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Abstract

This paper proves that the class of smart congruences on semi-Brouwerian
almost distributive lattices is a permutable sublattice of the lattice of con-
gruences. We also extract two different permutable sublattices of a semi-
Brouwerian almost distributive lattice from the class of filters in a semi-
Brouwerian almost distributive lattice.

1Corresponding author.

https://doi.org/10.7151/dmgaa.1462


202 S. Ramesh, V.V.V.S.S.P.S. Srikanth, M.V. Ratnamani, et al.

Keywords: Semi-Brouwerian almost distributive lattice, congruence, smart
congruence, filter.

2020 Mathematics Subject Classification: Primary: 06D20, Secondary:
06D99.

1. Introduction

The theory of lattice was developed by several mathematicians over the years,
but its modern formalization can be attributed to Birkhoff [1, 4] and others in the
early to mid-20th century. Birkhoff’s seminal work, Lattice Theory, published in
1940, provided a comprehensive treatment of the subject and laid the founda-
tion for further research. While lattices with join (∨∗) and meet (∧∗) operations
provide a general framework for studying partial orders and algebraic structures,
they may not capture certain properties of logical implication. Boolean algebras
[2], which include complementation (negation, \∗) alongside ∨∗ and ∧∗ opera-
tions, are too restrictive for some contexts. Heyting algebras [3] provide a more
flexible generalization of Boolean algebras by replacing complementation with
the implication operation ➝∗. This generalization allows Heyting algebras to
capture a broader range of logical structures and reasoning principles beyond the
classical Boolean framework. Furthermore, a new class of algebras named semi-
Heyting algebras [8] as an abstraction from Heyting algebras was introduced, and
the behaviour of closed elements and congruences were studied on them. Later,
semi-Brouwerian algebras were studied by considering only the maximal element
u1. Most authors have studied a new binary operation on distributive lattices, a
stronger condition for obtaining the desired results.

Almost distributive lattices [13] are a generalization of distributive lattices
that relaxes the requirement for the distributive property to hold universally.
They provide a flexible framework for modelling ordered structures where the
distributive property holds approximately but may have exceptions. As in lat-
tice theory, the authors first mainly focused on only two binary operations ∨∗
and ∧∗. Later on, an addition of another binary operation ➝∗ on an almost
distributive lattice gave us a new algebra named Heyting-almost distributive lat-
tices [5] and almost semi-Heyting algebras [6]. The above algebras were studied
considering the least element 0 and the maximal element u1. Later in 2022, a
few authors aimed to study algebra by considering only the maximal element
u1 strictly without the involvement of the least element 0, which gave rise to
a new algebra named semi-Browerian almost distributive lattices [9] whose idea
was taken from the concept semi-Brouwerian algebras [8] which is an abstraction
of a semi-Heyting algebra and an almost distributive lattice [13]. In this algebra,
the behaviour of principal ideals, some properties, and a few equivalent condi-
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tions were studied [9]. Later, the associativity and commutativity of the binary
operation ➝∗ were studied [10].

The set of all congruences of an almost distributive lattice is only a lattice
with the partial order ⊆ but not a distributive lattice-like in lattices. For this
reason, the idea of a smart congruence was introduced to show that the set of
all smart congruences is a sublattice of a set of all congruences and the set of all
smart congruences of an almost distributive lattice is a distributive lattice with
the partial order ⊆. Here, we try to establish a lattice isomorphism between
the lattice of all smart congruences of semi-Browerian almost distributive lattice
and the lattice of all filters of semi-Browerian almost distributive lattices, we also
show that the smart congruences are congruence permutable in a semi-Browerian
almost distributive lattice. Also for any filter F on a semi-Browerian almost
distributive lattice S, we define two congruences θF and ϕF and also show that
these classes are congruence permutable in a semi-Browerian almost distributive
lattice.

2. Preliminaries

Let us review some important results on almost distributive lattices and semi-
Brouwerian almost distributive lattices, which are often used in this paper.

Definition [13]. An almost distributive lattice (ADL) is an algebra (S,∨∗,∧∗)
of type (2, 2) with the following identities:

(1) (α1 ∨∗ β1) ∧∗ γ1 = (α1 ∧∗ γ1) ∨∗ (β1 ∧∗ γ1)

(2) α1 ∧∗ (β1 ∨∗ γ1) = (α1 ∧∗ β1) ∨∗ (α1 ∧∗ γ1)

(3) (α1 ∨∗ β1) ∧∗ β1 = β1

(4) (α1 ∨∗ β1) ∧∗ α1 = α1

(5) α1 ∨∗ (α1 ∧∗ β1) = α1

for all α1, β1, γ1 ∈ S.

Example 1 [13]. An ADL (S,∨∗,∧∗) is named as a discrete ADL if for any
α1, β1 ∈ S, α1 ∧∗ β1 = β1, α1 ∨∗ β1 = α1.

Unless otherwise specified, the term S in this section refers to an almost
distributive lattice (S,∨∗,∧∗). Given α1, β1 ∈ S, we say that α1 is less than or
equal to β1 if and only if α1 = α1 ∧∗ β1; or equivalently, α1 ∨∗ β1 = β1, and it is
denoted by α1 ≤∗ β1. Therefore, ≤∗ is a partial ordering on S. An element u1 is
considered to be maximal if there is no element α1 such that u1 < α1.

Theorem 2 [13]. The following are equivalent for any u1 ∈ S,
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(1) u1 is a maximal element

(2) u1 ∨∗ α1 = u1 for all α1 ∈ S
(3) u1 ∧∗ α1 = α1 for all α1 ∈ S.

Theorem 3 [13]. For any α1, β1, γ1 ∈ S,

(1) α1 ∨∗ β1 = α1 ⇔ α1 ∧∗ β1 = α1

(2) α1 ∨∗ β1 = β1 ⇔ α1 ∧∗ β1 = α1

(3) α1 ∧∗ β1 = β1 ∧∗ α1 = α1 whenever α1 ≤∗ β1

(4) ∧∗ is associative

(5) α1 ∧∗ β1 ∧∗ γ1 = β1 ∧∗ α1 ∧∗ γ1

(6) (α1 ∨∗ β1) ∧∗ γ1 = (β1 ∨∗ α1) ∧∗ γ1

(7) α1 ∧∗ β1 ≤∗ β1 and α1 ≤∗ α1 ∨∗ β1

(8) α1 ∧∗ α1 = α1 and α1 ∨∗ α1 = α1

(9) α1 ≤∗ γ1, β1 ≤∗ γ1 ⇒ α1 ∧∗ β1 = β1 ∧∗ α1, α1 ∨∗ β1 = β1 ∨∗ α1.

Definition [13]. A non-empty subset F of S is said to be a filter of S if it satisfies
the following:

(1) α1, β1 ∈ F ⇒ α1 ∧∗ β1 ∈ F

(2) α1 ∈ F, p1 ∈ S ⇒ p1 ∨∗ α1 ∈ F .

Theorem 4 [4]. The set F(S) of filters of S forms a distributive lattice in which
given, for any filters F1 and F2 of S, the g.l.d. and the l.u.b. of any filters F1 and
F2 of S are given respectively by F1 ∧∗ F2 = F1

⋂
∗ F2 and F1 ∨∗ F2 = {α1 ∧∗ β1 |

α1 ∈ F1 and β1 ∈ F2}.

Definition [4]. An equivalence relation θ on S is called a congruence relation if
(α1 ∧∗ γ1, β1 ∧∗ δ1) ∈ θ and (α1 ∨∗ γ1, β1 ∨∗ δ1) ∈ θ for all (α1, β1), (γ1, δ1) ∈ θ.

Theorem 5 [4]. The set Con(S) of congruences on S is a lattice, in which
given congruences θ1, θ2 ∈ Con(S), the g.l.d. and l.u.b. are θ1 ∧∗ θ2 = θ1 ∩∗
θ2 and θ1 ∨∗ θ2 = {(α1, β1) | there exists a finite sequence of elements α1 =
γ10 , γ11 , . . . , γ1n−1 = β1 ∈ S such that (γ1i , γ1i+1) ∈ θ1 ∪∗ θ2, for each 0 ≤∗ i ≤∗
n− 2}, respectively.

Definition [9]. S with a maximal element u1 is said to be a semi-Brouwerian
almost distributive lattice (SBADL) if there is a binary operation ➝∗ on S with
the following axioms:

(N1) (α1 ➝∗ α1) ∧∗ u1 = u1

(N2) α1 ∧∗ (α1 ➝ ∗β1) = α1 ∧∗ β1 ∧∗ u1

(N3) α1 ∧∗ (β1 ➝ ∗γ1) = α1 ∧∗ [(α1 ∧∗ β1) ➝ ∗(α1 ∧∗ γ1)]
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(N4) (α1 ➝ ∗β1) ∧∗ u1 = [(α1 ∧∗ u1) ➝ ∗(β1 ∧∗ u1)]

for all α1, β1, γ1 ∈ S.

Theorem 6 [9]. In an SBADL S, the following are equivalent:

(1) (α1 ➝ ∗β1) ∧∗ u1 = (β1 ➝ ∗α1) ∧∗ u1 for all α1, β1 ∈ S.
(2) (α1 ➝ ∗u1) ∧∗ u1 = α1 ∧∗ u1 for all α1 ∈ S.
(3) β1 ∧∗ (α1 ➝ ∗β1) ∧∗ u1 = α1 ∧∗ β1 ∧∗ u1 for all α1, β1 ∈ S.

Theorem 7 [9]. If S is an SBADL and α1, β1, γ1 ∈ S, then

(1) α1 ≤∗ β1 and α1 ≤∗ γ1 ⇒ α1 ∧∗ u1 ≤∗ (α1 ➝ ∗γ1) ∧∗ u1

(2) (α1 ➝∗β1) ∧∗ u1 = u1 ➝∗α1 ∧∗ u1 ≤∗ β1 ∧∗ u1

(3) (α1 ➝∗β1) ∧∗ γ1 = [(α1 ∧∗ γ1 ➝∗α1 ∧∗ γ1)] ∧∗ γ1

(4) α1 ∧∗ u1 = β1 ∧∗ u1 ⇔ (α1 ➝∗β1) ∧∗ (β1 ➝∗α1) ∧∗ u1 = u1

(5) α1 ∧∗ u1 = β1 ∧∗ u1 ⇔ (α1 ∨∗ β1 ➝∗α1 ∧∗ β1) ∧∗ u1 = u1

(6) α1 ≤∗ β1 ≤∗ γ1 ⇒ β1 ∧∗ (α1 ➝∗γ1) = β1 ∧∗ (α1 ➝∗β1)

(7) β1 ≤∗ (α1 ➝∗u1) ⇔ β1 ≤∗ (β1 ∧∗ α1) ➝∗(β1 ∧∗ u1)

(8) [α1 ➝∗(β1 ∧∗ u1)] ∧∗ u1 = u1 ⇒ β1 ∧∗ α1 = α1.

3. Congruences on an SBADL

A congruence θ on a ADL S is a smart congruence [7], if (α1 ∧∗ u1, β1 ∧∗ u1) ∈
θ implies (α1, β1) ∈ θ and the authors proved that the set Con0(S) of smart
congruences on S is a distributive lattice with the induced operations.

Now onwards, S stands for an SBADL with a maximal element u1, and F(S)
stands for the lattice of filters of S. We begin by demonstrating that the smart
congruences on an SBADL are obtained by filters based on the notion of smart
congruences.

Lemma 8. For F ∈ F(S), θ(F ) = {(α1, β1) ∈ S × S | α1 ∧∗ e1 = β1 ∧∗ e1 for
some e1 ∈ F} as a smart congruence on S and u1

θ(F ) = F .

Proof. To prove θ(F ) ∈ Con0(S), first we have to show that θ(F ) is an equiv-
alence relation, which can be obtained by considering α1, β1, γ1,∈ S such that
(α1, β1) ∈ θ(F ) implies α1∧∗ z1 = β1∧∗ z1 for some z1 ∈ F, (β1, γ1) ∈ θ(F ) implies
β1∧∗z2 = γ1∧∗z2 for some z2 ∈ F . On considering (α1, β1) ∈ θ(F ), (γ1, δ1) ∈ θ(F ).
Then α1 ∧∗ z1 = β1 ∧∗ z1 and γ1 ∧∗ z2 = δ1 ∧∗ z2 for some z1, z2 ∈ F , we can show
that θ(F ) is compatible with ∧∗,∨∗, ➝ ∗. Hence, θ(F ) ∈ Con(S). Now, if
(α1 ∧∗ u1, β1 ∧∗ u1) ∈ θ(F ) ⇒ (α1, β1) ∈ θ(F ). Hence, θ(F ) ∈ Con0(S). Fi-
nally, we prove that u1

θ(F ) = F . Let α1 ∈ u1/θ(F ) ⇒ (α1, u1) ∈ θ(F ) implies
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α1∧∗ e1 = u1∧∗ e1 = e1 for some e1 ∈ F . Since α1∧∗ e1 = e1 we get α1∨∗ e1 = α1.
Therefore, α1 ∈ F . On the other side , if α1 ∈ F, then α1 ∧∗ α1 = u1 ∧∗ α1 and
hence, α1 ∈ u1

θ(F ) = F . Thus, u1
θ(F ) = F .

By using Lemma 8 and Definition 2, we can obtain the following lemma.

Lemma 9. For F ∈ F(S) and α1, β1 ∈ S, we have

(α1, β1) ∈ θ(F ) ⇔ (α1 ➝ ∗ β1) ∧∗ (β1 ➝∗ α1) ∧∗ u1 ∈ F .

Theorem 10. Con0(S) ∼= F(S).

Proof. Define ψ : Con0(S) → F(S) by ψ(θ) = u1
θ for all θ ∈ Con0(S). It is

enough to prove that ψ is an order isomorphism. That is, ψ is surjection and
θ1 ⊆ θ2 ⇔ ψ(θ1) ⊆ ψ(θ2) for all θ1, θ2 ∈ Con0(S). First, we prove that ψ is a
surjection. Let F ∈ F (S). Then by Lemma 9, we have θ(F ) = {(α1, β1) ∈ S×S |
α1 ∧∗ e1 = β1 ∧∗ e1 for some e1 ∈ F} ∈ Con0(S) and ψ(θ(F )) = u1

θ(F ) = F . Thus,

ψ is a surjection. Now, let θ1, θ2 ∈ Con0(S) such that ψ(θ1) ⊆ ψ(θ2). That is,
u1
θ1

⊆ u1
θ2
. We prove that θ1 ⊆ θ2. Let α1, β1 ∈ S. Then

(α1, β1) ∈ θ1 ⇒ (α1 ∧∗ u1, β1 ∧∗ u1) ∈ θ1
⇒ (α1 ∧∗ u1 ∗ β1 ∧∗ u1, β1 ∧∗ m ∗ β1 ∧∗ u1) ∈ θ1
⇒ ((α1 ∗ β1) ∧∗ u1, (β1 ∗ β1) ∧∗ u1) ∈ θ1
⇒ ((α1 ∗ β1) ∧∗ u1, u1) ∈ θ1
⇒ (α1 ∗ β1) ∧∗ u1 ∈ u1

θ1
⊆ u1

θ2
⇒ ((α1 ∗ β1) ∧∗ u1, u1) ∈ θ2
⇒ (α1 ∧∗ (α1 ∗ β1) ∧∗ u1, α1 ∧∗ u1) ∈ θ2
⇒ (α1 ∧∗ β1 ∧∗ u1, α1 ∧∗ u1) ∈ θ2.

By symmetry, we get that (α1∧∗β1∧∗u1, β1∧∗u1) ∈ θ2. Therefore, (α1∧∗u1, β1∧∗
u1) ∈ θ2. Since θ2 ∈ Con0(S), we get (α1, β1) ∈ θ2. Thus, θ1 ⊆ θ2. On the other
hand, suppose θ1 ⊆ θ2 and α1 ∈ S. Then

α1 ∈ ψ(θ1) =
u1
θ1

⇒ (α1, u1) ∈ θ1 ⊆ θ2

⇒ (α1, u1) ∈ θ2
⇒ α1 ∈ u1/θ2
⇒ α1 ∈ ψ(θ2).

Therefore, ψ(θ1) ⊆ ψ(θ2). Hence, θ1 ⊆ θ2 ⇔ ψ(θ1) ⊆ ψ(θ2). Thus, Con0(S) ∼=
F(S).

Lemma 11. For α1, β1 ∈ S, [(β1 ➝∗ β1) ➝∗ α1] ∧∗ [(α1 ➝∗ β1) ➝∗ β1]∧∗ (β1∨∗
α1) ∧∗ u1 = α1 ∧∗ u1.
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Proof. Let α1, β1 ∈ S. Then

[(β1 ∗ β1) ∗ α1] ∧∗ [(α1 ∗ β1) ∗ β1] ∧∗ (β1 ∨∗ α1) ∧∗ u1
= [u1 ∗ α1] ∧∗ [(α1 ∗ β1) ∗ β1] ∧∗ (β1 ∨∗ α1) ∧∗ u1
= α1 ∧∗ (β1 ∨∗ α1) ∧∗ u1
= α1 ∧∗ u1.

Any two congruences θ1 and θ2 are said to be permutable if θ1 ◦ θ2 = θ2 ◦ θ1.
A sublattice of Con(S) is said to be a permutable sublattice if θ1 ◦ θ2 = θ2 ◦ θ1
for all θ1, θ2 in the sublattice.

Theorem 12. Con0(S) is a permutable sublattice of Con(S).

Proof. Let θ1, θ2 ∈ Con0(S) and (α1, β1) ∈ θ1 ◦ θ2. Then there exists γ1 ∈ S
such that (α1, γ1) ∈ θ1 and (γ1, β1) ∈ θ2. Since (α1, γ1) ∈ θ1, we get (γ1, α1) ∈
θ1. From this we get that the pares ((γ1 ➝∗ γ1) ➝∗ β1, (α1 ➝∗ γ1) ➝∗ β1),
((β1 ➝∗ γ1) ➝∗ γ1, (β1 ➝∗ γ1) ➝∗ α1) and ((γ1 ∨∗ β1) ∧∗ u1, (α1 ∨∗ β1) ∧∗ u1)
belong to θ1. Hence, (((γ1 ➝∗ γ1) ➝∗ β1)∧∗ ((β1 ➝∗ γ1) ➝∗ γ1)∧∗ (γ1 ∨∗ β1)∧∗
u1, ((α1 ➝∗ γ1) ➝∗ β1)∧∗ ((β1 ➝∗ γ1) ➝∗ α1)∧∗ (α1∨∗β1)∧∗u1) ∈ θ1. By Lemma
11, we get that (β1∧∗u1, ((x ➝∗ γ1) ➝∗ β1)∧∗ ((β1 ➝∗ γ1) ➝∗ α1)∧∗ (α1∨∗β1)∧∗
u1) ∈ θ1. That is, (β1, ((α1 ➝∗ γ1) ➝∗ β1)∧∗((β1 ➝∗ γ1) ➝∗ α1)∧∗(α1∨∗β1)) ∈ θ1.
Similarly, (γ1, β1) ∈ θ2, we get (((α1 ➝∗γ1) ➝∗ β1) ∧∗ ((β1 ➝∗ γ1) ➝∗ α1) ∧∗
(α1 ∨∗ β1), α1) ∈ θ2. Therefore, (β1, α1) ∈ θ1 ◦ θ2 or (α1, β1) ∈ θ2 ◦ θ1. Hence,
θ1 ◦ θ2 ⊆ θ2 ◦ θ1. Similarly, θ2 ◦ θ1 ⊆ θ1 ◦ θ2. Therefore, θ1 ◦ θ2 = θ2 ◦ θ1. Thus,
Con0(S) is congruence permutable.

Lemma 11 can be obtained even with a weaker set of conditions on an ADL
S compared to the conditions of an SBADL as shown in the following.

Lemma 13. If ➝∗ is a binary operation on an ADL S = (S,∨∗,∧∗, u1) with
the following properties:

(1) u1 ➝∗ α1 = α1 ∧∗ u1

(2) α1 ∧∗ u1 ≤∗ ((α1 ➝∗ β1) ➝∗ β1) ∧∗ u1

(3) (α1 ➝∗ β1) ∧∗ u1 = (α1 ∧∗ u1) ➝∗ (β1 ∧∗ u1),

then [(γ1 ➝∗γ1) ➝∗β1] ∧∗ [(β1 ➝∗γ1) ➝∗γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1 = β1 ∧∗ u1 for
α1, β1, γ1 ∈ S.

Proof. We can obtain (β1 ➝∗ β1) ∧∗ u1 = u1 by replacing α1 with u1 in (2).
Consider,
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[(γ1 ∗ γ1) ∗ β1] ∧∗ [(β1 ∗ γ1) ∗ γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1
= [(γ1 ∗ γ1) ∧∗ u1 ∗ β1 ∧∗ u1] ∧∗ [(β1 ∗ γ1) ∗ γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1
= [u1 ∗ β1 ∧∗ u1] ∧∗ [(β1 ∗ γ1) ∗ γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1 (by Lemma 11)
= [u1 ∗ β1] ∧∗ [(β1 ∗ γ1) ∗ γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1
= β1 ∧∗ u1 ∧∗ [(β1 ∗ γ1) ∗ γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1 (by (1))
= β1 ∧∗ [(β1 ∗ γ1) ∗ γ1] ∧∗ (γ1 ∨∗ β1) ∧∗ u1
= β1 ∧∗ (γ1 ∨∗ β1) ∧∗ u1 (by (2))
= β1 ∧∗ (β1 ∨∗ γ1) ∧∗ u1
= β1 ∧∗ u1.

Using Lemma 13, we obtain the following theorem, the source of which is
similar to Theorem 12.

Theorem 14. If ➝∗ is a binary operation on an ADL S = (S,∨∗,∧∗, u1) with
the following properties:

(1) u1 ➝∗ α1 = α1 ∧∗ u1

(2) α1 ∧∗ u1 ≤∗ ((x ➝∗ β1) ➝∗ β1) ∧∗ u1

(3) (α1 ➝∗ β1) ∧∗ u1 = α1 ∧∗ u1 ➝∗ β1 ∧∗ u1

for all α1, β1 ∈ S. Let Con(S) be the set of all congruences on S with respect the
operation ➝∗, then Con0(S) is a permutable sub lattice of Con(S).

Given a filter F in S, denote θF = {(α1, β1) ∈ S × S | α1 ∧∗ e1 = β1 ∧∗ e1 for
some e1 ∈ F}. Now, we have the following.

Theorem 15. For any filter F on S, θF is a congruence on S and θF is the
smallest congruence in S such that F × F ⊆ θF .

Proof. It is easy to verify that θF is an equivalence relation on S. Let (α1, β1),
(γ1, δ1) ∈ θF . Then α1 ∧∗ z1 = β1 ∧∗ z1 and γ1 ∧∗ z2 = δ1 ∧∗ z2 for some z1, z2 ∈ F .
Since F is a filter of S, we have z1 ∧∗ z2 ∈ F . Now,

α1 ∧∗ γ1 ∧∗ z1 ∧∗ z2 = γ1 ∧∗ α1 ∧∗ z1 ∧∗ z2
= γ1 ∧∗ β1 ∧∗ z1 ∧∗ z2 (since α1 ∧∗ z1 = β1 ∧∗ z1)
= β1 ∧∗ z1 ∧∗ γ1 ∧∗ z2
= β1 ∧∗ z1 ∧∗ δ1 ∧∗ z2 (since γ1 ∧∗ z2 = δ1 ∧∗ z2)
= β1 ∧∗ δ1 ∧∗ z1 ∧∗ z2.

Also,

(α1 ∨∗ γ1) ∧∗ z1 ∧∗ z2
= (α1 ∧∗ z1 ∧∗ z2) ∨∗ (γ1 ∧∗ z1 ∧∗ z2)
= (β1 ∧∗ z1 ∧∗ z2) ∨∗ (z1 ∧∗ γ1 ∧∗ z2) (since α1 ∧∗ z1 = β1 ∧∗ z1)
= (β1 ∧∗ z1 ∧∗ z2) ∨∗ (z1 ∧∗ δ1 ∧∗ z2) (since γ1 ∧∗ z2 = δ1 ∧∗ z2)
= (β1 ∧∗ (z1 ∧∗ z2)) ∨∗ (δ1 ∧∗ (z1 ∧∗ z2))
= (β1 ∨∗ δ1) ∧∗ z1 ∧∗ z2
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and

(α1 ∗ γ1) ∧∗ z1 ∧∗ z2
= [(x ∧∗ z1 ∧∗ z2) ∗ (γ1 ∧∗ z1 ∧∗ z2)] ∧∗ z1 ∧∗ z2 (by (3) of Theorem 7)
= [(β1 ∧∗ z1 ∧∗ z2) ∗ (z1 ∧∗ γ1 ∧∗ z2)] ∧∗ z1 ∧∗ z2 (since α1 ∧∗ z1 = β1 ∧∗ z1)
= [(β1 ∧∗ z1 ∧∗ z2) ∗ (z1 ∧∗ δ1 ∧∗ z2] ∧∗ z1 ∧∗ z2 (since γ1 ∧∗ z2 = δ1 ∧∗ z2)
= [(β1 ∧∗ (z1 ∧∗ z2)) ∗ (δ1 ∧∗ (z1 ∧∗ z2))] ∧∗ z1 ∧∗ z2
= (β1 ∗ δ1) ∧∗ z1 ∧∗ z2.

Therefore, (α1 ∧∗ γ1, β1 ∧∗ δ1), (α1 ∨∗ γ1, β1 ∨∗ δ1) and (α1 ➝∗ γ1, β1 ➝ ∗δ1) ∈ θF .
Hence, θF is a congruence relation on S. Let z1, z2 ∈ F . Since F is a filter of
S, z1 ∧∗ z2 ∈ F . Since z1 ∧∗ z1 ∧∗ z2 = z2 ∧∗ z1 ∧∗ z2 and z1 ∧∗ z2 ∈ F, (z1, z2) ∈ θF .
Therefore, F × F ⊆ θF . On the other hand, let θ be a congruence on S such
that F × F ⊆ θ. Let (α1, β1) ∈ θF . Then α1 ∧∗ e1 = β1 ∧∗ e1 for some e1 ∈ F .
Since α1 ∨∗ (β1 ∨∗ α1) and β1 ∨∗ (α1 ∨∗ e1) ∈ F , we get that (α1 ∨∗ (β1 ∨∗
e1), e1); (β1 ∨∗ (α1 ∨∗ e1), e1) ∈ F × F ⊆ θ. Since θ is a congruence on S, (α1 ∧∗
(α1 ∨∗ (β1 ∨∗ e1)), α1 ∧∗ e1), (β1 ∧∗ (β1 ∨∗ (α1 ∨∗ e1)), β1 ∧∗ e1) ∈ θ. Therefore,
(α1, α1∧∗ e1), (β1, β1∧∗ e1) ∈ θ. Since α1∧∗ e1 = β1∧∗ e1, we get that (α1, β1) ∈ θ.
Hence, θF ⊆ θ. Thus, θF is the smallest congruence on S containing F × F .

Theorem 16. For any filter F of S, S/θF is a lattice.

Proof. Let F be a filter of S. Let α1, β1 ∈ S. Since F ̸= ∅, we can choose e1 ∈ F .
Then α1 ∧∗ β1 ∧∗ e1 = β1 ∧∗ α1 ∧∗ e1. Therefore, (α1 ∧∗ β1, β1 ∧∗ α1) ∈ θF . Hence,
α1/θF ∧∗ β1/θF = (α1∧∗ β1)/θF = (β1∧∗ α1)/θF = β1/θF ∧∗ α1/θF . Thus, S/θF
is a lattice.

Given a filter F on S, denote ϕF = {(α1, β1) ∈ S × S | e1 ∧∗ α1 = e1 ∧∗ β1
for some e1 ∈ F}. Now, we have the following.

Theorem 17. For any filter F on S, ϕF is a congruence on S.
Proof. It is easy to prove that ϕF is an equivalence relation on S. Let (α1, β1),
(γ1, δ1) ∈ ϕF . Then z1∧∗α1 = z1∧∗β1 and z2∧∗ γ1 = z2∧∗ δ1 for some z1, z2 ∈ F .
Then z1 ∧∗ z2 ∈ F and

z1 ∧∗ z2 ∧∗ α1 ∧∗ γ1 = z1 ∧∗ α1 ∧∗ z2 ∧∗ γ1
= z1 ∧∗ β1 ∧∗ z2 ∧∗ δ1 (since z1 ∧∗ α1 = z1 ∧∗ β1)
= z1 ∧∗ z2 ∧∗ β1 ∧∗ δ1. (since z2 ∧∗ γ1 = z2 ∧∗ δ1).

Also,

z1 ∧∗ z2 ∧∗ (α1 ∨∗ γ1)
= (z1 ∧∗ z2 ∧∗ α1) ∨∗ (z1 ∧∗ z2 ∧∗ γ1)
= (z2 ∧∗ z1 ∧∗ α1) ∨∗ (z1 ∧∗ z2 ∧∗ δ1) (since z2 ∧∗ γ1 = z2 ∧∗ δ1 )
= (z2 ∧∗ z1 ∧∗ γ1) ∨∗ (z1 ∧∗ z2 ∧∗ δ1) (since z1 ∧∗ α1 = z1 ∧∗ β1)
= ((z1 ∧∗ z2) ∧∗ β1) ∨∗ ((z1 ∧∗ z2) ∧∗ δ1)
= z1 ∧∗ z2 ∧∗ (β1 ∨∗ δ1)
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and
z1 ∧∗ z2 ∧∗ (α1 ∗ γ1)
= z1 ∧∗ z2 ∧∗ [(z1 ∧∗ z2 ∧∗ α1) ∗ (z1 ∧∗ z2 ∧∗ γ1)]
= z1 ∧∗ z2 ∧∗ [(z2 ∧∗ z1 ∧∗ α1) ∗ (z1 ∧∗ z2 ∧∗ γ1)]
= z1 ∧∗ z2 ∧∗ [(z2 ∧∗ z1 ∧∗ β1) ∗ (z1 ∧∗ z2 ∧∗ δ1)]
= z1 ∧∗ z2 ∧∗ [(z1 ∧∗ z2 ∧∗ β1) ∗ (z1 ∧∗ z2 ∧∗ δ1)]
= z1 ∧∗ z2 ∧∗ (β1 ∗ δ1).

Therefore, (α1∧∗ γ1, β1∧∗ δ1), (α1∨∗ γ1, β1∨∗ δ1) and (α1 ➝∗ γ1, β1 ➝∗ δ1) ∈ ϕF .
Thus, ϕF is a congruence relation on S.

Theorem 18. ϕF ⊆ θF for any filter F of S.

Proof. Suppose F is a filter of S. Let (α1, β1) ∈ ϕF . Then e1 ∧∗ α1 = e1 ∧∗ β1
for some e1 ∈ F . Consider,

α1 ∧∗ e1 = α1 ∧∗ e1 ∧∗ e1
= e1 ∧∗ α1 ∧∗ e1
= e1 ∧∗ β1 ∧∗ e1 (since e1 ∧∗ α1 = e1 ∧∗ β1)
= β1 ∧∗ e1 ∧∗ e1
= β1 ∧∗ e1.

Therefore, (α1, β1) ∈ θF . Thus, ϕF ⊆ θF .

For any filter F , θF may not be contained in ϕF . But in a lattice, θF = ϕF .
Now, we prove the following.

Theorem 19. S is a lattice if and only if ϕF = θF for all filter F of S.

Proof. If S is a lattice, then it is clear that ϕF = θF for all filter F of S. On
the other hand, suppose ϕF = θF for all filter F of S. Let α1, β1 ∈ S. Put
F = [α1), the filter generated by α1, where [α1) = {t1 ∨∗ α1 | t1 ∈ S}. Since
(β1, β1∧∗α1) ∈ θF , (β1, β1∧∗α1) ∈ ϕF . Then (t1∨∗α1)∧∗β1 = (t1∨∗α1)∧∗β1∧∗α1

for some t1 ∈ S. Therefore, α1 ∧∗ (t1 ∨∗ α1) ∧∗ β1 = α1 ∧∗ (t1 ∨∗ α1) ∧∗ β1 ∧∗ α1

and hence, α1 ∧∗ β1 = β1 ∧∗ α1. Thus, S is a lattice.

Corollary 20. Let S be an SBADL. Then S is a lattice if and only if for any
α1, β1, e1 ∈ S, α1 ∧∗ e1 = β1 ∧∗ e1 implies e1 ∧∗ α1 = e1 ∧∗ β1.

Theorem 21. The following are equivalent for any filter F of S.

(1) F × F ⊆ ϕF

(2) θF ⊆ ϕF

(3) θF = ϕF .
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Proof. Let F be a filter of S.

(1)⇒(2) By Theorem 15, θF is the smallest congruence on S such that F×F ⊆
θF . Since F × F ⊆ ϕF , we get that θF ⊆ ϕF .

(2)⇒(3) Suppose θF ⊆ ϕF . By Theorem 18, we have ϕF ⊆ θF . Therefore,
θF = ϕF .

(3)⇒(1) It follows from the fact that F × F ⊆ θF .

Theorem 22. θF = ϕG implies F = G for all filters F and G of S.

Proof. Let F and G be two filters of S. Choose γ1 ∈ F ∩G. Now, for any e1 ∈ S,

e1 ∈ F ⇒ (e1, γ1) ∈ F × F ⊆ θF = ϕG

⇒ α1 ∧∗ e1 = α1 ∧∗ γ1 for some α1 ∈ G
⇒ α1 ∧∗ e1 = α1 ∧∗ γ1 ∈ G (since α1, γ1 ∈ G)
⇒ e1 = (α1 ∧∗ e1) ∨∗ e1 ∈ G.

Therefore, F ⊆ G. Also, for any e2 ∈ S,

e2 ∈ G ⇒ (e2 ∧∗ γ1, γ1) ∈ ϕG = θF
⇒ e2 ∧∗ γ1 ∧∗ α1 = γ1 ∧∗ α1 for some α1 ∈ F
⇒ e2 ∧∗ γ1 ∧∗ α1 = γ1 ∧∗ α1 ∈ F (since α1, γ1 ∈ F )
⇒ e2 = e2 ∨∗ (e2 ∧∗ γ1 ∧∗ α1) ∈ F.

Therefore, G ⊆ F . Hence, F = G.

Let us recall that χ = {(α1, β1) ∈ S × S | α1 ∧∗ β1 = β1 and β1 ∧∗ α1 = α1}
is a congruence on an ADL S. It is easily observed that χ is also a congruence
on an SBADL S. Moreover, χ is the smallest congruence on S such that S/χ is
a lattice. In this context, we have the following.

Theorem 23. For any filter F of S, χ ⊆ θF .

Proof. This follows from the fact that S/θF is a lattice (refer to Theorem 16).

Theorem 24. For any filter F of S, χ ⊆ ϕF if and only if ϕF = θF .

Proof. Let F be a filter of S. Suppose χ ⊆ θF . Clearly ϕF ⊆ θF . Let (α1, β1) ∈
θF . Then α1 ∧∗ e1 = β1 ∧∗ e1 for some e1 ∈ F . Since (α1 ∧∗ β1, β1 ∧∗ α1) ∈ χ,
(α1∧∗β1, β1∧∗α1) ∈ ϕF . Therefore, there exists e2 ∈ F such that e2∧∗α1∧∗β1 =
e2 ∧∗ β1 ∧∗ α1. Since F is a filter of S, e1 ∧∗ e2 ∈ F . Now,
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e1 ∧∗ e2 ∧∗ α1

= e2 ∧∗ e1 ∧∗ α1

= e2 ∧∗ α1 ∧∗ e1 ∧∗ α1

= e2 ∧∗ β1 ∧∗ e1 ∧∗ α1 (since α1 ∧∗ e1 = β1 ∧∗ e1)
= e1 ∧∗ e2 ∧∗ β1 ∧∗ α1

= e1 ∧∗ e2 ∧∗ α1 ∧∗ β1 (since e2 ∧∗ β1 ∧∗ α1 = e2 ∧∗ α1 ∧∗ β1)
= e2 ∧∗ α1 ∧∗ e1 ∧∗ y
= e2 ∧∗ β1 ∧∗ e1 ∧∗ β1 (since α1 ∧∗ e1 = β1 ∧∗ e1)
= e1 ∧∗ e2 ∧∗ β1.

Therefore, (α1, β1) ∈ ϕF . Hence, ϕF = θF .
The converse follows from Theorem 23.

Earlier we have observed that ϕF ⊆ θF and χ ⊆ θF for any filter F . In the
fact, θF is the supremum of ϕF , χ in the lattice of congruences on S. This is
proved in the following.

Theorem 25. Let F be any filter in S. Then θF = ϕF ∨∗ χ, the supremum of
ϕF and χ in Con(S), where Con(S) is the lattice of all congruences on S.

Proof. Clearly, ϕF ∨∗ χ ⊆ θF . On the other hand, suppose (α1, β1) ∈ θF . Then
α1 ∧∗ e1 = β1 ∧∗ f for some e1 ∈ F . Now consider the sequence α1, e1 ∧∗ α1, α1 ∧∗
e1, β1 ∧∗ e1, e1 ∧∗ β1, β1. In this, any consequence pair belongs to ϕF or to χ.
Therefore, (α1, β1) ∈ ϕF ∨∗ χ. Thus, θF = ϕF ∨∗ χ.

Theorem 26. Let M be the set of maximal elements in S. Then M is a filter
in S, ϕM = ∆ and θM = χ.

Proof. Note that if u1 is a maximal element and α1 is any element, then u1 ∨∗
α1 = u1 and α1∨∗ u1 is maximal. Also, if u11 and u12 are maximal elements, then
so is u11 ∧∗ u12 . From there, it follows that M is a filter of S. Let (α1, β1) ∈ ϕM .
Then u1∧∗ α1 = u1∧∗ β1 for some u1 ∈ M. Therefore, α1 = β1. Hence, ϕM = ∆.
By Theorem 23, we get that χ ⊆ θM . Let (α1, β1) ∈ θM . Then α1∧∗u1 = β1∧∗u1
for some u1 ∈ M. Now,

α1 ∧∗ β1 = α1 ∧∗ u1 ∧∗ β1
= β1 ∧∗ u1 ∧∗ β1 (since α1 ∧∗ u1 = β1 ∧∗ u1)
= u1 ∧∗ β1 ∧∗ β1
= β1

and
β1 ∧∗ α1 = β1 ∧∗ u1 ∧∗ α1

= α1 ∧∗ u1 ∧∗ α1 (since β1 ∧∗ u1 = α1 ∧∗ u1)
= u1 ∧∗ α1

= α1.

Therefore, (α1, β1) ∈ χ. Hence, θM = χ.
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Theorem 26 is strengthened in the following.

Theorem 27. For any filter F of S, the following are equivalent:

(1) θF = χ

(2) F = M
(3) ϕF = ∆.

Proof. Let F be a filter of S.
(1)⇒(2) Suppose θF = χ. Let e1 ∈ F . Then for any e2 ∈ S, e1 ∧∗ e2 ∧∗ e1 =

e2 ∧∗ e1 and hence, (e1 ∧∗ e2, e2) ∈ θF = χ. So that e1 ∧∗ e2 = e1 ∧∗ e2 ∧∗ e2 = e2.
Hence, e1 is a maximal element in S. Since all maximal elements necessarily
belong to every filter, it follows that (2) holds.

(2)⇒(3) It follows from Theorem 26.

(3)⇒(1) Suppose ϕF = ∆. Clearly, χ ⊆ θF . Let (α1, β1) ∈ θF . Then
α1 ∧∗ e1 = β1 ∧∗ e1 for some e1 ∈ F . Now,

e1 ∧∗ α1 ∧∗ β1 = α1 ∧∗ e1 ∧∗ β1
= β1 ∧∗ e1 ∧∗ β1 (since α1 ∧∗ e1 = β1 ∧∗ e1)
= e1 ∧∗ β1

and
e1 ∧∗ β1 ∧∗ α1 = β1 ∧∗ e1 ∧∗ α1

= α1 ∧∗ e1 ∧∗ α1 (since β1 ∧∗ e1 = α1 ∧∗ e1)
= e1 ∧∗ α1.

Therefore, (α1∧∗β1, β1), (β1∧∗α1, α1) ∈ ϕF . Since ϕF = ∆, we get that α1∧∗β1 =
β1 and β1 ∧∗ α1 = α1. Hence, (α1, β1) ∈ χ. Thus, θF = χ.

Lemma 28. Given filters F and G of S, F ⊆ G implies θF ⊆ θG and ϕF ⊆ ϕG.

Proof. Let F and G be two filters of S such that F ⊆ G. Let (α1, β1) ∈ θF .
Then α1∧∗ e1 = β1∧∗ e1 for some e1 ∈ F . Since F ⊆ G, (α1, β1) ∈ θG . Therefore,
θF ⊆ θG . Similarly, ϕF ⊆ ϕG .

Theorem 29. Given filters F and G of S, we have

(1) θF ∩∗ θG = θF∩∗G and θF ◦ θG = θF∨∗G

(2) ϕF ∩∗ ϕG = ϕF∩∗G and ϕF ◦ ϕG = ϕF∨∗G.

Proof. (1) By Lemma 28, we have θF∩∗G ⊆ θF ∩∗ θG . Let (α1, β1) ∈ θF ∩∗ θG .
Then α1 ∧∗ e1 = β1 ∧∗ e1 and α1 ∧∗ e2 = β1 ∧∗ e2 for some e1 ∈ F and e2 ∈ G.
Then e1 ∨∗ e2 ∈ F ∩∗ G. Now,

α1 ∧∗ (e1 ∨∗ e2) = (α1 ∧∗ e1) ∨∗ (α1 ∧∗ e2)
= (β1 ∧∗ e1) ∨∗ (β1 ∧∗ e2) (since α1 ∧∗ e1 = β1 ∧∗ e1 )
= β1 ∧∗ (e1 ∨∗ e2). (since α1 ∧∗ e2 = β1 ∧∗ e2 )
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Therefore, (α1, β1) ∈ θF∩G . Hence, θF ∩ θG = θF∩∗G . Since F,G ⊆ F ∨∗ G (by
Lemma 28), we get that θF , θG ⊆ θF∨∗G . Therefore, θF ◦ θG ⊆ θF∨∗G . On the
other hand, let (α1, β1) ∈ θF∨∗G . Then α1 ∧∗ h1 = β1 ∧∗ h1 for some h1 ∈ F ∨∗G.
Then h1 = e1 ∧∗ e2 for some e1 ∈ F and e2 ∈ G. Put γ1 = (α1 ∧∗ e2)∨∗ (β1 ∧∗ e1).
Then

γ1 ∧∗ e1 = [(α1 ∧∗ e2) ∨∗ (β1 ∧∗ e1)] ∧∗ e1
= (α1 ∧∗ e2 ∧∗ e1) ∨∗ (β1 ∧∗ e1 ∧∗ e1)
= (α1 ∧∗ e1 ∧∗ e2 ∧∗ e1) ∨∗ (β1 ∧∗ e1)
= (β1 ∧∗ e1 ∧∗ e2 ∧∗ e1) ∨∗ (β1 ∧∗ e1) (by (5) of Theorem 3)
= ((e1 ∧∗ e2) ∧∗ (e2 ∧∗ e1)) ∨∗ (e2 ∧∗ e1)
= β1 ∧∗ e1

and

γ1 ∧∗ e2 = [(α1 ∧∗ e2) ∨∗ (β1 ∧∗ e1)] ∧∗ e2
= (α1 ∧∗ e2 ∧∗ e2) ∨∗ (β1 ∧∗ e1 ∧∗ e2)
= (α1 ∧∗ e2) ∨∗ (α1 ∧∗ e1 ∧∗ e2) (by (5) of Theorem 3)
= (α1 ∧∗ e2) ∨∗ [(α1 ∧∗ e2) ∧∗ (e1 ∧∗ e2)]
= α1 ∧∗ e2.

Therefore, (γ1, β1) ∈ θF and (α1, γ1) ∈ θG (since e1 ∈ F, e2 ∈ G). Hence,
(α1, β1) ∈ θF ◦ θG . Thus, θF ◦ θG = θF∨∗G . Similarly, ϕF ∩∗ ϕG = ϕF∩∗G and
ϕF ◦ ϕG = ϕF∨∗G .

Theorem 30. In S, we have the following:

(1) {θF | F ∈ F(S)} forms a permutable sublattice of Con(S)
(2) {ϕF | F ∈ F(S)} forms a permutable sublattice of Con(S).

4. Conclusions

This paper extensively studied the classification of smart congruences on semi-
Brouwerian almost distributive lattices as a permutable sublattice of the lat-
tice of congruences and also extracted two different permutable sublattices of a
semi-Brouwerian almost distributive lattices from the class of filters in a semi-
Brouwerian almost distributive lattice. In future work, we will try to study the
behaviour of an SBADL in terms of implicative filters.
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