Discussiones Mathematicae General Algebra and Applications 44 (2024) 479–483 https://doi.org/10.7151/dmgaa.1465

ON IDEMPOTENT ELEMENTS OF DUALLY RESIDUATED LATTICE ORDERED SEMIGROUPS

Tomáš Kovář

University of Hradec Králové Rokitanského 62, 500 03 Hradec Králové, Czech Republic e-mail: tomas_kovar@yahoo.com

Abstract

We show that idempotent elements of a dually residuated lattice ordered semigroup (a DRl-semigroup) form a Brouwerian algebra. Further we show that for any idempotent elements x, y such that $x \leq y$ the interval [x; y] is also a DRL-semigroup.

Keywords: BL-algebra, Boolean algebra, Brouwerian algebra, lattice ordered group, lattice ordered monoid, MV-algebra, dually residuated lattice ordered semigroup..

2020 Mathematics Subject Classification: 06F05.

1. Introduction

Dually residuated lattice ordered semigroups were introduced in the mid-60's by Swamy (cf. [3]) as a common generalization of commutative lattice ordered groups and Brouwerian algebras. They are closely related to the multi-valued logic. The class of dually residuated lattice ordered semigroups is a variety and it contains Boolean algebras, Brouwerian algebras, BL-algebras, MV-algebras and commutative l-groups.

Here is the original definition given in [3].

Definition. An algebra $A = (A; 0; +; -; \land; \lor)$ of type $\langle 0; 2; 2; 2 \rangle$ is a Dually Residuated Lattice Ordered Semigroup (abbreviated, a DRl-semigroup) if the following holds (cf. [3]):

- 1. $(A; 0; +; \land; \lor)$ is a commutative lattice ordered monoid i.e.,
 - (i) (A; 0; +) is a commutative monoid,
 - (ii) $(A; \land; \lor)$ is a lattice (the induced order is denoted by \leq),

480 T. Kovář

- (iii) $(x \wedge y) + z = (x+z) \wedge (y+z)$ for all $x, y, z \in A$,
- (iv) $(x \lor y) + z = (x+z) \lor (y+z)$ for all $x, y, z \in A$,
- 2. $(x-y)+y \ge x$ and if $z+y \ge x$ then $z \ge x-y$ for all $x,y,z \in A$,
- 3. $(x-y) \lor 0 + y \le x \lor y$ for all $x, y \in A$,
- 4. $x x \ge 0$ for each $x \in A$.

In the following theorem we summarize some basic properties of DRl-semigroups as they were shown in [3].

Theorem 1. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup and $x, y, z \in A$. Then the following hold:

- (i) x x = 0 and x 0 = x,
- (ii) $(x+y) y \le x$,
- (iii) $(x-y) \lor 0 + y = x \lor y$,
- (iv) (x-y)-z = x (y+z),
- (v) $x + y = x \wedge y + x \vee y$,
- (vi) $x \le y$ implies $x z \le y z$ and $z x \ge z y$.

Proof. This theorem is the restatement of Lemmas 1, 2, 3, 6, 9 and 13 of [3].

Denote by Idm(A) the set of all additively idempotent elements of a DRl-semigoup A, i.e., $Idm(A) = \{x \in A | x + x = x\}$. Clearly $0 \in Idm(A)$ and if there exists a greatest element in A (denoted by 1) then $1 \in Idm(A)$.

Further, for $x, y \in A$ such that $x \leq y$ denote by [x; y] the interval in A with the endpoints x and y, i.e., $[x; y] = \{z \in A | x \leq z \leq y\}$.

In [2] Rachunek showed that Idm(A) in a bounded representable DRl-semi-group is a Brouwerian algebra. In this paper we will prove that Rachunek's proposition holds in a general case, i.e., that idempotent elements in any DRl-semigroup form a Brouwerian algebra. Further, we will show that any interval between idempotent elements is also a DRl-semigroup.

Recall from [3] that a Brouwerian algebra is a system $B = (B; \leq; -)$ where $(B; \leq)$ is a lattice with a least element and for all $x, y \in B$ there exists a least element $z \in B$ such that $y \lor z \geq x$ (z is denoted by x - y).

2. Structure of idempotent elements

Before proceeding to the main results let us prove a few technical assertions that will be needed.

Lemma 2. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup and $x \in Idm(A)$. Then $x \geq 0$.

Proof. By Theorem 1(i) and (ii) we have $0 = x - x = (x + x) - x \le x$, i.e., x > 0.

Lemma 3. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup, $x \in Idm(A)$, $y \in A$ and $y \ge 0$. Then $x + y = x \vee y$.

Proof. By Theorem 1(iii) and (v) we have $x + y = (x \land y) + (x \lor y) = (x \land y) + ((y - x) \lor 0) + x \le ((y - x) \lor 0) + x + x = ((y - x) \lor 0) + x = x \lor y$. On the other hand, from $x, y \ge 0$ it follows $x + y \ge x, y$ and therefore $x + y \ge x \lor y$.

Theorem 4. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup. Then Idm(A) is a lattice ordered monoid with the least element 0. Moreover,

$$(1) x + y = x \vee y$$

for all $x, y \in Idm(A)$.

Proof. Clearly $0 \in Idm(A)$. Assume that $x, y \in Idm(A)$. From (x+y)+(x+y) = (x+x)+(y+y)=x+y we have $(x+y)\in Idm(A)$. Further, $(x\wedge y)+(x\wedge y)\leq x+x=x$ and $(x\wedge y)+(x\wedge y)\leq y+y=y$ imply $(x\wedge y)+(x\wedge y)\leq x\wedge y$. On the other hand, $x,y\geq 0$ implies $x\wedge y\geq 0$ and therefore $(x\wedge y)+(x\wedge y)\geq x\wedge y$. Consequently $(x\wedge y)+(x\wedge y)=x\wedge y$. Finally, $x,y\geq 0$ implies $x+y\leq (x\vee y)+(x\vee y)\leq (x+y)+(x+y)=x+y$ and therefore (1) holds.

Lemma 5. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup and $x, y \in Idm(A)$. Then $x - y \ge 0$.

Proof. Since $(x-y)+y \ge x$ and $x \ge 0$, $(x-y)+y \ge 0$. Theorem 1(iii) and Lemma 3 imply $y \le x \lor y = ((x-y)\lor 0)+y = ((x-y)+y)\lor y = ((x-y)+y)+y = (x-y)+y$ and therefore by Theorem 1(i) we conclude $x-y \ge y-y=0$.

Lemma 6. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup, $x, y \in Idm(A)$, $z \in A$ and $0 \le z \le x$. Then the following holds:

$$(2) (y-x)-z=y-x.$$

Proof. By Theorem 1(iv) we have (y-x)-z=y-(x+z) and $x=x+0 \le x+z \le x+x=x$ implies x=x+z. Hence (2) holds.

Lemma 7. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup and $x, y \in Idm(A)$. Then the following holds:

(3)
$$0 \le ((y-x) + (y-x)) - (y-x) \le x \land (y-x).$$

482 T. Kovář

Proof. By axiom 1(iii) and Lemma 5 we have $(x \land (y-x)) + (y-x) = (x+(y-x)) \land ((y-x)+(y-x)) = (((y-x)\lor 0)+x) \land ((y-x)+(y-x)) = (x\lor y) \land ((y-x)+(y-x)) \ge y \land ((y-x)+(y-x)) = (y+y) \land ((y-x)+(y-x)).$ Theorem 1(i) and (vi) imply $y=y-0 \ge y-x$ and therefore $(y+y) \land ((y-x)+(y-x)) = (y-x)+(y-x).$ Putting it together we have $(x \land (y-x)) + (y-x) \ge (y-x) + (y-x).$ Moreover, by Theorem 1(iii) $x \land (y-x) \ge ((y-x)+(y-x)) - (y-x).$ Finally, by Lemma 5 we have $(((y-x)+(y-x))-(y-x))+(y-x) \ge (y-x)+(y-x) \ge y-x$ and Theorem 1(i) implies $((y-x)+(y-x))-(y-x) \ge (y-x)-(y-x) = 0.$ ■

3. Results

Theorem 8. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup. Then Idm(A) is a Brouwerian algebra.

Proof. By Theorem 4 it follows that Idm(A) is closed under operations +, \wedge and \vee and that $0 \in Idm(A)$. Now we will show that Idm(A) is also closed under -. Assume that $x,y \in Idm(A)$ and denote $\alpha = ((y-x)+(y-x))-(y-x)$. By Lemma 7 we have $0 \le \alpha \le x \wedge (y-x) \le x$ and therefore $x = x+0 \le x+\alpha \le x+x=x$, i.e., $x = x+\alpha$. Further, by Theorem 1(iii) and Lemmas 5, 6 and 7 we have $y-x=(y-x)\vee\alpha=(((y-x)-\alpha)\vee0)+\alpha=((y-x)\vee0)+\alpha=(y-x)+\alpha=(y-x)+((y-x)+(y-x))-(y-x)\ge (y-x)+(y-x)$, i.e., $(y-x)\ge (y-x)+(y-x)$. The identity $(y-x)\le (y-x)+(y-x)$ follows by Lemma 5.

Lemma 9. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup, $x, y \in Idm(A)$ and $x \leq y$. Then the interval [x; y] equipped with the operations $+, \wedge$ and \vee is a commutative lattice ordered monoid with the least element x and the greatest element y.

Proof. Assume that $u, v \in [x; y]$. From $x \le u \le y$ and $x \le v \le y$ it follows $x \le u \land v \le u \lor v \le u + v \le y + y = y$ and therefore [x; y] is closed under $+, \land$ and \lor . Obviously, x and y is the least and the greatest element of [x; y], respectively. Further, by Lemma 3 we have $u + x = u \lor x = u$, i.e., x is the neutral element of [x; y].

Remark 10. The interval [x;y] from Lemma 9 may not be closed under the operation - i.e., [x;y] may not be a DRl-semigroup. Indeed, if x > 0 and $z \in [x;y]$ then $z - z = 0 \notin [x;y]$.

However, the following theorem shows that [x; y] equipped with a naturally modified operation – (denoted by -*) is a DRl-semigroup.

Theorem 11. Let $A = (A; 0; +; -; \wedge; \vee)$ be a DRl-semigroup, $x, y \in Idm(A)$ and $x \leq y$. Then the structure $([x; y]; x; +; -^*; \wedge; \vee)$ where $u -^* v = (u - v) \vee x$

for all $u, v \in [x; y]$ is a DRl-semigroup with the least element x and the greatest element y.

Proof. By Lemma 9 we know that $([x;y];x;+;\wedge;\vee)$ is a commutative lattice ordered monoid with the least element x and the greatest element y. Hence the axiom (1) is satisfied. Assume that $u,v\in[x;y]$ and denote $u^{-*}v=(u^{-}v)\vee x$. By Theorem 1(vi) we have $y=y\vee x\geq (y-v)\vee x\geq (u^{-}v)\vee x\geq x$, i.e., $(u^{-*}v)\in[x;y]$. Further, Theorem 1(iii), Lemma 3 and Lemma 5 imply $(u^{-*}v)+v=((u-v)\vee x)+v=((u-v)+v)\vee (x+v)=(((u-v)\vee 0)+v)\vee (x\vee v)=(u\vee v)\vee v=u\vee v\geq u$. If $z\in[x;y]$ and $z+v\geq u$ then obviously $z\geq u-v$ and $z\geq x$, i.e., $z\geq (u^{-}v)\vee x=u^{-*}v$. Hence the axiom (2) is satisfied. By Lemmas 2, 3 and 5 we have $((u^{-*}v)\vee 0)+v=(((u^{-}v)\vee x)\vee 0)+v=((u^{-}v)\vee x)+v=((u^{-}v)+x)+v=(u^{-}v)+(x^{-}v)=(u^{-}v)+(x^{-}v)=(u^{-}v)+v$

References

- [1] T. Kovář, Two remarks on dually residuated lattice ordered semigroups, Math. Slovaca 49 (1999) 17–18.
- J. Rachůnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohem. 126 (2001) 561–569. https://doi.org/10.21136/MB.2001.134199
- K.L.N. Swamy, Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965) 105-114. https://doi.org/10.1007/BF01360284

Received 5 October 2023 Revised 5 February 2024 Accepted 5 February 2024

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/