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Abstract

The concept of D-filters is introduced in an Almost Distributive Lattice
(ADL) and studied their properties. An equivalency is established between
the minimal prime D-filters of an ADL and its quotient ADL with respect
to a congruence. Finally, some properties of prime D-filters and minimal
prime D-filters of an ADL are studied topologically.
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1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy
and Rao [9] as a common abstraction of many existing ring theoretic general-
izations of a Boolean algebra on one hand and the class of distributive lattices
on the other. In that paper, the concept of an ideal in an ADL was introduced
analogous to that in a distributive lattice and it was observed that the set of
all principal ideals of an ADL forms a distributive lattice. This provided a path
to extend many existing concepts of lattice theory to the class of ADLs. The
concept of normal lattices was introduced by Cornish, in [2]. In [6] Rao and
Ravi Kumar, introduced the concept of a minimal prime ideal belonging to an
ideal of an ADL and studied their important properties. In [7], the concept of
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a normal ADL was given by Rao and Ravi Kumar. In that, authors have given
equivalent conditions for an ADL to become normal in terms of its annulets. The
notion of D-filters in lattices was introduced and studied their properties in [4]
by Kumar et al. In that paper, a set of equivalent conditions was established for
every proper D-filter of a lattice to become a prime D-filter. In this paper, the
concepts of D-filters and prime D-filters are introduced in an ADL and studied
their properties. A set of equivalent conditions is derived for every properD-filter
of an ADL to become a prime D-filter. We proved that every maximal D-filter
of an ADL is a prime D-filter. Also, proved that for any prime D-filter M of an
ADL R, OD(M) = {x ∈ R | x ∈ (a,D), for some a ∈ R \M} is the intersection
of all minimal prime D-filters contained in M . After that, we introduced the
concept of D-normal ADL and it characterized in terms of relative annihilators
with respect to a filter D. Derived an equivalency between the minimal prime
D-filters of an ADL and its quotient ADL with respect to a congruence. Studied
some topological properties of the space of all prime D-filters and the space of
all minimal prime D-filters of an ADL.

2. Preliminaries

In this section, we recall certain definitions and important results from [5] and
[9], those will be required in the text of the paper.

Definition [9]. An algebra R = (R,∨,∧, 0) of type (2, 2, 0) is called an Almost
Distributive Lattice (abbreviated as ADL), if it satisfies the following conditions:

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(3) (a ∨ b) ∧ b = b

(4) (a ∨ b) ∧ a = a

(5) a ∨ (a ∧ b) = a

(6) 0 ∧ a = 0

(7) a ∨ 0 = a, for all a, b, c ∈ R.

Example 1. Every non-empty set X can be regarded as an ADL as follows. Let
x0 ∈ X. Define the binary operations ∨,∧ on X by

x ∨ y = {x if x 6= x0, y if x = x0; x ∧ y = { y if x 6= x0, x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete
ADL.
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If (R,∨,∧, 0) is an ADL, for any a, b ∈ R, define a ≤ b if and only if a = a∧ b
(or equivalently, a ∨ b = b), then ≤ is a partial ordering on R.

Theorem 2 [9]. If (R,∨,∧, 0) is an ADL, for any a, b, c ∈ R, we have the

following:

(1) a ∨ b = a ⇔ a ∧ b = b

(2) a ∨ b = b ⇔ a ∧ b = a

(3) ∧ is associative in R

(4) a ∧ b ∧ c = b ∧ a ∧ c

(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(6) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(7) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a

(8) a ∧ a = a and a ∨ a = a.

It can be observed that an ADL R satisfies almost all the properties of a
distributive lattice except the right distributivity of ∨ over ∧, commutativity of
∨, commutativity of ∧. Any one of these properties make an ADL R a distributive
lattice.

As usual, an element m ∈ R is called maximal if it is a maximal element in
the partially ordered set (R,≤). That is, for any a ∈ R, m ≤ a ⇒ m = a.

As in distributive lattices [1, 3], a non-empty subset I of an ADL R is called
an ideal of R if a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ R. Also, a
non-empty subset F of R is said to be a filter of R if a∧ b ∈ F and x∨ a ∈ F for
a, b ∈ F and x ∈ R.

The set I(R) of all ideals of R is a bounded distributive lattice with least
element {0} and greatest element R under set inclusion in which, for any I, J ∈
I(R), I ∩ J is the infimum of I and J while the supremum is given by I ∨ J :=
{a ∨ b | a ∈ I, b ∈ J}. A proper ideal(filter) P of R is called a prime ideal
(filter) if, for any x, y ∈ R, x ∧ y ∈ P (x ∨ y ∈ P ) ⇒ x ∈ P or y ∈ P . A proper
ideal(filter) M of R is said to be maximal if it is not properly contained in any
proper ideal(filter) of R. It can be observed that every maximal ideal (filter) of R
is a prime ideal (filter). Every proper ideal(filter) of R is contained in a maximal
ideal (filter). For any subset S of R the smallest ideal containing S is given by
(S]:={(

∨n
i=1 si)∧x | si ∈ S, x ∈ R and n ∈ N}. If S = {s}, we write (s] instead of

(S] and such an ideal is called the principal ideal of R. Similarly, for any S ⊆ R,
[S):={x ∨ (

∧n
i=1 si) | si ∈ S, x ∈ R and n ∈ N}. If S = {s}, we write [s) instead

of [S) and such a filter is called the principal filter of R.

For any a, b ∈ R, it can be verified that (a]∨(b] = (a∨b] and (a]∧(b] = (a∧b].
Hence the set (IPI(R),∨,∩) of all principal ideals of R is a sublattice of the
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distributive lattice (I(R),∨,∩) of all ideals of R. Also, we have that the set
(F(R),∨,∩) of all filters of R is a bounded distributive lattice.

Theorem 3 [6]. Let R be an ADL with maximal elements. Then P is a prime

ideal of R if and only if R \ P is a prime filter of R.

Definition [5]. An ADL R is said to be an associate ADL, if the operation ∨ is
associative on R.

Definition [8]. For any nonempty subset A of an ADL R, define A∗ = {x ∈
R | a ∧ x = 0 for all a ∈ A}. Here A∗ is called the annihilator of A in R.

For any a ∈ R, we have {a}∗ = (a]∗, where (a] is the principal ideal generated
by a. An element a of an ADL R is called dense element if (a]∗ = {0} and the
set D of all dense elements in ADL is a filter if D is non-empty.

3. D-filters of ADLs

In this section, the concepts of D-filters and prime D-filters are introduced in
an ADL and studied their properties. A set of equivalent conditions is derived
for every proper D-filter of an ADL to become a prime D-filter. It is observed
that every maximal D-filter of an ADL is a prime D-filter and also observed that
OD(M) is the intersection of all minimal prime D-filters contained in prime D-
filter M . The concept of D-normal ADLs is introduced and it is characterized in
terms of relative annihilators with respect to a filter D. An equivalency is derived
between minimal prime D-filters of an ADL and its quotient ADL with respect
to a congruence.

Definition. A filter G of R is said to be a D-filter of R if D ⊆ G.

Now we have the example of D-filter of an ADL.

Example 4. Let R = {0, 1, 2, 3, 4, 5, 6, 7} and define ∨, ∧ on R as follows:

∧ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 1 2 3 4 5 6 7

3 0 3 3 3 0 0 3 0

4 0 4 5 0 4 5 7 7

5 0 4 5 0 4 5 7 7

6 0 6 6 3 7 7 6 7

7 0 7 7 0 7 7 7 7

∨ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 1 2 3 1 2 6 6

4 4 1 1 1 4 4 1 4

5 5 2 2 2 5 5 2 5

6 6 1 2 6 1 2 6 6

7 7 1 2 6 4 5 6 7
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Then (R,∨, ∧) is an ADL. Clearly, we have that D = {1, 2, 6} and G =
{1, 2, 3, 6} are filters of R satisfying D ⊆ G. Therefore G is a D-filter of R.

It is easy to verify the proof of the following result.

Lemma 5. For any non-empty subset A of an ADL R, [A) ∨D is the smallest

D-filter of R containing A.

We denote [A)∨D by AD, i.e., AD = [A)∨D. For, A = {a}, we denote simply
(a)D for {a}D. Clearly, we have that (a)D is the smallest D-filter containing a,
which is known as the principal D-filter generated by a.

Lemma 6. For any two elements x, y of an ADL R with maximal element m,
we have the following:

(1) (0)D = R

(2) (m)D = D

(3) x ≤ y implies (y)D ⊆ (x)D

(4) (x ∧ y)D = (x)D ∨ (y)D

(5) (x ∨ y)D = (x)D ∩ (y)D

(6) (x)D = D if and only if x ∈ D.

Proof. (1) Now (0)D = [0) ∨D = R ∨D = R.
(2) Now (m)D = [m) ∨ D = {m} ∨ D ⊆ D. Clearly, we have D ⊆ (m)D.

Therefore D = (m)D.
(3) Let x ≤ y. Then [y) ⊆ [x). Now (y)D = [y)∨D ⊆ [x)∨D = xD. Therefore

(y)D ⊆ (x)D.
(4) Clearly, we have that [x ∧ y) = [x) ∨ [y). Now, (x ∧ y)D = [x ∧ y) ∨D =

[x)∨[y)∨D = ([x)∨D)∨([y)∨D)) = (x)D∨(y)D. Therefore (x∧y)D = (x)D∨(y)D.
(5) Since x ≤ x∨y and y ≤ y∨x and hence [x∨y) ⊆ [x) and [y∨x) ⊆ [y). Since

[x∨ y) = [y∨x), we get that [x∨ y) ⊆ [x)∩ [y). Let t ∈ [x)∩ [y). Then t ∈ [x) and
t ∈ [y). That implies t∨x = t and t∨y = t. Now t∧(x∨y) = (t∧x)∨(t∧y) = x∨y.
That implies t ∨ (x ∨ y) = t and hence t ∈ [x ∨ y). Therefore [x) ∩ [y) ⊆ [x ∨ y).
Thus [x ∨ y) = [x) ∩ [y). Now (x ∨ y)D = [x ∨ y) ∨ D = [[x) ∩ [y)] ∨ D =
([x) ∨D) ∩ ([y) ∨D) = (x)D ∩ (y)D. Hence (x ∨ y)D = (x)D ∩ (y)D.

(6) Assume that (x)D = D. Then [x) ∨D = D. That implies [x) ⊆ D and
hence x ∈ D. Conversely, assume that x ∈ D. Then [x) ⊆ D. This implies that
[x)∨D ⊆ D. Since D ⊆ [x)∨D, we get that D = [x)∨D. Therefore (x)D = D.

We denote F(R),FD(R) and FPDF (R) as the set of all filters, D-filters and
principal D-filters of an ADL R, respectively.

Theorem 7. FD(R) forms a distributive lattice contained in F(R), and FPDF (R)
forms a sublattice of FD(R).
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Definition. An D-filter Q is said to be proper if Q ( R. A proper D-filter Q is
said to be maximal if it is not properly contained in any proper D-filter of R. A
proper D-filter Q of an ADL R is said to be a prime D-filter if Q is prime filter
of R.

Example 8. Consider a distributive lattice L = {0, a, b, c, 1} and discrete ADL
A = {0′, a′}.
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Clearly, R = A×L = {(0′, 0), (0′, a), (0′, b), (0′, c), (0′, 1), (a′, 0), (a′, a), (a′, b),
(a′, c), (a′, 1)} is an ADL with zero element (0, 0′). Clearly, the dense set D =
{(a′, c), (a′, 1)}. Consider the D-filters

F1 = {(0′, a), (0′, c), (0′, 1), (a′, a), (a′, 1), (a′, c)}
F2 = {(0′, b), (0′, c), (0′, 1), (a′, 1), (a′, b), (a′, c)}
F3 = {(a′, a), (a′, c), (a′, 1)}
F4 = {(a′, b), (a′, c), (a′, 1)}
F5 = {(0′, c), (a′, c), (a′, 1), (0′, 1)}.

Clearly, F4 is a prime D-filter. But F3 is not a prime D-filter, because
(0′, a) ∨ (a′, b) = (a′, c) ∈ D, but (0′, a) /∈ F3 and (a′, b) /∈ F3.

Theorem 9. For any D-filter Q of R, the following conditions are equivalent:

(1) Q is a prime D-filter

(2) for any two D-filters G,H of R,G ∩H ⊆ Q ⇒ G ⊆ Q or H ⊆ Q

(3) for any x, y ∈ R, (x)D ∩ (y)D ⊆ Q ⇒ x ∈ Q or y ∈ Q.

Proof. (1)⇒(2): Assume (1). Let G and H be two D-filters of R such that
G ∩ H ⊆ Q. We prove that G ⊆ Q or H ⊆ Q. Suppose G * Q and H * Q.
Choose x, y ∈ R such that x ∈ G \Q and y ∈ H \Q. By our assumption we have
that x ∨ y /∈ Q. Since x ∈ G, y ∈ H, which gives x ∨ y ∈ G ∩H ⊆ Q. Therefore
x ∨ y ∈ Q, we get a contradiction. Thus G ⊆ Q or H ⊆ Q.

(2)⇒(3): Assume (2). Let x, y ∈ R with (x)D ∩ (y)D ⊆ Q. Since (x)D

and (y)D are D-filters of R, and by our assumption, we get that (x)D ⊆ Q or
(y)D ⊆ Q. Hence x ∈ Q or y ∈ Q.



The space of minimal prime D-filters of ADLs 349

(3)⇒(1): Assume (3). Let x, y ∈ R with x ∨ y ∈ Q. Since Q is a D-filter, we
have that (x)D ∩ (y)D = (x∨ y)D ⊆ Q. By our assumption, we get that x ∈ Q or
y ∈ Q. Hence Q is prime.

Theorem 10. Every maximal D-filter of an ADL R is a prime D-filter.

Proof. Let N be a maximal D-filter of R. Let a, b ∈ R with a /∈ N and b /∈ N.
Then N ∨ (a)D = R and N ∨ (b)D = R. That implies R = N ∨ ((a)D ∩
(b)D) = N ∨ (a ∨ b)D. If a ∨ b ∈ N then N = R, we get a contradiction.
Therefore a ∨ b /∈ N and hence N is prime.

Corollary 11. Let N1, N2, N3, . . . , Nn and N be maximal D-filters of an ADL

R with
⋂n

i=1Ni ⊆ N, then Nj ⊆ N, for some j ∈ {1, 2, 3, . . . , n}.

Theorem 12. A proper D-filter Q of an ADL R is a prime D-filter if and only

if R \Q is a prime ideal such that (R \Q) ∩D = ∅.

Proof. Assume that Q is a prime D-filter of R. Clearly, R \ Q is a prime ideal
of R. We prove that (R \Q)∩D = ∅. If (R \Q)∩D 6= ∅, choose x ∈ (R \Q)∩D.
That implies x ∈ D ⊆ Q, which gives a contradiction. Hence (R \ Q) ∩D = ∅.
Conversely, assume that R \Q is a prime ideal of R such that (R \Q) ∩D = ∅.
Clearly, Q is a prime filter of R and D ⊆ R \ (R \Q) = Q. Therefore Q is a prime
D-filter of R.

Theorem 13. Let G be a D-filter of an ADL R, and K be any non-empty subset

of R, which is closed under the operation ∨ such that G ∩ K = ∅. Then there

exists a prime D-filter Q of R containing G such that Q ∩K = ∅.

Proof. Let K be a non-empty subset of R, which is closed under the operation
∨ such that G ∩ K = ∅. Consider F = {H | H is an D-filter of R,G ⊆ H
and H ∩ K = ∅}. Clearly, it satisfies the hypothesis of the Zorn’s lemma and
hence F has a maximal element say Q. That is, Q is a D-filter of R such that
G ⊆ Q and Q ∩ K = ∅. Let x, y ∈ R be such that x ∨ y ∈ Q. We prove that
x ∈ Q or y ∈ Q. Suppose that x /∈ Q and y /∈ Q. Then clearly Q ∨ (x)D and
Q ∨ (y)D are D-filters of R such that Q ( Q ∨ (x)D and Q ( Q ∨ (y)D. Since
Q is maximal in F, we get that (Q ∨ (x)D) ∩ K 6= ∅ and (Q ∨ (y)D) ∩ K 6= ∅.
Choose s ∈ (Q ∨ (x)D) ∩ K and t ∈ (Q ∨ (y)D) ∩ K. Then s ∈ (Q ∨ (x)D),
t ∈ (Q ∨ (y)D) and s, t ∈ K. Since K is closed under ∨, we get s ∨ t ∈ K. Now
s ∨ t = {Q ∨ (x)D} ∩ {Q ∨ (y)D} = Q ∨ {(x)D ∩ (y)D} = Q ∨ (x ∨ y)D. Since
x ∨ y ∈ Q, we get that s ∨ t ∈ Q. Since s ∨ t ∈ K, we get that s ∨ t ∈ Q ∩ K,
which is a contradiction to Q ∩K = ∅. Therefore either x ∈ Q or y ∈ Q. Thus Q
is a prime D-filter of R.

Corollary 14. For any D-filter G of an ADL R with x /∈ G, there exists a prime

D-filter Q of R such that G ⊆ Q and x /∈ Q.
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Corollary 15. For any D-filter G of an ADL R, G =
⋂
{Q | Q is a prime

D-filter of R and G ⊆ Q}.

Corollary 16. D is the intersection of all prime D-filters of R.

Proof. Let Q be any prime D-filter of R. Clearly, we have that D ⊆
⋂

Q. Let
Q be any prime D-filter of an ADL R and x ∈

⋂
Q. Suppose x /∈ D. Then there

exists prime ideal N such that x ∈ N and N ∩D = ∅. That implies x /∈ R \N
and D ⊆ R \N. Therefore R \N is a prime D-filer of R and x /∈ R \N, which is
a contradiction. Therefore x ∈ D and hence

⋂
Q ⊆ D. Thus D =

⋂
Q.

Theorem 17. In an ADL the following are equivalent:

(1) Every proper D-filter is prime

(2) FD(R) is a chain

(3) FPDF (R) is a chain.

Proof. (1)⇒(2): Assume (1). Clearly (FD(R),⊆) is a poset. Let S and T be
two proper D-filters of R. By (1), we have that S ∩ T is a prime D-filter of R.
Since S ∩ T ⊆ S ∩ T , we get S ⊆ S ∩ T ⊆ T or T ⊆ S ∩ T ⊆ S. Hence FD(R) is
a chain.

(2)⇒(3): It is obvious.

(3)⇒(1): Assume that (3). Let G be a proper D-filter of R. We prove that
G is prime. Let x, y ∈ R such that (x)D ∩ (y)D ⊆ G. By our assumption, we get
that (x)D ⊆ (y)D or (y)D ⊆ (x)D. That implies x ∈ (x)D = (x)D ∩ (y)D ⊆ G or
y ∈ (y)D = (x)D ∩ (y)D ⊆ G. Therefore G is a prime D-filter of R.

Now we introduce the concept of a relative annihilator in the following defi-
nition.

Definition. For any nonempty subset S of R, define (S,D) = {a ∈ R | s∨a ∈ D,
for all s ∈ S}. We call this set as relative annihilator of S with respect to the
filter D.

For S = {s}, we denote ({s},D) by (s,D).

Lemma 18. If S, T are nonempty subsets of an ADL R, then we have the fol-

lowing:

(1) (R,D) = D = ({0},D)

(2) (D,D) = R

(3) D ⊆ (S,D)

(4) (S,D) is a D-filter of R

(5) S ⊆ D iff (S,D) = R
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(6) S ⊆ T implies (T,D) ⊆ (S,D) and ((S,D),D) ⊆ ((T,D),D)

(7) S ⊆ ((S,D),D)

(8) (((S,D),D),D) = (S,D)

(9) (S,D) = ([S),D)

(10)
⋂

i∈△(Si,D) = (
⋃

i∈△ Si,D)

(11) (S,D) ⊆ (S ∩ T, (T,D))

(12) If S ⊆ T then (S, (T,D)) = (S,D)

(13) (S ∪ T,D) ⊆ (S, (T,D)) ⊆ (S ∩ T,D)

(14) (S, (S,D)) = (S,D).

Proof. (1) Let x ∈ (R,D). Then a∨x ∈ D, for all a ∈ R. That implies x∨x ∈ D.
So that x ∈ D. Hence (R,D) ⊆ D. Let x ∈ D. Then a ∨ x ∈ D, for all a ∈ R.
Thus x ∈ (R,D). Therefore D ⊆ (R,D) and hence (R,D) = D. Clearly, we have
that ({0},D) = D.

(2) Let x ∈ D. Then x ∨ a ∈ D, for all a ∈ R. Since x ∨ a ∈ D, for all
x ∈ D, we get that a ∈ (D,D), for all a ∈ R. Therefore R ⊆ (D,D) and hence
R = (D,D).

(3) Let x ∈ D. Then y ∨ x ∈ D, for all y ∈ R. Then a ∨ x ∈ D, for all
a ∈ S ⊆ R. That implies x ∈ (S,D). Therefore D ⊆ (S,D).

(4) Let a, b ∈ (S,D). Then s ∨ a, s ∨ b ∈ D, for all s ∈ S. This implies
(s ∨ a) ∧ (s ∨ b) ∈ D. Therefore s ∨ (a ∧ b) ∈ D. Hence a ∧ b ∈ (S,D). Let
a ∈ (S,D) and b ∈ R with a ≤ b. Then s ∨ a ∈ D and s ∨ a ≤ s ∨ b, for all s ∈ S.
Since s∨a ∈ D and D is a filter, we get s∨ b ∈ D. Hence b ∈ (S,D), for all s ∈ S.
Thus (S,D) is a filter of R. Since D ⊆ (S,D), we get that (S,D) is a D-filter
of R.

(5) Suppose (S,D) = R. Then 0 ∈ (S,D). That implies a = a ∨ 0 ∈ D, for
all a ∈ S. Hence a ∈ D, for all a ∈ S. Therefore S ⊆ D. Conversely, assume that
S ⊆ D. Let x ∈ R. Since D is a filter, we get a∨x ∈ D, for all a ∈ S ⊆ D. Hence
x ∈ (S,D). Therefore (S,D) = R.

(6) Suppose S ⊆ T. Let a ∈ (T,D). Then t ∨ a ∈ D, for all t ∈ T. Since
S ⊆ T, we get that s ∨ a ∈ D, for all s ∈ S. That implies a ∈ (S,D). Therefore
(T,D) ⊆ (S,D) and hence ((S,D),D) ⊆ ((T,D),D).

(7) Let x ∈ (S,D). Then s∨x ∈ D, for all s ∈ S. That implies x∨ s ∈ D, for
all x ∈ (S,D). That implies s ∈ ((S,D),D), for all s ∈ S. Thus S ⊆ ((S,D),D).

(8) By (7), we have that (((S,D),D),D) ⊆ (S,D). Let x /∈ (((S,D),D),D).
Then there exists an element a /∈ ((S,D),D) such that a ∨ x /∈ D. Since S ⊆
((S,D),D), we have that a /∈ S. So that a∨x /∈ D and s /∈ S. Therefore x /∈ (S,D),
it concludes that (S,D) ⊆ (((S,D),D),D). Thus (((S,D),D),D) = (S,D).

(9) Since S ⊆ [S), we get that ([S),D) ⊆ (S,D). Let x ∈ (S,D). Then a∨x ∈
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D, for all a ∈ S ⊆ [S). That implies x ∈ ([S),D). Therefore (S,D) ⊆ ([S),D).
Therefore (S,D) ⊆ ([S),D). Hence (S,D) = ([S),D).

(10) Since Si ⊆
⋃

i∈△ Si, for all i ∈ △, we get that (
⋃

i∈△ Si,D) ⊆ (Si,D), for
all i ∈ △. That implies (

⋃
i∈△ Si,D) ⊆

⋂
i∈△(Si,D). Let x ∈

⋂
i∈△(Si,D). Then

x ∈ (Si,D), for all i ∈ △. That implies a ∨ x ∈ D, for all a ∈ Si ⊆
⋃

Si. That
implies

⋂
i∈△(Si,D) ⊆ (

⋃
i∈△ Si,D). Therefore

⋂
i∈△(Si,D) = (

⋃
i∈△ Si,D).

(11) Since D is a filter in R, we have that D ⊆ (T,D) and hence we get that
(S,D) ⊆ (S, (T,D)). Since S ∩ T ⊆ S, we get that (S, (T,D)) ⊆ (S ∩ T, (T,D)).
Therefore (S,D) ⊆ (S ∩ T, (T,D)).

(12) Let S, T be two non empty subsets of R such that S ⊆ T . Since D ⊆
(T,D), we have that (S,D) ⊆ (S, (T,D)). Let x ∈ (S, (T,D)). Then a∨x ∈ (T,D),
for all a ∈ S. That implies a ∨ x ∈ (S,D), for all a ∈ S. Since a ∨ x ∈ (S,D),
we get that s ∨ (a ∨ x) ∈ D, for all s ∈ S and hence a ∨ x ∈ D, for all a ∈ S.
Therefore x ∈ (S,D) and hence (S, (T,D)) ⊆ (S,D). Thus (S, (T,D)) = (S,D).

(13) Clearly, we have that (S ∪ T,D) ⊆ (S,D) and D ⊆ (T,D). So that
(S,D) ⊆ (S, (T,D)). Also S ∩ T ⊆ S. It follows that (S, (T,D)) ⊆ (S ∩ T,D).
Therefore (S ∪ T,D) ⊆ (S, (T,D)) ⊆ (S ∩ T,D).

(14) It is clear by (12).

Proposition 19. Let S and T be any two filters of and ADL R. Then we have

the following:

(1) (S,D) ∩ ((S,D),D) = D

(2) (S ∨ T,D) = (S,D) ∩ (T,D)

(3) ((S ∩ T,D),D) ⊆ ((S,D),D) ∩ ((T,D),D).

Proof. (1) We have that D ⊆ (S,D) ∩ ((S,D),D). Let x ∈ (S,D) ∩ ((S,D),D).
Then x ∈ (S,D) and x ∈ ((S,D),D). Since x ∈ ((S,D),D)), we have that
a ∨ x ∈ D, for all a ∈ (S,D). Since x ∈ (S,D), we get that x ∈ D and hence
(S,D) ∩ ((S,D),D) ⊆ D. Thus (S,D) ∩ ((S,D),D) = D.

(2) Clearly, S ⊆ S ∨ T and T ⊆ S ∨ T. Then ((S ∨ T ),D) ⊆ (S,D) and
((S ∨ T ),D) ⊆ (T,D). That implies ((S ∨ T ),D) ⊆ (S,D) ∩ (T,D). Let x ∈
(S,D) ∩ (T,D). Then x ∈ (S,D) and x ∈ (T,D). That implies s ∨ x ∈ D, for
all s ∈ S and t ∨ x ∈ D, for all t ∈ T. That implies (s ∨ x) ∧ (t ∨ x) ∈ D and
have (s ∧ t) ∨ x ∈ D. Since s ∈ S and t ∈ T, we get s ∧ t ∈ S ∨ T. Therefore
(s ∧ t) ∨ x ∈ D, for all s ∧ t ∈ S ∨ T. That implies x ∈ (S ∨ T,D). Therefore
(S,D) ∩ (T,D) ⊆ (S ∨ T,D). Hence (S,D) ∩ (T,D) = (S ∨ T,D).

(3) Since S ∩ T ⊆ S and S ∩ T ⊆ T , we get that (S,D) ⊆ (S ∩ T,D)
and (T,D) ⊆ (S ∩ T,D). That implies ((S ∩ T,D),D) ⊆ ((S,D),D) and ((S ∩
T,D),D) ⊆ ((T,D),D). Hence ((S ∩ T,D),D) ⊆ ((S,D),D) ∩ ((T,D),D).

Theorem 20. For any non-empty subset S of an ADL R, (S,D) =
⋂

s∈S([s),D).
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Proof. Let x ∈
⋂

s∈S([s),D). Then x ∈ ([s),D), for all s ∈ S. That implies
t ∨ x ∈ D, for all t ∈ [s) and for all s ∈ S. It follows that s ∨ x ∈ D for all s ∈ S.
Therefore x ∈ (S,D). Hence x ∈

⋂
s∈S([s),D) ⊆ (S,D). Let s be any element of

S. Take t ∈ [s). Then t ∨ s = t. Now, x ∈ (S,D). That implies s ∨ x ∈ D, for
all s ∈ S. So that t ∨ s ∨ x ∈ D, for all t ∈ [s) and for all s ∈ S. That implies
t ∨ x ∈ D, for all t ∈ [s) and for all s ∈ S. So that [s) ∨ x ⊆ D, for all s ∈ S.
That implies x ∈ ([s),D), for all s ∈ S. Therefore x ∈

⋂
s∈S([s),D) and hence

(S,D) ⊆
⋂

s∈S([s),D). Thus (S,D) =
⋂

s∈S([s),D).

Corollary 21. Let x ∈ R and S be arbitrary subset of R. Then (S, [x)) =⋂
a∈S(a, [x)).

Corollary 22. For any x, y ∈ R we have the following:

(1) ([x),D) = (x,D)

(2) x ≤ y ⇒ (x,D) ⊆ (y,D)

(3) (x ∧ y,D) = (x,D) ∩ (y,D)

(4) ((x ∨ y,D),D) = ((x,D),D) ∩ ((y,D),D)

(5) (x,D) = R ⇔ x ∈ D.

Theorem 23. Let G be a D-filter of an ADL L. Then we have

(1) G ∩ (G,D) = D

(2) ((G ∨ (G,D)),D) = D.

Proof. (1) It is clear.

(2) Clearly, ((G ∨ (G,D)),D) ⊆ (G,D) ∩ ((G,D),D). Let a ∈ (G,D) ∩
((G,D),D). Let b ∈ G ∨ (G,D). Then b = c ∧ d, for some c ∈ G and d ∈ (G,D).
That implies a ∨ c ∈ D and a ∨ d ∈ D. Now a ∨ b = a ∨ (c ∧ d) = (a ∨ c) ∧
(a ∨ d) ∈ D, for all b ∈ G ∨ (G,D). Therefore a ∈ ((G ∨ (G,D)),D) and hence
(G,D) ∩ ((G,D),D) ⊆ ((G ∨ (G,D)),D). Thus D = (G,D) ∩ ((G,D),D) =
((G ∨ (G,D)),D).

Lemma 24. Let R1 and R2 be two ADLs with zero elements 0 and 0′ respectively.
Then for any (x, y) ∈ R1 ×R2, we have the following:

(1) (x, y)∗ = (a)∗ × (y)∗

(2) (x, y)∗ = (0, 0′) iff (x)∗ = {0} and (y)∗ = {0′}

(3) ((x, y),D) = (a,D)× (y,D).

Let D1 and D2 be dense sets of R1 and R2 respectively. Them from the
above result, it can be conclude that D1 ×D2 is a dense set of R1 ×R2. Further,
every dense set of R1 ×R2 is form the form D1 ×D2.
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Theorem 25. Let Mi be a prime Di-filter of ADLs Ri for i = 1, 2 and D =
D1 ×D2. Then M1 ×R2 and R1 ×M2 are prime D-filters of R1 ×R2.

Proof. Since D1 ⊆ M1 and D2 ⊆ M2, we get D1×D2 ⊆ M1×R2 and D1×D2 ⊆
R1 × M2. That implies M1 × R2 and R1 × M2 are D-filters of R1 × R2. Let
(a, b), (c, d) ∈ R1 ×R2 with (a, b) ∨ (c, d) ∈ M1 ×R2. Then a ∨ c ∈ M1. Since M1

is a prime D-filter of R1, we get a ∈ M1 or c ∈ M1. Thus (a, b) ∈ M1 × R2 or
(c, d) ∈ M1 ×R2. Therefore M1 ×R2 is a prime D-filter of R1 ×R2. Similarly, we
can prove that R1 ×M2 is also a prime D-filter of R1 ×R2.

Theorem 26. Let R1 and R2 be two ADLs with maximal elements m and m′,

respectively. For any prime D-filter P of R1 × R2, P is of the form P1 × R2 or

R1 × P2, where D = D1 ×D2 and Pi is a prime D-filter of Ri, for i = 1, 2.

Proof. Let P be a prime D-filter of R1 × R2. Consider P1 = π1(P ) = {x1 ∈
R1 | (x1, x2) ∈ P, for some x2 ∈ R2} and P2 = π2(P ) = {x2 ∈ R2 | (x1, x2) ∈ P,
for some x1 ∈ R1}. It is easy to verify that P1 and P2 are D-filters of R1 and
R2 respectively. We first show that P1 and P2 are prime D-filters of R1 and R2

respectively. Suppose P1 = R1 and P2 = R2. Let (a, b) ∈ R1×R2. Then there exist
x ∈ R1 and y ∈ R2 such that (a, y) ∈ P and (x, b) ∈ P. Since (a,m′) ∨ (a, y) ∈ P
and (m, b) ∨ (x, b) ∈ P, we get (a,m′) ∈ P and (m, b) ∈ P. Therefore (a, b) =
(a,m′) ∧ (m, b) ∈ P. Hence P = R1 × R2, which is a contradiction to that P
is proper. Next suppose that P1 6= R1 and P2 6= R2. Choose a ∈ R1 \ P1 and
b ∈ R2 \ P2. Then (a, y) /∈ P for all y ∈ R2 and (x, b) /∈ P1 for all x ∈ R1. In
particular, (a,m′) /∈ P and (m, b) /∈ P. Since P is prime, we get (m,m′) /∈ P,
which is a contradiction. From the above observations, we get that either P1 = R1

and P2 6= R2 or P1 6= R1 and P2 = R2.

Case (i). Suppose P1 = R1 and P2 6= R2. Let x2, y2 ∈ R2 be such that
x2 ∨ y2 ∈ P2. Then there exists a ∈ R1 = P1 such that (a, x2 ∨ y2) ∈ P. Therefore
(a, x2) ∨ (a, y2) = (a ∨ a, (x2 ∨ y2)) = (a, x2 ∨ y2) ∈ P. Since P is prime, we get
(a, x2) ∈ P or (a, y2) ∈ P. Hence x2 ∈ P2 or y2 ∈ P2. Therefore P2 is a prime
D-filter of R2. We now show that P = R1×P2. Clearly P ⊆ R1×P2. On the other
hand, suppose (a, y) ∈ R1 × P2. Since P1 = R1, there exists b ∈ R2 such that
(a, b) ∈ P and there exists x ∈ R1 such that (x, y) ∈ P. Since (a,m′) ∨ (a, b) =
(a,m′) and (m, y) ∨ (x, y) = (m, y), we get (a,m′) ∈ P and (m, y) ∈ P. Since P
is a filter, it gives (a, y) = (a,m′) ∧ (m, y) ∈ P. Hence R1 × P2 ⊆ P. Therefore
P = R1 × P2.

Case (ii). Suppose P1 6= R1 and P2 = R2. Similarly, we can prove that P1 is
prime D-filter of R1 and P = P1 ×R2.

Theorem 27. Let S be a sub ADL of an ADL R and P is a prime D-filter of

S. Then there exists a prime D-filter Q of R such that Q ∩ S = P.
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Proof. Let P be a prime D-filter of S. Then S \P is a prime ideal of S. Consider
F = [P ). Then P ⊆ F ∩S. Suppose F ∩(S \P ) 6= ∅. Choose x ∈ F ∩(S \P ). Then
x ∈ F and x ∈ (S \P ). Since x ∈ F = [P ), there exists a1∧a2∧ · · · ∧an ∈ P such
that x = y∨(a1∧a2∧· · ·∧an). Since P is a filter of S, we get a1∧a2∧· · ·∧an ∈ P
and hence x ∈ P. Since x ∈ (S\P ), we get a contradiction. Hence F ∩(S\P ) = ∅.
Then there exists a prime D-filter Q of R such that F ⊆ Q and Q ∩ (S \ P ) = ∅.
Since I ⊆ Q, we get I ∩ S ⊆ Q ∩ S. Since Q ∩ (S \ P ) = ∅, we get Q ⊆ P.
Hence, both observations lead to P ⊆ I ∩ S ⊆ Q ∩ S ⊆ P ∩ S ⊆ P. Therefore
P = Q ∩ S.

Now, we have the following definition

Definition. A prime D-filter M of an ADL R containing a D-filter G is said to
be a minimal prime D-filter belonging to G if there exists no prime D-filter N
such that G ⊆ N ⊆ M.

Note that if we take D = G in the above definition then we say that M is a
minimal prime D-filter.

Example 28. From the Example 8, we have that F2 is a prime D-filter and F4

is a D-filter of R. Clearly F4 ⊆ F2. Clearly there is no D-filter N of R such that
F4 ⊆ N ⊆ F2. Hence F2 is a minimal prime D-filter belonging to F4.

Proposition 29. Let G be a D-filter and M, a prime D-filter of R with G ⊆ M.
Then M is a minimal prime D-filter belonging to G if and only if R \ M is a

maximal ideal with (R \M) ∩G = ∅.

Proof. Clearly, R \M is a proper ideal and we have (R \M)∩G = ∅. We prove
that R \M is maximal. Let N be any proper ideal of R such that N ∩G = ∅ and
R \M ⊆ N. Then G ⊆ R \N ⊆ M. By the minimality of M, we get R \N = M.
Therefore R\M is a maximal ideal with respect to the property (R\M)∩G = ∅.
Conversely, assume that R \M be a maximal ideal with respect to the property
(R \M) ∩ G = ∅. We prove that M is minimal. If N is any prime D-filter of R
such that D ⊆ G ⊆ N ⊆ M. Clearly, R \N is an ideal such that R \M ⊆ R \N
and (R \N) ∩G = ∅, which is a contradiction. Therefore M is a minimal prime
D-filter belonging to G.

Theorem 30. Let G be a D-filter and M, a prime D-filter of R with G ⊆ M.
Then M is a minimal prime D-filter belonging to G if and only if for any a ∈ M,
there exists b /∈ M such that a ∨ b ∈ G.

Proof. Assume that M is a minimal prime D-filter belonging to G. Then R \M
is a maximal ideal with respect to the property that (R\M)∩G = ∅. Let a ∈ M.
Then a /∈ R \ M. That implies R \ M ⊂ (R \ M) ∨ (a]. By the maximality of
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R \ M, we get that ((R \ M) ∨ (a]) ∩ G 6= ∅. Choose s ∈ ((R \ M) ∨ (a]) ∩ G.
Then there exists b ∈ R \M and s ∈ G such that s = b∨ a. Therefore b∨ a ∈ G.
Conversely, assume that for any a ∈ M, there exists b /∈ M such that a ∨ b ∈ G.
Suppose M is not a minimal prime D-filter belonging to G. Then there exists a
prime D-filter N of R such that D ⊆ G ⊆ N ⊆ M. Choose a ∈ M \N. Then, by
the our assumption, there exists b /∈ M such that a∨ b ∈ G ⊆ N. Since a /∈ N, we
get that b ∈ N ⊆ M, which is a contradiction. Therefore M is a minimal prime
D-filter belonging to G.

Corollary 31. A prime D-filter M of an ADL R is minimal if and only if for

any a ∈ M there exists b /∈ M such that a ∨ b ∈ D.

Definition. For any prime D-filter M of R, define the set OD(M) as follows:

OD(M) = {x ∈ R | x ∈ (y,D), for some y /∈ M}.

Clearly, observe that OD(M) =
⋃

y/∈M (y,D).

Lemma 32. Let M be prime D-filter of an ADL R. Then OD(M) is a D-filter

such that OD(M) is contained in M.

Proof. Let a, b ∈ OD(M). There exist elements s /∈ M and t /∈ M such that a ∈
(s,D) and b ∈ (t,D). That implies ((s,D),D) ⊆ (a,D) and ((t,D),D) ⊆ (b,D).
So that ((s ∨ t,D),D) = ((s,D),D) ∩ ((t,D),D) ⊆ (a,D) ∩ (b,D) = (a ∧ b,D).
Hence a∧b ∈ ((a∧b,D),D) ⊆ (((s∨t,D),D),D) = (s∨t,D). Since s∨t /∈ M, we
get that a∧b ∈ OD(M). Let a ∈ OD(M) and a ≤ b. There exists s /∈ M such that
a ∈ (s,D). Since (s,D) is a filter, we get that b ∈ (s,D). Therefore b ∈ OD(M)
and hence OD(M) is a filter of R. Clearly, we have that D ⊆ OD(M). Thus
OD(M) is a D-filter of R. Let a ∈ OD(M). Then there exists s /∈ M such that
a ∈ (s,D). That implies a ∨ s ∈ D ⊆ M. Since M is prime, we get that a ∈ M.
Hence OD(M) ⊆ M.

Corollary 33. For any prime D-filter M of R, M is minimal if and only if

OD(M) = M.

Theorem 34. Every minimal prime D-filter M of R belonging to OD(M) is

contained in M.

Proof. Let N be any minimal prime D-filter belonging to OD(M). We prove
that N ⊆ M. Suppose N * M. Choose a ∈ N \ M. Then there exists b /∈ N
such that a ∨ b ∈ OD(M). Hence a ∨ b ∈ (s,D), for some s /∈ M. That implies
b ∨ (a ∨ s) ∈ D ⊆ M. Since a /∈ M,s /∈ M, and M is prime, we get a ∨ s /∈ M.
Therefore b ∈ OD(M) ⊆ N, which is a contradiction. Hence N ⊆ M.

Theorem 35. For any prime D-filter M of an ADL R, OD(M) is the intersec-

tion of all minimal prime D-filters contained in M.
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Proof. Let M be a prime D-filter of R. By Zorn’s lemma, M contains a minimal
prime D-filter. Let {Sα}α∈△ be the set of all minimal prime D-filters contained
in M . Let x ∈ OD(M). Then x ∈ (a,D), for some a /∈ M. Since each Sα ⊆ M, we
have that a /∈ Sα, for all α ∈△ . Since x ∨ a ∈ D ⊆ Sα and a /∈ Sα, for all α ∈△,
we get x ∈ Sα for all α ∈△. Hence x ∈

⋂
α∈△ Sα. Therefore OD(M) ⊆

⋂
α∈△ Sα.

Let x /∈ OD(M). Consider S = (R \ M) ∨ [x). Suppose D ∩ S 6= ∅. Choose
a ∈ D ∩ S. Since a ∈ S, we get a = t ∨ x, for some t ∈ R \M. Since a ∈ D, we
get that t ∨ x ∈ D. Hence x ∈ (t,D), where t /∈ M. Thus x ∈ OD(M), which
is a contradiction. Therefore S ∩ D = ∅. Let M be a maximal ideal such that
S ⊆ M and M ∩ D = ∅. Then R \ M is a minimal prime D-filter such that
R \M ⊆ M and x /∈ R \M, since x ∈ S ⊆ M. Hence x /∈

⋂
α∈△ Sα. Therefore⋂

α∈△ Sα ⊆ OD(M).

Proposition 36. Let M1 and M2 be two prime D-filters in an ADL R with

M1 ⊆ M2. Then OD(M2) ⊆ OD(M1).

Proof. Let x ∈ OD(M2). Then there exists an element a /∈ M2 such that x ∈
(a,D). That implies x ∈ (a,D) and a /∈ M1. So that x ∈ OD(M1). Therefore
OD(M2) ⊆ OD(M1).

Proposition 37. For any non maximal element a ∈ R with a /∈ D, there is a

minimal prime D-filter not containing a.

Proof. Let a be any non maximal element of R with a /∈ D. By Corollary 14,
there exists a prime D-filter P of R such that a /∈ P . Consider F = {Q | Q is
a prime D-filter of R, a /∈ Q and Q ⊆ P}. It satisfies the hypothesis of Zorn’s
Lemma. So that F has a minimal element say M , i.e., M is minimal and a /∈ M.

Theorem 38. For any any prime D-filter M of an ADL R, the following are

equivalent:

(1) M is minimal prime D-filter

(2) M = OD(M)

(3) for any x ∈ R,M contains precisely one of x or (x,D).

Proof. (1)⇒(2): Assume (1). Let x ∈ M. Then there exists y /∈ M such that
x∨ y ∈ D. This implies that x ∈ OD(M). So that M ⊆ OD(M). Since OD(M) ⊆
M, we get that M = OD(M).

(2)⇒(3): Assume (2). Let x ∈ R. Suppose x /∈ M. Let a ∈ (x,D). Then
a ∨ x ∈ D. That implies a ∨ x ∈ M. So that a ∈ M. Since x /∈ M. Therefore
(x,D) ⊆ M.

(3)⇒(1): Let Q be any prime D-filter of R with Q ( M. Then choose x ∈ M
such that x /∈ Q. That implies (x,D) ⊆ Q * M. So that (x,D) * M , which is a
contradiction.
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Corollary 39. Let P be a minimal prime D-filter of an ADL R and a ∈ R. Then
a ∈ P if and only if ((a,D),D) ⊆ P.

Proof. Assume that a ∈ P. Then (a,D) * P. Let t ∈ ((a,D),D). Then (a,D) ⊆
(t,D). Suppose t /∈ P. Then (a,D) ⊆ (t,D) ⊆ P, which is a contradiction. That
implies t ∈ P, which gives ((a,D),D) ⊆ P. The converse follows from the fact
that a ∈ ((a,D),D).

Definition. An ADL R with maximal elements is called an D- semi comple-
mented if for each non zero element x ∈ R, there exists a non maximal element
y /∈ D such that x ∨ y ∈ D.

Example 40. Let L1 = {0, a} and L2 = {0, b1, b2} be two discrete ADLs. Then
R = L1 ×L2 = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)}. Then (R,∧,∨, 0) is an
ADL, but not a lattice, because (a, b1)∧(a, b2) = (a, b2) 6= (a, b1) = (a, b2)∧(a, b1).
Clearly, D = {(a, b1), (a, b2)} is a dense set of R. We have that for any non zero
element x ∈ R, there exists a non maximal element a /∈ D such that x ∨ a ∈ D.
Hence R is an D-semi complemented ADL.

Theorem 41. Let R be an ADL with maximal elements. Then R is D- semi

complemented if and only if the intersection of all maximal ideals disjoint with

D is {0}.

Proof. Assume that R is D-semi complemented. Consider

K =
⋂

{M | M is a maximal ideal of R and M ∩D = ∅}.

We have to prove that K = {0}. Let x ∈ K with x 6= 0. Then x ∈ M, for
all maximal ideal M disjoint with D. Then x /∈ D. Since x 6= 0 and R is D-semi
complemented, there exists a non maximal element y /∈ D such that x ∨ y ∈ D.
Then x ∨ y /∈ M. That implies M ∨ (x ∨ y] = R. Since y is non maximal element
of D, there exists a minimal prime D-filter N of R such that y /∈ N. That implies
y ∈ R \ N and (R \ N) ∩ D = ∅, where R \ N is maximal ideal of R. So that
x, y ∈ R \ N. We have x ∨ y ∈ R \ N. Therefore (R \ N) ∩ D 6= ∅, which is
a contradiction. Therefore x = 0. Hence K = {0}. Conversely, assume that⋂
{M | M is a maximal ideal of R and M ∩ D = ∅} = {0}. Let x be any non

zero element of R. Then there exists a maximal ideal M such that x /∈ M and
M ∩D = ∅. That implies M ∨ (x] = R. So that a∨x is maximal, for some a ∈ M.
Since a ∈ M and M ∩D = ∅, we get a /∈ D. Clearly, a ∨ x ∈ D. That is, for any
non zero element x of R, there exists a non maximal element a /∈ D such that
a ∨ x ∈ D. Hence R is D- semi complemented.

Definition. An ADL R is said to be D-normal if for any a, b ∈ R such that
a ∨ b ∈ D, there exists x ∈ (a,D) and y ∈ (b,D) such that x ∧ y = 0.
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From the Example 8, clearly we have that R is a D-normal ADL. The fol-
lowing result is a direct consequence of the above definition.

Theorem 42. R is D-normal if and only if (a,D)∨ (b,D) = R, for any a, b ∈ R,
with a ∨ b ∈ D.

Definition. Two D-filters G1 and G2 of R are said to be co-maximal if G1 ∨G2

= R.

Example 43. From the Example 8, we have that F2 and F3 are D-filters of R.
Clearly, F2 ∨ F3 = R. Therefore F2 and F3 are co-maximal. Also, we have F4

and F5 are D-filters of R, but not co-maximal.

Theorem 44. In an ADL R, the following are equivalent.

(1) For any a, b ∈ R with a ∨ b ∈ D, (a,D) ∨ (b,D) = R.

(2) For any a, b ∈ R, (a,D) ∨ (b,D) = (a ∨ b,D).

(3) Any two distinct minimal prime D-filters are co-maximal.

(4) Every prime D-filter contains a unique minimal prime D-filter.

(5) For any prime D-filter P,OD(P ) is prime.

Proof. (1)⇒(2): Assume (1). Let a, b ∈ R with x ∈ (a∨b,D). Then x∨(a∨b) ∈ D
and hence (x∨ a)∨ (x∨ b) ∈ D. By (1), we have that (x∨ a,D)∨ (x∨ b,D) = R.
That implies x ∈ (x ∨ a,D) ∨ (x ∨ b,D). Then there exists r ∈ (x ∨ a,D) and
s ∈ (x∨ b,D) such that x = r ∧ s. Since r ∈ (x∨ a,D), s ∈ (x∨ b,D) we get that
r∨x ∈ (a,D) and s∨x ∈ (b,D). That implies (x∨r)∧(x∨s) ∈ (a,D)∨(b,D) and
hence x∨ (r∧ s) ∈ (a,D)∨ (b,D). Since x = r∧ s, we get that x ∈ (a,D)∨ (b,D).
Therefore (a ∨ b,D) ⊆ (a,D) ∨ (b,D). Since (a,D) ∨ (b,D) ⊆ (a ∨ b,D), we get
that (a,D) ∨ (b,D) = (a ∨ b,D), for all a, b ∈ R.

(2)⇒(3): Assume (2). Let M and N be two distinct minimal prime D-filters
of R. Choose elements x, y ∈ R such that x ∈ M \ N and y ∈ N \ M. Since
M and N are minimal, x ∨ a ∈ D, y ∨ b ∈ D, for some a /∈ M, b /∈ N. That
implies x ∨ a ∨ y ∨ b ∈ D and hence R = (x ∨ a ∨ y ∨ b,D). By (2), we get that
(x∨ b,D)∨ (a∨ y,D) = R. Since a /∈ M and y /∈ M, we get that a∨ y /∈ M. That
implies (a ∨ y,D) ⊆ M. Similarly, we have that (x ∨ b,D) ⊆ N. That implies
((x ∨ b) ∨ (a ∨ y),D) ⊆ M ∨N and hence R = M ∨N. Therefore M and N are
co-maximal.

(3)⇒(4): Assume (3). Let M be a prime D-filter of R. Suppose M contains
two distinct minimal prime D-filters, say N1 and N2. By (3), we get that R =
N1 ∨N2 ⊆ M, we get a contradiction. Therefore every prime D-filter contains a
unique minimal prime D-filter.

(4)⇒(5): Assume that every prime D-filter P of R contains a unique minimal
prime D-filter. Then by Corollary 33, we get that OD(P ) is a prime D-filter.
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(5)⇒(1): Assume (5). Let a, b ∈ R be such that a∨ b ∈ D. Suppose (a,D) ∨
(b,D) 6= R. Then there exists a maximal D-filter M such that (a,D) ∨ (b,D) ⊆
M. That implies (a,D) ⊆ M and (b,D) ⊆ M That implies a /∈ OD(M) and
b /∈ OD(M). Since OD(M) is prime, we get a∨b /∈ OD(M). So that D * OD(M),
which is a contradiction. Therefore (a,D) ∨ (b,D) = R.

Theorem 45. In an ADL R, the following conditions are equivalent:

(1) R is D-normal.

(2) For any two distinct maximal ideal G1 and G2 of R with G1 ∩D = ∅,
G2 ∩D = ∅ there exist a /∈ G1 and b /∈ G2 such that a ∧ b = 0.

(3) For any maximal ideal G with G ∩ D = ∅, G is the unique maximal ideal

containing R \ OD(P ).

Proof. (1)⇒(2): Assume that R is D-normal. Let G1 and G2 be two distinct
maximal ideals of R with G1 ∩D = ∅, G2 ∩D = ∅. Then R \G1 and R \G2 are
distinct minimal prime D-filters of R. By our assumption, we get R \ G1 and
R \G2 are co-maximal. That is, (R \G1)∨ (R \G2) = R. Since 0 ∈ R, there exist
a ∈ R \G1 and b ∈ R \G2 such that a ∧ b = 0.

(2)⇒(3): Assume (2). Let G be any maximal ideal of R with G ∩ D = ∅
and R \ OD(P ) ⊆ G. Let G1 be any maximal ideal of R with G1 ∩ D = ∅ and
R \ OD(P ) ⊆ G1.

We prove that G = G1. Suppose G 6= G1. By our assumption, there exists
a /∈ G1 and b /∈ G2 such that a ∧ b = 0. That implies a, b /∈ R \ OD(P ). So that
a, b ∈ OD(P ). This implies that a ∧ b ∈ OD(P ). Therefore 0 ∈ OD(P ). Hence
OD(P ) = R, which is a contradiction. We conclude that G = G1.

(3)⇒(1): For any maximal ideal G with G∩D = ∅, G is the unique maximal
ideal containing R \OD(P ). Let P be a prime D-filter of R. Suppose P contains
two minimal prime D-filters say Q1 and Q2. That is, Q1 ⊆ P and Q2 ⊆ P. That
implies OD(P ) ⊆ OD(Q1) and OD(P ) ⊆ OD(Q2). We get P ⊆ OD(Q1) and
P ⊆ OD(Q2). So that Q2 ⊆ Q1 and Q1 ⊆ Q2. This concludes that Q1 = Q2.

Let I be an ideal of R. For any x, y ∈ R, define a binary relation φI on R as
φI = {(x, y) ∈ R×R | x ∨ a = y ∨ a, for some a ∈ I}.

Proposition 46. For any ideal I of an associative ADL R, φI is a congruence

relation on R.

For any ADL R, it can be easily verified that the quotient R/φI is also
an ADL with respect to the following operations [a]φI

∧ [b]φI
= [a ∧ b]φI

and
[a]φI

∨ [b]φI
= [a∨ b]φI

where [a]φI
is the congruence class of a modulo φI . It can

be routinely verified that the mapping Φ : R → R/φI defined by Φ(a) = [a]φI
is

a homomorphism.
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Theorem 47. In an ADL R, we have the following:

(1) If x is a dense element of R, then [x]φI
is a dense element of R/φI ,

(2) If G is a D-filter of R/φI , then Φ−1(G) is a D-filter of R,

(3) If G is a prime D-filter of R/φI , then Φ−1(G) is a prime D-filter of R.

Definition. Let I be an ideal of an ADL R. For any D-filter G of R, define
G̃ = {[a]φI

| a ∈ G}.

The following result can be proved easily.

Lemma 48. G̃ is a D-filter of R/φI .

Proposition 49. Let G be a prime D-filter and I an ideal of an ADL R such

that G ∩ I = ∅. We have the following:

(1) x ∈ G if and only if [x]φI
∈ G̃

(2) G̃ ∩ Ĩ = ∅

(3) If G is a prime D-filter of R, then G̃ is a prime D-filter of R/φI
.

Proof. (1) Assume that x ∈ G. Then we have [x]φI
∈ G̃. Conversely assume

that [x]φI
∈ G̃. Then there exists y ∈ G such that [x]φI

= [y]φI
. That implies

(x, y) ∈ φI . So there exists a ∈ I such that x ∨ a = y ∨ a ∈ G. Since G ∩ I = ∅,
we get a /∈ G. Since x ∨ a ∈ G and a /∈ G, we get that x ∈ G.

(2) Suppose G̃∩ Ĩ 6= ∅. Then choose an element x ∈ R such that [x]φI
∈ G̃∩ Ĩ.

Then [x]φI
∈ G̃ and [x]φI

∈ Ĩ . Since [x]φI
∈ G̃ and by (1), we get x ∈ G. Since

[x]φI
∈ Ĩ , there exists y ∈ I such that [x]φI

= [y]φI
. Then (x, y) ∈ φI . So there

exist a ∈ I such that x ∨ a = y ∨ a. Since y ∨ a ∈ I, we get that x ∨ a ∈ I. Since
x ∈ G, we have that x∨a ∈ G∩I. That implies G∩I 6= ∅, we get a contradiction.
Hence G̃ ∩ Ĩ = ∅.

(3) Clearly, we have that G̃ is a proper filter of R/φI
. Let [x]φI

∈ D̃. Then

x ∈ D ⊆ G. That implies [x]φI
∈ G and hence G̃ is a D-filter of R/φI

. Let

[x]φI
, [y]φI

∈ R/φI
such that [x]φI

∨ [y]φI
∈ G̃. Then [x∨y]φI

∈ G̃. By (1) we have
that x ∨ y ∈ G. Since G is prime, we get that x ∈ G or y ∈ G. Again by (1) we
get that [x]φI

∈ G̃ or [y]φI
∈ G̃. Hence G̃ is a prime D-filter in R/φI

.

Proposition 50. Let I be an ideal of an ADL R. Then there is an order iso-

morphism of the set of all prime D-filters of R disjoint from I onto the set of all

prime D-filters of R/φI
.

Proof. Let G and H be two prime D-filters of R such that G ∩ I = ∅ and
H ∩ I = ∅. Then by Proposition 49(1), we get that G ⊆ H if and only if G̃ ⊆ H̃.
Let G be a prime D-filter of R with G ∩ I = ∅. Then by Proposition 49(3),
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we get that G̃ is a prime D-filter of R/φI
. Let Q be a prime D-filter of R/φI

.
Consider G = {a ∈ R|[a]φI

∈ Q}. Since Q is a D-filter of R/φI
, we get that G is

a D-filter of R. Let a, b ∈ R with a ∨ b ∈ G. Then [a]φI
∨ [b]φI

= [a ∨ b]φI
∈ Q.

Since Q is prime, we get [a]φI
∈ Q or [b]φI

∈ Q. Therefore a ∈ G or b ∈ G.

Hence G is a prime D-filter of R. Clearly G̃ = Q. Suppose G ∩ I 6= ∅. Then
choose an element s ∈ G∩ I. That implies [s]φI

∈ Q and s ∈ I. Let [b]φI
∈ R/φI

.
Since s ∈ I and b ∨ s = b ∨ s ∨ s, we get that (b, b ∨ s) ∈ I. That implies
[b]φI

= [b ∨ s]φI
= [b]φI

∨ [s]φI
∈ Q. Therefore [b]φI

∈ Q. and hence R/φI
= Q,

which is a contradiction. Thus G ∩ I = ∅.

Corollary 51. Let R be an ADL. Then the above map induces a one-to-one

correspondence between the set of all minimal prime D-filters of R which are

disjoint from I and the set of all minimal prime D-filters of R/φI
.

Theorem 52. For any ideal I of an ADL R, the following are equivalent:

(1) Any two dintinct minimal prime D-filters of R are co-maximal

(2) any two distinct minimal prime D-filters of R/φI
are co-maximal.

Proof. (1)⇒(2) Assume (1). Let G1, G2 be two distinct minimal prime D-filters
of R/φI

. Then by the corollary 51, there exist two minimal primeD-filters H1 and

H2 of R such that H1∩ I = ∅ and H2∩ I = ∅. Also H̃1 = G1 and H̃2 = G2. Since
G1 and G2 are distinct, we get that H1 and H2 are distinct. By the assumption,
we have H1 ∨ H2 = R. Let a ∈ R. There exist a1 ∈ H1 and a2 ∈ H2 such
that a = a1 ∧ a2. Since a1 ∈ H1 and a2 ∈ H2 we get [a1]φI

∈ H̃1 = G1 and

a2]φI
∈ H̃2 = G2. Now, [a]φI

= [a1 ∧ a2]φI
= [a1]φI

∧ [a2]φI
∈ G1 ∨ G2. That

implies [a]φI
∈ G1 ∨G2, for all a ∈ R. Therefore G1 ∨G2 = R/φI

.

(2)⇒(1) Assume (2). Let P be a prime D-filter of R. Suppose P contains two
distinct minimal prime D-filters, say G1 and G2. Consider K = R \ P. Clearly

K is an ideal of R and G1 ∩K = ∅ = G2 ∩K. By Corollary 51, we get that G̃1

and G̃2 are distinct minimal prime D-filters of R/φI
such that G̃1, G̃2 ⊆ P̃ . That

implies P̃ is containing two distinct minimal prime D-filters of R/φI
, which is a

contradiction. Hence P contains a unique minimal prime D-filter. By Theorem
44, any two distinct minimal prime D-filters of R are co-maximal.

4. The space of minimal prime D-filters of an ADL

In this section, some topological properties of the space of all prime D-filters and
the space of all minimal prime D-filters of an ADL are studied.

Let us denote the set of all prime D-filters of an ADL R by SpecDF (R).
For any A ⊆ R, define α(A) = {P ∈ SpecDF (R)|A * P} and for any a ∈ R,
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α(a) = {P ∈ SpecDF (R)|a /∈ P}. Then we have the following result whose proof
is straightforward.

Lemma 53. Let R be an ADL and a, b ∈ R. Then the following conditions hold:

(1)
⋃

a∈R α(a) = SpecDF (R),

(2) α(a) ∩ α(b) = α(a ∨ b),

(3) α(a) ∪ α(b) = α(a ∧ b),

(4) α(a) = ∅ if and only if a ∈ D,

(5) α(a) = SpecDF (R) if and only if a = 0.

From the above result, it can be easily observed that the collection {α(a)|a ∈
R} forms a base for a topology on SpecDF (R). The topology generated by this base
is precisely {α(A | A ⊆ R} and is called the hull-kernel topology on SpecDF (R).
Under this topology, we have the following result.

Theorem 54. In an ADL R, we have the following:

(1) For any a ∈ R,α(a) is compact in SpecDF (R),

(2) Let C be a compact open subset of SpecDF (R). Then C = α(a) for some

a ∈ R,

(3) SpecDF (R) is a T0-space,

(4) The map a 7→ α(a) is an anti-homomorphism from R onto the lattice of all

compact open subsets of SpecDF (R).

Proof. (1) Let a ∈ R. Let X ⊆ R be such that α(a) ⊆
⋃

x∈X α(x). Let F be
a D-filter generated by the set X. Suppose a /∈ F. Then there exists a prime
D-filter P such that F ⊆ P and a /∈ P. Since X ⊆ F ⊆ P, we get P /∈ α(x) for
all x ∈ X. Since a /∈ P, we get P ∈ α(a), which is a contradiction. Hence a ∈ F.
So we can write a = x1 ∧ x2 ∧ · · · ∧ xn for some x1, x2, . . . , xn ∈ X and n ∈ N .
Then, we get α(a) = α(

∧n
i=1 xi) =

⋃n
i=1 α(xi) which is finite subcover for α(a).

Therefore α(a) is compact.

(2) Let C be a compact open subset of SpecDF (R). Since C is open, we get
C =

⋃
x∈X α(x) for some X ⊆ R. Since C is compact, there exist x1, x2, . . . , xn ∈

X such that C =
⋃n

i=1 α(xi) = α(
∧n

i=1). Therefore C = α(x) for some x ∈ R.

(3) Let P and Q be two distinct prime D-filters of R. Without loss of gen-
erality, assume that P * Q. Choose x ∈ R such that x ∈ P and x /∈ Q. Hence
P /∈ α(x) and Q ∈ α(x). Therefore SpecDF (R) is a T0-space.

(4) It can be obtained from (1), (2) and by the above lemma.

Proposition 55. In an ADL R, the following are equivalent:

(1) SpecDF (R) is a Hausdorff space.



364 N. Rafi, P.V. Saradhi and M.Balaiah

(2) For each P ∈ SpecDF (R), P is the unique member of SpecDF (R) such that

OD(P ) ⊆ P .

(3) Every prime D-filter is minimal.

(4) Every prime D-filter is maximal.

Proof. (1)⇒(2): Assume (1). Let P ∈ SpecDF (R). Clearly OD(P ) ⊆ P. Suppose
Q ∈ SpecDF (R) such that Q 6= P and OD(P ) ⊆ Q. Since SpecDF (R) is Hausdorff,
there exists a, b ∈ R such that P ∈ α(a), Q ∈ α(b) and α(a∨b) = α(a)∩α(b) = ∅.
Hence a /∈ P, b /∈ Q and a ∨ b ∈ D. Therefore b ∈ OD(P ) ⊆ Q, which is a
contradiction to that b /∈ Q. Hence P = Q. Therefore P is the unique member of
SpecFD(R) such that OD(P ) ⊆ P.

(2)⇒(3): Assume (2). Let P be a prime D-filter of R. Suppose P is not
minimal. Let Q be a prime D-filter in R such that Q ⊆ P. Hence OD(Q) ⊆ Q
⊆ P . Therefore P is a minimal prime D-filter of R.

(3)⇒(4): It is clear.
(4)⇒(1): Assume (4). Let P and Q be two distinct elements of SpecDF (R).

Hence OD(Q) * P. Choose a ∈ OD(Q) such that a /∈ P. Since a ∈ OD(Q),
there exists b /∈ Q such that a ∈ (b,D). Hence a ∨ b ∈ D. Thus it yields,
P ∈ α(a), Q ∈ α(b). Since a ∨ b ∈ D, we get that α(a) ∩ α(b) = α(a ∨ b) = ∅.
Therefore SpecDF (R) is Hausdorff.

Theorem 56. For any D-filter G of an ADL R, (G,D) =
⋂
{P ∈ SpecDF (R) | G

* P}.

Proof. Let G be a D-filter of R. Consider K =
⋂
{P ∈ SpecDF (R) | G * P}.

Let P ∈ α(G). Then G * P. Since G ∩ (G,D) = D ⊆ P and P is prime, we
get (G,D) ⊆ P. Hence every prime D-filter P of R such that G * P contains
(G,D). Therefore (G,D) ⊆ K. Let x /∈ (G,D). Then there exists y ∈ G such
that x ∨ y /∈ D. Let K = {G | G is a D-filter of R and x ∨ y /∈ G}. Clearly,
D ∈ K and so P = ∅. Clearly, (K,⊆) is a partially ordered set and it satisfies
the hypothesis of the Zorn’s lemma, K has a maximal element, say N. Then N
is a D-filter of R and x ∨ y /∈ N. Therefore x /∈ N and y /∈ N. Since y ∈ G,
we get G * N. We now show that N is prime. Let a, b ∈ R with a /∈ N and
b /∈ N. Then N ( N ∨ (a)D and N ( N ∨ (b)D. By the maximality of N, we get
x∨ y ∈ N ∨ (a)D and x∨ y ∈ N ∨ (b)D. Hence, x∨ y ∈ {N ∨ (a)D}∩{N ∨ (b)D} =
N ∨ {(a)D ∩ (b)D} = N ∨ (a ∨ b)D. If a ∨ b ∈ N, then x ∨ y ∈ N which is a
contradiction. Thus N is a prime D-filter of R such that G * N and x /∈ N.
Therefore x /∈ K. Hence K ⊆ (G,D).

Corollary 57. For any ADL R and a ∈ R, (a,D) =
⋂
{P ∈ SpecDF (R) | a /∈ P}.

Let MinD
F (R) denote the set of all minimal prime D-filters of ADL R. For

any a ∈ R, write αm(x) = α(x) ∩MinD
F (R).
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Theorem 58. For any ADL R, the following conditions hold:

(1) Every prime D-filters contains a minimal prime D-filter.

(2)
⋂

P∈MinD

F
(R) P = D.

(3) For any subset A with D ⊆ A, (A,D) =
⋂

P∈αm(A)(P ).

Proof. (1) Let P be a prime D-filter of R. Consider X = {N ∈ SpecDF (R) | N ⊆
P}. Clearly X is a partially ordered set under set inclusion and hence it satisfies
the hypothesis of the Zorn’s lemma, X has a minimal element say M . Clearly M
will be the required minimal prime D-filter of R.

(2) SinceD is contained in every minimal primeD-filter of R and so contained
in the intersection of all minimal prime D-filters. Let x /∈ D. Then there exists
a prime D-filter P of R such that x /∈ P. By (1), there exists a minimal prime
D-filter of R such that M ⊆ P. Since x /∈ P, we get x /∈ M. That implies M
is a minimal prime D-filter of R such that x /∈ D-filters of R. Hence x is not
in the intersection of all minimal prime. Thus intersection of all minimal prime
D-filters of R is equal to D.

(3) Let P ∈ MinD
F (R) such that A * P. Choose x ∈ A such that x /∈ P. Then

(A,D) ⊆ (x,D) ⊆ P. That implies (A,D) is contained in every minimal prime
D-filter of R such that A * P. Hence (A,D) ⊆

⋂
P∈αm(A)(P ). Let x /∈ (A,D).

Then x ∨ y /∈ D, for some y ∈ A. By the condition (2), there exists a minimal
prime D-filter P of R such that x ∨ y /∈ P. That implies x /∈ P and y /∈ P.
Therefore x /∈

⋂
P∈αm(A) P and hence (A,D) =

⋂
P∈αm(A) P.

Lemma 59. For any a, b ∈ R, we have following:

(1) (a,D) ⊆ (b,D) if and only if αm(b) ⊆ αm(a)

(2) αm(a) = ∅ if and only if a ∈ D

(3) αm(a) = MinD
F (R) if and only if (a,D) = D.

Proof. (1) Let a, b ∈ R. Assume that (a,D) ⊆ (b,D). Let P ∈ αm(b) Then
b /∈ P. That implies (a,D) ⊆ (b,D) ⊆ P. Therefore a /∈ P and hence P ∈ αm(a).
Thus αm(b) ⊆ αm(a). Conversely, assume that αm(b) ⊆ αm(a). Now, (a,D) =⋂

P∈αm(a) P ⊆
⋂

P∈αm(b) P = (b,D). Hence (a,D) ⊆ (b,D).

(2) Suppose MinD
F (R) = ∅. Then a ∈ P for all P ∈ MinD

F (R). That implies
a ∈

⋂
P∈MinD

F
(R) P. Since a ∈

⋂
P∈MinD

F
(R) P = D, we get a ∈ D. The converse is

clear.

(3) Assume αm(a) = MinD
F (R). Then (a,D) =

⋂
P∈αm(a) P =

⋂
P∈MinD

F
(R)

P = D. Therefore (a,D) = D. Conversely, assume (a,D) = D. Then (a,D) =
D ⊆ P. That implies a /∈ P, for all P ∈ MinD

F (R). Therefore αm(a) = MinD
F (R).

For any D-filter G of an ADL R, define βm(G) = {P ∈ MinD
F (R) | G ⊆ P}.
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Lemma 60. Let G be a D-filter of an ADL R. If βm(G) = ∅, then (G,D) = D.

Proof. Let βm(G) = ∅. Then βm(G) = MinD
F (R). That implies (G,D) =⋂

P∈αm(F ) P ⊆
⋂

P∈MinD

F
(R) P = D. Therefore (G,D) = D.

For any ADL R, define E = {x ∈ R | (x,D) = D}.

Lemma 61. For any ADL R,E is an ideal.

Proof. Clearly 0 ∈ E. Let x, y ∈ E. Then ((x ∨ y,D),D) = ((x,D),D) ∩
((y,D),D) = (D,D) ∩ (D,D) = R ∩ R = R. That implies ((x ∨ y),D) =
(R,D) = D. Therefore x ∨ y ∈ E. Let x ∈ E. Then (x,D) = D. Let y ∈ R.
Now, (x ∧ y,D) = (x,D) ∩ (y,D) = D ∩ (y,D) = D. Therefore x∧ y ∈ E. Hence
E is an ideal of R.

Theorem 62. Let G be a D-filter of an ADL R. Then MinD
F (R) is compact if

and only if βm(G) = ∅ implies G ∩ E 6= ∅.

Proof. Assume that MinD
F (R) is compact. Let G be a D-filter R such that

βm(G) = ∅. Then αm(G) = MinD
F (R). Since MinD

F (R) is compact, there exists
a ∈ G such that αm(a) = MinD

F (R). That implies (a,D) = D. Therefore a ∈ E
and hence G∩E 6= ∅. Conversely, assume that for any D-filter G of R, βm(G) = ∅
implies G∩E 6= ∅. Let A ⊆ R be such that MinD

F (R) =
⋃

a∈A αm(A) = αm(A) =
αm(G) where G = (A)D. Since MinD

F (R) = αm(G), we get βm(G) = ∅. By the
assumption, we get G ∩ E 6= ∅. Choose d ∈ G ∩ E. Since d ∈ G and G = (A)E ,
there exists a1, a2, . . . , an ∈ A such that d ∨ (a1 ∧ a2 ∧ · · · ∧ an) = d. Since
d ∈ E, MinD

F (R) = αm(d) ⊆ αm(
∧n

i=1ai) =
⋃n

i=1 αm(ai). Hence MinD
F (R) is

compact.

Theorem 63. Let R be an ADL. For any Y ⊆ MinD
F (R), the closure of Y

in MinD
F (R) is βm(

⋂
P∈Y P ) and, in particular, αm(F ) = βm((G,D)), for any

D ⊆ G ⊆ R.

Proof. Let Y ⊆ MinD
F (R). Then Y inMinD

F (R) = {Y in SpecDF (R)}∩MinD
F (R) =

H(
⋂

P∈Y P ) ∩MinD
F (R) = βm(

⋂
P∈Y P ). In particular, for any D ⊆ G ⊆ R, we

have αm(G) = βm(
⋂

P∈αm(G) P ) = βm(
⋂

I*P, P∈MinD

F
(R) P ) = βm((F,D)).

Proposition 64. Let F,G be two D-filters of an ADL R. Then the following are

equivalent:

(1) G ⊆ (F,D)

(2) G ∩ F = D

(3) αm(G) ∩ αm(F ) = ∅.



The space of minimal prime D-filters of ADLs 367

Proof. (1)⇒(2): Assume that G ⊆ (F,D). Then G ∩ F ⊆ (F,D) ∩ F = D.
Therefore G ∩ F = D.

(2)⇒(3): Assume that G ∩ F = D. Let P ∈ αm(G) ∩ αm(F ) = αm(G ∩ F ).
Then D = G ∩ F * P, which is a contradiction. Therefore αm(G) ∩ αm(F ) = ∅.

(3)⇒(1): Assume that αm(G) ∩ αm(F ) = ∅. Let x ∈ G. Suppose x /∈ (F,D).
Then there exists y ∈ F such that x ∨ y /∈ D. Then there exists P ∈ MinD

F (R)
such that x ∨ y /∈ P. That implies x /∈ P and y /∈ P. Hence G * P and F * P.
Therefore P ∈ αm(G) and P ∈ αm(F ). Therefore P ∈ αm(G) ∩ αm(F ), which is
a contradiction. So x ∈ (F,D). Therefore G ⊆ (F,D).

Corollary 65. Let G be a D-filter of an ADL R and x ∈ R. Then x ∈ (G,D) if
and only if αm(x) ∩ αm(G) = ∅.

Proof. By taking G = {x}, in the above proposition.

Theorem 66. Every open subset of MinD
F (R) is closed if and only if for any

D-filter of R, (G,D) = D implies βm(G) = ∅.

Proof. Assume that every open set of MinD
F (R) is closed. Let G be a D-filter of

R. Then βm(G) is an open set in MinD
F (R). Now, βm(G) 6= ∅. Then there exists

x ∈ R\D such that αm(x) ⊆ βm(G). That implies αm(x)∩αm(G) = ∅. Therefore
x ∈ (G,D) and x /∈ D. Hence (G,D) 6= D. Thus (G,D) = D, which gives
βm(G) = ∅. Conversely, assume that the condition holds. LetH be an open subset
of MinD

F (R). Then H = αm(G), for some D-filter G of L. By Theorem-63, we

have αm(G) = βm((G,D)). It is enough to show that βm((G,D)) = αm(G). Since
((G ∨ (G,D)),D) = D, by the assumption, we get βm(G ∨ (G,D)) = ∅. Now, for
any P ∈ MinD

F (R), we have, P ∈ αm(G) ⇔ G * P ⇔ (G,D) ⊆ P ⇔ P ∈ βm(G).
Hence αm(G) = βm(G). Therefore H is closed in MinD

F (R).

Theorem 67. In an ADL R, MinD
F (R) is a Hausdorff space.

Proof. Let P and Q be distinct elements of MinD
F (R). Then there exists a ∈ P

such that a /∈ Q. Since P is minimal, we get (a,D) * P. Then there exists
b ∈ (a,D) such that b /∈ P. That implies a∨ b ∈ D and hence αm(a)∩αm(b) = ∅.
Since a /∈ Q and b /∈ P, we get Q ∈ αm(a) and P ∈ αm(b). Therefore MinD

F (R)
is a Hausdorff space.
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