x (y,D).
Let Dy and Dy be dense sets of Ry and Ry respectively. Them from the

above result, it can be conclude that Dy x Dy is a dense set of Ry X Ro. Further,
every dense set of Ry X Ry is form the form D X Ds.
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Theorem 25. Let M; be a prime D;-filter of ADLs R; for i = 1,2 and D =
D1 x Dy. Then My X Ry and Ry X My are prime D-filters of R4 X Ro.

Proof. Since Dy C My and Dy C Ms, we get D1 x Dy C My X Re and D1 x Dy C
R1 X Ms. That implies My x Ry and Ry X My are D-filters of Ry x Ro. Let
(a,b),(c,d) € Ry x Ry with (a,b) V (¢,d) € M; x Ry. Then aV ¢ € M. Since M
is a prime D-filter of Ry, we get a € My or ¢ € Mj. Thus (a,b) € M; x Ry or
(c,d) € My x Ry. Therefore M; x Ry is a prime D-filter of Ry X Rg. Similarly, we
can prove that Ry x Ms is also a prime D-filter of R1 X Ro. [ ]

Theorem 26. Let Ry and Ry be two ADLs with mazimal elements m and m’,
respectively. For any prime D-filter P of R1 X Ra, P is of the form P X Ry or
R1 X Py, where D = D1 X Dy and P; is a prime D-filter of R;, for i =1,2.

Proof. Let P be a prime D-filter of Ry x Ry. Consider P; = m(P) = {z1 €
Ry | (x1,x2) € P, for some x9 € Ry} and Po = mo(P) = {x2 € Ry | (x1,22) € P,
for some x1 € Ry}. It is easy to verify that P; and P, are D-filters of Ry and
Ry respectively. We first show that P; and P, are prime D-filters of R; and R»
respectively. Suppose P = R; and P, = Rs. Let (a,b) € Ry X Ro. Then there exist
x € Ry and y € Ry such that (a,y) € P and (x,b) € P. Since (a,m’) V (a,y) € P
and (m,b) V (z,b) € P, we get (a,m') € P and (m,b) € P. Therefore (a,b) =
(a,m") A (m,b) € P. Hence P = R; X Ry, which is a contradiction to that P
is proper. Next suppose that P, # Ry and P, # Rsy. Choose a € Ry \ P; and
b€ Ry \ Po. Then (a,y) ¢ P for all y € Ry and (z,b) ¢ P, for all x € R;. In
particular, (a,m’) ¢ P and (m,b) ¢ P. Since P is prime, we get (m,m’) ¢ P,
which is a contradiction. From the above observations, we get that either P} = R;
and P2 75 R2 or P1 75 R1 and P2 == R2.

Case (i). Suppose P, = Ry and P, # Ry. Let x9,y2 € Ry be such that
xa V Yz € Py. Then there exists a € Ry = P; such that (a,x2 Vys) € P. Therefore
(a,x2) V (a,y2) = (a V a,(x2 Vya)) = (a,x2 V y2) € P. Since P is prime, we get
(a,x2) € P or (a,y3) € P. Hence 9 € Py or yo € P,. Therefore P, is a prime
D-filter of Ry. We now show that P = Ry x P,. Clearly P C Ry x P5. On the other
hand, suppose (a,y) € Ry x P5. Since P; = Ry, there exists b € Ry such that
(a,b) € P and there exists € Ry such that (z,y) € P. Since (a,m’) V (a,b) =
(a,m') and (m,y) V (x,y) = (m,y), we get (a,m') € P and (m,y) € P. Since P
is a filter, it gives (a,y) = (a,m’) A (m,y) € P. Hence Ry x P, C P. Therefore
P =Ry x Pg.

Case (ii). Suppose P; # R; and P, = Rs. Similarly, we can prove that P is
prime D-filter of Ry and P = P; X Ro. [ ]

Theorem 27. Let S be a sub ADL of an ADL R and P is a prime D-filter of
S. Then there exists a prime D-filter Q of R such that QNS = P.
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Proof. Let P be a prime D-filter of S. Then S\ P is a prime ideal of S. Consider
F =[P). Then P C FNS. Suppose FFN(S\ P) # (). Choose z € FN(S\ P). Then
x € Fand x € (S\ P). Since x € F = [P), there exists a; AagA---Aa, € P such
that x = yV (a1 AagA---Aay,). Since P is a filter of S, we get a3 AagA---Aa,, € P
and hence 2 € P. Since z € (S\ P), we get a contradiction. Hence FN(S\ P) = 0.
Then there exists a prime D-filter @ of R such that FF C Q and QN (S\ P) = 0.
Since I C Q, we get INS C QNS. Since QN (S\ P) =0, we get Q@ C P.
Hence, both observations lead to P C I NS C QNS C PN.S C P. Therefore
P=@QnNnS§s. [ |

Now, we have the following definition

Definition. A prime D-filter M of an ADL R containing a D-filter G is said to
be a minimal prime D-filter belonging to G if there exists no prime D-filter N
such that G C N C M.

Note that if we take D = G in the above definition then we say that M is a
minimal prime D-filter.

Example 28. From the Example 8, we have that F5 is a prime D-filter and F}
is a D-filter of R. Clearly Fy C F5. Clearly there is no D-filter N of R such that
F, C N C F,. Hence F5 is a minimal prime D-filter belonging to Fj.

Proposition 29. Let G be a D-filter and M, a prime D-filter of R with G C M.
Then M is a minimal prime D-filter belonging to G if and only if R\ M is a
mazimal ideal with (R\ M) NG = 0.

Proof. Clearly, R\ M is a proper ideal and we have (R\ M) NG = (). We prove
that R\ M is maximal. Let N be any proper ideal of R such that N NG = ) and
R\ M C N. Then G C R\ N C M. By the minimality of M, we get R\ N = M.
Therefore R\ M is a maximal ideal with respect to the property (R\ M)NG = 0.
Conversely, assume that R\ M be a maximal ideal with respect to the property
(R\ M)NG = (). We prove that M is minimal. If N is any prime D-filter of R
such that D C G C N C M. Clearly, R\ N is an ideal such that R\ M C R\ N
and (R\ N) NG = (), which is a contradiction. Therefore M is a minimal prime
D-filter belonging to G. [

Theorem 30. Let G be a D-filter and M, a prime D-filter of R with G C M.
Then M is a minimal prime D-filter belonging to G if and only if for any a € M,
there exists b ¢ M such that a Vb € G.

Proof. Assume that M is a minimal prime D-filter belonging to G. Then R\ M
is a maximal ideal with respect to the property that (R\ M)NG = (. Let a € M.
Then a ¢ R\ M. That implies R\ M C (R\ M) V (a]. By the maximality of
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R\ M, we get that (R\ M)V (a]) NG # 0. Choose s € (R\ M) V (a]) N G.
Then there exists b € R\ M and s € G such that s = bV a. Therefore bV a € G.
Conversely, assume that for any a € M, there exists b ¢ M such that a Vb € G.
Suppose M is not a minimal prime D-filter belonging to G. Then there exists a
prime D-filter N of R such that D C G C N C M. Choose a € M \ N. Then, by
the our assumption, there exists b ¢ M such that aVb € G C N. Since a ¢ N, we
get that b € N C M, which is a contradiction. Therefore M is a minimal prime
D-filter belonging to G. [ |

Corollary 31. A prime D-filter M of an ADL R is minimal if and only if for
any a € M there exists b ¢ M such that a Vb € D.

Definition. For any prime D-filter M of R, define the set OP (M) as follows:
OP(M)={r € R |z € (y,D), for some y ¢ M}.
Clearly, observe that OP (M) = Uyenr (v, D).

Lemma 32. Let M be prime D-filter of an ADL R. Then OP (M) is a D-filter
such that OP (M) is contained in M.

Proof. Let a,b € OP(M). There exist elements s ¢ M and ¢t ¢ M such that a €
(s,D) and b € (¢, D). That implies ((s, D), D) C (a,D) and ((¢t,D), D) C (b, D).
So that ((s Vt,D),D) = ((s,D),D)N((t,D),D) C (a,D) N (b,D) = (a A b, D).
Hence anb € ((aAb,D),D) C (((sVt,D),D),D) = (sVt,D). Since sVt ¢ M, we
get that aAb € OP(M). Let a € OP (M) and a < b. There exists s ¢ M such that
a € (s,D). Since (s, D) is a filter, we get that b € (s, D). Therefore b € OP (M)
and hence OP (M) is a filter of R. Clearly, we have that D C OP(M). Thus
OP (M) is a D-filter of R. Let a € OP(M). Then there exists s ¢ M such that
a € (s,D). That implies a Vs € D C M. Since M is prime, we get that a € M.
Hence OP (M) C M. ]

Corollary 33. For any prime D-filter M of R, M is minimal if and only if
oP (M) = M.

Theorem 34. Every minimal prime D-filter M of R belonging to OP (M) is
contained in M.

Proof. Let N be any minimal prime D-filter belonging to O (M). We prove
that N C M. Suppose N ¢ M. Choose a € N \ M. Then there exists b ¢ N
such that a Vb € OP(M). Hence a V b € (s, D), for some s ¢ M. That implies
bV(aVvs)eDCM. Sincea ¢ M,s ¢ M, and M is prime, we get a Vs ¢ M.
Therefore b € OP (M) C N, which is a contradiction. Hence N C M. ]

Theorem 35. For any prime D-filter M of an ADL R, OP (M) is the intersec-
tion of all minimal prime D-filters contained in M.
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Proof. Let M be a prime D-filter of R. By Zorn’s lemma, M contains a minimal
prime D-filter. Let {S,}acs be the set of all minimal prime D-filters contained
in M. Let z € OP(M). Then z € (a, D), for some a ¢ M. Since each S, C M, we
have that a ¢ S,, for all @ €A . Since x Va € D C S, and a ¢ S,, for all a €A,
we get @ € S, for all a €A. Hence z € (,c, Sa. Therefore OP (M) C N, ep Sa-
Let z ¢ OP(M). Consider S = (R\ M) V [z). Suppose D NS # (. Choose
a € DNS. Since a € S, we get a =tV x, for some t € R\ M. Since a € D, we
get that t Vo € D. Hence = € (t,D), where t ¢ M. Thus z € OP(M), which
is a contradiction. Therefore SN D = (). Let M be a maximal ideal such that
S C Mand MND = (. Then R\ M is a minimal prime D-filter such that
R\M C M and x ¢ R\ M, since z € S C M. Hence = ¢ (), Sa- Therefore

acn P

ﬂaeA Sa g OD(M) u

Proposition 36. Let M7 and My be two prime D-filters in an ADL R with
M1 g MQ. Then OD(MQ) g OD(Ml).

Proof. Let x € OP(M,). Then there exists an element a ¢ My such that = €
(a,D). That implies = € (a,D) and a ¢ M;. So that x € OP(M;). Therefore
OP (M) C OP(My). -

Proposition 37. For any non mazximal element a € R with a ¢ D, there is a
minimal prime D-filter not containing a.

Proof. Let a be any non maximal element of R with a ¢ D. By Corollary 14,
there exists a prime D-filter P of R such that a ¢ P. Consider § = {Q | Q is
a prime D-filter of R,a ¢ @ and @ C P}. It satisfies the hypothesis of Zorn’s
Lemma. So that § has a minimal element say M, i.e., M is minimal and a ¢ M. =

Theorem 38. For any any prime D-filter M of an ADL R, the following are
equivalent:

(1) M is minimal prime D-filter

(2) M =0"(M)

(3) for any x € R, M contains precisely one of x or (z, D).

Proof. (1)=(2): Assume (1). Let € M. Then there exists y ¢ M such that
xVy € D. This implies that € OP(M). So that M C OP(M). Since OP (M) C
M, we get that M = OP(M).

(2)=(3): Assume (2). Let x € R. Suppose z ¢ M. Let a € (x,D). Then
aV x € D. That implies a V& € M. So that a € M. Since x ¢ M. Therefore
(x,D) C M.

(3)=(1): Let @ be any prime D-filter of R with @ C M. Then choose x € M

such that z ¢ Q. That implies (z, D) C Q € M. So that (z,D) ¢ M, which is a
contradiction. [
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Corollary 39. Let P be a minimal prime D-filter of an ADL R and a € R. Then
a € P if and only if ((a,D),D) C P.

Proof. Assume that a € P. Then (a,D) € P. Let t € ((a, D), D). Then (a,D) C

(t,D). Suppose t ¢ P. Then (a, D) C (t,D) C P, which is a contradiction. That
implies ¢t € P, which gives ((a, D), D) C P. The converse follows from the fact
that a € ((a, D), D). |

Definition. An ADL R with maximal elements is called an D- semi comple-
mented if for each non zero element z € R, there exists a non maximal element
y ¢ D such that x Vy € D.

Example 40. Let L; = {0,a} and Ly = {0,b1,b2} be two discrete ADLs. Then
R =Ly x Ly ={(0,0),(0,b1),(0,b2), (a,0), (a,b1), (a,b2)}. Then (R, A, V,0) is an
ADL, but not a lattice, because (a, by)A(a,b2) = (a,b2) # (a,b1) = (a,b2)A(a,by).
Clearly, D = {(a,b1), (a,bz)} is a dense set of R. We have that for any non zero
element z € R, there exists a non maximal element a ¢ D such that  Va € D.
Hence R is an D-semi complemented ADL.

Theorem 41. Let R be an ADL with maximal elements. Then R is D- semi
complemented if and only if the intersection of all mazimal ideals disjoint with

D is {0}.
Proof. Assume that R is D-semi complemented. Consider

K:ﬂ{M | M is a maximal ideal of R and M N D = (}.

We have to prove that K = {0}. Let x € K with  # 0. Then x € M, for
all maximal ideal M disjoint with D. Then = ¢ D. Since = # 0 and R is D-semi
complemented, there exists a non maximal element y ¢ D such that x Vy € D.
Then = Vy ¢ M. That implies M V (z V y] = R. Since y is non maximal element
of D, there exists a minimal prime D-filter N of R such that y ¢ N. That implies
y€ R\ N and (R\ N)ND = (), where R\ N is maximal ideal of R. So that
z,y € R\ N. We have x Vy € R\ N. Therefore (R\ N)N D # (), which is
a contradiction. Therefore # = 0. Hence K = {0}. Conversely, assume that
({M | M is a maximal ideal of R and M N D = ()} = {0}. Let  be any non
zero element of R. Then there exists a maximal ideal M such that ¢ M and
M N D = (. That implies M V (2] = R. So that aV z is maximal, for some a € M.
Since a € M and M N D = (), we get a ¢ D. Clearly, a V x € D. That is, for any
non zero element x of R, there exists a non maximal element a ¢ D such that
aVx € D. Hence R is D- semi complemented. [ |

Definition. An ADL R is said to be D-normal if for any a,b € R such that
aVbe D, there exists « € (a,D) and y € (b, D) such that z Ay = 0.
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From the Example 8, clearly we have that R is a D-normal ADL. The fol-
lowing result is a direct consequence of the above definition.

Theorem 42. R is D-normal if and only if (a, D)V (b, D) = R, for any a,b € R,
with aVbe D.

Definition. Two D-filters G7 and G5 of R are said to be co-maximal if G7 V Go
= R.

Example 43. From the Example 8, we have that Fy and Fj3 are D-filters of R.
Clearly, Fy V F3 = R. Therefore F5 and F3 are co-maximal. Also, we have I}
and Fy are D-filters of R, but not co-maximal.

Theorem 44. In an ADL R, the following are equivalent.

(1) For any a,b € R withaVbe D,(a,D)V (b,D) = R.

(2) For any a,be R,(a,D)V (b,D) = (aVb,D).

(3) Any two distinct minimal prime D-filters are co-mazimal.

(4) FEvery prime D-filter contains a unique minimal prime D-filter.
(5

) For any prime D-filter P,OP(P) is prime.

Proof. (1)=(2): Assume (1). Let a,b € Rwithz € (aVvb, D). Then zV(aVb) € D
and hence (xVa)V (zVb) € D. By (1), we have that (xVa,D)V (zVb,D)=R.
That implies € (x V a,D) V (z V b, D). Then there exists r € (z V a, D) and
s € (xV b, D) such that z =r As. Since r € (xVa,D), s € (x Vb, D) we get that
rVz € (a,D) and sV € (b, D). That implies (xVr)A(zVs) € (a, D)V (b, D) and
hence 2V (rAs) € (a,D)V (b, D). Since z = r A s, we get that x € (a, D)V (b, D).
Therefore (a V b, D) C (a,D) V (b, D). Since (a,D) V (b,D) C (a V b, D), we get
that (a, D)V (b,D) = (a V b, D), for all a,b € R.

(2)=(3): Assume (2). Let M and N be two distinct minimal prime D-filters
of R. Choose elements z,y € R such that x € M \ N and y € N \ M. Since
M and N are minimal, x Va € D, yVb € D, for some a ¢ M, b ¢ N. That
implies x VaVy Vb€ D and hence R = (xVaVyVb D). By (2), we get that
(xVb,D)V(aVy,D)=R.Since a ¢ M and y ¢ M, we get that aVy ¢ M. That
implies (a V y, D) C M. Similarly, we have that (z V b, D) C N. That implies
((xVvb)V(aVy),D)C MV N and hence R = M V N. Therefore M and N are

co-maximal.

(3)=(4): Assume (3). Let M be a prime D-filter of R. Suppose M contains
two distinct minimal prime D-filters, say N; and Na. By (3), we get that R =
N1V Ny C M, we get a contradiction. Therefore every prime D-filter contains a
unique minimal prime D-filter.

(4)=-(5): Assume that every prime D-filter P of R contains a unique minimal
prime D-filter. Then by Corollary 33, we get that O (P) is a prime D-filter.
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(5)=(1): Assume (5). Let a,b € R be such that a Vb € D. Suppose (a, D) V
(b,D) # R. Then there exists a maximal D-filter M such that (a, D) V (b,D) C
M. That implies (a,D) € M and (b,D) C M That implies a ¢ OP(M) and
b ¢ OP(M). Since OP (M) is prime, we get a Vb ¢ OP(M). So that D ¢ OP (M),
which is a contradiction. Therefore (a, D) V (b, D) = R. |

Theorem 45. In an ADL R, the following conditions are equivalent:
(1) R is D-normal.

(2) For any two distinct mazimal ideal G1 and G2 of R with G1 N D =),
GaN D =) there exist a ¢ Gy and b ¢ Gy such that a Ab = 0.

(3) For any maximal ideal G with GN D = 0, G is the unique maximal ideal
containing R\ OP(P).

Proof. (1)=(2): Assume that R is D-normal. Let G; and G5 be two distinct
maximal ideals of R with G; N D =0,Ga N D = 0. Then R\ Gy and R\ G; are
distinct minimal prime D-filters of R. By our assumption, we get R\ G; and
R\ Gy are co-maximal. That is, (R\ G1)V (R\ G2) = R. Since 0 € R, there exist
a € R\ Gy and b € R\ G such that a A b= 0.

(2)=(3): Assume (2). Let G be any maximal ideal of R with GND =
and R\ OP(P) C G. Let G} be any maximal ideal of R with G; N D = () and
R\ OP(P) C G;.

We prove that G = G1. Suppose G # G1. By our assumption, there exists
a ¢ Gy and b ¢ Go such that a A b = 0. That implies a,b ¢ R\ OP(P). So that
a,b € OP(P). This implies that a A b € OP(P). Therefore 0 € OP(P). Hence
OP(P) = R, which is a contradiction. We conclude that G = Gj.

(3)=(1): For any maximal ideal G with GND = (), G is the unique maximal
ideal containing R\ OP(P). Let P be a prime D-filter of R. Suppose P contains
two minimal prime D-filters say @)1 and (2. That is, @1 C P and QJ2 C P. That
implies OP(P) € OP(Q;) and OP(P) C OP(Q3). We get P C OP(Q,) and
P C 0OP(Q»). So that Q2 C Q1 and Q1 C Q2. This concludes that Q1 = Q,. =

Let I be an ideal of R. For any x,y € R, define a binary relation ¢; on R as
¢or={(x,y) e RxR|xVa=yV a, for some a € I}.

Proposition 46. For any ideal I of an associative ADL R, ¢5 is a congruence
relation on R.

For any ADL R, it can be easily verified that the quotient R/¢; is also
an ADL with respect to the following operations [a]y, A [b]g, = [a A b]y, and
la]g, V [blg, = [aV bly, where [aly, is the congruence class of @ modulo ¢;. It can
be routinely verified that the mapping ® : R — R/¢; defined by ®(a) = [a]e, is
a homomorphism.
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Theorem 47. In an ADL R, we have the following:

(1) If x is a dense element of R, then [x]y, is a dense element of R/r,

(2) If G is a D-filter of R/¢r, then ®~Y(G) is a D-filter of R,

(3) If G is a prime D-filter of R/¢r, then ®~1(G) is a prime D-filter of R.

Definition. Let I be an ideal of an ADL R. For any D-filter G of R, define
= {lalg, [ a € G}.

The following result can be proved easily.
Lemma 48. G is a D-filter of R/¢r.

Proposition 49. Let G be a prime D-filter and I an ideal of an ADL R such
that GO I = (). We have the following:

(1) z € G if and only if [x]4, € G
(2) GNI =0
(3) If G is a prime D-filter of R, then G is a prime D-filter of R/y,.

Proof. (1) Assume that z € G. Then we have [z]y, € G. Conversely assume
that [z]y, € G. Then there exists y € G such that [z]s;, = [yle,- That implies
(z,y) € ¢1. So there exists a € I such that zVa=yVa € G. Since GNI =),
we get a ¢ G. Since x Va € G and a ¢ G, we get that 2 € G.

(2) Suppose GNI # (). Then choose an element z € R such that [z]g, € GNI.
Then [z]y, € G and [z]p, € I. Since [z]y, € G and by (1), we get = € G. Since
[z]g, € I, there exists y € I such that [z]g, = [ylg,;- Then (x,y) € ¢;. So there
exist a € I such that x Va =y V a. Since y V a € I, we get that x V a € I. Since
r € G, we have that xVa € GNI. That implies GN I # (), we get a contradiction.
Hence GN1T = 0.

(3) Clearly, we have that G is a proper filter of R/y,. Let [z]y, € D. Then
x € D C G. That implies [z];, € G and hence G is a D-filter of R/y,. Let
[z, [Y]e, € R/g, such that [z]y, V [yle, € G. Then [zVyl, € G. By (1) we have

that x Vy € G. Since G is prime, we get that z € G or y € G. Again by (1) w
get that [x]4, € G or [y lo, € G. Hence G is a prime D-filter in R/y,. |

Proposition 50. Let I be an ideal of an ADL R. Then there is an order iso-

morphism of the set of all prime D-filters of R disjoint from I onto the set of all
prime D-filters of R/, .

Proof. Let G and H be two prime D-filters of R such that G NI = (Z) and
HNI=0. Then by Proposition 49(1), we get that G C H if and only if G CH.
Let G be a prime D-filter of R with G NI = (). Then by Proposition 49(3),



362 N. RAF1, P.V. SARADHI AND M.BALAIAH

we get that G is a prime D-filter of R/y,. Let @ be a prime D-filter of R/,.
Consider G = {a € R|[a]y, € Q}. Since Q is a D-filter of R/4,, we get that G is
a D-filter of R. Let a,b € R with a Vb € G. Then [ay, V [bly, = [a V bly, € Q.
Since @ is prime, we get [aly, € Q or [bls, € Q. Therefore a € G or b € G.
Hence G is a prime D-filter of R. Clearly G = Q. Suppose G NI # (. Then
choose an element s € G N I. That implies [s]y, € @ and s € I. Let [bly, € R/4,.
Since s € [ and bV s = bV sV s, we get that (b,bV s) € I. That implies
[blg;, = [bV slg;, = [blg, V [slg; € Q. Therefore [b]y, € Q. and hence R/y, = Q,
which is a contradiction. Thus GN T = (). [

Corollary 51. Let R be an ADL. Then the above map induces a one-to-one
correspondence between the set of all minimal prime D-filters of R which are
disjoint from I and the set of all minimal prime D-filters of R/,

Theorem 52. For any ideal I of an ADL R, the following are equivalent:
(1) Any two dintinct minimal prime D-filters of R are co-mazimal

(2) any two distinct minimal prime D-filters of R/ 4, are co-mazimal.

Proof. (1)=(2) Assume (1). Let G, G2 be two distinct minimal prime D-filters
of R/4,. Then by the corollary 51, there exist two minimal prime D-filters H; and
H, of R such that H;NT = and HyNT = §. Also H; = Gy and Hy = Gy. Since
GG1 and G are distinct, we get that H; and Hy are distinct. By the assumption,
we have Hy V Hy = R. Let a € R. There exist a; € Hy and a9 € Hsy such
that @ = a; A ag. Since a1 € H; and ay € Hy we get [a1]g, € Hy, = Gy and
a2]¢1 € Hy = Go. Now, [a]¢1 = [a1 VAN a2]¢1 = [a1]¢1 AN [a2]¢1 € G1 V Gy. That
implies [aly, € G1 V Go, for all a € R. Therefore G1 V Gy = R/4,.

(2)=-(1) Assume (2). Let P be a prime D-filter of R. Suppose P contains two
distinct minimal prime D-filters, say G and Go. Consider K = R\ P. Clearly
K is an ideal of R and G1 N K = () = G2 N K. By Corollary 51, we get that G
and G are distinct minimal prime D-filters of R/4, such that G1,Ga C P. That
implies P is containing two distinct minimal prime D-filters of R/y4,, which is a
contradiction. Hence P contains a unique minimal prime D-filter. By Theorem
44, any two distinct minimal prime D-filters of R are co-maximal. [ |

4. THE SPACE OF MINIMAL PRIME D-FILTERS OF AN ADL

In this section, some topological properties of the space of all prime D-filters and
the space of all minimal prime D-filters of an ADL are studied.

Let us denote the set of all prime D-filters of an ADL R by Specg (R).
For any A C R, define a(A) = {P € SpecR(R)|A ¢ P} and for any a € R,
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ala) = {P € SpecP(R)|a ¢ P}. Then we have the following result whose proof
is straightforward.

Lemma 53. Let R be an ADL and a,b € R. Then the following conditions hold:
) User (a) = Specp(R),

(1

(2) a(a) Na(d) = alaVb),

(3) a(a) Ua(b) = ala nb),

(4) a(a) =0 if and only if a € D,

(5) a(a) = SpecR(R) if and only if a = 0.

From the above result, it can be easily observed that the collection {a(a)|a €
R} forms a base for a topology on Specg (R). The topology generated by this base
is precisely {a(A | A C R} and is called the hull-kernel topology on SpecE(R).
Under this topology, we have the following result.

Theorem 54. In an ADL R, we have the following:

(1) For any a € R,a(a) is compact in SpecR(R),

(2) Let C be a compact open subset of Spec2(R). Then C = «a(a) for some
a€ R,

(3) SpecB(R) is a Ty-space,

(4) The map a — «a(a) is an anti-homomorphism from R onto the lattice of all
compact open subsets of Specg(R).

Proof. (1) Let a € R. Let X C R be such that a(a) C ,cx a(z). Let F be
a D-filter generated by the set X. Suppose a ¢ F. Then there exists a prime
D-filter P such that FF C P and a ¢ P. Since X C F' C P, we get P ¢ a(z) for
all x € X. Since a ¢ P, we get P € «a(a), which is a contradiction. Hence a € F.
So we can write a = z1 A z9 A - -+ A z, for some z1,29,...,2, € X and n € N.
Then, we get a(a) = oA\, z;) = U;—; @(x;) which is finite subcover for a(a).
Therefore a(a) is compact.

(2) Let C be a compact open subset of Spec2(R). Since C' is open, we get
C = U,ex a(z) for some X C R. Since C'is compact, there exist x1,22,...,2, €
X such that C' = |J;; a(xi) = a(A;,). Therefore C = a(z) for some = € R.

(3) Let P and @ be two distinct prime D-filters of R. Without loss of gen-
erality, assume that P ¢ Q. Choose z € R such that x € P and = ¢ Q. Hence
P ¢ a(x) and Q € a(x). Therefore Spec?(R) is a Ty-space.

(4) It can be obtained from (1), (2) and by the above lemma. ]

Proposition 55. In an ADL R, the following are equivalent:
(1) SpecR(R) is a Hausdorff space.



364 N. RAF1, P.V. SARADHI AND M.BALAIAH

(2) For each P € SpecR(R),P is the unique member of SpecR(R) such that
oP(p)c P.

(3) Ewvery prime D-filter is minimal.
(4) Ewvery prime D-filter is mazximal.

Proof. (1)=(2): Assume (1). Let P € SpecP(R). Clearly OP(P) C P. Suppose
Q € SpecP(R) such that Q # P and OP(P) C Q. Since Spec?(R) is Hausdorff,
there exists a,b € R such that P € a(a),Q € a(b) and a(aVb) = a(a)Na(b) = 0.
Hence a ¢ P,b ¢ Q and a Vb € D. Therefore b € OP(P) C @, which is a
contradiction to that b ¢ Q. Hence P = Q. Therefore P is the unique member of
Speck(R) such that OP(P) C P.

(2)=-(3): Assume (2). Let P be a prime D-filter of R. Suppose P is not
minimal. Let Q be a prime D-filter in R such that Q C P. Hence OP(Q) C Q
C P. Therefore P is a minimal prime D-filter of R.

(3)=(4): It is clear.

(4)=(1): Assume (4). Let P and Q be two distinct elements of SpecZ(R).
Hence OP(Q) ¢ P. Choose a € OP(Q) such that a ¢ P. Since a € OP(Q),
there exists b ¢ @ such that a € (b,D). Hence a Vb € D. Thus it yields,
P € afa),Q € a(b). Since a Vb € D, we get that a(a) N a(b) = ala Vb) = 0.
Therefore Spec2(R) is Hausdorff. |

Theorem 56. For any D-filter G of an ADL R, (G, D) = ({P € Spec2(R) | G
¢ P}.

Proof. Let G be a D-filter of R. Consider K = ({P € Spec2(R) | G ¢ P}.
Let P € a(G). Then G € P. Since GN (G,D) = D C P and P is prime, we
get (G, D) C P. Hence every prime D-filter P of R such that G ¢ P contains
(G, D). Therefore (G,D) C K. Let x ¢ (G,D). Then there exists y € G such
that x Vy ¢ D. Let K = {G | G is a D-filter of R and = V y ¢ G}. Clearly,
D € K and so P = (). Clearly, (K,C) is a partially ordered set and it satisfies
the hypothesis of the Zorn’s lemma, K has a maximal element, say N. Then N
is a D-filter of R and z Vy ¢ N. Therefore z ¢ N and y ¢ N. Since y € G,
we get G ¢ N. We now show that N is prime. Let a,b € R with a ¢ N and
b¢ N. Then N C NV (a)” and N € NV (b)P. By the maximality of N, we get
rVy € NV(a)? andxVvy € NV (b)P. Hence, zVy € {NV (a)P}n{NV (b)P} =
NV {@Pn®P}=Nv@vbP. Ifavbec N, then zVy € N which is a
contradiction. Thus N is a prime D-filter of R such that G € N and = ¢ N.
Therefore = ¢ K. Hence K C (G, D). |

Corollary 57. For any ADL R and a € R, (a, D) = (\{P € Spec2(R) | a ¢ P}.

Let Min®(R) denote the set of all minimal prime D-filters of ADL R. For
any a € R, write oy, (z) = a(x) N Min2(R).
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Theorem 58. For any ADL R, the following conditions hold:

(1) Ewvery prime D-filters contains a minimal prime D-filter.

(2) Npeminp(r) P = D-
(3) For any subset A with D C A, (A, D) =\peq,,(a)(P)-

Proof. (1) Let P be a prime D-filter of R. Consider X = {N € SpecR(R) | N C
P}. Clearly X is a partially ordered set under set inclusion and hence it satisfies
the hypothesis of the Zorn’s lemma, X has a minimal element say M. Clearly M
will be the required minimal prime D-filter of R.

(2) Since D is contained in every minimal prime D-filter of R and so contained
in the intersection of all minimal prime D-filters. Let # ¢ D. Then there exists
a prime D-filter P of R such that x ¢ P. By (1), there exists a minimal prime
D-filter of R such that M C P. Since x ¢ P, we get © ¢ M. That implies M
is a minimal prime D-filter of R such that x ¢ D-filters of R. Hence z is not
in the intersection of all minimal prime. Thus intersection of all minimal prime
D-filters of R is equal to D.

(3) Let P € Min2(R) such that A ¢ P. Choose z € A such that z ¢ P. Then
(A,D) C (x,D) C P. That implies (A4, D) is contained in every minimal prime
D-filter of R such that A ¢ P. Hence (A,D) C Npeap(a)(P). Let z ¢ (A, D).
Then z Vy ¢ D, for some y € A. By the condition (2), there exists a minimal
prime D-filter P of R such that z Vy ¢ P. That implies x ¢ P and y ¢ P.
Therefore © & (\peq,, (a) P and hence (A4, D) = (\pe,,, (a) P ]

Lemma 59. For any a,b € R, we have following:

(1) (a,D) C (b,D) if and only if cm,(b) C am(a)

(2) am(a) =0 if and only if a € D

(3) am(a) = Min2(R) if and only if (a,D) = D.

Proof. (1) Let a,b € R. Assume that (a,D) C (b,D). Let P € a,(b) Then
b ¢ P. That implies (a, D) C (b, D) C P. Therefore a ¢ P and hence P € a,,(a).

Thus a,(b) € ayy(a). Conversely, assume that a,,(b) C ap(a). Now, (a,D) =
mPEam(a) Pc mPEOzm(b) P = (b7 D) Hence (CL, D) < (bv D)

(2) Suppose Min2(R) = (. Then a € P for all P € MinZ(R). That implies
a€ ﬂPeMmg(R) P. Since a € nPeMm}f,’(R) P =D, we get a € D. The converse is
clear.

(3) Assume au(a) = MinP(R). Then (a,D) = Npea, @ P = Nrcarnp(ny
P = D. Therefore (a,D) = D. Conversely, assume (a,D) = D. Then (a,D) =
D C P. That implies a ¢ P, for all P € Min2(R). Therefore a,(a) = Min2(R). m

For any D-filter G of an ADL R, define 3,,(G) = {P € Min2(R) | G C P}.
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Lemma 60. Let G be a D-filter of an ADL R. If 3,,(G) = 0, then (G, D) = D.

Proof. Let B,(G) = (. Then B,,(G) = Min2(R). That implies (G,D) =
Npean ) P € ﬂPeMmg(R) P = D. Therefore (G,D) = D. ]

For any ADL R, define E = {z € R | (x,D) = D}.
Lemma 61. For any ADL R, F is an ideal.

Proof. Clearly 0 € E. Let z,y € E. Then ((z Vy,D),D) = ((z,D),D) N
((y,D),D) = (D,D)n (D,D) = RN R = R. That implies ((x V y),D) =
(R,D) = D. Therefore x Vy € E. Let x € E. Then (z,D) = D. Let y € R.
Now, (x Ay,D) = (z,D)N(y,D) = DN (y,D) = D. Therefore z Ay € E. Hence
E is an ideal of R. ]

Theorem 62. Let G be a D-filter of an ADL R. Then Min2(R) is compact if
and only if B (G) = 0 implies GNE # .

Proof. Assume that Min?(R) is compact. Let G be a D-filter R such that
Bm(G) = 0. Then a,,(G) = Min2(R). Since MinP(R) is compact, there exists
a € G such that ay,(a) = Min2(R). That implies (a, D) = D. Therefore a € E
and hence GNE # (). Conversely, assume that for any D-filter G of R, 3,,,(G) = ()
implies GNE # . Let A C R be such that MinP(R) = J,c 4 om(4) = am(A) =
am(G) where G = (A)P. Since MinP(R) = o, (G), we get Bn(G) = (0. By the
assumption, we get G N E # ). Choose d € GN E. Since d € G and G = (A)¥,
there exists aj,as,...,a, € A such that dV (a;g ANag A -+ AN a,) = d. Since
d € E, Min2(R) = an(d) C am(Ai,a) = U, am(a;). Hence Min2(R) is

compact. [ ]

Theorem 63. Let R be an ADL. For any Y C Min2(R), the closure of Y
in Min2(R) is Bm(Npey P) and, in particular, oo, (F) = Bn((G, D)), for any
D CGCR.

Proof. LetY C Min2(R). ThenY in Min2(R) = {Y in Spec?(R)}nMin2(R) =
H(Npey P) N MinR(R) = Bpm(Npey P)- In particular, for any D C G C R, we
have an (G) = Bm(npeam(c) P) = Bm(nIgP, PeMin2(R) P) = B ((F. D)) u

Proposition 64. Let F,G be two D-filters of an ADL R. Then the following are
equivalent:

(1) G S (F,D)
(2) GANF =D
(3) am(G) Nam(F) = 0.
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Proof. (1)=(2): Assume that G C (F,D). Then GNF C (F,D)NF = D.
Therefore GNF = D.

(2)=(3): Assume that GNF = D. Let P € a;n,(G) Napm(F) = an(GNF).
Then D = GNF ¢ P, which is a contradiction. Therefore oy, (G) N o (F) = 0.

(3)=(1): Assume that a,,(G) N, (F) = 0. Let z € G. Suppose x ¢ (F, D).
Then there exists y € F such that 2 Vy ¢ D. Then there exists P € Min2(R)
such that x Vy ¢ P. That implies ¢ P and y ¢ P. Hence G € P and F ¢ P.
Therefore P € o, (G) and P € a,,(F). Therefore P € a,,(G) N ap (F'), which is
a contradiction. So x € (F, D). Therefore G C (F, D). ]

Corollary 65. Let G be a D-filter of an ADL R and x € R. Then x € (G, D) if
and only if am(x) N am(G) = 0.

Proof. By taking G = {z}, in the above proposition. [ ]

Theorem 66. FEvery open subset of Mz'ng(R) is closed if and only if for any
D-filter of R, (G, D) = D implies 3,,(G) = (.

Proof. Assume that every open set of Min®(R) is closed. Let G be a D-filter of
R. Then B,,(G) is an open set in Min2(R). Now, (3,,(G) # 0. Then there exists
x € R\ D such that o, (z) C B,,(G). That implies a, () Ny, (G) = 0. Therefore
z € (G,D) and = ¢ D. Hence (G,D) # D. Thus (G,D) = D, which gives
Bm(G) = 0. Conversely, assume that the condition holds. Let H be an open subset
of Min2(R). Then H = a,,,(G), for some D-filter G of L. By Theorem-63, we
have m = 6B ((G, D)). It is enough to show that 3,,((G, D)) = a,(G). Since
((GV (G,D)),D) = D, by the assumption, we get 3,,(G V (G, D)) = (). Now, for
any P € Min2(R), we have, P € a;,(G) & G € P < (G,D) C P& P € B,(G).
Hence oy, (G) = Bm(G). Therefore H is closed in Min2(R). ]

Theorem 67. In an ADL R, Min2(R) is a Hausdorff space.

Proof. Let P and Q be distinct elements of Min2(R). Then there exists a € P
such that a ¢ Q. Since P is minimal, we get (a,D) ¢ P. Then there exists
b € (a, D) such that b ¢ P. That implies a Vb € D and hence o, (a) N ay,(b) = 0.
Since a ¢ Q and b ¢ P, we get Q € a,,(a) and P € ayy,(b). Therefore Min2 (R)
is a Hausdorff space. [ |
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