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Abstract

Here we set forth the varieties Vn and their connection with the varieties
En of epigroups. A new congruence, akin, which relates similar elements
in a semigroup, is introduced and used to reduce epigroups keeping their
subgroup structure. We devise a recipe to study the conditions for these
processes.
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1. Introduction

To introduce the varieties Vn, we recall some standard definitions and notations.
We generally follow Howie [3], although many of the results can be found in other
references.

Let S be a semigroup. Here, and hereafter, unless stated otherwise S should
be considered as a semigroup. An element a of S is called regular if there exists
x in S such that axa = a. We say that a† is an inverse of a regular element a
if aa†a = a and a†aa† = a†. Here we used the † symbol instead of the usual ′
in order to avoid conflict with the pseudo-inverse one, see next paragraph. All
regular elements have an inverse and all elements with inverse are regular. If all
elements of S are regular, then S is called regular.

Whenever there is a positive integer n where an belongs to a subgroup of
S, the element a of S is known as an epigroup element. The smallest n with
this property is called the index of a and is represented by ind(a). If ind(a) =
1, then a is considered as completely regular, and if all the elements of S are
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completely regular, then the semigroup is said to be completely regular. The
Green’s equivalence H− class Han is the maximal subgroup of S containing an.
Let e denote the identity element of Han , then both ae = ea and am, with m ≥ n,
are elements of Han [4]. We define a′ as pseudo-inverse of a by a′ = (ae)−1, where
(ae)−1 denotes the inverse of ae in the group Han [4, 7]. If every element of a
semigroup is an epigroup element, then the semigroup itself is said to be an
epigroup. Every finite semigroup, and in fact every periodic semigroup, is an
epigroup.

The following identities hold in all epigroups [7]:

x′xx′ = x′,(1.1)

xx′ = x′x,(1.2)

x′′′ = x′,(1.3)

xx′x = x′′,(1.4)

(xy)′x = x(yx)′,(1.5)

(xp)′ = (x′)p.(1.6)

Although usually quoted that p in equation (1.6) should be prime, it can be
shown that it can have any natural value. Therefore, if p = a.b (with a and b
primes) we have:

(xp)′ = (xa.b)′ = ((xa)b)′ = ((xa)′)b = ((x′)a)b = (x′)a.b = (x′)p.

From equations (1.2) and (1.4) we can show that xx′′ = x′′x, as

xx′′ = xxx′x = xx′xx = x′′x,

and, as a consequence of this and of equation (1.3), all the multiple pseudo-
inverses of the same element commute between each other.

From the above identities, other relations in epigroups important for this
work can be deduced,

xe = x′′,(1.7)

xme ∈ Hxn ,∀m ∈ N,(1.8)

xmx′′ ∈ Hxn ,∀m ∈ N,(1.9)

where, as above, e denotes the identity element of the Hxn subgroup.
We can view an epigroup (S, ·) as a unary semigroup (S, ·,′ ) where x 7→ x′ is

the map sending each element to its pseudo-inverse [5, 6, 7]. For each n ∈ N, let
En denote the variety (equational class) of all unary semigroups (S, ·,′ ) satisfying
equation (1.1), (1.2) and xn+1x′ = xn. The following observation will be useful
later.
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Lemma 1.1 (See [2], Lemma 1). For each n ∈ N, the variety En is precisely the

variety of unary semigroups satisfying (1.1), (1.2) and xn−1x′′ = xn.

Each En is a variety of epigroups, and the inclusions En ⊂ En+1 hold for all n.
Every finite semigroup is contained in some En, and E1 is the variety of completely
regular semigroups.

2. Starting point

The variety V appears in [1] as a variety of unary semigroups, which also gen-
eralizes completely regular semigroups, satisfying (1.1), (1.2), x′′y = xy and
xy′′ = xy.

Later Kinyon and Borralho [2] introduced the family of varieties of unary
semigroups. For each n ∈ N, the variety Vn is defined by (1.1), (1.2),

xyn−1y′′ = xyn, and(2.1)

x′′xn−1y = xny.(2.2)

There [2], they state that completely regular semigroups can be defined con-
ceptually (unions of groups) or as unary semigroups satisfying certain identities.
The epigroup varieties Vn only have a definition as unary semigroups. Since they
are closed under taking variants [2, Theorem 6], they are clearly interesting vari-
eties interlacing the varieties En [See 2, 2.4]. Thus one might ask the following.

Problem 1 (See [2]). Is there a conceptual characterization of the varieties Vn,
or even just V1, analogous to the characterizations of E1?

From [2, (2.4)] we have the following chain of varieties

E1 ⊂ V1 ⊂ E2 ⊂ V2 ⊂ E3 · · · .

3. The akin binary relation

To better understand the role of the Vn varieties, we found convenient to define
the binary relation akin, A, in a semigroup S as

(3.1) A = {(a, b) ∈ S2 : xa = xb ∧ ay = by, ∀x, y ∈ S}.

The binary relations leftakin (LA) and rightakin (RA) can also be defined by
using only xa = xb or ay = by in equation (3.1) respectively, but these relations
are not important for the purpose of this work. As usual, we will quote aAb to
express that (a, b) ∈ A.
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Although related to the Green’s relations L and R and H, these LA, RA
and A relations are more restrictive. They force the corresponding elements of
each column, or line in the Cayley table to be equal, instead of the sets of these
elements including a and b. By other words, we can state that the akin relation
is concerned with the identity of the elements, xa = xb or ay = by, ∀x, y ∈ S,
while the Green’s relations are related to the sets S1a = S1b or aS1 = bS1.

Two extreme cases must be referred. The first one, when aA b ⇒ a = b,
which arises for example in monoid epigroups. In this case A is the equality

relation of S, 1S . Another extreme situation occurs in, e.g., null semigroups
where aA b,∀a, b ∈ S, then A = S × S is the universal relation in S.

Of particular importance is the case when aA b and a 6= b. Then the a and
b columns and lines of the Cayley table of the semigroup S are, respectively,
identical. The semigroup S does not need to be commutative but a2 = ab = ba =
b2 and, as a consequence, all the expressions involving only a and b having the
same number of terms will give the same result. Also, in this occurrence, a and
b cannot belong to the same subgroup of S, which do not have identical lines or
columns, neither belong to different subgroups of S as a2 = b2. In addition, if
one of them, e.g., a, belongs to a subgroup of S, then ind(a)=1 and ind(b)=2, as
b2 will belong to the same group of a. Both a and b will be elements of the same
Ke unipotency class [7] of S. In an epigroup, if none of them are elements of a
subgroup of S, they will have the same index, as an = bn. In all cases, if S is
an epigroup, they will have the same pseudoinverse as a.eg = b.eg, being eg the
equipotent element of their unipotency class.

As an example, consider the monogenic transformation semigroup T = 〈α〉 =
{α,α2, α3, α4} with

α =

(
1 2 3 4 5
2 3 4 5 4

)

, α2 =

(
1 2 3 4 5
3 4 5 4 5

)

,

α3 =

(
1 2 3 4 5
4 5 4 5 4

)

, α4 =

(
1 2 3 4 5
5 4 5 4 5

)

and the composition operation, ◦. The Cayley table of this semigroup is

(3.2)

◦ α α2 α3 α4

α α2 α3 α4 α3

α2 α3 α4 α3 α4

α3 α4 α3 α4 α3

α4 α3 α4 α3 α4.

Looking at this table we easily realise that α2Aα4. One of these elements,
α4, is regular and belongs to the subgroup {α3, α4} while, as expected, ind(α2)=2
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as α2 ◦α2 = α4. It is interesting to see how two different maps of a set into itself
can give akin elements on a transformation semigroup. The maps α2 and α4 only
differ on the image of 1 which is 3 or 5, respectively, while the image of 3 is the
same of the image of 5 in all the maps of this semigroup.

It is easy to find that the akin binary relation in an equivalence as it is
reflexive, aA a, symmetric, aA b ⇒ bA a, and transitive, aA b ∧ bA c ⇒ aA c. So,
the set S can be divided into equivalence classes defined as

(3.3) Aa = {b ∈ S : aA b}.

We can consider two kinds of akin equivalence classes. Those with one single
element, which is only akin to itself, we call singular akin classes; and those with
more than one element, which are akin between themselves, we call pluri akin
classes.

In addition, the akin equivalence preserves the semigroup operation being
a compatible equivalence, i.e., aA b ⇒ axAbx ∧ yaAyb, since by the definition
(3.1) if aA b, then ax = bx and ya = yb and the akin relation is reflexive. As
a consequence, the akin binary relation is a congruence and defines a quotient
semigroup of S, S/A. If A is the equality relation of S, i.e., all akin classes are
singular, there is no effect, and the semigroup S and S/A are isomorphic, but
when there is at least a pair (a, b) ∈ A ∧ a 6= b, i.e., at least one akin class is
pluri, we call this process an akin reduction, or simply reduction if there is no
confusion, of S and represent it as Sr = S/A.

This akin reduction generates a new semigroup, Sr, where each singular

classes will be represented by its own element, and each element of a pluri class
will be replaced by a new one representing that class. As a consequence, the re-
sult of the semigroup operation in Sr will be the same as in S, if it is an element
of a singular class, and will be the representative of the class when the result of
the operation in S is an element of a pluri class. Accordingly, the Cayley table
of the Tr = T/A of example 3.2 is

(3.4)

◦ α α2,4 α3

α α2,4 α3 α2,4

α2,4 α3 α2,4 α3

α3 α2,4 α3 α2,4,

where we used the symbol α2,4 to represent any element of the Aα2 akin class.

This process can be repeated if the reduced semigroup has new pluri akin

classes. We note, however, that any akin class has at most one subgroup element
and, as a consequence, the subgroup structure of the semigroup is conserved in
these reduction procedures.
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4. The Vn varieties

According to the definition of the varities Vn we can say that

S ∈ Vn ⇔ xn−1x′′Axn,∀x ∈ S.

Similarly to the ”index” of the elements of epigroups [7], we can define an
a-index of an element x in an epigroup, S, as n such that xn−1x′′ y = xn y ∧
y xn−1x′′ = y xn,∀y ∈ S or, using the akin relation, the smallest natural num-
ber such that xn−1x′′Axn. This a-index will be denoted as a-ind(x). Also,
similarly to epigroups, where ind S = max{ind(x),∀x ∈ S}, if the a-indeces of
an epigroup S are bounded, we can define a v-index of this epigroup, as v-ind
S = max{a-ind(x),∀x ∈ S}. The subscript m will be used to signal an element x
of S with ind(xm) = indS and a-ind(xm) = v-indS.

Although the akin relation could be applied to all elements of the epigroup,
we are more interested in the akin class of xnm, which defines the En and Vn

varieties. We note, however, that most of the sentences regarding the xm can be
applied to any other element of the epigroup, taking into account its own index
and a-index instead of the epigroup indexes.

Regarding the relation between the En and Vn varieties of an epigroup, i.e.,
the v-index and the index of the epigroup, two different cases can occur for an
epigroup S:

• In Case I, v-indS = n = indS, i.e., xn−1
m x′′mAxnm and xn−1

m x′′m = xnm. Both
xn−1
m x′′m and xnm are the same element of a subgroup of S and the akin class

of xnm is singular.

• In Case II, v-indS = n = indS − 1. Thus, xn−1
m x′′mAxnm, but xn−1

m x′′m 6= xnm,
being, by 1.9, xn−1

m x′′m an element of a subgroup of S, but not xnm. These
semigroups can be object of akin reduction processes.

As stated above, all monoid epigroups will be in Case I, while the null epi-
groups will be Case II.

In addition to these general remarks, it is important to study the conditions
for the relation between the v-index of an epigroup and its index.

Here and henceforth, except otherwise stated, we consider S an epigroup with
index n ≥ 2, indS ≥ 2. Note that if ind S = 1, then all the elements of S are
regular and the v-index should also be one. Following Lemma 1.1, in S there will
be, at least, one element h = xn−1

m x′′m = xnm. Also, in S, there are two different
elements f = xn−2

m x′′m and g = xn−1
m , which when operated with xm will give

xmf = fxm = xmg = gxm = h. f and g must be different, otherwise by 1.1 indS
should be n− 1. In order to assess if S is a Case I or a Case II epigroup, we need
to consider the conditions that must be fulfilled for these two elements to be akin
to each other, (fA g) and a-ind(xm) = ind(xm)− 1, i.e., v-indS = indS − 1. For
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this purpose, we are going to focus our attention on the right and left products
of xm by S, xmS and Sxm.

Theorem 4.1 (Necessary condition). For v-indS = indS − 1, it is necessary

that xm /∈ xmS ∧ xm /∈ Sxm.

Proof. Supposing that there exists an element u ∈ S such that xmu = xm, then

fu = xn−2
m x′′m

︸︷︷︸
u = xn−2

m xmx′mxm
︸ ︷︷ ︸

u = xn−2
m xmx′m (xmu)

︸ ︷︷ ︸
= xn−2

m xmx′mxm
︸ ︷︷ ︸

= xn−2
m x′′m = f

gu = xn−1
m

︸ ︷︷ ︸
u = xn−2

m xmu = xn−2
m (xmu)

︸ ︷︷ ︸
= xn−2

m xm
︸ ︷︷ ︸

= xn−1
m = g.

As a consequence, the right multiplications of these two elements by u should
give different results and they wouldn’t be akin to each other. We should attain
the same conclusion with the left multiplication of xm.

We can express this necessary condition as

(4.1) a-ind(xm) = ind(xm)− 1 ⇒ xmS ⊆ S \ {xm} ∧ Sxm ⊆ S \ {xm}.

Also by using these products, we can find a sufficient condition for fA g.

Theorem 4.2 (Sufficient condition). For an epigroup S ∈ En, the condition

xmS = Sxm = S \ {xm} is a sufficient condition for S ∈ Vn−1.

Proof. As xmS = Sxm = S \ {xm}, all the products xmu, u ∈ S (and those
of uxm, u ∈ S) will be different except for u ∈ {f, g}. We can say it because
#(Sxm) = #(S \ {xm}) = #S − 1. Then only two elements of Sxm can be equal
and these are fxm = gxm = h. This result can be expressed by

(4.2) xmu = xmv ⇒ u = v ∨ {u, v} = {f, g},∀u, v ∈ S.

As a consequence, we can also say that

(4.3) ∀y ∈ S \ {xm, h} ∃!u ∈ S : y = xmu,

and conclude that when the two elements, f and g, are right (or left) multiplied
by any other element of S, say y, the result will be the same. This can be seen
as:

• If y = xm then fxm = gxm = h.

• if y = f then ff = xn−2
m x′′mxn−2

m x′′m. Considering that x′′m = xmeg, where eg
is the idempotent of the group of xnm = h, then

xn−2
m x′′mxn−2

m x′′m = x2n−2
m e2g = x2n−2

m

and, by the same rationality, gf = xn−1
m xn−2

m x′′m = x2n−2
m . So ff = gf .
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• Similarly, if y = g then gf = gg.

• Otherwise, using y = xmu,

fy = xn−2
m x′′my = xn−2

m x′′mxm
︸ ︷︷ ︸

u = xn−2
m xmx′′mu = xn−1

m x′′mu = hu

gy = xn−1
m y = xn−1

m xm
︸ ︷︷ ︸

u = xnmu = hu,

and fy = gy.

A similar result should be obtained by left multiplication. Then

(4.4) Sxm = xmS = S \ {xm} ⇒ xn−2
m x′′mAxn−1

m ,

and a-ind(xm) = n− 1, i.e., S ∈ Vn−1.

As a consequence, when an epigroup S satisfies the condition Sxm = xmS =
S \{xm}, we can apply the reduction process to define a new epigroup Sr = S/A.
As described above, in this process the two distinct f and g elements of S,
f = xn−2

m x′′mA g = xn−1
m , will be replaced by a representative of their akin class,

w = xn−2
m x′′m = xn−1

m , which, by 1.9, is an subgroup element of Sr. Thus, in the
Sr epigroup ind(xm) = n− 1.

If the index of S is greater or equal to 3, then indSr ≥ 2 and we can focus
our attention on this Sr epigroup, again.

Taking into account that xmS = Sxm = S \{xm} and that Sr = S \Af ∪{w}
we can conclude that xmSr = Srxm = Sr \ {xm}.

As stated above when proving Theorem 4.2, all the products xmu, u ∈ S are
different except for u ∈ {f, g}, which when operated with xm give h and none
produces xm. So, there are two different elements in S, u = xn−3

m x′′m and v = xn−2
m ,

which when operated with xm give f and g. In Sr, the elements f and g have been
replaced by w. As a consequence, in this epigroup Sr, u, and v when operated
with xm give the same result, w, and all the others will give different results but
none produce xm. We conclude that #(Srxm) = #(Sr \ {xm}) = #Sr − 1, and
Srxm = Sr \ {xm}.

Then, by Theorem 4.2 u = xn−3
m x′′mA v = xn−2

m and a-ind(xm) = n− 2.
The new epigroup Sr can be an object of another reduction process and so

on. In general, we can say that, when an epigroup S, with ind(xm) ≥ 2, satisfies
the condition Sxm = xmS = S \ {xm}, we can apply the akin reduction process
successively until ind(xm) = 1.

The above referred monogenic transformation semigroup (T, ◦), with T =
〈α〉 = {α,α2, α3, α4} and ◦ defined by the Cayley table 3.2, can be seen as an
example of the application of Theorems 4.1 and 4.2.

This semigroup T is an epigroup with a subgroup G = {α3, α4}. As α◦α◦α =
α3, we conclude that indT = ind(α) = 3 with xm = α, x′′m = α′′ = α3. T ∈ E3
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and verifies the condition α ◦ α ◦ α3 = α ◦ α ◦ α. From the Cayley table 3.2, we
conclude that α ◦ T = T ◦ α = {α2, α3, α4} = T \ {α}, which satisfies both the
necessary and sufficient conditions for v-indT = indT − 1.

The two above referred akin elements α2 and α4 are respectively α ◦ α3 and
α ◦ α. So v-indT = a-ind(α) = 2 and T ∈ V2, being v-indT = indT − 1, as
expected from Theorem 4.2.

This result supports that the semigroup T can be reduced until ind(α) = 1.
A further reduction of Tr, see example 3.4, will give the semigroup Trr,

(4.5)

◦ α1,3 α2,4

α1,3 α2,4 α1,3

α2,4 α1,3 α2,4,

where we used the symbols α1,3 and α2,4 to represent any element of the Aα and
Aα2 akin classes respectively. Trr is now a completely regular semigroup and, as
a consequence, Trr ∈ E1 and Trr ∈ V1. We can see that the group structure of the
semigroup T has been conserved in Trr, as stated before. The information of this
reduction process can be complemented by the computation of T 3 = {α3, α4}.
We can see that in these reduction processes the group elements are conserved.

If we add the identity element α0,

α0 =

(
1 2 3 4 5
1 2 3 4 5

)

,

to T , we obtain the monoid semigroup T 1 whose Cayley table is

(4.6)

◦ α0 α α2 α3 α4

α0 α0 α α2 α3 α4

α α α2 α3 α4 α3

α2 α2 α3 α4 α3 α4

α3 α3 α4 α3 α4 α3

α4 α4 α3 α4 α3 α4.

This T 1 semigroup does not satisfy the necessary condition 4.1 as α ◦ T 1 =
T 1 ◦ α = {α,α2, α3, α4} * T 1 \ {α}, i.e., α ∈ α ◦ T 1. Now, α2 is not akin to α4,
the akin classes of all elements of T 1 are singular and v-indT = indT .

5. Generalising

In this work we started studying the varieties En and Vn. As a result, we took
particular attention on xm, which determines the varieties of the epigroup. De-
spite that, most of the above considerations can be applied to any element of the
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epigroup, a, considering its own index and a-index, independently of the index
and v-index of the epigroup, S.

Adapting the above statements about xm we can say.

Proposition 5.1. The expressions, a-ind(a) = n = ind(a) − 1 and an−1a′′A an,
but an−1a′′ 6= an, are equivalent.

In this case, the epigroup S can be object of an akin reduction process.
And the necessary and sufficient conditions will be:

Proposition 5.2 (necessary). It is necessary that a /∈ aS ∧ a /∈ Sa to a-ind(a) =
n = ind(a)− 1.

Proposition 5.3 (sufficient). It is sufficient that Sa = aS = S \ {a} for the

expression an−1a′′A an ∧ an−1a′′ 6= an to be accomplished.

We can add that, when an epigroup S, with ind(a) ≥ 2, satisfies this sufficient
condition, we can apply the akin reduction process successively until ind(a) = 1.

The semigroup (U, ◦), where U = {1, 2, 3, 4, 5, 6, 7, 8} and ◦ is defined by the
Cayley table

(5.1)

◦ 1 2 3 4 5 6 7 8

1 3 2 4 2 2 2 2 2
2 2 2 2 2 2 2 2 2
3 4 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2
5 2 2 2 2 6 7 8 7
6 2 2 2 2 7 8 7 8
7 2 2 2 2 8 7 8 7
8 2 2 2 2 7 8 7 8 ,

illustrates this generalization.
This semigroup has two subgroups, namely, {2} and {7, 8}. As ind(1) = 4

and a-ind(1) = 3, we conclude that xm = 1, v-indU = indU − 1, and 2A 4 (as
12 1′′ = 2 and 13 = 4). In addition to this xm other element of U satisfy similar
relations, ind(5) = 3 and a-ind(5) = 2 = ind(5) − 1 and 6A 8 (as 5 5′′ = 8 and
52 = 6). Both 1 and 5 satisfy the Proposition 5.1 an−1a′′A an, but an−1a′′ 6= an,
and the Proposition 5.2, a /∈ aU ∧ a /∈ Ua. As a consequence, both can be used
for akin reduction processes

After some akin reduction processes, we obtain the semigroup (U red, ◦) whose
Cayley table is

(5.2)

◦ 2̄ 7̄ 8̄

2̄ 2̄ 2̄ 2̄
7̄ 2̄ 8̄ 7̄
8̄ 2̄ 7̄ 8̄ ,
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where 2̄ stands for an element of {1, 2, 3, 4}, 7̄ for an element of {5, 7}, and 8̄ for
an element of {6, 8}.

6. Conclusion

We have shown that the akin congruence relation can be used to define the
varieties Vn and study their connection with the varieties En of epigroups. This
new congruence, akin, which relates similar elements in a semigroup, can be used
to reduce the epigroups keeping their subgroup structure. We have demonstrated
that the products aS and Sa can be used to define a necessary and a sufficient
condition for these processes.
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