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Abstract

We show that idempotent elements of a dually residuated lattice ordered
semigroup (a DRI-semigroup) form a Brouwerian algebra. Further we show
that for any idempotent elements x,y such that x < y the interval [z;y] is
also a DRL-semigroup.
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1. INTRODUCTION

Dually residuated lattice ordered semigroups were introduced in the mid-60’s
by Swamy (cf. [3]) as a common generalization of commutative lattice ordered
groups and Brouwerian algebras. They are closely related to the multi-valued
logic. The class of dually residuated lattice ordered semigroups is a variety and it
contains Boolean algebras, Brouwerian algebras, BL-algebras, MV-algebras and
commutative l-groups.

Here is the original definition given in [3].

Definition. An algebra A = (A4;0;+; —;A;V) of type (0;2;2;2;2) is a Dually
Residuated Lattice Ordered Semigroup (abbreviated, a DRIl-semigroup) if the
following holds (cf. [3]):

1. (A4;0;4;A;V) is a commutative lattice ordered monoid i.e.,
(i) (A;0;4) is a commutative monoid,
(ii) (A;A;V) is a lattice (the induced order is denoted by <),
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(i) (xAy)+z=(x+2)A(y+z2)forall z,y,z € A,

(iv) (zVy)+z=(x+2)V(y+z2) foral z,y,z € A,
2. (x—y)+y>zxandif z4+y > x then z > —y for all z,y,z € A,
3. (z—y)VO+y <zVyforall z,y € A,
4. x —x > 0 for each z € A.

In the following theorem we summarize some basic properties of DRI-semi-
groups as they were shown in [3].

Theorem 1. Let A = (A;0;+;—;A;V) be a DRI-semigroup and x,y,z € A.
Then the following hold:

(i) z—xz=0andz—0=uz,
(ii) (z+y) -y <=,

) (—y)VO+y=xVy,
(iv) (x—y)—z=z—(y+2),
)
)

(iii

(V) x+y=zANy+axVy,

(Vi) z <y impliesr—z<y—zandz—x>z—y.
Proof. This theorem is the restatement of Lemmas 1, 2, 3, 6, 9 and 13 of [3]. =

Denote by Idm(A) the set of all additively idempotent elements of a DRI-
semigoup A, i.e., Idm(A) = {x € Alz +x = x}. Clearly 0 € Idm(A) and if there
exists a greatest element in A (denoted by 1) then 1 € Idm(A).

Further, for z,y € A such that x < y denote by [z;y] the interval in A with
the endpoints z and y, i.e., [z;y] = {z € Alz < z < y}.

n [2] Rachunek showed that Idm(A) in a bounded representable DRI-semi-
group is a Brouwerian algebra. In this paper we will prove that Rachtnek’s
proposition holds in a general case, i.e., that idempotent elements in any DRI-
semigroup form a Brouwerian algebra. Further, we will show that any interval
between idempotent elements is also a DRI-semigroup.

Recall from [3] that a Brouwerian algebra is a system B = (B;<;—) where
(B;<) is a lattice with a least element and for all z,y € B there exists a least
element z € B such that y V z > x (z is denoted by x — y).

2.  STRUCTURE OF IDEMPOTENT ELEMENTS

Before proceeding to the main results let us prove a few technical assertions that
will be needed.
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Lemma 2. Let A = (A;0;+;—;A;V) be a DRI-semigroup and x € Idm(A).
Then x > 0.

Proof. By Theorem 1(i) and (ii) we have 0 = v — 2z = (z + z) —z < z, ie,
xz > 0. [ ]

Lemma 3. Let A = (A;0;+;—;A;V) be a DRI-semigroup, x € Idm(A), y € A
andy>0. Thenx+y=zxVy.

Proof. By Theorem 1(iii) and (v) we have z +y = (z Ay) + (x Vy) = (x Ay) +
(y—2)VO)+z < ((y—z)V0)+z+2=((y—2)VvV0)+2 =2z Vy. On the other
hand, from z,y > 0 it follows z + y > z,y and therefore x +y > z V y. [ |

Theorem 4. Let A = (A;0;+;—;A;V) be a DRI-semigroup. Then Idm(A) is a
lattice ordered monoid with the least element 0. Moreover,

(1) rT+y=xVy
for all z,y € Idm(A).

Proof. Clearly 0 € Idm(A). Assume that z,y € Idm(A). From (z+y)+(z+y) =
(x+2x)+ (y+y) =z +y we have (z+y) € Idm(A). Further, (zAy)+ (zAy) <
r4+z=xand (xAy)+(zAy) <y+y=yimply (zAy)+ (xAy) <z Ay. On
the other hand, z,y > 0 implies 2 Ay > 0 and therefore (x Ay) + (x Ay) >z Ay.
Consequently (x Ay) + (z Ay) = x Ay. Finally, ,y > 0 implies z + y <
(xVy)+(xVy) < (r+y)+ (xr+y) =2 +y and therefore (1) holds. [

Lemma 5. Let A = (A4;0;4;—;A;V) be a DRI-semigroup and x,y € Idm(A).
Then x —y > 0.

Proof. Since (x—y)+y > xand z > 0, (r—y)+y > 0. Theorem 1(iii) and Lemma

3imply y < zVy = ((z—y)VO0)+y = ((z—y)+y)Vy = ((z—y)+y)+y = (z—y)+y
and therefore by Theorem 1(i) we conclude x —y >y —y = 0. [ |

Lemma 6. Let A = (A;0;+;—;A;V) be a DRI-semigroup, x,y € Idm(A), z € A
and 0 < z < x. Then the following holds:

(2) (y—x)—z2=y—=x.

Proof. By Theorem 1(iv) we have (y —z) —z=y— (z+z2) and z =2+ 0 <
x4z <z +x =z implies z = = + z. Hence (2) holds. ]

Lemma 7. Let A = (4;0;+;—;A;V) be a DRI-semigroup and x,y € Idm(A).
Then the following holds:

(3) 0<((y—2)+@y—2)—(y—z)<zA(y—2).
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Proof. By axiom 1(iii) and Lemma 5 we have (xA(y—x))+(y—z) = (z+(y—2z))A
(1) + =) = (g—2)VO+2)A(y—2) + ) = (Vg)A(y—2)+(r—1)) >
yAN((y—z)+(y—2)) =(y+y)AN((y—2x)+ (y—z)). Theorem 1(i) and (vi) imply
y=y—0>y—aand therefore (y +y) A (3 — 2) + (y — )) = (y — 2) + (y — 2).
Putting it together we have (x A (y —z)) + (y —x) > (y — z) + (y — ). Moreover,
by Theorem 1(iii) z A (y —x) > ((y —x) + (y — x)) — (y — ). Finally, by Lemma
5 we have (((y —z)+(y—=)) - (y—2))+(y—2) =2 (y—=2)+(y—2) 2y—=z and
Theorem 1(i) implies (y —z)+ (y—2)) —(y—2) > (y—z)—(y—x)=0. =

3. REsSuLTS

Theorem 8. Let A = (A;0;+;—;A;V) be a DRI-semigroup. Then Idm(A) is a
Brouwerian algebra.

Proof. By Theorem 4 it follows that Idm(A) is closed under operations +, A and
V and that 0 € Idm(A). Now we will show that Idm(A) is also closed under —.
Assume that =,y € Idm(A) and denote a = ((y—=z)+(y—=z))—(y—=z). By Lemma
7wehave 0 < a <z A(y—xz) <z and therefore r =z +0<z+a<z+z ==,
ie., © = x + a. Further, by Theorem 1(iii) and Lemmas 5, 6 and 7 we have
y—r=y-z)Va=((y—2)—a)V0)+a=(y—z)V0)+a=(y—z)+a=
(y—z)+((y—2)+y—2))-(y—2) = (y—2)+(y—2), ie, (y—z) = (y—2)+(y—2).
The identity (y —z) < (y — =) + (y — x) follows by Lemma 5. ]

Lemma 9. Let A = (4;0;+;—;A;V) be a DRI-semigroup, x,y € Idm(A) and
x < y. Then the interval [z;y] equipped with the operations +,A\ and V is a
commutative lattice ordered monoid with the least element x and the greatest
element y.

Proof. Assume that u,v € [z;y]. From 2 < u < y and z < v < y it follows
x <uAv<uVv<u+v <y+y =y and therefore [x;y] is closed under 4, A and
V. Obviously, z and y is the least and the greatest element of [x;y], respectively.
Further, by Lemma 3 we have u+x = vV = u, i.e., z is the neutral element of

;9] L]

Remark 10. The interval [z;y] from Lemma 9 may not be closed under the
operation — i.e., [z;y] may not be a DRl-semigroup. Indeed, if x > 0 and
z € [x;y] then z — 2 =0 ¢ [z;y].

However, the following theorem shows that [x;y] equipped with a naturally
modified operation — (denoted by —*) is a DRIl-semigroup.

Theorem 11. Let A = (A4;0;+;—;A;V) be a DRl-semz'group, x,y € Idm(A)
and x < y. Then the structure ([x y] x4+ =" A\; V) where u —* v = (u —v) Vx
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for all u,v € [x;y] is a DRI-semigroup with the least element x and the greatest
element y.

Proof. By Lemma 9 we know that ([z;y];x;+;A;V) is a commutative lattice
ordered monoid with the least element x and the greatest element y. Hence the
axiom (1) is satisfied. Assume that u,v € [z;y] and denote u—*v = (u—v)Vz. By
Theorem 1(vi) we have y = yVa > (y—v)Vz > (u—v)Va > z, ie., (u—"v) € [z;y].
Further, Theorem 1(iii), Lemma 3 and Lemma 5 imply (v —*v) +v = ((u —v) V
r)+v=((u—v)+v)V(e+v)=(((u—v)v0)+v)V(zVv)=(uVv)Vv=
uVo>u If z €[z;y] and z + v > u then obviously z > u — v and z > z, i.e.,
z > (u—v)Va = u—"v. Hence the axiom (2) is satisfied. By Lemmas 2, 3 and 5 we
have ((u—*v)V0)+v = (((u—v)Vz)V0)+v = ((u—v)Va)+v = ((u—v)+z)+v =
(u—v)+(x+v)=@w—-v)+(@Vv)=(u—-v)+v=_(u—v)V0)+v<uVo.
Hence the axiom (3) is satisfied. The axiom (4) is redundant and is implicitly
satisfied (cf. [1]). ]
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