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Yannick Léa Tenkeu Jeufack2

Gael Tenkeu Kembang
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e-mail: ytenkeu2018@gmail.com
tenkeugael@gmail.com

Etienne Romuald Temgoua Alomo
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Abstract

Double Boolean algebras (dBas) are algebras D = (D;⊓,⊔,¬, y,⊥,⊤) of
type (2, 2, 1, 1, 0, 0), introduced by Rudolf Wille to capture the equational
theory of the algebra of protoconcepts. Boolean algebras form a subclass
of dBas. Our goal is an algebraic investigation of dBas, based on similar
results on Boolean algebras. In this paper, we describe filters, ideals, homo-
morphisms and powers of dBas. We show that principal filters as well as
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principal ideals of dBas form (non necessary isomorphic) Boolean algebras.
We also show that, a primary ideal (resp. primary filter) is exactly maximal
ideal (resp. ultrafilter) in dBas and primary ideal (resp. filter) needs not be
a prime ideal (resp. filter). For a finite dBa, a primary filters (resp. ideals)
are principal filter (resp. ideals) generated by atom (resp. co-atom). Some
properties of homomorphisms of dBas are investigated and the relationship
between the homomorphism of dBas D, M and the lattices of filters (resp.
ideals) of these two dBas. Giving a dBa D and a non-emptyset X, we study
some relationship between D and L = DX by showing that D is contextual,
fully contextual (resp. trivial) if and only if L is contextual, fully contex-
tual (resp. trivial). In addition, we show that D embeds into L and the
lattice of filters F(D) (resp. of ideals I(D)) is algebraic and embeds in the
lattice F(L) (resp. I(L)). We finish this paper by showing that some sets
of polynomial functions of D form a Boolean algebra isomorphic to the set
of principal filters (resp. principal ideals) of D.

Keywords: double Boolean algebra, protoconcepts algebra, concept alge-
bra, formal concept.
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1. Introduction

In order to extend Formal Concept Analysis (FCA) to Contextual Logic, a nega-
tion has to be formalized [10]. There are many options: We can require the
negation of a concept to be concept [6, 10] or we want to preserve the corre-
spondence between negation and set complementation. In the second option the
notion of concept has to be generalized, and leads to the algebra of semi-concepts,
protoconcepts and preconcepts [10]. To capture their equational theory, double
Boolean algebras have been introduced by Rudolf Wille and coworkers. Wille
proved that each double Boolean algebra ”quasi-embeds” into an algebra of pro-
toconcepts. Thus the equations defining a double Boolean algebra generate the
equational theory of the algebra of protoconcepts [10] (Corollary 1).

To the best of our knowledge, the investigation of dBas has been so far
concentrated on representation problem such as equational theory [10], contextual
representation [9], and most recently topological representation [1, 5]. Of course
the prime ideal theorem [7] plays a central role in such representation. For a
better understanding of the structure of dBas, our goal is to start with purely
algebraic notions such as filters, ideals, homomorphisms, powers,... of dBas.
In particular, the study of the powers of dBas will help us better understand
these algebras. They are the cornerstone in structure theory, representation,
decomposition, construction as well as classification of algebraic structures.
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In Boolean algebras, distributive lattices, and weakly dicomplemented lat-
tices [2, 6] there are notions of ultrafilters, prime filters and primary filters which
are closely related to the concepts of atoms, irreducible, prime and primary el-
ements. We study some of these concepts on dBas. It is known (see [2]) that
in a Boolean algebra, each prime filter is an ultrafilter and each prime ideal is a
maximal ideal.

This work is an extended version of [8], and is organized as follows. In
Section 2 we recall some basic notions and introduce protoconcept algebra which
is a rich source of examples for dBas. Section 3 summarizes some results on filters
and ideals of dBas: we describe filters (resp. ideals) generated by an arbitrary
subset of dBas, and show that the set of principal filters (resp. principal ideals)
of a dBa forms a bounded sublattice of the lattice of its filters (resp. ideals), and
are (non necessary isomorphic) Boolean algebras. We show that primary filters
(resp. primary ideals) are exactly ultrafilters (resp. maximal ideals) and primary
filters (resp. primary ideals) need not be prime filters (resp. prime ideals) in
dBa.

In Section 4, some properties of homomorphisms of dBas are investigated
and the correspondence between the set of homomorphism of dBas D, M and
the lattices of filters (resp. ideals) of these two dBas.

We end this work with the study of the power of a dBa in Section 5. For a set
X and a dBa D, L := DX is a dBa as product of dBas. We give some properties
of L following those of D, we show that D is contextual, fully contextual (resp.
trivial) if and only if L is contextual, fully contextual (resp. trivial) and if D is
complete, then L is complete. In particular, we show that the lattice F(D) of
filters (resp. I(D) of ideals) is algebraic and embeds in the lattice F(L) (resp.
I(L)). We end this section by showing that some sets of polynomial functions of
D form a Boolean algebras isomorphic to D⊓ (resp. D⊔).

2. Concepts, protoconcepts and double Boolean algebras

In this section, we provide the reader with some basic notions and notations. For
more details we refer to [3, 10]. A formal context is a triple K := (G,M, I)
where G is a set of objects, M a set of attributes and I ⊆ G × M , a binary
relation to describe if an object of G has an attribute in M . We write gIm for
(g,m) ∈ I. To extract clusters, the following derivation operators are defined on
subsets A ⊆ G and B ⊆M by

A′ := {m ∈M | gIm for all g ∈ A} and B′ := {g ∈ G | gIm for all m ∈ B}.

The maps A 7→ A′ and B 7→ B′ form a Galois connection between the power set
of G and that of M . The composition ′′ is a closure operator.
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A formal concept is a pair (A,B) with A′ = B and B′ = A. We call A the
extent and B the intent of the formal concept (A,B). They are closed subsets
with respect to ′′ (i.e., X ′′ = X). The set B(K) of all formal concepts of the
formal context K can be ordered by

(A1, B1) ≤ (A2, B2) : ⇐⇒ A1 ⊆ A2 (or equivalently, B2 ⊆ B1).

The poset B(K) := (B(K),≤) is a complete lattice, called the concept
lattice of the context K. Conversely each complete lattice is isomorphic to a
concept lattice. This basic theorem on concept lattice ([3], Theorem 3) is a
template for contextual representation problems. The lattice operations ∧ (meet)
and ∨ (join) can be interpreted as a logical conjunction and a logical disjunction
for concepts, and are given by

meet: (A1, B1) ∧ (A2, B2) =
(

A1 ∩A2, (A1 ∩A2)
′
)

,

join: (A1, B1) ∨ (A2, B2) =
(

(B1 ∩B2)
′ , B1 ∩B2

)

.

To extend FCA to contextual logic, we need to define the negation of a concept.
Unfortunately, the complement of a closed subset is not always closed. To pre-
serve the correspondence between set complementation and negation, the notion
of concept is extended to that of protoconcept.

The pair (A,B) is called a semi-concept if A′ = B or B′ = A, and a
protoconcept if A′′ = B′.

The set of all semi-concepts of K is denoted by h(K), and that of all pro-
toconcepts by P(K). Note that h(K) ⊆ P(K). Meet and join of protoconcepts
are then defined, similar as above for concepts. A negation (resp. opposition) is
defined by taking the complement on objects (resp. attributes). More precisely,
for protoconcepts (A1, B1), (A2, B2), (A,B) of K we define the operations:

meet: (A1, B1) ⊓ (A2, B2) := (A1 ∩A2, (A1 ∩A2)
′)

join: (A1, B1) ⊔ (A2, B2) := ((B1 ∩B2)
′, B1 ∩B2)

negation: ¬(A,B) := (G \ A, (G \A)′)

opposition: y(A,B) := ((M \B)′,M \B)

nothing: ⊥ := (∅,M)

all: ⊤ := (G, ∅).

The algebra P(K) := (P(K);⊓,⊔,¬, y,⊥,⊤) is called the algebra of pro-
toconcepts of K. Note that applying any operation above on protoconcepts
gives a semi-concept as result. Therefore H(K) is a sub-algebra of P(K). For
the structural analysis of P(K), we split H(K) in ⊓-semi concepts and ⊔-semi
concepts, P(K)⊓ := {(A,A′) | A ⊆ G} and P(K)⊔ := {(B′, B) | B ⊆ M}, and
set x ∨ y := ¬(¬x ⊓ ¬y) and x ∧ y =y(yx⊔yy) for x, y ∈ P(K).
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P(K)⊓ := (P(K)⊓;⊓,∨,¬,⊥,¬⊥) (resp. P(K)⊔ := (P(K)⊔;∧,⊔, y, y⊤,⊤)))
is a Boolean algebra isomorphic (resp. anti-isomorphic) to the powerset algebra
of G (resp. M) (see [10]).

Theorem 2.1 [10]. The following equations hold in the algebra of protoconcepts
P(K):

(1a) (x ⊓ x) ⊓ y = x ⊓ y

(2a) x ⊓ y = y ⊓ x

(3a) x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z

(4a) ¬(x ⊓ x) = ¬x

(5a) x ⊓ (x ⊔ y) = x ⊓ x

(6a) x ⊓ (y ∨ z) = (x ⊓ y) ∨ (x ⊓ z)

(7a) x ⊓ (x ∨ y) = x ⊓ x

(8a) ¬¬(x ⊓ y) = x ⊓ y

(9a) x ⊓ ¬x = ⊥

(10a) ¬⊥ = ⊤ ⊓ ⊤

(11a) ¬⊤ = ⊥

(1b) (x ⊔ x) ⊔ y = x ⊔ y

(2b) x ⊔ y = y ⊔ x

(3b) x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z

(4b) y(x ⊔ x) =yx

(5b) x ⊔ (x ⊓ y) = x ⊔ x

(6b) x ⊔ (y ∧ z) = (x ⊔ y) ∧ (x ⊔ z)

(7b) x ⊔ (x ∧ y) = x ⊔ x.

(8b) yy(x ⊔ y) = x ⊔ y

(9b) x⊔yx = ⊤

(10b) y⊤ = ⊥ ⊔ ⊥

(11b) y⊥ = ⊤

(12) (x ⊓ x) ⊔ (x ⊓ x) = (x ⊔ x) ⊓ (x ⊔ x).

A double Boolean algebra (dBa) is an algebra D := (D;⊓,⊔,¬, y,⊥,⊤)
of type (2, 2, 1, 1, 0, 0) that satisfies the equations in Theorem 2.1. Rudolf Wille
showed that these identities generate the equational theory of protoconcept al-
gebras [10]. In each dBa D, a quasi-order ⊑ is defined by x ⊑ y : ⇐⇒ x ⊓ y =
x⊓x and x⊔ y = y⊔ y. It satisfies x ⊑ y iff x⊓x ⊑ y⊓ y and x⊔x ⊑ y⊔ y, for all
x, y ∈ D [10]. We set D⊓ := {x ∈ D | x⊓x = x} and D⊔ := {x ∈ D | x ⊔ x = x}.
The algebra D⊓ := (D⊓;⊓,∨,¬,⊥,¬⊥) (resp. D⊔ = (D⊔;∧,⊔, y, y⊤,⊤)) is a
Boolean algebras.

Definition 2.1 [7, 9, 10]. Let D be a double Boolean algebra. Then D is

• contextual if the quasi-order ⊑ is an order relation on D.

• fully contextual if it is contextual and for all x ∈ D⊓ and y ∈ D⊔ such that
x ⊔ x = y ⊓ y, there is a unique z ∈ D such that z ⊓ z = x and z ⊔ z = y.

• complete if its Boolean algebras D⊓ and D⊔ are complete.

• trivial if ⊤ ⊓ ⊤ = ⊥ ⊔⊥.
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• pure if for all x ∈ D, x ⊓ x = x or x ⊔ x = x.

The next proposition collects some properties of dBas, that we will need later.

Proposition 2.2 [4, 5, 7, 10]. Let D be a double Boolean algebra and x, y, a ∈ D.
Then

(1) ⊥ ⊑ x and x ⊑ ⊤.

(2) x ⊓ y ⊑ x, y ⊑ x ⊔ y.

(3) x ⊑ y =⇒

{

x ⊓ a ⊑ y ⊓ a
x ⊔ a ⊑ y ⊔ a.

(4) ¬(x ∨ y) = ¬x ⊓ ¬y.

(5) ¬(x ⊓ y) = ¬x ∨ ¬y.

(6) x ⊑yy ⇐⇒ y ⊑yx.

(7) ¬¬x = x⊓ x and yyx = x⊔ x.

(8) ¬x, x ∨ y ∈ D⊓ and yx, x ∧ y ∈ D⊔.

(9) x ⊑ y ⇐⇒ ¬y ⊑ ¬x and yy ⊑yx.

(10) y(x ∧ y) = yx⊔yy.

(11) y(x ⊔ y) = yx∧yy.

(12) ¬x ⊑ y ⇐⇒ ¬y ⊑ x.

(13) x ⊓ y ⊑ x ∧ y, x ∨ y ⊑ x ⊔ y.

(14) x ⊑ y and y ⊑ x if and only if x ⊓ x = y ⊓ y and x ⊔ x = y ⊔ y.

We close this section with some distributivity-like properties of dBas.

Proposition 2.3. Let D be a dBa and a, b, c, d ∈ D, we have

(i) a ∨ (b ⊓ c) = (a ∨ b) ⊓ (a ∨ c).

(ii) a ∨ (a ⊓ b) = a ⊓ a.

(iii) (a ⊓ a) ∨ (b ⊓ b) = a ∨ b.

(i)’ a ∧ (b ⊔ c) = (a ∧ b) ⊔ (a ∧ c).

(ii)’ a ∧ (a ⊔ b) = a ⊔ a.

(iii)’ (a ⊔ a) ∧ (b ⊔ b) = a ∧ b.

Proof. (i)’, (ii)’ and (iii)’ are dual of (i), (ii) and (iii). Let a, b, c, d ∈ D.

(i) a ∨ (b ⊓ c)
def
= ¬(¬a ⊓ ¬(b ⊓ c)) = ¬(¬a ⊓ (¬b ∨ ¬c)) (by (5) of Proposition 2.2)

= ¬((¬a ⊓ ¬b) ∨ (¬a ⊓ ¬c)) (by axiom (6a))

= ¬(¬(a ∨ b) ∨ ¬(a ∨ c)) (by (5) of proposition 2.2)

= ¬[¬[(a ∨ b) ⊓ (a ∨ c)]] (by (5) of Proposition 2.2)

= ¬¬[(a ∨ b) ⊓ (a ∨ c)] = (a ∨ b) ⊓ (a ∨ c) (by axiom (8a))

(ii) a ∨ (a ⊓ b) = ¬(¬a ⊓ ¬(a ⊓ b)) = ¬(¬a ⊓ (¬a ∨ ¬b)) (by (5) of Proposition 2.2)

= ¬(¬a ⊓ ¬a) (by axiom (7a))

= a ⊓ a (by (8) and (7) of Proposition 2.2)

(iii) (a⊓a)∨(b⊓b) = ¬(¬(a⊓a)⊓¬(b⊓b)) = ¬(¬a⊓¬b) (by axiom (4a)) = a∨b.
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3. Filters and ideals of a double Boolean algebra

The goal is to extent some results from Boolean algebras to dBas. Let D be a
dBa. A nonempty subset F of D is called filter if for all x, y ∈ D, it holds:

x, y ∈ F =⇒ x ⊓ y ∈ F and (x ∈ F, x ⊑ y) =⇒ y ∈ F .

Ideal in dBa is defined dually. We denote by F (D) (resp. I(D)) the set of filters
(resp. ideals) of the dBa D. Both sets are each closed under intersection [7]. Note
that F (D)∩ I(D) = {D}. For X ⊆ D, the smallest filter (resp. ideal) containing
X, denoted by Filter〈X〉 (resp. Ideal〈X〉), is the intersection of all filters (resp.
ideals) containing X, and is called the filter (resp. ideal) generated by X. A
principal filter (resp. ideal) is a filter (resp. ideal) generated by a singleton.
In that case we omit the curly brackets and set F (x) := Filter〈{x}〉, and I(x) :=
Ideal〈{x}〉. Let F be a dBa filter. We call F proper filter if F 6= D, and
ultrafilter if F is proper and is not contained in any other proper filter. We call
F a prime filter if for all a, b ∈ D, we have a ⊔ b ∈ F implies a ∈ F or b ∈ F ,
dually prime ideal is defined. A set F0 is a base of a filter F if F0 ⊆ F and
F = {y ∈ D | x ⊑ y for some x ∈ F0}. Base of ideals are defined dually.

Observation (Reviewer remark on base of filter). If F0 is a base of a filter F ,
then F = Filter〈F0〉 and F0 = F , if F0 is a filter. Therefore a base of a filter F
in general is supposed to be a proper subset of F that is not a filter.

Lemma 3.1 [10]. Let F be a filter and I be an ideal of a dBa D.

(1) F ∩D⊓ (resp. F ∩D⊔) is a filter of the Boolean algebra D⊓ (resp. D⊔).

(2) I ∩D⊔ (resp. I ∩D⊓) is an ideal of D⊔ (resp. D⊓).

(3) Each filter of D⊓ is a base of some filter of D.

(4) Each ideal of D⊔ is a base of some ideal of D.

To prove the prime ideal theorem for dBas, a description of filter (resp. ideal)
generated by an element w and a filter F (resp. ideal J) was given in [7] as follows:

Filter〈F ∪ {w}〉 = {x ∈ D | w ⊓ b ⊑ x for some b ∈ F},

Ideal〈J ∪ {w}〉) = {x ∈ D | x ⊑ w ⊔ b for some b ∈ J}.

To extend this description to arbitrary subsets, the following lemma is formulated.

Lemma 3.2. Let D be a dBa and a ∈ D. Then

(1) The operations ⊓ and ⊔ are compatible with the quasi-order ⊑, i.e., for
a, b, c, d ∈ D, if a ⊑ b and c ⊑ d, then a ⊓ c ⊑ b ⊓ d and a ⊔ c ⊑ b ⊔ d.
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(2) The binary operations ∨ and ∧ are compatible with ⊑, that is, if a ⊑ b and
c ⊑ d, then a ∨ c ⊑ b ∨ d (2.1) and a ∧ c ⊑ b ∧ d (2.2) .

(3) I(a) = {x ∈ D | x ⊑ a ⊔ a} and F (a) = {x ∈ D | a ⊓ a ⊑ x}.

(4) Ideal〈∅〉 = I(⊥) = {x ∈ D | x ⊑ ⊥ ⊔ ⊥} and Filter〈∅〉 = F (⊤) = {x ∈ D |
⊤ ⊓ ⊤ ⊑ x}.

Proof. (1) It is a direct consequence of Proposition 2.2 (item 4).
(2) Since ¬ and y reverse the quasi-order ⊑ (Proposition 2.2, item 9) it follows

from (1) that ∨ and ∧ are also compatibe with ⊑.
(3) It is easy to show that the set J := {x ∈ D | x ⊑ a ⊔ a} is an ideal

containing a by using (1) and Theorem 2.1(1b). If G is an ideal and a ∈ G, then
a ⊔ a ∈ G. Each x ∈ J satisfies x ⊑ a ⊔ a, and is also in G. Thus J = I(a). The
description of F (a) is obtained dually.

(4) From ⊥ ⊑ x for all x ∈ D (Proposition 2.2(1)) and the fact that each
ideal is non empty, it follows that ⊥ is in each ideal. Thus Ideal〈∅〉 = I(⊥) =
{x ∈ D | x ⊑ ⊥⊔⊥}. The last equality follows from (3). The equality Filter〈∅〉 =
F (⊤) = {x ∈ D | ⊤ ⊓ ⊤ ⊑ x} is proved similarly.

For F ∈ F (D), I ∈ I(D) and a ∈ D, we have a ∈ F iff a ⊓ a ∈ F and a ∈ I
iff a ⊔ a ∈ I. Therefore F (a) = F (a ⊓ a) and I(a) = I(a ⊔ a).

The following proposition describes filters and ideals generated by arbitrary
non-empty subsets.

Proposition 3.1. Let D be a dBa, ∅ 6= X ⊆ D, F1, F2 ∈ F (D) and I1, I2 ∈ I(D).
Then
(a) Ideal〈X〉 = {x ∈ D | x ⊑ b1 ⊔ · · · ⊔ bn for some b1, . . . , bn ∈ X,n ≥ 1}.

(b) Filter〈X〉 = {x ∈ D | x ⊒ b1 ⊓ · · · ⊓ bn for some b1, . . . , bn ∈ X,n ≥ 1}.

(c) Ideal〈I1 ∪ I2〉 = {x ∈ D | x ⊑ i1 ⊔ i2 for some i1 ∈ I1 and i2 ∈ I2}.

(d) Filter〈F1 ∪ F2〉 = {x ∈ D | f1 ⊓ f2 ⊑ x for some f1 ∈ F1 and f2 ∈ F2}.

Proof. Let D be a dBa and ∅ 6= X ⊆ D.
(a) We show that J := {x ∈ D | x ⊑ b1 ⊔ · · · ⊔ bn for some b1, . . . , bn ∈

X, n ≥ 1} is the smallest ideal that contains X. For x ∈ X, we have x ⊑ x ⊔ x,
and x ∈ J . If y ∈ D, x ∈ J and y ⊑ x, then y ⊑ x ⊑ b1 ⊔ · · · ⊔ bn for n ≥ 1
and b1, . . . , bn ∈ X. By transitivity of ⊑, we get y ∈ J . Now, let a, b ∈ J ,
then a ⊑ a1 ⊔ · · · ⊔ an and b ⊑ b1 ⊔ · · · ⊔ bm for some n,m ≥ 1 and ai, bi ∈ X,
1 ≤ i ≤ n, 1 ≤ j ≤ m. Therefore a ⊔ b ⊑ a1 ⊔ · · · ⊔ an ⊔ b1 ⊔ · · · ⊔ bm (by (1) of
Lemma 3.2). Thus a ⊔ b ∈ J . It is easy to see that any ideal containing X also
contains J .

(c) follows from (a), with the facts that ⊔ is commutative, associative, and
ideals are closed under ⊔. (b) and (d) are dual to (a) and (c).
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Note that F (⊥) = D and I(⊤) = D.

Remark 3.2. F (D) and I(D) are closure systems, and form two complete lattices

F(D) = (F (D);∧,∨, F (⊤),D) and I(D) := (I(D);∧,∨, I(⊥),D).

For {Fλ : λ ∈ Λ}, on D, we have ∧
λ∈Λ

Fλ = ∩
λ∈Λ

Fλ and ∨
λ∈Λ

Fλ = Filter〈 ∪
λ∈Λ

Fλ〉.

Let Fp := {F (a) | a ∈ D} = {F (a ⊓ a) | a ∈ D} = {F (a) | a ∈ D⊓} be the
set of principal filters and Ip := {I(a) | a ∈ D} = {I(a) | a ∈ D⊔} be the set of
principal ideals of D.

It is known that, if L is a lattice, then the set I(L) (resp. F (L)) of ideals
(resp. filters) of L is a lattice and the set of principal ideals (resp. filters) of L
forms a sublattice of I(L) (resp. F(L)) isomorphic to L. It is therefore natural
to ask what happens in the case of double Boolean algebras.

Lemma 3.3. Let D be a dBa and a, b in D. Then

(i) a ⊑ b =⇒ F (a) ⊇ F (b). The converse holds if a, b ∈ D⊓.

(ii) a ⊑ b =⇒ I(a) ⊆ I(b). The converse holds if a, b ∈ D⊔.

(iii) F (a ⊔ b) ⊆ F (a) ∩ F (b) ⊆ F (a), F (b) ⊆ F (a ⊓ b).

(iv) I(a ⊓ b) ⊆ I(a) ∩ I(b) ⊆ I(a), I(b) ⊆ I(a ⊔ b).

Proof. (ii) and (iv) are dual of (i) and (iii), respectively. Let a, b ∈ D.
(i) We assume that a ⊑ b. Then a⊓ a ⊑ b⊓ b ⊑ b. If x ∈ F (b) then b⊓ b ⊑ x.

Since ⊑ is transitive, we get a ⊓ a ⊑ x, and x ∈ F (a). Thus F (b) ⊆ F (a).
Conversely, if F (b) ⊆ F (a) then b ∈ F (a) and a ⊓ a ⊑ b, which is equivalent to
a ⊑ b if a ∈ D⊓.

(iv) a⊓ b ⊑ a, b ⊑ a⊔ b =⇒ F (a⊔ b) ⊆ F (a)∩F (b) ⊆ F (a), F (b) ⊆ F (a⊓ b),
by (i).

The next result shows that the principal filters form a bounded sublattice of
the lattice of all filters, that is a Boolean algebra.

Proposition 3.3. Let D be a dBa. For any a, b, c ∈ D, the following hold.

(1) F (a) ∨ F (b) = F (a ⊓ b) = Filter〈{a, b}〉.

(2) I(a) ∨ I(b) = I(a ⊔ b) = Ideal〈{a, b}〉.

(3) If b ∈ F (¬a), then ¬b ∈ I(a).

(4) If b ∈ I(ya), then yb ∈ F (a).
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(5) F (a) ∧ (F (b) ∨ F (c)) = (F (a) ∧ F (b)) ∨ (F (a) ∧ F (c)).

(6) I(a) ∨ (I(b) ∧ I(c)) = (I(a) ∨ I(b)) ∧ (I(a) ∨ I(c)).

(7) F (a) ∩ F (b) = F (a ∨ b).

(8) I(a) ∩ I(b) = I(a ∧ b).

(9) F (a) ∧ F (¬a) = F (⊤).

(10) I(a) ∨ I(ya) = I(⊤).

(11) F (a) ∨ F (¬a) = F (⊥).

(12) I(a) ∧ I(ya) = I(⊥).

Proof. The even numbered items are dual of the odd ones. Let a, b, c, x ∈ D.

(1) From a ⊓ b ⊑ a, b we get F (a), F (b) ⊆ F (a ⊓ b) and F (a) ∨ F (b) ⊆ F (a ⊓ b)
(Lemma 3.3(i)). If x ∈ F (a⊓b), then a⊓b ⊑ x. But a ∈ F (a) and b ∈ F (b) imply
a ⊓ b ∈ F (a) ∨ F (b), and yields x ∈ F (a) ∨ F (b). Thus F (a ⊓ b) = F (a) ∨ F (b).

(3) b ∈ F (¬a) ⇐⇒ ¬a ⊓ ¬a ⊑ b ⇐⇒ ¬a ⊑ b (by (8) of Proposition 2.2)

⇐⇒ ¬b ⊑ a (by (12) of Proposition 2.2) =⇒ ¬b ∈ I(a).

(7) x ∈ F (a ∨ b) ⇐⇒ (a ∨ b) ⊓ (a ∨ b) ⊑ x ⇐⇒ a ∨ b ⊑ x (due to a ∨ b ∈ D⊓)

⇐⇒ (a ⊓ a) ∨ (b ⊓ b) ⊑ x (by (iii) of Proposition 2.3)

⇐⇒ a ⊓ a ⊑ x and b ⊓ b ⊑ x (since a ⊓ a, b ⊓ b ⊑ a ∨ b)

⇐⇒ x ∈ F (a) and x ∈ F (b) ⇐⇒ x ∈ F (a) ∩ F (b).

(5) F (a) ∨ (F (b) ∧ F (c)) = F (a) ∨ (F (b ∨ c)) (by (7)) = F (a ⊓ (b ∨ c)) (by (1))

= F ((a ⊓ b) ∨ (a ⊓ c)) ( axiom (6a))

= F (a ⊓ b) ∧ F (a ⊓ c) (by (7))

= (F (a) ∨ F (b)) ∧ (F (a) ∨ F (c)) (by (1)).

(9) F (a) ∧ F (¬a) = F (a ∨ ¬a) = F (¬(¬a ⊓ ¬¬a) = F (¬⊥) = F (⊤ ⊓⊤) = F (⊤).

(11) F (a) ∨ F (¬a) = F (a ⊓ ¬a) = F (⊥).

Using (9) and (11) (resp. (10) and (12)) of Proposition 3.3 we observe that
any principal filter F (a) (resp. principal ideal I(a)) of D has a complement,
namely the principal filter F (a)c =: F (¬a) (resp. ideal I(a)c := I(ya)). From (5)
and (6) we get the distributivity. Thus; the algebras

Fp(D) := (Fp(D);∧,∨,c , F (⊤), F (⊥)) and Ip(D) := (Ip(D);∧,∨,c , I(⊥), I(⊤))),

are Boolean algebras. The following holds.
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Theorem 3.4. Let D be a double Boolean algebra. The set of principal filters
(resp. ideals) of D forms a Boolean algebra dual-isomorphic (resp. isomorphic)
to D⊓ (resp. D⊔).

Proof. Let D be a dBa define ϕ : D⊓ → Fp(D), a 7→ F (a).

• For a, b ∈ D⊓, we have

ϕ(a ⊓ b) = F (a ⊓ b) = F (a) ∨ F (b) = ϕ(a) ∨ ϕ(b),

ϕ(a ∨ b) = F (a ∨ b) = F (a) ∧ F (b) = ϕ(a) ∧ ϕ(b) and

ϕ(¬a) = F (¬a) = F (a)c = ϕ(a)c.

We deduce that ϕ is a dual homomorphism of Boolean algebras.

• ϕ is onto, since any principal filter F (a) is equal to F (a⊓a), with a⊓a ∈ D⊓.

• It remains to show that φ is one-to-one. Let a, b ∈ D⊓ with ϕ(a) = ϕ(b).
Then F (a) = F (b) = F (a)∨F (b) = F (a⊓b). Henceforth, a⊓b ∈ F (a) = F (b),
that is a ⊓ a ⊑ a ⊓ b ⊑ a and b ⊓ b ⊑ a ⊓ b ⊑ b. Since a, b ∈ D⊓, we deduce
that a = a ⊓ b = b. Thus Fp(D) is anti-isomorphic to D⊓.

The proof for the set of principal ideals is similar to that principal of filters,
using the mapping ψ : D⊔ → Ip(D), a 7→ I(a).

Corollary 3.4. If D is a complete dBa, then the lattices F(D) of filters and
I(D) of ideals of D are Boolean algebras.

Proof. For ∅ 6= X ⊆ D, set ⊓X := ⊓
a∈X

a, ⊔X := ⊔
a∈X

a. We assume that D is

complete, then for all X ⊆ D, ⊓X ∈ D⊓ and ⊔X ∈ D⊔ and all filters (resp.
ideals) of D are principal. Thus F(D) = Fp(D), which is a Boolean algebra, by
Theorem 3.4.

Let L be a lattice. An element a ∈ L is said compact if whenever
∨

A
exists and a ≤

∨

A for A ⊆ L, then a ≤
∨

B for some finite B ⊆ A. L is said
compactly generated if every element in L is a supremum of compact elements.
L is said algebraic if L is complete and compactly generated [2].

Remark 3.5. Let D be a dBa. Let J be an arbitrary nonempty set, {Fj : j ∈
J} ⊆ F(D) and {Ij : j ∈ J} ⊆ I(D). Set J̃ := {(i1, . . . , in) ∈ Jn | n ≥ 1, n ∈ N}.
The following hold.

(∗) ∨
j∈J

Fj =
⋃

(i1,...,in)∈J̃

(Fi1 ∨ · · · ∨ Fin), (∗∗) ∨
j∈J

Ij =
⋃

(i1,...,in)∈J̃

(Ii1 ∨ · · · ∨ Iin).

Lemma 3.5. Let D be a dBa. A filter or an ideal of D is compact if and only if
it is principal.
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Proof. (1) Let a ∈ D, to show that F (a) is compact, we take {Fj : j ∈ J} ⊆
F(D) with J an arbitrary nonempty set such that F (a) ⊆ ∨

j∈J
Fj . Since a ∈ F (a),

by (∗) of Remark 3.5 there are n ≥ 1 and i1, . . . , in ∈ J such that a ∈ Fi1∨· · ·∨Fin .
Therefore F (a) ⊆ Fi1 ∨ · · · ∨ Fin . Hence it follows that F (a) is a compact filter.
Conversely, let F be a compact filter. Since F ⊆ ∨

a∈F
F (a) and F compact, there

are a1, . . . , an ∈ F such that F ⊆ F (a1) ∨ · · · ∨ F (an) ⊆ F , by (1) of Proposition
3.3 we get F (a1) ∨ · · · ∨ (Fan) = F (a1 ⊓ · · · ⊓ an) and F is a principal filter. A
similar argument shows the result for ideals.

Theorem 3.6. Let D be a dBa. F(D) and I(D) are algebraic lattices.

Proof. By Remark 3.2, we know that F(D) and I(D) are complete lattices. By
Lemma 3.5 all principal filters F (a) and principal ideals I(a) are compact. Since
F = ∨

a∈F
F (a) for any filter F of D, and I = ∨

a∈I
I(a) for any ideal I of D, we see

that F(D) and I(D) are compactly generated. Therefore F(D) and I(D) are
algebraic lattices.

In Boolean algebras there are several equivalent definitions of prime filters.
These definitions can be carried over to dBas. To solve the equational theory
problem for protoconcepts algebra, Rudolf Wille introduced in [10] the set FP (D)
of filters F of D such that F ∩D⊓ are prime filters of the Boolean algebra D⊓, and
the set IP (D) of ideals I of D such that I ∩D⊔ are prime ideals of the Boolean
algebra D⊔. To prove the prime ideal theorem for double Boolean algebras,
Léonard Kwuida introduced in [7] primary filters as proper filters F for which
x ∈ F or ¬x ∈ F , for each x ∈ D. Dually, a primary ideal is a proper ideal I for
which x ∈ I or yx ∈ I, for each x ∈ D. We denote by Fpr(D) the set of primary
filters of D, and by Ipr(D) its set of primary ideals. In [4] Prosenjit Howlader
and Mohua Banerjee showed that FP (D) = Fpr(D) and IP (D) = Ipr(D). Recall
that the set of principal filters of D is Fp(D) = {F (a) | a ∈ D⊓} and that of
principals ideals Ip(D) = {I(a) | a ∈ D⊔}, and that D⊓ and D⊔ are Boolean
algebras whose order relation is the restriction of ⊑ on D⊓ and D⊔, respectively.
Thus, by Theorem 3.4, the lattice of principal filters of a dBa D is isomorphic to
the lattice of principal filters of the Boolean algebra D⊓. Similarly, the lattice of
principal ideals of a dBa D is isomorphic to the lattice of principal ideals,of the
Boolean algebra D⊔.

On the basis of these results, an interesting question is how filters and ideals
of D and those of D⊓ or D⊔ are related.

Theorem 3.7. Let D be a double Boolean algebra. Then

(1) F(D⊓) and F(D) are isomorphic lattices.

(2) I(D⊔) and I(D) are isomorphic lattices.
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Proof. To prove (1), let D be a double Boolean algebra and E be a filter of D⊓.
We set Φ(E) = {x ∈ D | ∃u ∈ E, u ⊑ x}.

• Φ(E) is a filter of D containing E. In fact, for any x ∈ E, x ⊑ x, and thus
x ∈ Φ(E). For x, y ∈ Φ(E), there are x0, y0 ∈ E such that x0 ⊑ x and y0 ⊑ y.
By (1) of Lemma 3.2 we deduce that x0 ⊓ y0 ⊑ x ⊓ y ∈ Φ(E). For x, y ∈ D
with x ∈ Φ(E) and x ⊑ y; there is then x0 ∈ E such that x0 ⊑ x ⊑ y; thus
y ∈ Φ(E). Actually, E is a base of the filter Φ(E), and Φ defines a map from
F (D⊓) to F (D).

• Φ(E) is the only filter F of D such that F ∩D⊓ = E. In fact, E ⊆ Φ(E)∩D⊓,
and for any x ∈ Φ(E) ∩D⊓ there is u ∈ E such that u ⊑ x, implying x ∈ E,
since E is a filter of D⊓. Thus E = Φ(E) ∩D⊓. If F1, F2 are in F (D) such
that F1 ∩D⊓ = F2 ∩D⊓, then F1 = F2 since for any x ∈ D, we have

x ∈ F1 ⇔ x ⊓ x ∈ F1 ∩D⊓ ⇔ x⊓ ∈ F2 ∩D⊓ ⇔ x ∈ F2.

• Φ is bijective. In fact, if if E1;E2 ∈ F (D⊓) such that Φ(E1) = Φ(E2), then
E1 = Φ(E1) ∩ D⊓ = Φ(E2) ∩ D⊓ = E2, and Φ is injective. Furthermore,
for any filter F of D, F ∩ D⊓ is a filter of D⊓ by (1) of Lemma 3.1 and
Φ(F ∩D⊓) = F .

• Φ preserves and reflects the order relation. In fact, let E1, E2 ∈ F (D⊓). If
E1 ⊆ E2, then for any x ∈ Φ(E1), then there exists u ∈ E1 ⊆ E2 such that
u ⊑ x. Thus u ∈ E2 and u ⊑ x; that is x ∈ Φ(E2). Thus Φ(E1) ⊆ Φ(E2).
Conversely, Φ(E1) ⊆ Φ(E2) ⇒ Φ(E1) ∩ D⊓ ⊆ Φ(E2) ∩ D⊓ ⇒ E1 ⊆ E2.
Therefore, Φ is a lattice isomorphism, and F(D⊓) and F(D) are isomorphic.

For (2), we can check using a similar arguments as above, that the mapping
Ψ : I(D⊔) → I(D), I 7→ Ψ(I) = {x ∈ D | ∃x0 ∈ I, x ⊑ x0} is a lattice
isomorphism.

An atom in a dBa is an element x such that x 6= ⊥ and if y ⊑ x, x 6= y
then y = ⊥. co-atom are defined dually. In Boolean algebras, distributive
lattices [2] and weakly dicomplemented lattices [6] there are notions of ultrafilters,
prime filters and primary filters which are closely related to the concept of atom,
irreducible, prime and primary elements. These concepts can be transfered to
dBas.

Definition 3.6. Let D be a dBa and F be a filter of D. F is a maximal filter
or an ultrafilter if F is a maximal element of (F (D) \ {D},⊆); i.e., F is a
proper filter not contained in any other proper filter. F is a prime filter if for
all a, b ∈ D, a ⊔ b ∈ F implies a ∈ F or b ∈ F . Maximal and prime ideals are
defined dually.
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It is known (see [2]) that in Boolean algebras, each prime filter is an ultrafilter
and vice versa. Dually each prime ideal is a maximal ideal and vice versa. The
following theorem presents the corresponding results for dBas.

Theorem 3.8. Let D be a dBa, a ∈ D, F a filter and I an ideal of D.

(1) The principal filter F (a ⊓ a) is an ultrafilter if and only if a ⊓ a is an atom.

(2) The principal ideal I(a ⊔ a) is maximal if and only if a ⊔ a is a co-atom.

(3) F is an ultrafilter if and only if F is a primary filter.

(4) I is a maximal ideal if and only if I is a primary ideal.

Proof. The even numbered items are dual of the odd ones. Let a ∈ D. Note
that F (a) = D ⇔ a ⊓ a = ⊥. Let F be a filter of D.

(1) Assume that a⊓a is an atom of D and F (a⊓a) ( F . Let b ∈ F \F (a⊓a).
Since a ⊓ a is an atom of D, (a ⊓ a) ⊓ b = ⊥ or (a ⊓ a) ⊓ b = a ⊓ a 6= ⊥, because
(a⊓ a)⊓ b ⊑ a⊓ a. If (a⊓ a)⊓ b = a⊓ a, then a⊓ a ⊑ b, and b ∈ F (a), which is a
contradiction. Thus ⊥ = (a⊓ a)⊓ b = a⊓ b ∈ F , since a, b ∈ F and F = D. This
prove that F (a) is an ultrafilter.

Conversely, assume that F (a ⊓ a) is an ultrafilter. Let b ∈ D⊓ such that
b ⊑ a ⊓ a. Then F (a) = F (a ⊓ a) ⊆ F (b). Since F (a ⊓ a) is an ultrafilter, we get
F (b) = F (a ⊓ a) or F (b) = D. If F (a) = F (b) or F (b) = D, then b ∈ F (a) and
a ⊓ a ⊑ b, which is a contradiction to b 6= a ⊓ a. It follows that F (b) = D, and
⊥ = b ⊓ b. Therefore a ⊓ a is an atom of D.

(3) We assume that F is an ultrafilter of D. To show that F is primary, we
start by proving that F ∩D⊓ is an ultrafilter of D⊓. By (1) of Lemma 3.1, F ∩D⊓

is a filter of D⊓. Let G0 be a proper filter of D⊓ such that F ∩D⊓ ⊆ G0. G0 is
a base of a dBa filter G containing F . In fact, for any y ∈ D we have

y ∈ F ⇒ y ⊓ y ∈ F ∩D⊓ ⊆ G0 ⇒ y ∈ G.

Since F is a filter, F = G or G = D. But ⊥ 6∈ G, so F = G and G0 = G ∩D⊓ =
F ∩D⊓. Thus F ∩D⊓ is an ultrafilter of the Boolean algebra D⊓. Now let x ∈ D.
Then x ⊓ x ∈ F ∩D⊓ or ¬(x ⊓ x) = ¬x ∈ F ∩D⊓, which is equivalent to x ∈ F
or ¬x ∈ F , since ¬(x ⊓ x) = ¬x. Thus, F is primary.

Conversely, we assume that F is primary. Then F ∩D⊓ is a prime filter of
the Boolean algebra D⊓, and therefore a maximal filter of D⊓.

Let G be a filter of D such that F ⊆ G, then F ∩D⊓ ⊆ G ∩D⊓, as F ∩D⊓

is maximal, we have F ∩D⊓ = G ∩D⊓ or G ∩D⊓ = D⊓. If G ∩D⊓ = D⊓, then
D⊓ ⊆ G. For any x ∈ D, x ⊓ x ∈ D⊓ ⊆ G, since G is a filter. We deduce that
x ∈ G, and G = D. If F ∩D⊓ = G ∩D⊓, then F = G by the proof of Theorem
3.7. Thus F is a ultrafilter of D.

Remark 3.7. Let D3 be the trivial dBa with D3 = {⊥, a,⊤}, ⊥⊔⊥ = a = ⊤⊓⊤
([7]). Then F = {a,⊤} is a primary filter, ⊥ ⊔ ⊥ = a ∈ F , but ⊥ 6∈ F , so F is
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not a prime filter. I(a) = {⊥, a} is a primary ideal. But ⊤ ⊓ ⊤ = a ∈ I(a) and
⊤ 6∈ I(a). Therefore primary filters and primary ideals need not be prime.

4. Homomorphisms of dBas

Let D and M be two dBas and h be a map from D to M .

Definition 4.1 [4, 10]. h is a homomorphism from D to M , if h preserves
dBa operations, i.e., ∀a, b ∈ D, h(a ⊓ b) = h(a) ⊓ h(b), h(a ⊔ b) = h(a) ⊔ h(b),
h(¬a) = ¬h(a), h(ya) =yh(a), and h(⊤) = ⊤, h(⊥) = ⊥. An embedding is a
one-to-one homomorphism. An isomorphism is a bijective homomorphism.

If h is an embedding, then we say that D embeds into M . If h is an isomor-
phism, we say that the dBas D and M are isomorphic.

Definition 4.2 [10]. h is quasi-injective, if its preserves and reflect the quasi-
order, i.e., ∀a, b ∈ D, a ⊑ b iff h(a) ⊑ h(b). If h is quasi-injective and surjective,
then h is called quasi-isomorphism.

If h is quasi-injective, then we say that D quasi-embeds into M . If h is an
quasi-isomorphism, we say that the dBas D and M are quasi-isomorphic. Note
that composition of two dBa homomorphisms is also a dBas homomorphism. For
a dBa D we denote by DP the set D⊓ ∪D⊔.

Let L = (L,≤) be a quasi-ordered set and F ⊆ L. F is quasi-order filter
on L if for all x ∈ F, y ∈ L, if x ≤ y then y ∈ F . A quasi-order ideal is defined
dually. If the quasi-order ≤ is an order relation, then we get the well-known
notions of order filter and order ideal.

Definition 4.3 [10]. Let h : D → M be a homomorphism of dBas. The kernel
of h is defined by

ker(h) := {(a, b) ∈ D2 | h(a) = h(b)}.

It is known that if the map h : D → M is a homomorphism of Boolean
algebras then, ker(h) is a congruence on D and the class [⊥]ker(h) (resp. [⊤]ker(h))
is an ideal (resp. a filter) of D. In the sequel we will see that for a homomorphism
h of dBas the class [⊥]ker(h) (resp. [⊤]ker(h)) is not always an ideal (resp. a
filter) of D. It was shown in [5] that if h : D → M is a homomorphism of
dBas, then for all a, b ∈ D, if a ⊑ b, then h(a) ⊑ h(b). We say that h is
isotone. We give some properties of the sets A = [⊥]ker(h), B = [⊥ ⊔ ⊥]ker(h),
C = [⊤ ⊓ ⊤]ker(h) and E = [⊤]ker(h) in the following remark. One can see that
B = {x ∈ D | h(x) = ⊥⊔ ⊥} and C = {x ∈ D | h(x) = ⊤ ⊓ ⊤}.

Remark 4.4. Let h : D → M be a homomorphism of dBas, from Theorem 2.1
we obtain the following statements.
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(1) A is an ideal (resp. E is a filter) iff ⊥ ⊔ ⊥ ∈ A (resp. ⊤ ⊓⊤ ∈ E).

(2) A is a quasi-order (resp. order) ideal if ⊑ is a quasi-order (resp. order)
relation on D.

(3) E is a quasi-order (resp. order) filter if ⊑ is a quasi-order (resp. order)
relation on D.

(4) A is preserved by ⊓,⊔ and h(yx) = ⊤ for any x ∈ A.

(5) C is preserved by ⊔ and ⊓ and h(¬x) = ⊥ for any x ∈ C.

(6) If h is injective, then h is quasi-injective.

Now we investigate how filters of D and M are related.

Remark 4.5. Let h : D →M be a homomorphism of dBas and F be a filter of
D. Then the filter generated by h(F ) is equal to {y ∈ M | ∃x ∈ F, h(x) ⊑ y},
and h(F ) is a base of Filter〈h(F )〉. Dually, if I is an ideal of D, then h(I) is a
base of Ideal〈h(I)〉 = {y ∈M | ∃x ∈ I, h(x) ⊑ y}.

We consider the maps:

τ : F (D) → F (M ), F 7→ τ(F ) := Filter〈h(F )〉

and

ν : I(D) → I(M), I 7→ ν(I) := Ideal〈h(I)〉.

Clearly the maps τ and ν are well defined.

Lemma 4.1. Let h : D →M be a homomorphism, I1, I2 ∈ I(D), F1, F2 ∈ F (D)
and a ∈ D. The following hold.

(1) τ(F (a)) = F (h(a)) and ν(I(a)) = I(h(a)).

(2) τ and ν preserve the order, and also reflect the order if h is quasi-injective.

(3) (ii) τ(F1 ∩ F2) = τ(F1) ∩ τ(F2) and τ(F1 ∨ F2) = τ(F1) ∨ τ(F2). Similarly
ν(I1 ∩ I2) = ν(I1) ∩ ν(I2) and ν(I1 ∨ I2) = ν(I1) ∨ ν(I2).

(4) If h is quasi-injective, then h(F ) is a filter and h(I) an ideal of h(D), and
h(F1 ∨ F2) = h(F1) ∨

h h(F2), h(F1 ∩ F2) = h(F1) ∩ h(F2), h(I1 ∨ I2) =
h(I1) ∨

h h(I2) and h(I1 ∩ I2) = h(I1) ∩ h(I2), where ∨h is the join in the
lattice of filters/ideals of h(D).

Proof. Let y ∈M .

(1) If y ∈ F (h(a)), then h(a ⊓ a) = h(a) ⊓ h(a) ⊑ y, and y ∈ τ(F (a)). If
y ∈ τ(F (a)), then there exists x ∈ F (a) such that h(x) ⊑ y. Since x ∈ F (a);
we get a ⊓ a ⊑ x and h(a ⊓ a) = h(a) ⊓ h(a) ⊑ h(x) ⊑ y, so y ∈ F (h(a)). Thus
F (h(a)) = τ(F (a)). The rest is proved similarly.
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(2) If F1 ⊆ F2, then obviously τ(F1) ⊆ τ(F2). Conversely, if h is quasi-
injective and τ(F1) ⊆ τ(F2), then for any x1 ∈ F1, h(x1) ∈ τ(F1) ⊆ h(F2), and
there exists x2 ∈ F2 such that h(x2) ⊑ h(x1). Therefore x2 ⊑ x1, since h is
quasi-injective. Since F2 is a filter and x2 ∈ F2, we deduce that x1 ∈ F2 and
F1 ⊆ F2. The proof for ν is obtained similarly.

(3) τ(F1 ∩ F2) ⊆ τ(F1) ∩ τ(F2) and τ(F1) ∨ τ(F2) ⊆ τ(F1 ∨ F2) follow from
(2). If y ∈ τ(F1)∩ τ(F2), then there are x1 ∈ F1 and x2 ∈ F2 such that h(x1) ⊑ y
and h(x2) ⊑ y. We get h(x1 ∨ x2) = h(x1) ∨ h(x2) ⊑ y ∨ y = y ⊓ y ⊑ y and
x1∨x2 ∈ F1∩F2, since F (x1∨x2) = F (x1)∩F (x2) ⊆ F1∩F2 (by (7) of Proposition
3.3). Thus τ(F1 ∩ F2) = τ(F1) ∩ τ(F2).

If y ∈ τ(F1 ∨ F2), then there is x ∈ F1 ∨ F2 such that h(x) ⊑ y. Thus there
are x1 ∈ F1 and x2 ∈ F2 such that x1 ⊓ x2 ⊑ x. Since h is a homomorphism
we get h(x1) ⊓ h(x2) = h(x1 ⊓ x2) ⊑ h(x) ⊑ y and y ∈ τ(F1) ∨ τ(F2). Thus
τ(F1) ∨ τ(F2) = τ(F1 ∨ F2).

The proof for ν is obtained similarly.

(4) We assume that h is quasi-injective. Note that h(D) is a dBa.
If a1, a2 ∈ h(F ), then there are x1, x2 ∈ F such that a1 = h(x1) and a2 =

h(x2). We get a1 ⊓ a2 = h(x1) ⊓ h(x2) = h(x1 ⊓ x2) ∈ h(F ). If b ∈ h(D)
and a1 ∈ h(F ) such that a1 ⊑ b, then there are x ∈ D and x1 ∈ F such that
a1 = h(x1) ⊑ b = h(x). Since h is quasi-injective, we get x1 ⊑ x and x ∈ F .
Thus b = h(x) ∈ h(F ), and h(F ) is a filter of h(D). Similarly, h(I) is an ideal of
h(D). F1, F2 ⊆ F1 ∨ F2 implies h(F1) ∨

h h(F2) ⊆ h(F1 ∨ F2). If b ∈ h(F1 ∨ F2),
then b = h(x) for some x ∈ F1 ∨ F2. Thus, there are x1 ∈ F1 and x2 ∈ F2 such
that x1 ⊓ x2 ⊑ x. It follows that h(x1) ⊓ h(x2) = h(x1 ⊓ x2) ⊑ h(x) = b, and
b ∈ h(F1) ∨

h h(F2).
h(F1 ∩ F2) ⊆ h(F1) ∩ h(F2). If b ∈ h(F1) ∩ h(F2), then there are x1 ∈ F1

and x2 ∈ F2 such that h(x1) = b = h(x2). We have b ⊓ b = h(x1) ∨ h(x2) =
h(x1∨x2) ∈ h(F1∩F2), and b⊓ b ∈ h(F1∩F2), so b ∈ h(F1∩F2); since h(F1∩F2)
is a filter. The proof for ideals is obtained similarly.

Proposition 4.6. Let h : D →M be a dBa homomorphism. The following hold.

(1) τ and ν are homomorphisms of bounded lattices.

(2) If h is quasi-injective, then τ and ν are injective. If h is onto, then τ and ν
are onto. τ (resp. ν) is an isomorphism iff h is a quasi-isomorphism.

(3) If D and M are complete dBas and h a homomorphism of complete dBas,
then τ and ν are complete lattices homomorphisms.

Proof. Let h : D →M be a dBa homomorphism. Let F1, F2 ∈ F (D).

(1) By (3) of Lemma 4.1 τ and ν are lattices homomorphisms.

(2) If h is quasi-injective and τ(F1) = τ(F2), then by (2) of Lemma 4.1
F1 = F2.
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If h is onto and G ∈ F (M), then h−1(G) is in F (D) and τ(h−1(G)) = G,
since G = h(h−1(G)).

If h is a quasi-isomorphism, then h is quasi-injective and onto. Thus τ and
ν are injective and onto, and therefore isomorphisms.

If τ is an isomorphism, then for a1, a2 ∈ D,

a1 ⊑ a2 ⇔ F (a1) ⊑ F (a2) ⇔ τ(F (a1) ⊆ τ(F (a2))

⇔ F (h(a1)) ⊆ F (h(a2)) ⇔ h(a1) ⊑ h(a2).

Thus h is a quasi-isomorphism.

(3) Assume that D and M are complete dBas.

Let {Fj : j ∈ J} ⊆ F (D). Since τ is isotone, we get ∨
i∈J
τ(Fj) ⊆ τ( ∨

j∈J
Fj) and

τ( ∩
j∈J

Fj) ⊆ ∩
j∈J

τ(Fj). Let y ∈ M . If y ∈ τ( ∨
j∈J

Fj), then there is x ∈ ∨
j∈J

Fj such

that h(x) ⊑ y. Thus there are i1, . . . , in ∈ J, n ≥ 1 and xil ∈ Fil , l = 1, . . . , n such
that xi1 ⊓ · · · ⊓xin ⊑ x. Furthermore, h is compatible with ⊓ and ⊑ is transitive,
so h(xi1)⊓· · ·⊓h(xin) ⊑ h(x) ⊑ y. Therefore y ∈ τ(Fi1)∨· · ·∨τ(Fin) ⊆ ∨

j∈J
τ(Fj).

If y ∈ ∩
j∈J

τ(Fj), then for all j ∈ J , there is xj ∈ Fj such that h(xj) ⊑ y.

Since h is a homomorphism of complete dBas we get ∨
j∈J

h(xj) = h( ∨
j∈J

xj) ⊑ y

and ∨
j∈J

xj ∈ ∩
j∈J

Fj , so y ∈ τ( ∩
j∈J

Fj).

5. Power of double Boolean algebras

It is known that if L := (L,≤) is a (complete) lattice, and X a non-empty set,
then the set LX of all maps from X to L forms a (complete) lattice when ordered
pointwise, i.e., for all f, g ∈ LX ,

f ≤ g :⇔ f(x) ≤ g(x) for all x ∈ X.

For U ⊆ L we set L(x,U) = {f ∈ LX | f(x) ∈ U}. If U is a filter (resp. an
ideal) then L(x,U) is a filter (resp. an ideal). We will now consider the set DX of
all maps from X to D, where D is a double Boolean algebra and X a non-empty
set. The dBa operations are extended to DX , pointwise. For f, g ∈ DX and
x ∈ X.

• (f ⊓ g)(x) = f(x) ⊓ g(x),

• (f ⊔ g)(x) = f(x) ⊔ g(x),

• (¬f)(x) = ¬f(x),

• (yf)(x) =yf(x),

• (f ∨ g)(x) = f(x) ∨ g(x),

• (f ∧ g)(x) = f(x) ∧ g(x).
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We denote by φa the constant map X → D,x 7→ a. For any a, b ∈ D, we have
φa⊓b = φa ⊓ φb, φa⊔b = φa ⊔ φb, ¬(φa) = φ¬a and y(φa) = φ

ya. The algebra
DX := (DX ,⊓,⊔,¬, y, φ⊥, φ⊤) is a dBa called a power of the dBa D. The
corresponding quasi-order is given by

f ⊑ g :⇔ f(x) ⊑ g(x)for all x ∈ X.

For any a ∈ D, it holds a ⊑ b⇔ φa ⊑ φb.
To keep the notation simple, we set L := DX . Our aims is to investigate the

relationship between D and L. We show that if D is complete, then L is complete
and D is contextual, fully contextual (resp. trivial) if and only if L is contextual,
fully contextual (resp. trivial). We will also show that the lattice F(D) (resp.
I(D)) embeds in F(L) (resp. I(L)).

Proposition 5.1. Let U ⊆ D and x ∈ X. The following hold.

(1) (a) L⊓ = {f ∈ L | f(X) ⊆ D⊓}, (b) L⊔ = {f ∈ L | f(X) ⊆ D⊔}.

(2) D is contextual if and only if L is contextual.

(3) D is fully contextual if and only if L is fully contextual.

(4) If D is complete, then L is also complete.

(5) U is a (proper) filter (resp. an ideal) of D if and only if L(x,U) is a (proper)
filter (resp. an ideal) ideal of L.

(6) U is a prime/maximal filter (resp. ideal) if and only if L(x,U) is a prime/
maximal filter (resp. ideal).

(7) D is trivial if and only if L is trivial.

Proof. (1) (a) Let Y = {f ∈ L | ∀x ∈ X, f(x) ∈ D⊓}, by definition we have
Y ⊆ L⊓. Let f ∈ L⊓, then f ⊓ f = f and (f ⊓ f)(x) = f(x) ∀x ∈ X, that is
f(x)⊓ f(x) = f(x) ∀x ∈ X and f ∈ Y , therefore L⊓ ⊆ Y . Thus Y = L⊓. Dually
we can show that (b) holds.

(2) Assume that D is contextual. Let’s show that L is contextual. Let
f, g ∈ L such that f ⊑ g and g ⊑ f , we show that f = g. Let x ∈ X, then
f(x) ⊑ g(x) and g(x) ⊑ f(x). Since D is contextual, we get f(x) = g(x), so
f(x) = g(x) for all x ∈ X and therefore f = g. Thus L is contextual. Conversely,
assume that L is contextual. We show that D is contextual. If a, b ∈ D such
that a ⊑ b and b ⊑ a, then φa, φb ∈ L (1) and φa ⊑ φb and φb ⊑ φa (2). Since
L is contextual, (1) and (2) yield φa = φb, that is a = b (due to φa and φb are
constant maps), therefore D is contextual. Thus (2) holds.

(3) Assume that D is fully contextual. Then D is contextual and by (2) L
is also contextual. Let f ∈ L⊓, g ∈ L⊔ such that f ⊔ f = g ⊓ g (∗). We search
a unique h ∈ L such that h ⊓ h = f and h ⊔ h = g. Since (∗) holds, for all
x ∈ X, f(x) ⊔ f(x) = g(x) ⊓ g(x), furthermore f(x) ∈ D⊓ and g(x) ∈ D⊔ (due to
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f ∈ L⊓ and g ∈ L⊔). By the fact that D is fully contextual, it follows that for
all y ∈ X, there is a unique zy ∈ D such that zy ⊓ zy = f(y) and zy ⊔ zy = g(y).
Setting h : X → D, y 7→ h(y) = zy, h is well defined (due to zy unique), and for
all y ∈ X,h(y) ⊓ h(y) = f(y) and h(y) ⊔ h(y) = g(y). It follows that h ⊓ h = f
and h ⊔ h = g. Thus L is fully contextual.

Conversely, we suppose that L is fully contextual. Let’s show that D is fully
contextual. Since L is fully contextual, it is contextual and by (2) L is contextual.
It remains to show that for any a ∈ D⊓, b ∈ D⊔ such that a ⊔ a = b ⊓ b, there
is a unique c ∈ D such that c ⊓ c = a and c ⊔ c = b. If a ∈ D⊓, b ∈ D⊔

such that a ⊔ a = b ⊓ b, then φa ∈ L⊓, φb ∈ L⊔ with φb⊔b = φb ⊓ φb, since
φa ⊔ φb = φa⊔b and φa ⊓ φb = φa⊓b. Thefrefore φa ⊔ φa = φb ⊓ φb and L fully
contextual, we deduce that there is a unique f ∈ L such that f ⊔ f = φb (∗1)
and f ⊓ f = φa (∗2). Let’s show that f is a constant map. Let x1, x2 ∈ X
such that x1 6= x2, we get f(x1) ⊔ f(x1) = b = f(x2) ⊔ f(x2) (∗3) (using (∗1)
and f(x1) ⊓ f(x1) = a = f(x2) ⊓ f(x2) (∗4) (using (∗2)). (∗3) and (∗4) together
with (14) of Proposition 2.2 yield f(x1) ⊑ f(x2) and f(x2) ⊑ f(x1), therefore
f(x1) = f(x2) (due to D contextual); therefore f is a constant map and there is
aunique c ∈ D such that for any x ∈ X, f(x) = c, so f = φc, and from (∗1) and
(∗2) we get c ⊔ c = b and c ⊓ c = a. It follows that D is fully contextual.

(4) Assume that D is complete. Let Y ⊆ L. If Y ⊆ L⊓, set ⊓Y = ⊓
f∈Y

f

and ( ⊓
f∈Y

f)(x) = ⊓
f∈Y

f(x); if Y ⊆ L⊔, set ⊔Y = ⊔
f∈Y

f and ( ⊔
f∈Y

f)(x) = ⊔
f∈Y

f(x).

Since D is complete, ⊓
f∈Y

f ∈ L⊓ for any Y ⊆ L⊓, and ⊔
f∈Y

f ∈ L⊔ for any Y ⊆ L⊔.

Thus L is complete.

(5) We show the case of ideals and that of filters is obtained similarly. Assume
that U is an ideal ofD, then φ⊥ ∈ L(x,U) and L(x,U) 6= ∅. If f, g ∈ L(x,U), then
(f ⊔ g)(x) = f(x) ⊔ g(x) ∈ U ; so f ⊔ g ∈ L(x,U). If f ⊑ g and g ∈ L(x,U) then
f(x) ⊑ g(x) and g(x) ∈ U ; so f ∈ L(x,U). Thus L(x,U) is an ideal. Conversely,
assume that L(x,U) is an ideal of L, then φ⊥ ∈ L(x,U) and ⊥ ∈ U ; so U is a
non-emptyset. Let a, b ∈ U , then φa, φb ∈ L(x,U) and φa ⊔ φb = φa⊔b ∈ L(x,U);
therefore a ⊔ b ∈ U . Let b ∈ U, a ∈ D such that a ⊑ b, then φa ⊑ φb and
φa ∈ L(x,U) (due to L(x,U) is an ideal); so a ∈ U . Therefore U is an ideal of D.

Now assume that U is a proper ideal of D, then ⊤ 6∈ U and L(x,U) is an
ideal. Since ⊤ 6∈ U , we get φ⊤ 6∈ L(x,U). Thus L(x,U) is a proper ideal of L.
Conversely, assume that L(x,U) is a proper ideal of L, then φ⊤ 6∈ L(x,U), that
is ⊤ 6∈ U ; therefore U is a proper ideal of D.

(6) (a) Assume that U is a prime ideal of D. L(x,U) is an ideal of L by (5).
Let f, g ∈ L such that f ⊓g ∈ L(x,U), then (f ⊓g)(x) = f(x)⊓g(x) ∈ U ; since U
is prime we get f(x) ∈ U or g(x) ∈ U ; it follows that f ∈ L(x,U) or g ∈ L(x,U).
Therefore L(x,U) is a prime ideal of L. Conversely, assume that L(x,U) is a
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prime ideal of L. Let a, b ∈ D such that a⊓ b ∈ I, then φa⊓b = φa ⊓φb ∈ L(x,U);
since L(x,U) is a prime ideal, we get φa ∈ L(x,U) or φb ∈ L(x,U) and a ∈ U or
b ∈ U ; therefore U is a prime ideal.

(b) Assume that U is a maximal ideal of D. We will show that L(x,U) is
also a maximal ideal of L. Since U is a proper ideal, L(x,U) is also a proper
ideal. Let f ∈ L \ L(x,U), then f(x) 6∈ U . Let’s show that 〈L(x,U) ∪ {f}〉 = L,
that is for g ∈ L there exists h ∈ L(x,U) such that g ⊑ h ⊔ f .

Let g ∈ L. Since U is maximal, 〈I ∪ {f(x)}〉 = D, and there exists ix ∈ U
such that g(x) ⊑ ix⊔ f(x). Let h : X → D, defined by h(x) = ix and h(y) = g(y)
if y 6= x. Then h ∈ L and g ⊑ h ⊔ f . Thus L = 〈L(x,U) ∪ {f}〉 and L(x,U) is a
maximal ideal.

Conversely, assume that L(x,U) is a maximal ideal of L. Then U is a proper
ideal of D. Let a ∈ D \ U , then φa 6∈ L(x,U) and 〈L(x,U) ∪ {φa}〉 = L (∗)
(because L(x,U) is a maximal ideal). Let b ∈ D, from (∗) there is f ∈ L(x,U)
such that φb ⊑ f ⊔ φa; so f(x) ∈ U and b ⊑ f(x) ⊔ a; therefore D ⊆ 〈I ∪ {a}〉.
Thus U is a maximal ideal of D.

(7) Assume that D is trivial, then ⊥ ⊔ ⊥ = ⊤ ⊓⊤. Thus for all x ∈ X,

(φ⊥ ⊔ φ⊥)(x) = ⊥ ⊔ ⊥ = ⊤ ⊓ ⊤ = (φ⊤ ⊓ φ⊤)(x).

Therefore φ⊥ ⊔ φ⊥ = φ⊤ ⊓ φ⊤ and L is trivial. Conversely, if L is trivial, then
φ⊤⊓φ⊤ = φ⊥⊔φ⊥ and ⊤⊓⊤ = ⊥⊔⊥. Therefore D is trivial. Thus (7) holds.

Recall that for any a ∈ D, φa is the constant function of value a. For any
F ∈ F (D), I ∈ I(D) we set I∗ = {φy | y ∈ I}, F ∗ = {φy | y ∈ F} and
I(D)∗ = {I∗ | I ∈ I(D)}, F (D)∗ = {F ∗ | F ∈ F (D)}.

We define also Φ : D → L by Φ(a) = φa. It is easy to see that his function is
a quasi-embedding. The following lemma gives some properties of the operator ∗.

Lemma 5.1. Let F,Fi, i = 1, 2 be filters and I, Ii, i = 1, 2 ideals on D. The
following hold.

(1) (i) F ∗ is a filter of φ(D) and F ∗ ⊆ L(x, F ) for every x ∈ X. (ii) I∗ is an
ideal of φ(D) and I∗ ⊆ L(x, I).

(2) ∗ is an increasing map on the lattice of filters (resp. ideals).

(3) (i) ( ∩
j∈J

Fj)
∗ = ∩

j∈J
F ∗
j , (ii) ∨

j∈J
F ∗
j = ( ∨

j∈J
Fj)

∗.

(4) (i) ( ∩
j∈J

Ij)
∗ = ∩

j∈J
I∗j , (ii) ∨

j∈J
I∗j = ( ∨

j∈J
Ij)

∗.

Proof. It is an easy check.

The following proposition is useful for the proof of Theorem 5.2.
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Proposition 5.2. Let {Fj , j ∈ J} ⊆ F (D) and {Ij , j ∈ J} ⊆ I(D). The
following hold.

(1) Ip ⊆ Iq if and only if L(x, Ip) ⊆ L(x, Iq), for any p, q ∈ J .

(2) Fp ⊆ Fq if and only if L(x, Fp) ⊆ L(x, Fq), for any p, q ∈ J .

(3) (a) L(x,
∨

i∈J

Fj) =
∨

j∈J

L(x, Fj), (b) L(x,
⋂

i∈J

Fj) =
⋂

j∈J

L(x, Fj),

(4) (a) L(x,
∨

j∈J

Ij) =
∨

j∈J

L(x, Ij), (b) L(x,
⋂

j∈J

Ij) =
⋂

j∈J

L(x, Ij).

Proof. An easy check using the constant functions give the proof of (1), (2), (3)
(b) and (4) (b).

Claim. For every fiters F1 and F2, we have L(x, F1 ∨ F2) = L(x, F1) ∨ L(x, F2).
Since F1, F2 ⊆ F1 ∨ F2, using (2) we get L(x, F1) ∨ L(x, F2) ⊆ L(x, F1 ∨ F2).

It remains to show that L(x, F1∨F2) ⊆ L(x, F1)∨L(x, F2). Let f ∈ L(x, F1∨
F2), then f(x) ∈ F1 ∨ F2; so there are yi ∈ Fi, i = 1, 2 such that y1 ⊓ y2 ⊑ f(x).
Let fi : X → D, t 7→ fi(t), i = 1, 2 be defined by

fi(t) =

{

yi if t = x,
f(t) if t 6= x.

Therefore fi ∈ L(x, Fi), i = 1, 2 and it is easy to see that f1 ⊓ f2 ⊑ f . Thus
L(x, F1 ∨ F2) ⊆ L(x, F1) ∨ L(x, F2).

Second, the above claim can be generalize to a finite number of filters by
induction (∗∗).

Thirth, an easy check give a generalization of (3) (a) as follow. If J is a
non-empty set and {Aj ⊆ D : j ∈ J} a family of non-empty subsets of D, then

L

(

x,
⋃

j∈J

Aj

)

=
⋃

j∈J

L(x,Aj) (∗1).

Fourth, we finalize our proof. From (∗) of Remark 3.5 we get

L

(

x,
∨

j∈J

Fj

)

= L

(

x,
⋃

(i1,...,in)∈J̃

(Fi1 ∨ · · · ∨ Fin)

)

=
⋃

(i1,...,in)∈J∗

L(x, Fi1 ∨ · · · ∨ Fin) (by(∗1))

=
⋃

(i1,...,in)∈J̃

[L(x, Fi1) ∨ · · · ∨ L(x, Fin)] (by (∗∗))

=
∨

j∈J

L(x, Fj) (aplying(∗) of Remark 3.5).

Thus (3) (a) holds.



Filters, ideals and power of double Boolean algebras 473

We consider the following two algebras:

F(D)∗ = (F (D)∗;∧,∨, F (⊥)∗, F (⊤)∗}), I(D)∗ = (I(D)∗;∧,∨, I(⊥)∗, I(⊤)∗}).

From Lemma 5.1, we can see that they are lattices of filters (resp. ideals) of
φ(D).

Theorem 5.2. Let x ∈ X.

(1) ψx : F (D) → F (L), F 7→ L(x, F ) (resp. ηx : I(D) → I(L), I 7→ L(x, I)) is
an embedding of complete lattices.

(2) ∗ : F (D) → F (D)∗, F 7→ F ∗ (resp. ∗ : I(D) → I(D)∗, I 7→ I∗) is an
isomorphism of complete lattices.

Proof. It is a direct consequence of Proposition 5.2 and Lemma 5.1

Recall that for any F ∈ F (D), Fφ = {f ∈ L | ∃y ∈ F, φy ⊑ f} ∈ F (L) and
for any I ∈ I(D), Iφ = {f ∈ L : ∃y ∈ I, f ⊑ φy} ∈ I(L).

Remark 5.3. If X is finite, then for any F ∈ F (D), I ∈ I(D), the following
hold.

(1) Fφ is the least filter of L containing F ∗ and Fφ = ∩
x∈X

L(x, F ).

(2) Iφ is the least ideal of L containing I∗ and Iφ = ∩
x∈X

L(x, I).

(3) φ(D) is a subalgebra of L isomorphic to D.

(4) Each filter F ∗ of φ(D) is a base of τ(F ) in L.

(5) Each ideal I∗ of φ(D) is a base of ν(I) in L.

Theorem 5.3. Let L and φ as above, the following hold.

(1) τ : F (D) → F (L), F 7→ τ(F ) = Fφ is an embedding of lattices. Furthermore,
if D is a complete dBa, then τ is an embedding of complete lattices.

(2) ν : I(D) → I(L), I 7→ ν(I) = Iφ is an embedding of lattices. Furthermore, if
D is complete dBa, then ν is an embedding of complete lattices.

Proof. It is an easy consequence of Proposition 4.6.

In the sequel, X = D and L = DD. For any a ∈ D, we denote by Φa,Ψa,
ηa, ha the elements of L defined by: Φa(x) = a⊓ x, Ψa(x) = a⊔ x, ηa(x) = a∧ x,
ha(x) = a ∨ x and P,Q,M and N the sets:

P = {ηa | a ∈ D⊔}, Q = {ha | a ∈ D⊓},

M = {Φa | a ∈ D⊓} and N = {Ψa | a ∈ D⊔}.

The following two lemmas give some properties of the above maps.
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Lemma 5.4. Let D be a dBa, a ∈ D and Φa,Ψa, ha and ηa as above. The
following hold.

(1) ηa, ha,Φa and Ψa are isotone maps.

(2) (i) ηa (resp. Ψa) is compatible with ⊔ and ∧, (ii) ha (resp. Φa) is compatible
with ⊓ and ∨.

(3) (i) Φa ⊑ ηa ⊑ Ψa, (ii) Φa ⊑ ha ⊑ Ψa.

(4) If a ⊑ b, then (i) Φa ⊑ Φb, (ii) Ψa ⊑ Ψb, (iii) ha ⊑ hb, (iv) ηa ⊑ ηb.

Proof. (1) It is an easy check using the compatibility of ⊑ and the operations
of D.

(2) (i) If x, y ∈ D, then ηa(x) ⊔ ηa(y) = (a∧ x)⊔ (a∧ y) = a∧ (x⊔ y) (by (i)
of Proposition 2.3 = ηa(x ⊔ y); so ηa is compatible with ⊔. For ∧ we have

ηa(x) ∧ ηa(y)

= a ∧ x ∧ a ∧ y = (a ∧ a) ∧ (x ∧ y) (by commutativity and associativity of∧)

= (a ⊔ a) ∧ (x ∧ y) = [(x ∧ y) ∧ a] ⊔ [((x ∧ y) ∧ a] (by (i) of Proposition 2.3)

= a ∧ (x ∧ y) (due to a ∧ x ∧ y ∈ D⊔) = ηa(x ∧ y).

Hence ηa is conmpatible with ∧. From the properties of a dba Ψ is compatible
with ⊔ and ∧.

(3) follows from (14) of Proposition 2.2.
(4) follows also from the compatibility of the relation ⊑ with operations.

Lemma 5.5. Let D be a dBa, let a, b ∈ D, and L := (DD;⊓,⊔,¬, y, φ⊥, φ⊤).
The following hold.

(1) (i) ηa ⊔ ηb = ηa⊔b, (ii) ηa ∧ ηb = ηa∧b = ηa ◦ ηb, (iii) ηa ∧ ηa = ηa ⊔ ηa = ηa.

(2) (i) ha ⊓hb = ha⊓b, (ii) ha ∨hb = ha∨b = ha ◦hb, (iii) ha ∨ha = ha = ha ⊓ha.

(3) (i) Φa⊓Φb = Φa⊓b = Φa◦Φb, (ii) Φa∨Φb = Φa∨b, (iii) Φa⊓Φa = Φa = Φa∨Φa.

(4) (i) Ψa ⊔ Ψb = Ψa⊔b = Ψa ◦ Ψb, (ii) Ψa ∧ Ψb = Ψa∧b, (iii) Ψa ⊔ Ψa = Ψa =
ψa ∧Ψa.

(5) (i) ha⊓(hb∨hc) = (ha⊓hb)∨(ha⊓hc) and ha∨(ha⊓ha) = (ha∨hb)⊓(ha∨hc).

(ii) ηa⊔(ηb∧ηc) = (ηa⊔ηb)∧(ηa⊔ηc) and ηa∧(ηa⊔ηa) = (ηa∧ηb)⊔(ηa∧ηc).

(iii) Ψa ∧ (Ψb ⊔ Ψc) = (Ψa ∧ Ψb) ⊔ (Ψa ∧ Ψc) and Ψa ⊔ (Ψb ∧ Ψc) = (Ψa ⊔
Ψb) ∧ (Ψa ⊔Ψc).

(iv) Φa ∨ (Φb ⊓ Φc) = (Φa ∧ Φb) ⊓ (Ψa ∨ Φc) and Φa ⊓ (Φb ∨ Φc) = (Φa ⊓
Φb) ∨ (Φa ⊔Φc).

(6) (i) ηa ◦Ψa = φa⊔a, (ii) Ψa ◦ Φa = φa⊔a, (iii) Φa ◦Ψa = φa⊓a, (iv) ha ◦Φa =
φa⊓a.
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Proof. Recall that for every f, g ∈ L = DD and a, x ∈ D, (f ⊓ g)(x) = f(x) ⊓
g(x), (f ⊔ g)(x) = f(x)⊔ g(x), (¬f)(x) = ¬(f(x)), (yf)(x) =yf(x), φa(x) = a and
φ⊥ (resp. φ⊤) is the least (resp. greatest) element of L. Let a, b, x ∈ D.

(1) For (1) (i) we have

(ηa ⊔ ηb)(x) = ηa(x) ⊔ ηb(x) = ηx(a) ⊔ ηx(b) = ηx(a ⊔ b) by (2) of Lemma 5.4

= ηa⊔b(x).

So (1) (i) holds. For (1) (ii), we have

(ηa ∧ ηb)(x) = ηa(x) ∧ ηb(x) = ηx(a) ∧ ηx(b)

= ηx(a ∧ b) (by (2) of Lemma 5.4 and ηa compatible with ∧)

= ηa∧b(x) = ηa ◦ ηb(x)(using associativity of ∧);

therefore (1) (ii) holds.

For (1) (iii) we have ηa⊔a(x) = x ∧ (a ⊔ a) = (x ∧ a) ⊔ (x ∧ a) (by (ii) of
Proposition 2.3) = (a ∧ x) (due to a ∧ x ∈ D⊔) = ηa(x).

(2), (3) and (4) are obtained similarly to (1).

(5) is obtained from (1), (2) and (3).

(6) Let x ∈ D. (i) we have ηa ◦ Ψa(x) = a ∧ (a ⊔ x) = a ⊔ a (using (ii) of
Proposition 2.3) = φa⊔a(x) and Ψa ◦ ηa(x) = a⊔ (a∧x) = a⊔ a = φa⊔a(x) (using
axiom (7b). Hence ηa ◦Ψa = Ψa ◦ ηa = φa⊔a.

(ii) Ψa◦Φa(x) = a⊔(a⊓x) = a⊔a (by axiom (5b)) = φa⊔a(x) and Φa◦Ψa(x) =
a ⊓ (a ⊔ x) = a ⊓ a (by axiom (5a)) = φa⊓a(x).

Furthermore, for any a ∈ D⊓ (resp. D⊔) we set Φc
a := Φ¬a, h

c
a := h¬a (resp.

Ψc
a := Ψ

ya, η
c
a = η

ya). Lemma 5.5 allows us to consider the folowing algebras:

P := (P ;∧,⊔,c , η⊥⊔⊥, η⊤), Q := (Q;⊓,∨,c , h⊥, h⊤⊓⊤),

M := (M ;∧,⊔,c ,Φ⊥,Φ¬⊥) and N := (N ;∧,⊔,c ,Ψ
y⊤,Ψ⊤).

We consider also the following maps:

• Φ∗ : D⊓ →M,a 7→ Φa; Ψ∗ : D⊔ → N, a 7→ Ψa; η∗ : D⊔ → P, a 7→ ηa,

• h∗ : D⊓ → Q, a 7→ ha and Ψ∗
a : D⊔ → D⊔, x 7→ Ψa(x),

• η∗a : D⊔ → D⊔, x 7→ a∧ x, h∗a : D⊓ → D⊓, x 7→ x∧ a and Φ∗
a : D⊓ → D⊓, x 7→

a ⊓ x.

The following Theorem shows that the algebras P and M (resp. Q and N)
are Boolean algebras isomorphic to D⊔ (resp. D⊓).
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Theorem 5.6. Let D be a dBa, a ∈ D, L = DD, P ,Q,M and N as above. Then
the following hold.

(1) P and N are Boolean algebras isomorphic to D⊔.

(2) M and P are Boolean algebras isomorphic to D⊓.

(3) The maps Φ∗
a, h

∗
a, Ψ

∗
a, η

∗
a are homomorphisms of distributive lattices.

Proof. (1) From Lemma 5.5, P , Q,M and N are distributive and complemented
lattices. So they are Boolean algebras. Hence (1) and (2) hold.

Now we show that P is isomorphic to D⊓. Le η∗ : D⊔ → P, x 7→ ηa. η
∗ is

well defined. For any a ∈ D⊔, η
∗(ya) = η

ya = (ηa)
c = (η∗(a))c; further, by (1)

(i) and (1) (ii) of Lemma 5.5 we deduce that η∗ is a homomorphism of Boolean
algebras. By definition, η∗ is onto. Let a, b ∈ D⊔ such that η∗(a) = η∗(b), then
ηa(a) = ηb(a), and ηa(b) = ηb(b); therefore a ∧ a = b ∧ b; so a ∧ a = a ⊔ a, b ∧ b =
b ⊔ b = b. It follows that a = b and η∗ is one-to-one. Thus η∗ is an isomorphism.
A similar argument shows that the rest are also isomorphisms.

(3) follows from (1) and (2) of Lemma 5.4.

Corollary 5.4. Let D be a dBa, M,P ,Q,N be the Boolean algebras of Theorem
5.6. The following hold.

(1) The map Φ : D → L, a 7→ Φa and h : D 7→ L, a 7→ ha are compatible with
⊑,∨ and ⊓.

(2) The maps Ψ : D → L, a 7→ Ψa and η : D → L, a 7→ ηa are compatible with
⊔,∧ and ⊑.

Proof. It follows from Lemma 5.5.

6. Conclusion

In this work, we have described filter (ideal) generated by an arbitrary subset of a
double Boolean algebra and we have shown that its principal filters (resp. ideals)
form a bounded sublattice of the lattice of filters (resp. ideals) and are (non
necessary isomorphic) Boolean algebras. We have also shown that F(D) (resp.
I(D)) and F(D⊓) (resp. I(D⊔)) are isomorphic algebraic lattices. We have
also shown for dBas that are not Boolean algebras, primary filters (resp. ideals)
are exactly ultrafilters (resp. maximal ideals) and primary filters (resp. ideals)
need not be a prime filter (resp. ideal). We have investigated some properties
of homomorphisms of dBas. For a double Boolean algebra D and an arbitrary
non-empty set X, we have that D embeds in the power L := DX of D, and D
is contextual, fully contextual (resp. trivial) if and only if L is contextual, fully
contextual (resp. trivial); and if D is complete, then L is complete. We have
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also seen that the lattice F(D) (resp. I(D) embeds in F(L) (resp. I(L)). The
purpose of our future work is to investigate the variety of dBas and some useful
properties of protoconcepts algebras with possible applications in formal concepts
analysis.
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