Discussiones Mathematicae General Algebra and Applications 45 (2025) 201–215 https://doi.org/10.7151/dmgaa.1462

CONGRUENCES ON A SEMI-BROUWERIAN ALMOST DISTRIBUTIVE LATTICE

S. RAMESH, V.V.V.S.S.P.S. SRIKANTH

Department of Mathematics, GITAM School of Science GITAM (Deemed to be University), Visakhapatnam-530045, India

> e-mail: ramesh.sirisetti@gmail.com srikanth.vvvs@gmail.com

M.V. RATNAMANI

Department of Basic Science and Humanities Aditya Institute of Technology and Management Tekkali, Srikakulam-530021, Andhra Pradesh, India

e-mail: vvratnamani@gmail.com

RAVIKUMAR BANDARU

Department of Mathematics, School of Advanced Sciences VIT-AP University, Andhra Pradesh-522237, India

e-mail: ravimaths83@gmail.com

AND

AIYARED IAMPAN¹

Department of Mathematics, School of Science University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand **e-mail:** aiyared.ia@up.ac.th

Abstract

This paper proves that the class of smart congruences on semi-Brouwerian almost distributive lattices is a permutable sublattice of the lattice of congruences. We also extract two different permutable sublattices of a semi-Brouwerian almost distributive lattice from the class of filters in a semi-Brouwerian almost distributive lattice.

¹Corresponding author.

Keywords: Semi-Brouwerian almost distributive lattice, congruence, smart congruence, filter.

2020 Mathematics Subject Classification: Primary: 06D20, Secondary: 06D99.

1. INTRODUCTION

The theory of lattice was developed by several mathematicians over the years, but its modern formalization can be attributed to Birkhoff [1, 4] and others in the early to mid-20th century. Birkhoff's seminal work, Lattice Theory, published in 1940, provided a comprehensive treatment of the subject and laid the foundation for further research. While lattices with join (\vee_*) and meet (\wedge_*) operations provide a general framework for studying partial orders and algebraic structures, they may not capture certain properties of logical implication. Boolean algebras [2], which include complementation (negation, λ_*) alongside \vee_* and \wedge_* operations, are too restrictive for some contexts. Heyting algebras [3] provide a more flexible generalization of Boolean algebras by replacing complementation with the implication operation \rightarrow_* . This generalization allows Heyting algebras to capture a broader range of logical structures and reasoning principles beyond the classical Boolean framework. Furthermore, a new class of algebras named semi-Heyting algebras [8] as an abstraction from Heyting algebras was introduced, and the behaviour of closed elements and congruences were studied on them. Later, semi-Brouwerian algebras were studied by considering only the maximal element \mathfrak{u}_1 . Most authors have studied a new binary operation on distributive lattices, a stronger condition for obtaining the desired results.

Almost distributive lattices [13] are a generalization of distributive lattices that relaxes the requirement for the distributive property to hold universally. They provide a flexible framework for modelling ordered structures where the distributive property holds approximately but may have exceptions. As in lattice theory, the authors first mainly focused on only two binary operations \vee_* and \wedge_* . Later on, an addition of another binary operation \rightarrow_* on an almost distributive lattice gave us a new algebra named Heyting-almost distributive lattices [5] and almost semi-Heyting algebras [6]. The above algebras were studied considering the least element 0 and the maximal element \mathfrak{u}_1 . Later in 2022, a few authors aimed to study algebra by considering only the maximal element \mathfrak{u}_1 strictly without the involvement of the least element 0, which gave rise to a new algebra named semi-Browerian almost distributive lattices [9] whose idea was taken from the concept semi-Brouwerian algebras [8] which is an abstraction of a semi-Heyting algebra and an almost distributive lattice [13]. In this algebra, the behaviour of principal ideals, some properties, and a few equivalent condi-

202

tions were studied [9]. Later, the associativity and commutativity of the binary operation \rightarrow_* were studied [10].

The set of all congruences of an almost distributive lattice is only a lattice with the partial order \subseteq but not a distributive lattice-like in lattices. For this reason, the idea of a smart congruence was introduced to show that the set of all smart congruences is a sublattice of a set of all congruences and the set of all smart congruences of an almost distributive lattice is a distributive lattice with the partial order \subseteq . Here, we try to establish a lattice isomorphism between the lattice of all smart congruences of semi-Browerian almost distributive lattice and the lattice of all filters of semi-Browerian almost distributive lattices, we also show that the smart congruences are congruence permutable in a semi-Browerian almost distributive lattice. Also for any filter F on a semi-Browerian almost distributive lattice S, we define two congruences θ_F and ϕ_F and also show that these classes are congruence permutable in a semi-Browerian almost distributive lattice.

2. Preliminaries

Let us review some important results on almost distributive lattices and semi-Brouwerian almost distributive lattices, which are often used in this paper.

Definition [13]. An almost distributive lattice (ADL) is an algebra $(\mathcal{S}, \vee_*, \wedge_*)$ of type (2, 2) with the following identities:

- (1) $(\alpha_1 \vee_* \beta_1) \wedge_* \gamma_1 = (\alpha_1 \wedge_* \gamma_1) \vee_* (\beta_1 \wedge_* \gamma_1)$
- (2) $\alpha_1 \wedge_* (\beta_1 \vee_* \gamma_1) = (\alpha_1 \wedge_* \beta_1) \vee_* (\alpha_1 \wedge_* \gamma_1)$
- $(3) \ (\alpha_1 \vee_* \beta_1) \wedge_* \beta_1 = \beta_1$
- $(4) \ (\alpha_1 \vee_* \beta_1) \wedge_* \alpha_1 = \alpha_1$
- (5) $\alpha_1 \vee_* (\alpha_1 \wedge_* \beta_1) = \alpha_1$
- for all $\alpha_1, \beta_1, \gamma_1 \in \mathcal{S}$.

Example 1 [13]. An ADL (S, \vee_*, \wedge_*) is named as a discrete ADL if for any $\alpha_1, \beta_1 \in S, \alpha_1 \wedge_* \beta_1 = \beta_1, \alpha_1 \vee_* \beta_1 = \alpha_1$.

Unless otherwise specified, the term \mathcal{S} in this section refers to an almost distributive lattice $(\mathcal{S}, \vee_*, \wedge_*)$. Given $\alpha_1, \beta_1 \in \mathcal{S}$, we say that α_1 is less than or equal to β_1 if and only if $\alpha_1 = \alpha_1 \wedge_* \beta_1$; or equivalently, $\alpha_1 \vee_* \beta_1 = \beta_1$, and it is denoted by $\alpha_1 \leq_* \beta_1$. Therefore, \leq_* is a partial ordering on \mathcal{S} . An element \mathfrak{u}_1 is considered to be maximal if there is no element α_1 such that $\mathfrak{u}_1 < \alpha_1$.

Theorem 2 [13]. The following are equivalent for any $u_1 \in S$,

- (1) \mathfrak{u}_1 is a maximal element
- (2) $\mathfrak{u}_1 \vee_* \alpha_1 = \mathfrak{u}_1$ for all $\alpha_1 \in \mathcal{S}$
- (3) $\mathfrak{u}_1 \wedge_* \alpha_1 = \alpha_1$ for all $\alpha_1 \in \mathcal{S}$.

Theorem 3 [13]. For any $\alpha_1, \beta_1, \gamma_1 \in S$,

- (1) $\alpha_1 \vee_* \beta_1 = \alpha_1 \Leftrightarrow \alpha_1 \wedge_* \beta_1 = \alpha_1$
- (2) $\alpha_1 \vee_* \beta_1 = \beta_1 \Leftrightarrow \alpha_1 \wedge_* \beta_1 = \alpha_1$
- (3) $\alpha_1 \wedge_* \beta_1 = \beta_1 \wedge_* \alpha_1 = \alpha_1$ whenever $\alpha_1 \leq_* \beta_1$
- (4) \wedge_* is associative
- (5) $\alpha_1 \wedge_* \beta_1 \wedge_* \gamma_1 = \beta_1 \wedge_* \alpha_1 \wedge_* \gamma_1$
- (6) $(\alpha_1 \vee_* \beta_1) \wedge_* \gamma_1 = (\beta_1 \vee_* \alpha_1) \wedge_* \gamma_1$
- (7) $\alpha_1 \wedge_* \beta_1 \leq_* \beta_1$ and $\alpha_1 \leq_* \alpha_1 \vee_* \beta_1$
- (8) $\alpha_1 \wedge_* \alpha_1 = \alpha_1$ and $\alpha_1 \vee_* \alpha_1 = \alpha_1$
- (9) $\alpha_1 \leq_* \gamma_1, \beta_1 \leq_* \gamma_1 \Rightarrow \alpha_1 \wedge_* \beta_1 = \beta_1 \wedge_* \alpha_1, \alpha_1 \vee_* \beta_1 = \beta_1 \vee_* \alpha_1.$

Definition [13]. A non-empty subset F of S is said to be a filter of S if it satisfies the following:

- (1) $\alpha_1, \beta_1 \in F \Rightarrow \alpha_1 \wedge_* \beta_1 \in F$
- (2) $\alpha_1 \in F, \mathfrak{p}_1 \in S \Rightarrow \mathfrak{p}_1 \lor_* \alpha_1 \in F.$

Theorem 4 [4]. The set $\mathcal{F}(S)$ of filters of S forms a distributive lattice in which given, for any filters F_1 and F_2 of S, the g.l.d. and the l.u.b. of any filters F_1 and F_2 of S are given respectively by $F_1 \wedge_* F_2 = F_1 \bigcap_* F_2$ and $F_1 \vee_* F_2 = \{\alpha_1 \wedge_* \beta_1 \mid \alpha_1 \in F_1 \text{ and } \beta_1 \in F_2\}$.

Definition [4]. An equivalence relation θ on S is called a congruence relation if $(\alpha_1 \wedge_* \gamma_1, \beta_1 \wedge_* \delta_1) \in \theta$ and $(\alpha_1 \vee_* \gamma_1, \beta_1 \vee_* \delta_1) \in \theta$ for all $(\alpha_1, \beta_1), (\gamma_1, \delta_1) \in \theta$.

Theorem 5 [4]. The set Con(S) of congruences on S is a lattice, in which given congruences $\theta_1, \theta_2 \in Con(S)$, the g.l.d. and l.u.b. are $\theta_1 \wedge_* \theta_2 = \theta_1 \cap_*$ θ_2 and $\theta_1 \vee_* \theta_2 = \{(\alpha_1, \beta_1) \mid \text{there exists a finite sequence of elements } \alpha_1 = \gamma_{1_0}, \gamma_{1_1}, \ldots, \gamma_{1_n-1} = \beta_1 \in S \text{ such that } (\gamma_{1_i}, \gamma_{1_i+1}) \in \theta_1 \cup_* \theta_2, \text{ for each } 0 \leq_* i \leq_* n-2\}, \text{ respectively.}$

Definition [9]. S with a maximal element \mathfrak{u}_1 is said to be a semi-Brouwerian almost distributive lattice (SBADL) if there is a binary operation \rightarrow_* on S with the following axioms:

 $(N_1) \quad (\alpha_1 \to_* \alpha_1) \wedge_* \mathfrak{u}_1 = \mathfrak{u}_1$ $(N_2) \quad \alpha_1 \wedge_* (\alpha_1 \to *\beta_1) = \alpha_1 \wedge_* \beta_1 \wedge_* \mathfrak{u}_1$ $(N_3) \quad \alpha_1 \wedge_* (\beta_1 \to *\gamma_1) = \alpha_1 \wedge_* [(\alpha_1 \wedge_* \beta_1) \to *(\alpha_1 \wedge_* \gamma_1)]$

204

 $(N_4) \ (\alpha_1 \to {}_*\beta_1) \wedge_* \mathfrak{u}_1 = [(\alpha_1 \wedge_* \mathfrak{u}_1) \to {}_*(\beta_1 \wedge_* \mathfrak{u}_1)]$ for all $\alpha_1, \beta_1, \gamma_1 \in \mathcal{S}$.

Theorem 6 [9]. In an SBADL S, the following are equivalent:

- (1) $(\alpha_1 \rightarrow {}_*\beta_1) \wedge_* \mathfrak{u}_1 = (\beta_1 \rightarrow {}_*\alpha_1) \wedge_* \mathfrak{u}_1 \text{ for all } \alpha_1, \beta_1 \in \mathcal{S}.$
- (2) $(\alpha_1 \rightarrow {}_*\mathfrak{u}_1) \wedge_* \mathfrak{u}_1 = \alpha_1 \wedge_* \mathfrak{u}_1 \text{ for all } \alpha_1 \in \mathcal{S}.$
- (3) $\beta_1 \wedge_* (\alpha_1 \rightarrow {}_*\beta_1) \wedge_* \mathfrak{u}_1 = \alpha_1 \wedge_* \beta_1 \wedge_* \mathfrak{u}_1 \text{ for all } \alpha_1, \beta_1 \in \mathcal{S}.$

Theorem 7 [9]. If S is an SBADL and $\alpha_1, \beta_1, \gamma_1 \in S$, then

- (1) $\alpha_1 \leq_* \beta_1 \text{ and } \alpha_1 \leq_* \gamma_1 \Rightarrow \alpha_1 \wedge_* \mathfrak{u}_1 \leq_* (\alpha_1 \rightarrow_* \gamma_1) \wedge_* \mathfrak{u}_1$
- (2) $(\alpha_1 \rightarrow_* \beta_1) \wedge_* \mathfrak{u}_1 = \mathfrak{u}_1 \rightarrow_* \alpha_1 \wedge_* \mathfrak{u}_1 \leq_* \beta_1 \wedge_* \mathfrak{u}_1$
- (3) $(\alpha_1 \rightarrow_* \beta_1) \wedge_* \gamma_1 = [(\alpha_1 \wedge_* \gamma_1 \rightarrow_* \alpha_1 \wedge_* \gamma_1)] \wedge_* \gamma_1$
- (4) $\alpha_1 \wedge_* \mathfrak{u}_1 = \beta_1 \wedge_* \mathfrak{u}_1 \Leftrightarrow (\alpha_1 \rightarrow_* \beta_1) \wedge_* (\beta_1 \rightarrow_* \alpha_1) \wedge_* \mathfrak{u}_1 = \mathfrak{u}_1$
- (5) $\alpha_1 \wedge_* \mathfrak{u}_1 = \beta_1 \wedge_* \mathfrak{u}_1 \Leftrightarrow (\alpha_1 \vee_* \beta_1 \rightarrow_* \alpha_1 \wedge_* \beta_1) \wedge_* \mathfrak{u}_1 = \mathfrak{u}_1$
- (6) $\alpha_1 \leq_* \beta_1 \leq_* \gamma_1 \Rightarrow \beta_1 \wedge_* (\alpha_1 \rightarrow_* \gamma_1) = \beta_1 \wedge_* (\alpha_1 \rightarrow_* \beta_1)$
- (7) $\beta_1 \leq_* (\alpha_1 \rightarrow_* \mathfrak{u}_1) \Leftrightarrow \beta_1 \leq_* (\beta_1 \wedge_* \alpha_1) \rightarrow_* (\beta_1 \wedge_* \mathfrak{u}_1)$
- (8) $[\alpha_1 \rightarrow_* (\beta_1 \wedge_* \mathfrak{u}_1)] \wedge_* \mathfrak{u}_1 = \mathfrak{u}_1 \Rightarrow \beta_1 \wedge_* \alpha_1 = \alpha_1.$

3. Congruences on an SBADL

A congruence θ on a ADL S is a smart congruence [7], if $(\alpha_1 \wedge_* \mathfrak{u}_1, \beta_1 \wedge_* \mathfrak{u}_1) \in \theta$ implies $(\alpha_1, \beta_1) \in \theta$ and the authors proved that the set $Con_0(S)$ of smart congruences on S is a distributive lattice with the induced operations.

Now onwards, S stands for an SBADL with a maximal element \mathfrak{u}_1 , and $\mathcal{F}(S)$ stands for the lattice of filters of S. We begin by demonstrating that the smart congruences on an SBADL are obtained by filters based on the notion of smart congruences.

Lemma 8. For $F \in \mathcal{F}(\mathcal{S}), \theta(F) = \{(\alpha_1, \beta_1) \in \mathcal{S} \times \mathcal{S} \mid \alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1 \text{ for some } \mathfrak{e}_1 \in F\}$ as a smart congruence on \mathcal{S} and $\frac{\mathfrak{u}_1}{\theta(F)} = F$.

Proof. To prove $\theta(F) \in Con_0(S)$, first we have to show that $\theta(F)$ is an equivalence relation, which can be obtained by considering $\alpha_1, \beta_1, \gamma_1, \in S$ such that $(\alpha_1, \beta_1) \in \theta(F)$ implies $\alpha_1 \wedge_* \mathfrak{z}_1 = \beta_1 \wedge_* \mathfrak{z}_1$ for some $\mathfrak{z}_1 \in F$, $(\beta_1, \gamma_1) \in \theta(F)$ implies $\beta_1 \wedge_* \mathfrak{z}_2 = \gamma_1 \wedge_* \mathfrak{z}_2$ for some $\mathfrak{z}_2 \in F$. On considering $(\alpha_1, \beta_1) \in \theta(F), (\gamma_1, \delta_1) \in \theta(F)$. Then $\alpha_1 \wedge_* \mathfrak{z}_1 = \beta_1 \wedge_* \mathfrak{z}_1$ and $\gamma_1 \wedge_* \mathfrak{z}_2 = \delta_1 \wedge_* \mathfrak{z}_2$ for some $\mathfrak{z}_1, \mathfrak{z}_2 \in F$, we can show that $\theta(F)$ is compatible with $\wedge_*, \vee_*, \rightarrow *$. Hence, $\theta(F) \in Con(S)$. Now, if $(\alpha_1 \wedge_* \mathfrak{u}_1, \beta_1 \wedge_* \mathfrak{u}_1) \in \theta(F) \Rightarrow (\alpha_1, \beta_1) \in \theta(F)$. Hence, $\theta(F) \in Con_0(S)$. Finally, we prove that $\frac{\mathfrak{u}_1}{\theta(F)} = F$. Let $\alpha_1 \in \mathfrak{u}_1/\theta(F) \Rightarrow (\alpha_1, \mathfrak{u}_1) \in \theta(F)$ implies $\alpha_1 \wedge_* \mathfrak{e}_1 = \mathfrak{u}_1 \wedge_* \mathfrak{e}_1 = \mathfrak{e}_1$ for some $\mathfrak{e}_1 \in F$. Since $\alpha_1 \wedge_* \mathfrak{e}_1 = \mathfrak{e}_1$ we get $\alpha_1 \vee_* \mathfrak{e}_1 = \alpha_1$. Therefore, $\alpha_1 \in F$. On the other side, if $\alpha_1 \in F$, then $\alpha_1 \wedge_* \alpha_1 = \mathfrak{u}_1 \wedge_* \alpha_1$ and hence, $\alpha_1 \in \frac{\mathfrak{u}_1}{\theta(F)} = F$. Thus, $\frac{\mathfrak{u}_1}{\theta(F)} = F$.

By using Lemma 8 and Definition 2, we can obtain the following lemma.

Lemma 9. For $F \in \mathcal{F}(\mathcal{S})$ and $\alpha_1, \beta_1 \in \mathcal{S}$, we have

$$(\alpha_1,\beta_1) \in \theta(F) \Leftrightarrow (\alpha_1 \to {}_*\beta_1) \wedge_* (\beta_1 \to {}_*\alpha_1) \wedge_* \mathfrak{u}_1 \in F.$$

Theorem 10. $Con_0(\mathcal{S}) \cong \mathcal{F}(\mathcal{S}).$

Proof. Define $\psi : Con_0(S) \to \mathcal{F}(S)$ by $\psi(\theta) = \frac{u_1}{\theta}$ for all $\theta \in Con_0(S)$. It is enough to prove that ψ is an order isomorphism. That is, ψ is surjection and $\theta_1 \subseteq \theta_2 \Leftrightarrow \psi(\theta_1) \subseteq \psi(\theta_2)$ for all $\theta_1, \theta_2 \in Con_0(S)$. First, we prove that ψ is a surjection. Let $F \in F(S)$. Then by Lemma 9, we have $\theta(F) = \{(\alpha_1, \beta_1) \in S \times S \mid \alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ for some $\mathfrak{e}_1 \in F\} \in Con_0(S)$ and $\psi(\theta(F)) = \frac{u_1}{\theta(F)} = F$. Thus, ψ is a surjection. Now, let $\theta_1, \theta_2 \in Con_0(S)$ such that $\psi(\theta_1) \subseteq \psi(\theta_2)$. That is, $\frac{u_1}{\theta_1} \subseteq \frac{u_1}{\theta_2}$. We prove that $\theta_1 \subseteq \theta_2$. Let $\alpha_1, \beta_1 \in S$. Then

$$\begin{aligned} (\alpha_1,\beta_1) \in \theta_1 &\Rightarrow (\alpha_1 \wedge_* \mathfrak{u}_1,\beta_1 \wedge_* \mathfrak{u}_1) \in \theta_1 \\ &\Rightarrow (\alpha_1 \wedge_* \mathfrak{u}_1 * \beta_1 \wedge_* \mathfrak{u}_1,\beta_1 \wedge_* m * \beta_1 \wedge_* \mathfrak{u}_1) \in \theta_1 \\ &\Rightarrow ((\alpha_1 * \beta_1) \wedge_* \mathfrak{u}_1, (\beta_1 * \beta_1) \wedge_* \mathfrak{u}_1) \in \theta_1 \\ &\Rightarrow ((\alpha_1 * \beta_1) \wedge_* \mathfrak{u}_1, \mathfrak{u}_1) \in \theta_1 \\ &\Rightarrow (\alpha_1 * \beta_1) \wedge_* \mathfrak{u}_1 \in \frac{\mathfrak{u}_1}{\theta_1} \subseteq \frac{\mathfrak{u}_1}{\theta_2} \\ &\Rightarrow ((\alpha_1 * \beta_1) \wedge_* \mathfrak{u}_1, \mathfrak{u}_1) \in \theta_2 \\ &\Rightarrow (\alpha_1 \wedge_* (\alpha_1 * \beta_1) \wedge_* \mathfrak{u}_1, \alpha_1 \wedge_* \mathfrak{u}_1) \in \theta_2. \end{aligned}$$

By symmetry, we get that $(\alpha_1 \wedge_* \beta_1 \wedge_* \mathfrak{u}_1, \beta_1 \wedge_* \mathfrak{u}_1) \in \theta_2$. Therefore, $(\alpha_1 \wedge_* \mathfrak{u}_1, \beta_1 \wedge_* \mathfrak{u}_1) \in \theta_2$. Since $\theta_2 \in Con_0(\mathcal{S})$, we get $(\alpha_1, \beta_1) \in \theta_2$. Thus, $\theta_1 \subseteq \theta_2$. On the other hand, suppose $\theta_1 \subseteq \theta_2$ and $\alpha_1 \in \mathcal{S}$. Then

$$\begin{aligned} \alpha_1 \in \psi(\theta_1) &= \frac{\mathfrak{u}_1}{\theta_1} \Rightarrow (\alpha_1, \mathfrak{u}_1) \in \theta_1 \subseteq \theta_2 \\ &\Rightarrow (\alpha_1, \mathfrak{u}_1) \in \theta_2 \\ &\Rightarrow \alpha_1 \in \mathfrak{u}_1/\theta_2 \\ &\Rightarrow \alpha_1 \in \psi(\theta_2). \end{aligned}$$

Therefore, $\psi(\theta_1) \subseteq \psi(\theta_2)$. Hence, $\theta_1 \subseteq \theta_2 \Leftrightarrow \psi(\theta_1) \subseteq \psi(\theta_2)$. Thus, $Con_0(\mathcal{S}) \cong \mathcal{F}(\mathcal{S})$.

Lemma 11. For $\alpha_1, \beta_1 \in S$, $[(\beta_1 \rightarrow_* \beta_1) \rightarrow_* \alpha_1] \wedge_* [(\alpha_1 \rightarrow_* \beta_1) \rightarrow_* \beta_1] \wedge_* (\beta_1 \vee_* \alpha_1) \wedge_* \mathfrak{u}_1 = \alpha_1 \wedge_* \mathfrak{u}_1.$

Proof. Let $\alpha_1, \beta_1 \in \mathcal{S}$. Then

$$\begin{split} [(\beta_1 * \beta_1) * \alpha_1] \wedge_* [(\alpha_1 * \beta_1) * \beta_1] \wedge_* (\beta_1 \vee_* \alpha_1) \wedge_* \mathfrak{u}_1 \\ &= [\mathfrak{u}_1 * \alpha_1] \wedge_* [(\alpha_1 * \beta_1) * \beta_1] \wedge_* (\beta_1 \vee_* \alpha_1) \wedge_* \mathfrak{u}_1 \\ &= \alpha_1 \wedge_* (\beta_1 \vee_* \alpha_1) \wedge_* \mathfrak{u}_1 \\ &= \alpha_1 \wedge_* \mathfrak{u}_1. \end{split}$$

Any two congruences θ_1 and θ_2 are said to be permutable if $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$. A sublattice of Con(S) is said to be a permutable sublattice if $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$ for all θ_1, θ_2 in the sublattice.

Theorem 12. $Con_0(S)$ is a permutable sublattice of Con(S).

Proof. Let $\theta_1, \theta_2 \in Con_0(S)$ and $(\alpha_1, \beta_1) \in \theta_1 \circ \theta_2$. Then there exists $\gamma_1 \in S$ such that $(\alpha_1, \gamma_1) \in \theta_1$ and $(\gamma_1, \beta_1) \in \theta_2$. Since $(\alpha_1, \gamma_1) \in \theta_1$, we get $(\gamma_1, \alpha_1) \in \theta_1$. From this we get that the pares $((\gamma_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1, (\alpha_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1), ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \gamma_1, (\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \alpha_1)$ and $((\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1, (\alpha_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1)$ belong to θ_1 . Hence, $(((\gamma_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1) \wedge_* ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \gamma_1) \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1, ((\alpha_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1) \wedge_* ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \alpha_1) \wedge_* (\alpha_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1, ((\alpha_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1) \wedge_* ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \alpha_1) \wedge_* (\alpha_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1) \in \theta_1$. By Lemma 11, we get that $(\beta_1 \wedge_* \mathfrak{u}_1, ((x \rightarrow_* \gamma_1) \rightarrow_* \beta_1) \wedge_* ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \alpha_1) \wedge_* (\alpha_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1) \in \theta_1$. That is, $(\beta_1, ((\alpha_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1) \wedge_* ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \alpha_1) \wedge_* (\alpha_1 \vee_* \beta_1)) \in \theta_1$. Similarly, $(\gamma_1, \beta_1) \in \theta_2$, we get $(((\alpha_1 \rightarrow_* \gamma_1) \rightarrow_* \beta_1) \wedge_* ((\beta_1 \rightarrow_* \gamma_1) \rightarrow_* \alpha_1) \wedge_* (\alpha_1 \vee_* \beta_1) \wedge_* (\alpha_1 \vee_* \beta_1$

Lemma 11 can be obtained even with a weaker set of conditions on an ADL S compared to the conditions of an SBADL as shown in the following.

Lemma 13. If \rightarrow_* is a binary operation on an ADL $S = (S, \lor_*, \land_*, \mathfrak{u}_1)$ with the following properties:

- (1) $\mathfrak{u}_1 \rightarrow_* \alpha_1 = \alpha_1 \wedge_* \mathfrak{u}_1$
- (2) $\alpha_1 \wedge_* \mathfrak{u}_1 \leq_* ((\alpha_1 \rightarrow_* \beta_1) \rightarrow_* \beta_1) \wedge_* \mathfrak{u}_1$
- (3) $(\alpha_1 \rightarrow_* \beta_1) \wedge_* \mathfrak{u}_1 = (\alpha_1 \wedge_* \mathfrak{u}_1) \rightarrow_* (\beta_1 \wedge_* \mathfrak{u}_1),$

then $[(\gamma_1 \to_* \gamma_1) \to_* \beta_1] \land_* [(\beta_1 \to_* \gamma_1) \to_* \gamma_1] \land_* (\gamma_1 \lor_* \beta_1) \land_* \mathfrak{u}_1 = \beta_1 \land_* \mathfrak{u}_1 \text{ for } \alpha_1, \beta_1, \gamma_1 \in \mathcal{S}.$

Proof. We can obtain $(\beta_1 \rightarrow_* \beta_1) \wedge_* \mathfrak{u}_1 = \mathfrak{u}_1$ by replacing α_1 with \mathfrak{u}_1 in (2). Consider,

$$\begin{split} & [(\gamma_1 * \gamma_1) * \beta_1] \wedge_* [(\beta_1 * \gamma_1) * \gamma_1] \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \\ &= [(\gamma_1 * \gamma_1) \wedge_* \mathfrak{u}_1 * \beta_1 \wedge_* \mathfrak{u}_1] \wedge_* [(\beta_1 * \gamma_1) * \gamma_1] \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \\ &= [\mathfrak{u}_1 * \beta_1 \wedge_* \mathfrak{u}_1] \wedge_* [(\beta_1 * \gamma_1) * \gamma_1] \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \text{ (by Lemma 11)} \\ &= [\mathfrak{u}_1 * \beta_1] \wedge_* [(\beta_1 * \gamma_1) * \gamma_1] \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \\ &= \beta_1 \wedge_* \mathfrak{u}_1 \wedge_* [(\beta_1 * \gamma_1) * \gamma_1] \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \text{ (by (1))} \\ &= \beta_1 \wedge_* [(\beta_1 * \gamma_1) * \gamma_1] \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \\ &= \beta_1 \wedge_* (\gamma_1 \vee_* \beta_1) \wedge_* \mathfrak{u}_1 \text{ (by (2))} \\ &= \beta_1 \wedge_* (\beta_1 \vee_* \gamma_1) \wedge_* \mathfrak{u}_1 \\ &= \beta_1 \wedge_* \mathfrak{u}_1. \end{split}$$

Using Lemma 13, we obtain the following theorem, the source of which is similar to Theorem 12.

Theorem 14. If \rightarrow_* is a binary operation on an ADL $S = (S, \lor_*, \land_*, \mathfrak{u}_1)$ with the following properties:

- (1) $\mathfrak{u}_1 \rightarrow_* \alpha_1 = \alpha_1 \wedge_* \mathfrak{u}_1$
- (2) $\alpha_1 \wedge_* \mathfrak{u}_1 \leq_* ((x \to_* \beta_1) \to_* \beta_1) \wedge_* \mathfrak{u}_1$
- (3) $(\alpha_1 \rightarrow_* \beta_1) \wedge_* \mathfrak{u}_1 = \alpha_1 \wedge_* \mathfrak{u}_1 \rightarrow_* \beta_1 \wedge_* \mathfrak{u}_1$

for all $\alpha_1, \beta_1 \in S$. Let Con(S) be the set of all congruences on S with respect the operation \rightarrow_* , then $Con_0(S)$ is a permutable sub lattice of Con(S).

Given a filter F in S, denote $\theta_F = \{(\alpha_1, \beta_1) \in S \times S \mid \alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1 \text{ for some } \mathfrak{e}_1 \in F\}$. Now, we have the following.

Theorem 15. For any filter F on S, θ_F is a congruence on S and θ_F is the smallest congruence in S such that $F \times F \subseteq \theta_F$.

Proof. It is easy to verify that θ_F is an equivalence relation on S. Let (α_1, β_1) , $(\gamma_1, \delta_1) \in \theta_F$. Then $\alpha_1 \wedge_* \mathfrak{z}_1 = \beta_1 \wedge_* \mathfrak{z}_1$ and $\gamma_1 \wedge_* \mathfrak{z}_2 = \delta_1 \wedge_* \mathfrak{z}_2$ for some $\mathfrak{z}_1, \mathfrak{z}_2 \in F$. Since F is a filter of S, we have $\mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \in F$. Now,

$$\begin{aligned} \alpha_1 \wedge_* \gamma_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 &= \gamma_1 \wedge_* \alpha_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \\ &= \gamma_1 \wedge_* \beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \text{ (since } \alpha_1 \wedge_* \mathfrak{z}_1 = \beta_1 \wedge_* \mathfrak{z}_1) \\ &= \beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \gamma_1 \wedge_* \mathfrak{z}_2 \\ &= \beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \text{ (since } \gamma_1 \wedge_* \mathfrak{z}_2 = \delta_1 \wedge_* \mathfrak{z}_2) \\ &= \beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2. \end{aligned}$$

Also,

$$\begin{aligned} &(\alpha_1 \vee_* \gamma_1) \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \\ &= (\alpha_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) \vee_* (\gamma_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) \\ &= (\beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) \vee_* (\mathfrak{z}_1 \wedge_* \gamma_1 \wedge_* \mathfrak{z}_2) \text{ (since } \alpha_1 \wedge_* \mathfrak{z}_1 = \beta_1 \wedge_* \mathfrak{z}_1) \\ &= (\beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) \vee_* (\mathfrak{z}_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) \text{ (since } \gamma_1 \wedge_* \mathfrak{z}_2 = \delta_1 \wedge_* \mathfrak{z}_2) \\ &= (\beta_1 \wedge_* (\mathfrak{z}_1 \wedge_* \mathfrak{z}_2)) \vee_* (\delta_1 \wedge_* (\mathfrak{z}_1 \wedge_* \mathfrak{z}_2)) \\ &= (\beta_1 \vee_* \delta_1) \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \end{aligned}$$

and

 $\begin{array}{l} (\alpha_1 * \gamma_1) \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \\ = \left[(x \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) * (\gamma_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) \right] \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \text{ (by (3) of Theorem 7)} \\ = \left[(\beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) * (\mathfrak{z}_1 \wedge_* \gamma_1 \wedge_* \mathfrak{z}_2) \right] \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \text{ (since } \alpha_1 \wedge_* \mathfrak{z}_1 = \beta_1 \wedge_* \mathfrak{z}_1) \\ = \left[(\beta_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2) * (\mathfrak{z}_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2] \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \text{ (since } \gamma_1 \wedge_* \mathfrak{z}_2 = \delta_1 \wedge_* \mathfrak{z}_2) \\ = \left[(\beta_1 \wedge_* (\mathfrak{z}_1 \wedge_* \mathfrak{z}_2)) * (\delta_1 \wedge_* (\mathfrak{z}_1 \wedge_* \mathfrak{z}_2)) \right] \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \\ = (\beta_1 * \delta_1) \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2. \end{array}$

Therefore, $(\alpha_1 \wedge_* \gamma_1, \beta_1 \wedge_* \delta_1), (\alpha_1 \vee_* \gamma_1, \beta_1 \vee_* \delta_1)$ and $(\alpha_1 \rightarrow_* \gamma_1, \beta_1 \rightarrow_* \delta_1) \in \theta_F$. Hence, θ_F is a congruence relation on S. Let $\mathfrak{z}_1, \mathfrak{z}_2 \in F$. Since F is a filter of $S, \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \in F$. Since $\mathfrak{z}_1 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 = \mathfrak{z}_2 \wedge_* \mathfrak{z}_1 \wedge_* \mathfrak{z}_2$ and $\mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \in F, (\mathfrak{z}_1, \mathfrak{z}_2) \in \theta_F$. Therefore, $F \times F \subseteq \theta_F$. On the other hand, let θ be a congruence on S such that $F \times F \subseteq \theta$. Let $(\alpha_1, \beta_1) \in \theta_F$. Then $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ for some $\mathfrak{e}_1 \in F$. Since $\alpha_1 \vee_* (\beta_1 \vee_* \alpha_1)$ and $\beta_1 \vee_* (\alpha_1 \vee_* \mathfrak{e}_1) \in F$, we get that $(\alpha_1 \vee_* (\beta_1 \vee_* \mathfrak{e}_1), \mathfrak{e}_1); (\beta_1 \vee_* (\alpha_1 \vee_* \mathfrak{e}_1), \mathfrak{e}_1) \in F \times F \subseteq \theta$. Since θ is a congruence on $S, (\alpha_1 \wedge_* (\alpha_1 \vee_* (\beta_1 \vee_* \mathfrak{e}_1)), \alpha_1 \wedge_* \mathfrak{e}_1), (\beta_1 \wedge_* (\beta_1 \vee_* (\alpha_1 \vee_* \mathfrak{e}_1)), \beta_1 \wedge_* \mathfrak{e}_1) \in \theta$. Therefore, $(\alpha_1, \alpha_1 \wedge_* \mathfrak{e}_1), (\beta_1, \beta_1 \wedge_* \mathfrak{e}_1) \in \theta$. Since $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$, we get that $(\alpha_1, \beta_1) \in \theta$. Hence, $\theta_F \subseteq \theta$. Thus, θ_F is the smallest congruence on S containing $F \times F$.

Theorem 16. For any filter F of S, S/θ_F is a lattice.

Proof. Let F be a filter of S. Let $\alpha_1, \beta_1 \in S$. Since $F \neq \emptyset$, we can choose $\mathfrak{e}_1 \in F$. Then $\alpha_1 \wedge_* \beta_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \alpha_1 \wedge_* \mathfrak{e}_1$. Therefore, $(\alpha_1 \wedge_* \beta_1, \beta_1 \wedge_* \alpha_1) \in \theta_F$. Hence, $\alpha_1/\theta_F \wedge_* \beta_1/\theta_F = (\alpha_1 \wedge_* \beta_1)/\theta_F = (\beta_1 \wedge_* \alpha_1)/\theta_F = \beta_1/\theta_F \wedge_* \alpha_1/\theta_F$. Thus, S/θ_F is a lattice.

Given a filter F on S, denote $\phi_F = \{(\alpha_1, \beta_1) \in S \times S \mid \mathfrak{e}_1 \wedge_* \alpha_1 = \mathfrak{e}_1 \wedge_* \beta_1$ for some $\mathfrak{e}_1 \in F\}$. Now, we have the following.

Theorem 17. For any filter F on S, ϕ_F is a congruence on S.

Proof. It is easy to prove that ϕ_F is an equivalence relation on S. Let (α_1, β_1) , $(\gamma_1, \delta_1) \in \phi_F$. Then $\mathfrak{z}_1 \wedge_* \alpha_1 = \mathfrak{z}_1 \wedge_* \beta_1$ and $\mathfrak{z}_2 \wedge_* \gamma_1 = \mathfrak{z}_2 \wedge_* \delta_1$ for some $\mathfrak{z}_1, \mathfrak{z}_2 \in F$. Then $\mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \in F$ and

$$\begin{aligned} \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \wedge_* \alpha_1 \wedge_* \gamma_1 &= \mathfrak{z}_1 \wedge_* \alpha_1 \wedge_* \mathfrak{z}_2 \wedge_* \gamma_1 \\ &= \mathfrak{z}_1 \wedge_* \beta_1 \wedge_* \mathfrak{z}_2 \wedge_* \delta_1 \text{ (since } \mathfrak{z}_1 \wedge_* \alpha_1 = \mathfrak{z}_1 \wedge_* \beta_1) \\ &= \mathfrak{z}_1 \wedge_* \mathfrak{z}_2 \wedge_* \beta_1 \wedge_* \delta_1. \text{ (since } \mathfrak{z}_2 \wedge_* \gamma_1 = \mathfrak{z}_2 \wedge_* \delta_1). \end{aligned}$$

Also,

$$\begin{aligned} \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} (\alpha_{1} \vee_{*} \gamma_{1}) \\ &= (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \alpha_{1}) \vee_{*} (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \gamma_{1}) \\ &= (\mathfrak{z}_{2} \wedge_{*} \mathfrak{z}_{1} \wedge_{*} \alpha_{1}) \vee_{*} (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \delta_{1}) \text{ (since } \mathfrak{z}_{2} \wedge_{*} \gamma_{1} = \mathfrak{z}_{2} \wedge_{*} \delta_{1} \text{)} \\ &= (\mathfrak{z}_{2} \wedge_{*} \mathfrak{z}_{1} \wedge_{*} \gamma_{1}) \vee_{*} (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \delta_{1}) \text{ (since } \mathfrak{z}_{1} \wedge_{*} \alpha_{1} = \mathfrak{z}_{1} \wedge_{*} \beta_{1}) \\ &= ((\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2}) \wedge_{*} \beta_{1}) \vee_{*} ((\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2}) \wedge_{*} \delta_{1}) \\ &= \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} (\beta_{1} \vee_{*} \delta_{1}) \end{aligned}$$

and

$$\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} (\alpha_{1} * \gamma_{1}) \\
= \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} [(\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \alpha_{1}) * (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \gamma_{1})] \\
= \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} [(\mathfrak{z}_{2} \wedge_{*} \mathfrak{z}_{1} \wedge_{*} \alpha_{1}) * (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \gamma_{1})] \\
= \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} [(\mathfrak{z}_{2} \wedge_{*} \mathfrak{z}_{1} \wedge_{*} \beta_{1}) * (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \delta_{1})] \\
= \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} [(\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \beta_{1}) * (\mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} \delta_{1})] \\
= \mathfrak{z}_{1} \wedge_{*} \mathfrak{z}_{2} \wedge_{*} (\beta_{1} * \delta_{1}).$$

Therefore, $(\alpha_1 \wedge_* \gamma_1, \beta_1 \wedge_* \delta_1), (\alpha_1 \vee_* \gamma_1, \beta_1 \vee_* \delta_1)$ and $(\alpha_1 \rightarrow_* \gamma_1, \beta_1 \rightarrow_* \delta_1) \in \phi_F$. Thus, ϕ_F is a congruence relation on \mathcal{S} .

Theorem 18. $\phi_F \subseteq \theta_F$ for any filter F of S.

Proof. Suppose F is a filter of S. Let $(\alpha_1, \beta_1) \in \phi_F$. Then $\mathfrak{e}_1 \wedge_* \alpha_1 = \mathfrak{e}_1 \wedge_* \beta_1$ for some $\mathfrak{e}_1 \in F$. Consider,

$$\alpha_1 \wedge_* \mathfrak{e}_1 = \alpha_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_1$$

= $\mathfrak{e}_1 \wedge_* \alpha_1 \wedge_* \mathfrak{e}_1$
= $\mathfrak{e}_1 \wedge_* \beta_1 \wedge_* \mathfrak{e}_1$ (since $\mathfrak{e}_1 \wedge_* \alpha_1 = \mathfrak{e}_1 \wedge_* \beta_1$)
= $\beta_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_1$
= $\beta_1 \wedge_* \mathfrak{e}_1$.

Therefore, $(\alpha_1, \beta_1) \in \theta_F$. Thus, $\phi_F \subseteq \theta_F$.

For any filter F, θ_F may not be contained in ϕ_F . But in a lattice, $\theta_F = \phi_F$. Now, we prove the following.

Theorem 19. S is a lattice if and only if $\phi_F = \theta_F$ for all filter F of S.

Proof. If S is a lattice, then it is clear that $\phi_F = \theta_F$ for all filter F of S. On the other hand, suppose $\phi_F = \theta_F$ for all filter F of S. Let $\alpha_1, \beta_1 \in S$. Put $F = [\alpha_1)$, the filter generated by α_1 , where $[\alpha_1) = \{\mathfrak{t}_1 \lor_* \alpha_1 \mid \mathfrak{t}_1 \in S\}$. Since $(\beta_1, \beta_1 \land_* \alpha_1) \in \theta_F, (\beta_1, \beta_1 \land_* \alpha_1) \in \phi_F$. Then $(\mathfrak{t}_1 \lor_* \alpha_1) \land_* \beta_1 = (\mathfrak{t}_1 \lor_* \alpha_1) \land_* \beta_1 \land_* \alpha_1$ for some $\mathfrak{t}_1 \in S$. Therefore, $\alpha_1 \land_* (\mathfrak{t}_1 \lor_* \alpha_1) \land_* \beta_1 = \alpha_1 \land_* (\mathfrak{t}_1 \lor_* \alpha_1) \land_* \beta_1 \land_* \alpha_1$ and hence, $\alpha_1 \land_* \beta_1 = \beta_1 \land_* \alpha_1$. Thus, S is a lattice.

Corollary 20. Let S be an SBADL. Then S is a lattice if and only if for any $\alpha_1, \beta_1, \mathfrak{e}_1 \in S, \alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ implies $\mathfrak{e}_1 \wedge_* \alpha_1 = \mathfrak{e}_1 \wedge_* \beta_1$.

Theorem 21. The following are equivalent for any filter F of S.

- (1) $F \times F \subseteq \phi_F$
- (2) $\theta_F \subseteq \phi_F$
- (3) $\theta_F = \phi_F$.

Proof. Let F be a filter of S.

 $(1)\Rightarrow(2)$ By Theorem 15, θ_F is the smallest congruence on \mathcal{S} such that $F \times F \subseteq \theta_F$. Since $F \times F \subseteq \phi_F$, we get that $\theta_F \subseteq \phi_F$.

(2) \Rightarrow (3) Suppose $\theta_F \subseteq \phi_F$. By Theorem 18, we have $\phi_F \subseteq \theta_F$. Therefore, $\theta_F = \phi_F$.

(3) \Rightarrow (1) It follows from the fact that $F \times F \subseteq \theta_F$.

Theorem 22. $\theta_F = \phi_G$ implies F = G for all filters F and G of S.

Proof. Let F and G be two filters of S. Choose $\gamma_1 \in F \cap G$. Now, for any $\mathfrak{e}_1 \in S$,

$$\begin{aligned} \mathbf{\mathfrak{e}}_1 \in F \ \Rightarrow \ (\mathbf{\mathfrak{e}}_1, \gamma_1) \in F \times F \subseteq \theta_F = \phi_G \\ \Rightarrow \ \alpha_1 \wedge_* \mathbf{\mathfrak{e}}_1 = \alpha_1 \wedge_* \gamma_1 \text{ for some } \alpha_1 \in G \\ \Rightarrow \ \alpha_1 \wedge_* \mathbf{\mathfrak{e}}_1 = \alpha_1 \wedge_* \gamma_1 \in G \ (\text{since } \alpha_1, \gamma_1 \in G) \\ \Rightarrow \ \mathbf{\mathfrak{e}}_1 = (\alpha_1 \wedge_* \mathbf{\mathfrak{e}}_1) \vee_* \mathbf{\mathfrak{e}}_1 \in G. \end{aligned}$$

Therefore, $F \subseteq G$. Also, for any $\mathfrak{e}_2 \in \mathcal{S}$,

$$\begin{aligned} \mathbf{\mathfrak{e}}_{2} \in G \ \Rightarrow \ (\mathbf{\mathfrak{e}}_{2} \wedge_{*} \gamma_{1}, \gamma_{1}) \in \phi_{G} = \theta_{F} \\ \Rightarrow \ \mathbf{\mathfrak{e}}_{2} \wedge_{*} \gamma_{1} \wedge_{*} \alpha_{1} = \gamma_{1} \wedge_{*} \alpha_{1} \quad \text{for some } \alpha_{1} \in F \\ \Rightarrow \ \mathbf{\mathfrak{e}}_{2} \wedge_{*} \gamma_{1} \wedge_{*} \alpha_{1} = \gamma_{1} \wedge_{*} \alpha_{1} \in F \ (\text{since } \alpha_{1}, \gamma_{1} \in F) \\ \Rightarrow \ \mathbf{\mathfrak{e}}_{2} = \ \mathbf{\mathfrak{e}}_{2} \vee_{*} (\mathbf{\mathfrak{e}}_{2} \wedge_{*} \gamma_{1} \wedge_{*} \alpha_{1}) \in F. \end{aligned}$$

Therefore, $G \subseteq F$. Hence, F = G.

Let us recall that $\chi = \{(\alpha_1, \beta_1) \in \mathcal{S} \times \mathcal{S} \mid \alpha_1 \wedge_* \beta_1 = \beta_1 \text{ and } \beta_1 \wedge_* \alpha_1 = \alpha_1\}$ is a congruence on an ADL \mathcal{S} . It is easily observed that χ is also a congruence on an SBADL \mathcal{S} . Moreover, χ is the smallest congruence on \mathcal{S} such that \mathcal{S}/χ is a lattice. In this context, we have the following.

Theorem 23. For any filter F of S, $\chi \subseteq \theta_F$.

Proof. This follows from the fact that S/θ_F is a lattice (refer to Theorem 16).

Theorem 24. For any filter F of S, $\chi \subseteq \phi_F$ if and only if $\phi_F = \theta_F$.

Proof. Let F be a filter of S. Suppose $\chi \subseteq \theta_F$. Clearly $\phi_F \subseteq \theta_F$. Let $(\alpha_1, \beta_1) \in \theta_F$. Then $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ for some $\mathfrak{e}_1 \in F$. Since $(\alpha_1 \wedge_* \beta_1, \beta_1 \wedge_* \alpha_1) \in \chi$, $(\alpha_1 \wedge_* \beta_1, \beta_1 \wedge_* \alpha_1) \in \phi_F$. Therefore, there exists $\mathfrak{e}_2 \in F$ such that $\mathfrak{e}_2 \wedge_* \alpha_1 \wedge_* \beta_1 = \mathfrak{e}_2 \wedge_* \beta_1 \wedge_* \alpha_1$. Since F is a filter of S, $\mathfrak{e}_1 \wedge_* \mathfrak{e}_2 \in F$. Now,

 $\begin{aligned} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{2} \wedge_{*} \alpha_{1} \\ &= \mathbf{\mathfrak{e}}_{2} \wedge_{*} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \alpha_{1} \\ &= \mathbf{\mathfrak{e}}_{2} \wedge_{*} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \alpha_{1} \\ &= \mathbf{\mathfrak{e}}_{2} \wedge_{*} \beta_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \alpha_{1} (\text{since } \alpha_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} = \beta_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1}) \\ &= \mathbf{\mathfrak{e}}_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{2} \wedge_{*} \beta_{1} \wedge_{*} \alpha_{1} \\ &= \mathbf{\mathfrak{e}}_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{2} \wedge_{*} \alpha_{1} \wedge_{*} \beta_{1} (\text{since } \mathbf{\mathfrak{e}}_{2} \wedge_{*} \beta_{1} \wedge_{*} \alpha_{1} = \mathbf{\mathfrak{e}}_{2} \wedge_{*} \alpha_{1} \wedge_{*} \beta_{1}) \\ &= \mathbf{\mathfrak{e}}_{2} \wedge_{*} \alpha_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \beta_{1} (\text{since } \alpha_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} = \beta_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1}) \\ &= \mathbf{\mathfrak{e}}_{2} \wedge_{*} \beta_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} \wedge_{*} \beta_{1} (\text{since } \alpha_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1} = \beta_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{1}) \\ &= \mathbf{\mathfrak{e}}_{1} \wedge_{*} \mathbf{\mathfrak{e}}_{2} \wedge_{*} \beta_{1}. \end{aligned}$

Therefore, $(\alpha_1, \beta_1) \in \phi_F$. Hence, $\phi_F = \theta_F$.

The converse follows from Theorem 23.

Earlier we have observed that $\phi_F \subseteq \theta_F$ and $\chi \subseteq \theta_F$ for any filter F. In the fact, θ_F is the supremum of ϕ_F, χ in the lattice of congruences on S. This is proved in the following.

Theorem 25. Let F be any filter in S. Then $\theta_F = \phi_F \vee_* \chi$, the supremum of ϕ_F and χ in Con(S), where Con(S) is the lattice of all congruences on S.

Proof. Clearly, $\phi_F \lor_* \chi \subseteq \theta_F$. On the other hand, suppose $(\alpha_1, \beta_1) \in \theta_F$. Then $\alpha_1 \land_* \mathfrak{e}_1 = \beta_1 \land_* f$ for some $\mathfrak{e}_1 \in F$. Now consider the sequence $\alpha_1, \mathfrak{e}_1 \land_* \alpha_1, \alpha_1 \land_* \mathfrak{e}_1, \beta_1 \land_* \mathfrak{e}_1, \mathfrak{e}_1 \land_* \beta_1, \beta_1$. In this, any consequence pair belongs to ϕ_F or to χ . Therefore, $(\alpha_1, \beta_1) \in \phi_F \lor_* \chi$. Thus, $\theta_F = \phi_F \lor_* \chi$.

Theorem 26. Let \mathcal{M} be the set of maximal elements in \mathcal{S} . Then \mathcal{M} is a filter in \mathcal{S} , $\phi_{\mathcal{M}} = \Delta$ and $\theta_{\mathcal{M}} = \chi$.

Proof. Note that if \mathfrak{u}_1 is a maximal element and α_1 is any element, then $\mathfrak{u}_1 \vee_* \alpha_1 = \mathfrak{u}_1$ and $\alpha_1 \vee_* \mathfrak{u}_1$ is maximal. Also, if \mathfrak{u}_{1_1} and \mathfrak{u}_{1_2} are maximal elements, then so is $\mathfrak{u}_{1_1} \wedge_* \mathfrak{u}_{1_2}$. From there, it follows that \mathcal{M} is a filter of \mathcal{S} . Let $(\alpha_1, \beta_1) \in \phi_{\mathcal{M}}$. Then $\mathfrak{u}_1 \wedge_* \alpha_1 = \mathfrak{u}_1 \wedge_* \beta_1$ for some $\mathfrak{u}_1 \in \mathcal{M}$. Therefore, $\alpha_1 = \beta_1$. Hence, $\phi_{\mathcal{M}} = \Delta$. By Theorem 23, we get that $\chi \subseteq \theta_{\mathcal{M}}$. Let $(\alpha_1, \beta_1) \in \theta_{\mathcal{M}}$. Then $\alpha_1 \wedge_* \mathfrak{u}_1 = \beta_1 \wedge_* \mathfrak{u}_1$ for some $\mathfrak{u}_1 \in \mathcal{M}$. Now,

$$\alpha_1 \wedge_* \beta_1 = \alpha_1 \wedge_* \mathfrak{u}_1 \wedge_* \beta_1$$

= $\beta_1 \wedge_* \mathfrak{u}_1 \wedge_* \beta_1$ (since $\alpha_1 \wedge_* \mathfrak{u}_1 = \beta_1 \wedge_* \mathfrak{u}_1$)
= $\mathfrak{u}_1 \wedge_* \beta_1 \wedge_* \beta_1$
= β_1

and

$$\beta_1 \wedge_* \alpha_1 = \beta_1 \wedge_* \mathfrak{u}_1 \wedge_* \alpha_1$$

= $\alpha_1 \wedge_* \mathfrak{u}_1 \wedge_* \alpha_1$ (since $\beta_1 \wedge_* \mathfrak{u}_1 = \alpha_1 \wedge_* \mathfrak{u}_1$)
= $\mathfrak{u}_1 \wedge_* \alpha_1$
= α_1 .

Therefore, $(\alpha_1, \beta_1) \in \chi$. Hence, $\theta_{\mathcal{M}} = \chi$.

212

Congruences on a semi-Brouwerian almost distributive lattice 213

Theorem 26 is strengthened in the following.

Theorem 27. For any filter F of S, the following are equivalent:

(1)
$$\theta_F = \chi$$

- (2) $F = \mathcal{M}$
- (3) $\phi_F = \Delta$.

Proof. Let F be a filter of S.

 $(1)\Rightarrow(2)$ Suppose $\theta_F = \chi$. Let $\mathfrak{e}_1 \in F$. Then for any $\mathfrak{e}_2 \in S$, $\mathfrak{e}_1 \wedge_* \mathfrak{e}_2 \wedge_* \mathfrak{e}_1 = \mathfrak{e}_2 \wedge_* \mathfrak{e}_1$ and hence, $(\mathfrak{e}_1 \wedge_* \mathfrak{e}_2, \mathfrak{e}_2) \in \theta_F = \chi$. So that $\mathfrak{e}_1 \wedge_* \mathfrak{e}_2 = \mathfrak{e}_1 \wedge_* \mathfrak{e}_2 \wedge_* \mathfrak{e}_2 = \mathfrak{e}_2$. Hence, \mathfrak{e}_1 is a maximal element in S. Since all maximal elements necessarily belong to every filter, it follows that (2) holds.

 $(2) \Rightarrow (3)$ It follows from Theorem 26.

 $(3) \Rightarrow (1)$ Suppose $\phi_F = \Delta$. Clearly, $\chi \subseteq \theta_F$. Let $(\alpha_1, \beta_1) \in \theta_F$. Then $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ for some $\mathfrak{e}_1 \in F$. Now,

$$\mathfrak{e}_1 \wedge_* \alpha_1 \wedge_* \beta_1 = \alpha_1 \wedge_* \mathfrak{e}_1 \wedge_* \beta_1$$

= $\beta_1 \wedge_* \mathfrak{e}_1 \wedge_* \beta_1$ (since $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$)
= $\mathfrak{e}_1 \wedge_* \beta_1$

and

$$\begin{aligned} \mathbf{\mathfrak{e}}_1 \wedge_* \beta_1 \wedge_* \alpha_1 &= \beta_1 \wedge_* \mathbf{\mathfrak{e}}_1 \wedge_* \alpha_1 \\ &= \alpha_1 \wedge_* \mathbf{\mathfrak{e}}_1 \wedge_* \alpha_1 \text{ (since } \beta_1 \wedge_* \mathbf{\mathfrak{e}}_1 = \alpha_1 \wedge_* \mathbf{\mathfrak{e}}_1) \\ &= \mathbf{\mathfrak{e}}_1 \wedge_* \alpha_1. \end{aligned}$$

Therefore, $(\alpha_1 \wedge_* \beta_1, \beta_1), (\beta_1 \wedge_* \alpha_1, \alpha_1) \in \phi_F$. Since $\phi_F = \Delta$, we get that $\alpha_1 \wedge_* \beta_1 = \beta_1$ and $\beta_1 \wedge_* \alpha_1 = \alpha_1$. Hence, $(\alpha_1, \beta_1) \in \chi$. Thus, $\theta_F = \chi$.

Lemma 28. Given filters F and G of S, $F \subseteq G$ implies $\theta_F \subseteq \theta_G$ and $\phi_F \subseteq \phi_G$.

Proof. Let F and G be two filters of S such that $F \subseteq G$. Let $(\alpha_1, \beta_1) \in \theta_F$. Then $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ for some $\mathfrak{e}_1 \in F$. Since $F \subseteq G$, $(\alpha_1, \beta_1) \in \theta_G$. Therefore, $\theta_F \subseteq \theta_G$. Similarly, $\phi_F \subseteq \phi_G$.

Theorem 29. Given filters F and G of S, we have

- (1) $\theta_F \cap_* \theta_G = \theta_{F \cap_* G}$ and $\theta_F \circ \theta_G = \theta_{F \vee_* G}$
- (2) $\phi_F \cap_* \phi_G = \phi_{F \cap_* G}$ and $\phi_F \circ \phi_G = \phi_{F \vee_* G}$.

Proof. (1) By Lemma 28, we have $\theta_{F\cap_*G} \subseteq \theta_F \cap_* \theta_G$. Let $(\alpha_1, \beta_1) \in \theta_F \cap_* \theta_G$. Then $\alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1$ and $\alpha_1 \wedge_* \mathfrak{e}_2 = \beta_1 \wedge_* \mathfrak{e}_2$ for some $\mathfrak{e}_1 \in F$ and $\mathfrak{e}_2 \in G$. Then $\mathfrak{e}_1 \vee_* \mathfrak{e}_2 \in F \cap_* G$. Now,

$$\begin{aligned} \alpha_1 \wedge_* (\mathfrak{e}_1 \vee_* \mathfrak{e}_2) &= (\alpha_1 \wedge_* \mathfrak{e}_1) \vee_* (\alpha_1 \wedge_* \mathfrak{e}_2) \\ &= (\beta_1 \wedge_* \mathfrak{e}_1) \vee_* (\beta_1 \wedge_* \mathfrak{e}_2) \text{ (since } \alpha_1 \wedge_* \mathfrak{e}_1 = \beta_1 \wedge_* \mathfrak{e}_1 \text{)} \\ &= \beta_1 \wedge_* (\mathfrak{e}_1 \vee_* \mathfrak{e}_2). \text{ (since } \alpha_1 \wedge_* \mathfrak{e}_2 = \beta_1 \wedge_* \mathfrak{e}_2 \text{)} \end{aligned}$$

Therefore, $(\alpha_1, \beta_1) \in \theta_{F \cap G}$. Hence, $\theta_F \cap \theta_G = \theta_{F \cap *G}$. Since $F, G \subseteq F \lor_* G$ (by Lemma 28), we get that $\theta_F, \theta_G \subseteq \theta_{F \lor_* G}$. Therefore, $\theta_F \circ \theta_G \subseteq \theta_{F \lor_* G}$. On the other hand, let $(\alpha_1, \beta_1) \in \theta_{F \lor_* G}$. Then $\alpha_1 \wedge_* \mathfrak{h}_1 = \beta_1 \wedge_* \mathfrak{h}_1$ for some $\mathfrak{h}_1 \in F \lor_* G$. Then $\mathfrak{h}_1 = \mathfrak{e}_1 \wedge_* \mathfrak{e}_2$ for some $\mathfrak{e}_1 \in F$ and $\mathfrak{e}_2 \in G$. Put $\gamma_1 = (\alpha_1 \wedge_* \mathfrak{e}_2) \lor_* (\beta_1 \wedge_* \mathfrak{e}_1)$. Then

$$\gamma_1 \wedge_* \mathfrak{e}_1 = [(\alpha_1 \wedge_* \mathfrak{e}_2) \vee_* (\beta_1 \wedge_* \mathfrak{e}_1)] \wedge_* \mathfrak{e}_1$$

= $(\alpha_1 \wedge_* \mathfrak{e}_2 \wedge_* \mathfrak{e}_1) \vee_* (\beta_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_1)$
= $(\alpha_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_2 \wedge_* \mathfrak{e}_1) \vee_* (\beta_1 \wedge_* \mathfrak{e}_1)$
= $(\beta_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_2 \wedge_* \mathfrak{e}_1) \vee_* (\beta_1 \wedge_* \mathfrak{e}_1)$ (by (5) of Theorem 3)
= $((\mathfrak{e}_1 \wedge_* \mathfrak{e}_2) \wedge_* (\mathfrak{e}_2 \wedge_* \mathfrak{e}_1)) \vee_* (\mathfrak{e}_2 \wedge_* \mathfrak{e}_1)$
= $\beta_1 \wedge_* \mathfrak{e}_1$

and

$$\begin{split} \gamma_1 \wedge_* \mathfrak{e}_2 &= \left[(\alpha_1 \wedge_* \mathfrak{e}_2) \vee_* (\beta_1 \wedge_* \mathfrak{e}_1) \right] \wedge_* \mathfrak{e}_2 \\ &= (\alpha_1 \wedge_* \mathfrak{e}_2 \wedge_* \mathfrak{e}_2) \vee_* (\beta_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_2) \\ &= (\alpha_1 \wedge_* \mathfrak{e}_2) \vee_* (\alpha_1 \wedge_* \mathfrak{e}_1 \wedge_* \mathfrak{e}_2) \text{ (by (5) of Theorem 3)} \\ &= (\alpha_1 \wedge_* \mathfrak{e}_2) \vee_* \left[(\alpha_1 \wedge_* \mathfrak{e}_2) \wedge_* (\mathfrak{e}_1 \wedge_* \mathfrak{e}_2) \right] \\ &= \alpha_1 \wedge_* \mathfrak{e}_2. \end{split}$$

Therefore, $(\gamma_1, \beta_1) \in \theta_F$ and $(\alpha_1, \gamma_1) \in \theta_G$ (since $\mathfrak{e}_1 \in F$, $\mathfrak{e}_2 \in G$). Hence, $(\alpha_1, \beta_1) \in \theta_F \circ \theta_G$. Thus, $\theta_F \circ \theta_G = \theta_{F \lor *G}$. Similarly, $\phi_F \cap_* \phi_G = \phi_{F \cap *G}$ and $\phi_F \circ \phi_G = \phi_{F \lor *G}$.

Theorem 30. In S, we have the following:

- (1) $\{\theta_F \mid F \in \mathcal{F}(\mathcal{S})\}$ forms a permutable sublattice of $Con(\mathcal{S})$
- (2) $\{\phi_F \mid F \in \mathcal{F}(\mathcal{S})\}$ forms a permutable sublattice of $Con(\mathcal{S})$.

4. Conclusions

This paper extensively studied the classification of smart congruences on semi-Brouwerian almost distributive lattices as a permutable sublattice of the lattice of congruences and also extracted two different permutable sublattices of a semi-Brouwerian almost distributive lattices from the class of filters in a semi-Brouwerian almost distributive lattice. In future work, we will try to study the behaviour of an SBADL in terms of implicative filters.

Acknowledgement

This research was supported by the University of Phayao and the Thailand Science Research and Innovation Fund (Fundamental Fund 2025, Grant No. 5027/2567).

Congruences on a semi-Brouwerian almost distributive lattice 215

References

- G. Birkhoff, Lattice theory (Third edition. Amer. Math. Soc. Colloq. Publ., 25, 1979). https://doi.org/10.1090/coll/025
- [2] G. Boole, An Investigation of the Laws of Thought (Cambridge University Press, 1854).

https://doi.org/10.1017/CBO9780511693090

- S. Burris and H.P. Sankappanavar, A first course in universal algebra (Spinger-Verlag, New York, Heidelberg, Berlin, 1981). https://doi.org/10.2307/2322184
- G. Grätzer, General Lattice Theory (Birkhäuser Basel, Springer Basel AG, 1978). https://doi.org/10.1007/978-3-0348-7633-9
- [5] G.C. Rao, B. Assaye and M.V. Ratnamani, *Heyting almost distributive lattices*, Int. J. Comp. Cognition 8(3) (2010) 89–93.
- [6] G.C. Rao, M.V. Ratnamani and K.P. Shum, *Almost semi-Heyting algebras*, Southeast Asian Bull. Math. 42 (2018) 95–110.
- [7] G.C. Rao and M.V. Ratnamani, Smart congruences and weakly directly indecomposable SHADLs, Bull. Int. Math. Virtual Inst. 5 (2015) 37–45.
- [8] H.P. Sankappanavar, Semi-Heyting algebra: An abstraction from Heyting algebras (IX Congreso Monteiro, 2007) 33–66.
- [9] V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani and K.P. Shum, Semi-Brouwerian almost distributive lattices, Southeast Asian Bull. Math. 45 (2022) 849–860.
- [10] V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani, B. Ravikumar and A. Iampan, Associative types in a semi-Brouwerian almost distributive lattice with respect to the binary operation *ρ*, Int. J. Anal. Appl. **22** (2024) Article No. 13. https://doi.org/10.28924/2291-8639-22-2024-13
- M.H. Stone, A theory of representations of Boolean algebras, Trans. Am. Math. Soc. 40 (1936) 37–111. https://doi.org/10.2307/1989664
- [12] M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Časopis pro Pěstování Matematiky a Fysiky 67 (1937) 1–25. http://eudml.org/doc/27235
- [13] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. (Series A) **31** (1981) 77–91. https://doi.org/10.1017/s1446788700018498

Received 29 April 2024 Revised 27 June 2024 Accepted 28 June 2024

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/