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Abstract

We present sufficient conditions for the existence of matchings in abelian
groups and their linear counterparts. These conditions lead to extensions of
existing results in matching theory. Additionally, we classify subsets within
abelian groups that cannot be matched. We introduce the concept of Chowla
subspaces and formulate and conjecture a linear analogue of a result orig-
inally attributed to Hamidoune [21] concerning Chowla subsets. If proven
true, this result would extend matchings in primitive subspaces. Throughout
the paper, we emphasize the analogy between matchings in abelian groups
and field extensions. We also pose numerous open questions for future re-
search. Our approach relies on classical theorems in group theory, additive
number theory and linear algebra. As the title of the paper suggests, this
work is the second sequel to a previous paper [5] with a similar theme. The
paper is self-contained and can be read independently.
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1. Introduction

Let A and B be finite subsets of the multiplicative abelian group G with the
same cardinality. A matching from A to B is a bijection f : A → B such that
af(a) /∈ A, for every a ∈ A. In this case, we say A is matched (or matchable)
to B. The notion of matchings in abelian groups was initially introduced in
[18] in order to generalize a geometric property of lattices in Euclidean space.
Their goal was to demonstrate that a suitably selected fixed set of monomials,
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if sufficiently small, could be removed from a generic homogeneous polynomial
through a suitable linear change of coordinates. The inquiry into sets of removable
monomials from generic homogeneous polynomials via linear transformations has
historical origins dating back to [30]. Matchings have been extensively studied in
the context of abelian groups [7, 26] as well as in arbitrary group settings [16].
The linear version of matchings is introduced in [17] and further investigated in
[2, 4]. A matroidal analogue of matchings is introduced and explored in [6]. For
enumerative aspects of matchings, see [21]. There are still many fascinating open
problems in this area. This paper continues to study some problems motivated
in [2, 5].

Evidently, it is necessary for the existence of a matching from A to B that
|A| = |B| and that e /∈ B (here e denotes the neutral element of G). One says
that a group G possesses the matching property if these necessary conditions are
sufficient as well. It is shown in [26] that an abelian group satisfies the matching
property if and only if it is either torsion-free or cyclic of prime order. In [2], it
is observed that the existence of a nontrivial proper finite subgroup serves as an
obstruction to the matching property in general abelian groups. In particular,
the following result is established in [2].

Theorem 1. Let G be an abelian group and A be a finite subset of G which does

not contain any coset of any proper nontrivial finite subgroup of G. Then for

every finite subset B of G with |A| = |B| and e /∈ B, there is a matching from A
to B.

Theorem 1 was primarily established using methods from additive number
theory and combinatorics. Specifically, it relied on Kneser’s addition theorem
(Theorem 8) in conjunction with Hall’s Marriage Theorem. These theorems
served as the key components in the classification of the matching property. Ini-
tially, they were employed in [26] and later adapted in [2] to prove Theorem 1.

In this paper, we first present additional sufficient conditions for the existence
of matchings in abelian groups, wherein structures from additive number theory,
such as Kemperman’s structure theorem and Sidon subsets play prominent roles.
In continuation of Theorem 1.1 in [5], where unmatchable subsets in the group
setting are addressed. Our main results concerning matchable subsets appear
as Theorems 2 and 3. All the necessary definitions and concepts from additive
number theory are provided in Section 2. Note that in Theorem 2, p(G) stands
for the smallest cardinality of a nontrivial subgroup of G. If G is finite, then p(G)
equals the smallest prime divisor of |G|. On the other hand, p(G) = ∞ if and
only if G is torsion free.

Theorem 2. Let G be any abelian group, A and B be finite subsets of G with

the same cardinality n and e /∈ B. Assume further that one of the following

conditions holds:
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1. B ∩H = ∅, for every proper finite subgroup H of G.

2. A and B are not contained in a union of l cosets of any nontrivial proper

finite subgroup of G and l ≥ n− 1.

3. A and B are not contained in a union of l cosets of any nontrivial proper

finite subgroup of G, l ≥ n − 2, |{an|a ∈ A}| > 2 and B has at least two

elements whose orders are greater than n.

4. p(G) = n, and A is not a coset of any nontrivial subgroup of G.

5. A is a Sidon subset.

6. The order of every element of B is greater than or equal to n and A is not a

progression.

7. For every nontrivial finite subgroup H of G and elements a, b ∈ G, |aH ∩
A|+ |bH ∩B| < |H|+ 1.

Then A is matched to B.

In the following theorem, we establish that if A is not matched to B, then
certain additive number-theoretical structures must exist within A.

Theorem 3. Let A be a nonempty finite subset of an abelian group G. Assume

that there exists a subset B of G with |B| = |A| and e /∈ B so that A is not

matched to B. Then one of the following conditions holds:

(i) A contains a progression;

(ii) A contains a quasi-periodic subset.

We now turn our attention to linear matchings. Given a field extension
K ⊂ L, an analogous notion of matchings between two K-subspaces of L is
introduced and developed in [17].

Definition. Let A and B be two n-dimensional K-subspaces of L. An ordered
basisA = {a1, . . . , an} of A is said to bematched to ordered basis B = {b1, . . . , bn}
of B if

a−1

i A ∩B ⊂ 〈b1, . . . , bi−1, bi+1, . . . , bn〉,(1)

for each 1 ≤ i ≤ n, where 〈b1, . . . , bi−1, bi+1, . . . , bn〉 stands for the subspace of B
spanned {b1, . . . , bi−1, bi+1, . . . , bn}. We say A is matched to B (or A is matchable

to B) if every ordered basis A of A can be matched to an ordered basis B of B.

Note that if (1) is the case, then no aibi lie in A and thus ai 7→ bi defined
a matching A → B in the multiplicative group L∗ in the group setting. It is
established in [17] that A = {a1, . . . , an} is matched to a basis of B if and only
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if the following dimension criteria hold for every J ⊂ {1, . . . , n}

dimK

⋂

i∈J

(

a−1

i A ∩B
)

≤ n− |J |.

In particular, setting J = {1, . . . , n}, the subspace
⋂k
i=1

(

a−1

i A ∩B
)

must be
trivial which cannot occur if 1 ∈ B. Having said this, the linear analogue of the
matching property is defined as follows.

Definition. A field extension K ⊂ L is said to have the linear matching property

if for every finite-dimensional K-subspaces A and B of L with dimK A = dimK B
and 1 /∈ B, A is matched to B.

Similar to the group setting it is proved in [17] that K ⊂ L possesses the
linear matching property if and only if there are no nontrivial finite intermediate
extension K ⊂ M ⊂ L. So the existence of nontrivial finite intermediate ex-
tensions is an obstruction for the linear matching property. This observation is
formally stated and proven in [2] as follows.

Theorem 4. Let K ⊂ L be a field extension and A be an n-dimensional subspace

of L which does not contain any linear translate of a nontrivial finite dimensional

subfield of L. Then A is matched to any n-dimensional K-subspace of L provided

1 /∈ B.

Remark 5. Notice that if K ⊂ L is a field extension, M is an intermediate
subfield, and l ∈ L∗, a linear translate of M is a K-subspace of the form lM .

The proof of Theorem 4 is essentially based on the adaptation of methods
employed in [17] from the theory of matroids, specifically Rado’s Theorem [29],
and a linear version of Kneser’s theorem (Theorem 8).

In continuation of Theorem 1.4 in [5], where in the linear settings, a sufficient
condition for unmatchable subspaces is addressed, we come up with sufficient
conditions for the existence of matchable subspaces, similar to Theorem 2 in the
group setting. Likewise, certain linear structures of subspaces, such as Sidon
subspaces, are leveraged in our results. Note that all necessary definitions are
presented in Section 2. In Theorem 6, we assume that p(K,L) denotes the small-
est degree of an intermediate field extension K ( M ⊂ L. Thus p(K,L) ≥ 2,
and p(K,L) = ∞ if the extension is purely transcendental. All other necessary
definitions concerning Theorem 6 and 7 are provided in Section 2. It is worth
mentioning that Theorem 6 parts (1), (2), (3) may be seen as a linear analogue
of Theorem 2 parts (1), (4) and (5), respectively.

Theorem 6. Let K ⊂ L be a field extension. Let A and B be two n-dimensional

K-subspaces in L with 1 /∈ B and n > 1. Assume further that one of the following

conditions holds:
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1. B ∩M = {0}, for every finite dimensional intermediate field K ⊂ M ( L,
and either n ≤ 5 or every algebraic element of L is separable over K.

2. n = p(K,L) and A is not a linear translate of any nontrivial intermediate

field K ⊂M ( L.

3. A is a Sidon subspace.

Then A is matched to B.

The following is one of our primary results, wherein unmatchable subspaces
are characterized by utilizing the linear structure of subspace B. Note that it
may be seen as a linear version of Theorem 3.

Theorem 7. Let K ⊂ L be a field extension. Let A be an n-dimensional K-

subspace of L. Assume that there exists an n-dimensional K-subspace B with

1 /∈ B so that A is not matched to B. Then B ⊕ K contains a subspace whose

1-atom is a nontrivial intermediate field K (M ⊂ L.

Organization of the paper. Section 2 encompasses all the necessary concepts
and results drawn from additive number theory, matching theory, and their linear
counterparts. These notions and results serve as the foundation for the proofs
presented in our work. Section 3 is dedicated to presenting the proofs of our
main results, specifically those related to matchings within the context of abelian
groups. Section 4 is focused on providing the proofs related to linear matchings.
Finally, in Section 5, we present two conjectures concerning linear matchings. We
first explore the possibility of a linear counterpart to a result we have previously
proven in the context of matchings within groups (Theorem 2 part (7)). Next, we
introduce the concept of Chowla subspaces as a linear analogue of Chowla subsets,
and we conjecture whether a similar result to matchings in Chowla subsets can
be extended to matchings in Chowla subspaces.

2. Preliminaries

2.1. Abelian additive theory

We commence this section by providing definitions and presenting a few results
from additive number theory, along with cardinal criteria for matchable sets.
Given an abelian group G and nonempty subsets A, B of G, we define their
product as

AB = {ab | a ∈ A, b ∈ B}.
The subset A ⊂ G is called a Sidon subset if all pairwise products of its elements
are distinct. That is, the equation ab = cd has only the trivial solution {a, b} =
{c, d} in A. A nonempty subset A of G, not containing 1, is called a Chowla subset
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if the order of every element of A is ≥ |A|+1. A progression of length k, intitial
term a with common ratio d is a subset of G of the form {a, ad, ad2, . . . , adk−1}.
Let H be a nontrivial subgroup of G. The subset A ⊂ G is called H-periodic

if it can be expressed as the union of some H-cosets. If A is H-periodic, every
element a ∈ AH \A is called an H-hole and thus the number of H-holes in A in
view of Proposition 4.1(v) in [19] is

|AH| − |A| = |AH \ A|.
A quasi-periodic decomposition of A with quasi-period H is a partition A =

A1 ∪ A0 of A into two disjoint (two possibly empty) subsets such that A1 is H-
periodic or an H-coset. A set A ⊂ G is quasi-periodic if A has a quasi-periodic
decomposition A = A1 ∪A0 with A1 nonempty.

The objective of this subsection is to introduce and elucidate one of the
most fundamental theorems in Inverse Additive Theory: Kneser’s Theorem, along
with its numerous variants, extensions, and consequences. There exist several
equivalent ways to present Kneser’s Theorem. We begin with the following form
of this theorem from [27, p. 115]. See [19] for further discussion about Kneser’s
Theorem.

Theorem 8 (Kneser’s Theorem). Let G be an abelian group and A and B be

nonempty subsets of G. Then

|AB| ≥ |A|+ |B| − |H|,
where H is the stabilizer of AB, i.e.,

H = {x ∈ G | xAB ⊂ AB}.
Theorem 8 has the following equivalent formulation whose proof shall be

found in [27].

Theorem 9. Let G,A and B be as in Theorem 8. If |AB| < |A|+ |B| − 1, then

|AB| ≥ |AH|+ |BH| − |H|,
where HAB = AB.

The following result will be used in the proof of Theorem 2 part (7). It
is a consequence of Kneser’s Theorem together with the Pigeonhole bounds for
product sets.

Proposition 10. Let G be an abelian group and A and B be nonempty finite

subsets of G. Assume that for every nontrivial finite subgroup H of G and all

elements a, b ∈ G, we have

|aH ∩A|+ |bH ∩B| ≤ |H|+ 1.

Then for all nonempty subsets S ⊂ A and T ⊂ B, we have |ST | ≥ |S|+ |T | − 1.
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Proof. Assume to the contrary, there exist subsets S ⊂ A, T ⊂ B such that

|ST | < |S|+ |T | − 1.(2)

Applying Kneser’s Theorem to S and T , we have

|ST | ≥ |SH|+ |TH| − |H|,(3)

where HST = ST .

Combining (2) and (3) together with the fact that |SH \S| = |SH|− |S| and
TH \ T | = |TH| − |T | we arrive at the following

|SH \ S|+ |TH \ T | ≤ |H| − 2.(4)

It follows from (4) that there are at most |H|−2 H-holes, namely, elements from
HA \A or HB \B. Take a ∈ S and b ∈ T . Since S ⊂ A and T ⊂ B, so

|aH ∩A|+ |bH ∩B| ≥ |aH ∩ S|+ |bH ∩ T |
≥ 2|H| − (total number of H-holes)

≥ 2|H| − (|H| − 2) = |H|+ 2,

contradicting our assumptions on A and B.

The following theorem [10] is a stronger form of Kneser’s addition theorem
in the sense that in Kneser’s Theorem, the subgroup that stabilizes AB appears
to depend on both sets A and B, but in the following theorem, the stabilizer
actually may be seen to depend only on A.

Theorem 11. Let G be an abelian group, and let A ⊂ G be a finite subset of G.
Then

• either for every finite subset B of G, we have

|AB| ≥ |A|+ |B| − 1,

• or there exists a subgroup H 6= {e} of G such that, for every finite subset B
of G satisfying

|AB| < |A|+ |B| − 1,

we have HAB = AB.

The following result from [13] characterizes relatively large product sets. Es-
sentially, it serves as a generalization of the Cauchy-Davenport Theorem [11, 15]
and Chowla’s Theorem [12] in the context of abelian groups.
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Theorem 12. Let G be an abelian group and A be a finite subset of G containing

the neutral element e. Suppose that for every proper subgroup H of G we have

A ∩H = {e}. Then for any finite subset S of G, we have

|AS| ≥ min{|G|, |A| + |S| − 1}.

Another result from [13] generalizes Olson’s result [28] for the case of abelian
groups is a strong building block employed in Theorem 2 parts (2), (3) to ensure
matchability in sets that are not contained in a union of certain number of cosets
of any proper subgroup of the given abelian group.

Theorem 13. Let m ≥ 1 and A1, . . . , Am be finite, nonempty subsets of an

abelian group G, such that no Ai is contained in a union of l cosets of any proper

finite subgroup of G, then

|A1 · · ·Am| ≥ min

{

|G|,
(

l

l + 1
+

1

(l + 1)m

) m
∑

i=1

|Ai|
}

.

The following theorem is well-known as the Multiplicity Bound and it arises
as a consequence of Kneser’s Theorem. This theorem was originally proven by
Kemperman [24]. It provides valuable insights into the relationship between the
size of the product set AB to the multiplicities of elements within AB.

Theorem 14. Let G be an abelian group with A,B ⊂ G finite and nonempty. If

|AB| ≤ |A|+ |B| − k, then rA,B(x) ≥ k, for all x ∈ AB, where

rA,B(x) = |{(a, b) ∈ A×B | ab = x}| .

Corollary 15. Let G be an abelian group and C be a finite Sidon subset of G.
If A,B are subsets of G with AB ⊂ C, then |AB| ≥ |A|+ |B| − 1.

Proof. Since C is a Sidon subset, clearly rA,B(x) = 1, for every x ∈ AB. Thus by
the contrapositive of Theorem 14, we deduce that |AB| > |A|+ |B|− 2, implying
|AB| ≥ |A|+ |B| − 1.

We will take advantage of the following result of Hamidoune [20] to prove
Theorem 2, part (6).

Theorem 16. Let G be an arbitrary group, and let A and B be two proper finite

subsets of G such that A ∪ AB 6= A〈B〉, where 〈B〉 is the subgroup generated by

B. Then |A ∪AB| ≥ |A|+min{|B|, v(B)}, where v(B) is the minimum order of

an element in B.

The central role in proving Theorem 3 and classifying unmatchable sets based
on their additive structures is attributed to the following profound result by
Kemperman [25].
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Theorem 17. Let A and B be finite subsets of an abelian group G satisfying

|AB| ≤ |A|+ |B| − 1 and min{|A|, |B|} > 1. Then either AB is a progression or

AB is quasi-periodic.

While classifying matchable subsets, it is evident that if AB ∩ A = ∅, then
A is matched to B. In particular, every bijection from A to B is a matching.
Clearly, this represents an extreme situation. On the other end of the spectrum,
we encounter a situation where AB = A. Then under this condition, A cannot
be matched to B. This scenario is explored in [5], and the following proposition
is established. This result will be employed in the proof of Theorem 2 part (2).

Proposition 18. Let A and B be nonempty finite subsets of an arbitrary group

G. Assume that |A| ≤ |B| and that AB = A. Then B is a subgroup of G, and A
is a coset of B.

Similar to the dimension criteria for matchable bases of vector subspaces, car-
dinality criteria for matchable subsets are discussed and proved in [4] as follows.
This result is mainly constructed upon Hall’s Marriage Theorem, and Kneser’s
addition Theorem.

Lemma 19. Let G be an abelian group and A and B be two finite subsets of G
with the same cardinality. Let A = {a1, . . . , an}. Then A is matched to B if and

only if

∣

∣

∣

∣

∣

⋂

i∈J

(

a−1

i A ∩B
)

∣

∣

∣

∣

∣

≤ n− |J |,

for all nonempty subset J ⊂ {1, . . . , n}.

In addition to works in [26, 16, 2] on classifying matchable sets, Hamidoune
in [21] proves the matchability of large classes of sets, in which the concept of
Chowla subsets arises.

Theorem 20. Let A,B be nonempty finite subsets of a group G with |A| = |B|.
If B is a Chowla subset, then A is matched to B.

2.2. Linear versions of some addition theorems

Turning our focus to linear adaptations of definitions and results from additive
theorems, it is notable that several additive theorems that bound |AB| have been
transposed to a linear framework in the following sense. Let K ⊂ L be a field
extension and A,B be K-subspaces of L. We denote by 〈AB〉 the K-subspace
spanned by the product set AB in L. One remarkable development in this line of
research is the formulation of a linear counterpart to Kneser’s addition theorem,
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as presented in [23]. In this section, we will primarily delve into these bounds
and their implications on the structures of A and B.

We begin with defining the required notions used in Theorems 6 and 7 start-
ing with the notion of Sidon subspaces. Following [8], we say a K-subspace A of
L is a Sidon subspace if

∀x ∈ L \K, dimK(A ∩ xA) ≤ 1.(5)

Note that it is discussed in [8] that (5) implies

∀x, y, z, t ∈ A \ {0}, xy = zt ⇒ {Kx,Ky} = {Kz,Kt}.(6)

In view of (6), the analogy with the Sidon subsets is highlighted.
We continue borrowing some terminologies from [8] to prepare ourselves to

define 1-atoms. Let A be aK-subspace of L. For every nonzero finite-dimensional
K-subspace X of L, we denote by

∂A(X) = dimK〈XA〉 − dimK X.

Let ψ be the set of nonzero finite-dimensional K-subspaces X of L such that
〈XA〉 6= L. If ψ is nonempty, we define the 1st-connectivity of A by

κ(A) = min
X∈ψ

∂A(X).

If ψ is empty, we set κ(A) 6= −∞. We define a 1st-fragment of A to be an M ∈ ψ
with ∂A(M) = κ(A). A 1st-fragment with minimum dimension is called a 1-atom.

We now state a linear analogue of Kneser’s addition Theorem and its variants
and consequences. We begin with the following result from [23] in which the
separability condition is imposed on our field.

Theorem 21. Let K ⊂ L be a field extension in which every algebraic element of

L is separable over K. Let A,B ⊂ L be nonzero finite dimensional K-subspaces

of L and M be the stabilizer of 〈AB〉, i.e., M = {x ∈ L|x〈AB〉 ⊂ 〈AB〉}. Then

dimK〈AB〉 ≥ dimK A+ dimK B − dimKM.

Remark 22. It is proved in [22] that the separability condition in Theorem 21
can be removed in the price of imposing the assumption dimK A ≤ 5.

The separability condition in Theorem 21 is removed in the following Theo-
rem from [9] in the sense that two scenarios turn out for the dimension of 〈AB〉,
depending on the stabilizer of one of the subspaces. That is, in contrast to The-
orem 21 the subfield M seems to depend on both A and B, in Theorem 23 the
stabilizer basically may be seen to depend on only one of the subspaces.
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Theorem 23. Let K ⊂ L be a field extension and A ⊂ L be a K-subspace of L
of finite positive dimension. Then

• either for every finite-dimensional subspace B of L, we have

dimK〈AB〉 ≥ dimK A+ dimK B − 1,

• or there exists an intermediate field K ⊂ M ⊂ L, such that for every finite-

dimensional subspace B of L satisfying

dimK〈AB〉 < dimK A+ dimK B − 1,

we have 〈AB〉M = 〈AB〉.

The following theorem from [8] is not as powerful as the linear analogue
of Kneser’s Theorem but it is useful in classifying unmatchable subspaces with
respect to the structural features of subspaces addressed in Theorem 7.

Theorem 24. Let K ⊂ L be a field extension. Let S be a K-subspace of L
containing 1. Let A be the 1-atom of S. If there exists a K-subspace T of L for

which

dimK〈ST 〉 < dimK S + dimK T − 1 < dimK L,

then A is a subfield of L properly containing K.

As discussed earlier in Section 1, we addressed a dimension criterion proposed
by Eliahou-Lecouvey [17] to characterize matchable bases. This criterion serves
as a fundamental cornerstone in our proofs for theorems relating to matchable
and unmatchable subspaces. In light of its significance in our work, we present
it here for reference.

Theorem 25. Let K ⊂ L be a field extension and A,B be n-dimensional K-

subspaces of L. Let A = {a1, . . . , an} be a basis of A. Then A can be matched to

a basis of B if and only if for all nonempty J ⊂ {1, . . . , n}, we have

dimK

⋂

i∈J

(

a−1

i A ∩B
)

≤ n− |J |.

2.3. Linear matchings in primitive subspaces

Primitive subspaces are initially introduced in [3] as a linear counterpart to a set
of generating elements in a given cyclic group. Given a separable field extension
K ⊂ L, a K-subspace A of L is called a primitive subspace if K(a) = L for every
a ∈ A \ {0}. Primitive subspaces have been studied in two aspects. First, such
subspaces seem interesting in their own right. For example, in [1, 4] the size of
the largest primitive subspace in a separable field extension is investigated and
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determined. Second, when dealing with a primitive subspace B, it is proved in [3]
that every subspace A with dimK A = dimK B is matched to B. Theorem 6 part
(1) generalizes this result. Moreover, in Section 5, we define Chowla subspaces
that are a wider class of vector spaces and speculate on the notion of matchability
when replacing primitive subspaces with Chowla subspaces.

3. Proofs on matching in abelian groups

Proof of Theorem 2. For any subset S of A, let VS := {b ∈ B | Sb ⊂ A}
and WS := VS ∪ {e}. We will first prove that each of conditions (1) through (7)
implies |SWS | ≥ |S|+ |WS | − 1.

Part (1). Since B∩H = ∅, for every proper subgroup H of G, we conclude that
WS ∩H = {e}. Applying Theorem 12 to S and WS we have

|SWS | ≥ min{|G|, |S| + |WS | − 1}.(7)

On the other hand,

|SWS | ≤ |A| = |B| < |G|,

since SWS ⊂ A and B ( G.
This along with (7) implies that |SWS| ≥ |S|+ |WS| − 1.

Part (2). Applying Theorem 13 to S and WS, we have

|SWS| ≥ min

{

|G|,
(

l

l + 1
+

1

2(l + 1)

)

(|S|+ |WS |)
}

.(8)

In a similar manner as in part (1), we may argue that |SWS | < |G|. Thus

|SWS | ≥
(

l

l + 1
+

1

2(l + 1)

)

(|S|+ |WS |).(9)

Clearly |S| + |WS| ≤ 2n + 1. We claim that |S| + |WS | 6= 2n + 1, as otherwise,
|S| = n and |VS | = n, implying S = A and VS = B. Thus B? = {b ∈ B|Ab ⊂ A}
entailing AB = B. If follows from Proposition 18 that B is a subgroup of G,
contradicting e /∈ B. So |S|+ |WS | ≤ 2n. We have

2l + 2 ≥ 2n ≥ |S|+ |WS |.

Therefore,

1 ≥ 1

2l + 2
(|S|+ |WS |) =

(

1− l

l + 1
− 1

2(l + 1)

)

(|S|+ |WS |).
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Hence,
(

1− l

l + 1
− 1

2(l + 1)

)

(|S|+ |WS |) ≥ |S|+ |WS | − 1.(10)

Combining (9) and (10), we have |SWS | ≥ |S|+ |WS | − 1, as claimed.

Part (3). Applying Theorem 13 to S and WS , along with the argument used in
part (2), we obtain that

|SWS| ≥
(

1− l

l + 1
− 1

2(l + 1)

)

(|S|+ |WS|).(11)

We claim that |S| + |WS | ≤ 2n − 1. Clearly, |S| + |WS | ≤ 2n + 1. Additionally,
in a similar manner as in part (2), we may argue that |S|+ |WS| 6= 2n+ 1. So it
is left to show |S| + |WS | 6= 2n. Assume to the contrary, |S| + |WS | = 2n. This
means |S|+ |VS | = 2n− 1. We split into two cases.

Case 1. |S| = n and |VS | = n− 1. So S = A and VS = VA with |VA| = n− 1.
Let B = {b1, . . . , bn} and without loss of generality, assume VS = {b1, . . . , bn−1}.
Thus, Abi ⊂ A, for every 1 ≤ i ≤ n − 1. Since |Abi| = |A|, we conclude that
Abi = A, for 1 ≤ i ≤ n− 1. Therefore,

∏

a∈A

a =
∏

a∈A

ab1 =
∏

a∈A

ab2 = · · · =
∏

a∈A

abn−1.

Thus, an = anbni entailing bni = e, 1 ≤ i ≤ n − 1. This contradicts B having at
least two elements with orders greater than n.

Case 2. |S| = n − 1 and |VS | = n. Let A = {a1, . . . , an}. Without loss of
generality, assume that S = {a1, . . . , an−1}. Clearly VS = B. Thus, SB ⊂ A. So
aiB ⊂ A, for all 1 ≤ i ≤ n − 1. Since |aiB| = |B| = |A|, hence aiB = A, for all
1 ≤ i ≤ n− 1. Therefore,

n
∏

j=1

aj =
n
∏

j=1

a1bj =
∏

j=1

a2bj = · · · =
n
∏

j=1

an−1bj ,

entailing ani = anj , for all 1 ≤ i, j ≤ n− 1. This contradicts |{an|a ∈ A}| > 2.
So in both cases, we extract contradictions, and then |S| + |WS | < 2n − 1.

We have

2l + 2 ≥ 2n− 2 ≥ |S|+ |WS |,

implying

1 ≥ 1

2l + 2
(|S|+ |WS |).
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In a similar manner as in part (2), one may conclude that

(

l

l + 1
+

1

2(l + 1)

)

(|S|+ |WS |) ≥ |S|+ |WS | − 1.(12)

Combining (11) and (12), we obtain |SWS | ≥ |S|+ |WS | − 1, as claimed.

Part (4). Applying Theorem 11 to S and WS , we either have |SWS | ≥ |S| +
|WS | − 1 or |SWS | < |S| + |WS | − 1, and there exist a subgroup H 6= {e} of G
with SWSH = SWS . Suppose that the latter case satisfies. Then we have

|H| ≤ |SWSH| = |SWS | ≤ |A| = p(G).(13)

It follows from (13) that |H| = p(G). Therefore |SWSH| = |A|. On the other
hand SWSH = SWS ⊂ A. Thus SWSH = A. Choose x ∈ SWS , then xH ⊂ A
and since |xH| = |H| = p(G) = A, then xH = A, contradicting A not being
a coset of any nontrivial subgroup of G. Therefore |SWS | ≥ |S| + |WS | − 1, as
claimed.

Part (5). Since SWS ⊂ A and A is a Sidon subset, applying Corollary 15 to S
and WS one may have |SWS | ≥ |S|+ |WS | − 1.

Part (6). We are going to apply Theorem 16 to S and VS .
We show that S ∪SVS 6= S〈VS〉; otherwise since SVS ∪S ⊂ A, we would con-

clude that S〈VS〉 ⊂ A. Therefore, if a ∈ S and b ∈ VS , a〈b〉 ⊂ A. Since o(b) ≥ n,
then |a〈b〉| ≥ |A|, implying A = a〈b〉 and o(b) = n. Thus A = {a, ab, . . . , abn−1},
contradicting A not being a progression. Now applying Theorem 16 to S and VS ,
we have

|SWS | = |S(VS ∪ {e})| = |SVS ∪ S|
≥ |S|+min{|VS |, o(b); b ∈ VS} = |S|+ |VS |
= |S|+ |WS | − 1,

as desired.

Part (7). Let B0 = B ∪ {e}. Then we have

|aH ∩A|+ |bH ∩B0| ≤ |H|+ 1,

for every nontrivial finite subgroupH of G and a, b ∈ G. Applying Proposition 10
to A and B0, we conclude that |SWS | ≥ |S|+ |WS | − 1, as S ⊂ A and WS ⊂ B0.

Therefore in all parts (1)-(7), we established that |SWS | ≥ |S| + |WS | − 1,
which implies that |VS | ≤ n − |S|. On the other hand, VS =

⋂

ai∈S

(

a−1

i A ∩B
)

,

for every S ⊂ A. Therefore
∣

∣

⋂

ai∈S
(a−1

i A ∩B)
∣

∣ ≤ n − |S|. Invoking Lemma 19,
we conclude that A is matched B.
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Corollary 26. Let A,B ⊂ Zn where |A| = |B| and gcd(b, n) = 1, for every

b ∈ B. Then A is matched to B.

Proof. Since gcd(b, n) = 1 for every b ∈ B, it follows that B ∩H = ∅, for every
proper subgroup H of Zn (indeed the condition gcd(b, n) = 1 implies that every
b ∈ B is a generating element of Zn. So if a ∈ B ∩H = ∅, we may conclude that
Zn =< b >⊂ H ⊂ G, contradicting H being a proper subgroup of Zn.) Invoking
Theorem 2 part (1), we conclude that A is matched to B.

Remark 27. Theorem 2 part (1) is a strengthening of a result from [26], es-
tablishing that all abelian torsion-free groups and cyclic groups of prime orders
possess the matching property.

Remark 28. Theorem 2 part (2) is a strengthening of Theorem 1. Furthermore,
a theorem by Losonczy [24] asserts that all abelian torsion-free groups and all
cyclic groups of prime order possess the matching property. This can be regarded
as a consequence of Theorem 2 part (2).

Remark 29. Theorem 2, part (6) represents a modest strengthening of Theorem
20 wherein the condition ord(x) ≥ |B| + 1, for every x ∈ B is replaced with
ord(x) ≥ |B|, in the price of imposing the extra assumption of A not being a
progression.

Example 30. Consider the subsets A = {5, 6, 7} and B = {1, 2, 3} of Z15. Z15

has two nontrivial proper subgroups: H = {0, 5, 10} and K = {0, 3, 6, 9, 12}.
Upon examination, it becomes evident that neither A nor B can be written as a
2-union of cosets of H (and K). By Theorem 2 part (2), A is matched to B.

Example 31. Consider the subsets A = {1, 2, 3, 9, 14} and B = {4, 5, 6, 10, 13}.
It can be verified that both A and B satisfy the conditions of Theorem 2, part
(3), with l = 3 and n = 5. Consequently, A is matched to B.

Example 32. Let A be a maximal Sidon subset of Z2m. Invoking Proposition 2.8
in [14], if m = 7, then |A| = 12. This is attained if A = {0, 1, 2, 4, 8, 16, 32, 64, 15,
60, 101, 87}. It follows from Theorem 2, part (5) that A is matched to every
subset of Z128 with |B| = 12 and 0 /∈ B.

Example 33. Consider A = {1, 8, 15, 22, 30} ⊂ Z35. Clearly |A| = 5 = p(Z35)
and A is not a coset of the subgroup K = {0, 7, 14, 21, 28} of Z35. Following
Theorem 2 part (4), A is matched to every subset B of Z35 with |B| = 5 and
0 /∈ B.

Example 34. Consider the subsets A = {0, 4, 8} and B = {3, 6, 8} of Z9. Then
for every a, b ∈ Z9, |(a + H) ∩ A| + |(b + H) ∩ B| < 4, where H = {0, 3, 6} is
the only proper subgroup of Z9. It follows from Theorem 2 part (7) that A is
matched to B.
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3.1. Matchings and coset representatives in abelian groups

Let G be a finite abelian group and H a subgroup of G. If g1, . . . , gm are elements
such that the cosets Hg1 , . . . ,Hgm are distinct and cover the entirety of G, we
call these elements coset representatives. Every nonempty subset of a closet
representative is called a semicoset representative. Let A and B be two subsets
of Zp2 , where p is prime, |A| = |B| = n ≤ p and 0 /∈ B.Suppose both A and
B are coset representatives or semicoset representatives.Then A and B are not
contained in the union of n− 1 cosets of H, where H is the subgroup of Zp2 with
|H| = p. By Theorem 2 part (2), A must be matched to B.

Proof of Theorem 3. Let A = {a1, . . . , an}. Since A is not matched to B, by
Lemma 19, there must exist J ⊂ {1, . . . , n} such that

∣

∣

∣

∣

∣

⋂

i∈J

(a−1

i A ∩B)

∣

∣

∣

∣

∣

> n− |J |.(14)

Set S = {ai|i ∈ J}, V =
⋂

i∈J(a
−1

i A ∩ B) and W = V ∪ {e}. Then by (14), one
can derive |V |+ |S| > n. Therefore,

|W |+ |S| − 1 > n.(15)

On the other hand, since SW ⊂ A, it follows from (15) that

|SW | < |W |+ |S| − 1.(16)

We claim that min{|S|, |W |} > 1. If this were not the case, we would have either
|S| = 1 or |W | = 1. If |S| = 1, it would imply that S = {a}, for some a ∈ A.
Thus,

|SW | = |aW | = |W | = |W |+ |S| − 1.

This would lead to a contradiction with (16).

Similarly, if |W | = 1, it would mean W = {e} and we would again have a
contradiction, as

|SW | = |Se| = |S| = |S|+ |W | − 1.

So min{|S|, |W |} > 1. Applying Theorem 17 to S and W , we may conclude
that either SW forms a progression or SW is quasi-periodic. Since SW ⊂ A,
then the first case implies a progression subset for A and the second case yields a
quasi-periodic subset for A. Both of these cases contradict our initial assumptions
on A.
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4. Proofs on matching subspaces in a field extension

Proof of Theorem 6. Let A = {a1, . . . , an} be any bases of A. For every
nonempty J ⊂ {1, . . . , n}, denote S = 〈ai|i ∈ J〉, the subspace spanned by
{ai|i ∈ J} and

VS =
⋂

i∈J

(

a−1

i A ∩B
)

= {x ∈ B | aix ∈ A for all i ∈ J}.

Clearly dimK S = |J |. Define WS = K ⊕ VS yielding dimKWS = dimK VS + 1
and SWS ⊂ A. We claim that the following inequality holds true in each part of
our theorem

dimK〈SWS〉 ≥ dimK S + dimKWS − 1,

and we validate each part independently.

Part (1). Let us begin by assuming that every algebraic element of L is separable
over K. Applying Theorem 21 to S and WS, there must exist an intermediate
field K ⊂M ⊂ L such that

dimK〈SWS〉 ≥ dimK S + dimKWS − dimKM,(17)

where M〈SWS〉 = 〈SWS〉.
Let us introduce W ′

S = 〈M ∪ VS〉. Using Theorem 21 once again, we acquire
the inequality

dimK〈SW ′

S〉 ≥ dimK S + dimKW
′

S − dimKM
′,(18)

where M ′ is the stabilizer of 〈SWS〉.
Now, it becomes evident that 〈SW ′

S〉 = 〈SWS〉 because

〈SW ′

S〉 = 〈S(M ∪ VS)〉
= 〈S(M ∪WS)〉
= 〈SM ∪ SWSM

′〉
=M〈S ∪ SWS〉
=M〈SWS〉
= 〈SWS〉.

Given that 〈SW ′

S〉 = 〈SWS〉, it is clear that they share the same stabilizer,
implying that M =M ′. This, together with (18), we obtain

dimK〈SW ′

S〉 ≥ dimK S + dimKW
′

S − dimKM,
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entailing

dimK〈SWS〉 ≥ dimK S + dimKWS − dimKM

= dimK S + dimK〈M ∪ VS〉 − dimKM.(19)

Now, utilizing (19) together with the inclusion-exclusion principle for vector
spaces, we derive

dimK〈SWS〉 ≥ dimK S + dimKM + dimK VS − dimK(M ∩ VS)− dimKM

= dimK S + dimK VS − dimK(M ∩ VS).(20)

Since M ∩B = {0} and VS ⊂ B, it follows that M ∩ VS = {0}. This along with
(20), we conclude that

dimK〈SWS〉 ≥ dimK S + dimK VS = dimK S + dimKWS − 1,

as claimed.
A similar line of reasoning may be employed to prove that

dimK〈SWS〉 ≥ dimK S + dimKWS − 1,

in case n ≤ 5, applicable to general field extensions, in light of Remark 22.

Part (2). Assume, for the sake of contradiction, that

dimK〈SWS〉 < dimK S + dimKWS − 1.

Then by Theorem 23, there exists an intermediate field K ( M ⊂ L with
M〈SWS〉 = 〈SWS〉. Given that 〈SWS〉 ⊂ A, we may deduce

dimKM ≤ dimKM〈SWS〉 = dimK〈SWS〉 ≤ dimK A = p(K,L).(21)

Since dimKM ≤ p(K,L) and K ( M , it follows that dimKM = p(K,L) = n.
Choose a nonzero element x ∈ 〈SWS〉. Then Mx ⊂M〈SWS〉 = 〈SWS〉 ⊂ A. On
the other hand, dimKMx = dimKM = n = dimK A. Consequently, we arrive at
the contradictory result that Mx = A, which contradicts the assumption that A
is not a linear translate of any nontrivial intermediate field within K ⊂M ( L.

Part (3). Suppose, for the sake of contradiction, that

dimK〈SWS〉 < dimK S + dimKWS − 1.(22)

By applying Theorem 23, we can deduce the existence of an intermediate field
K (M ⊂ L such thatM〈SWS〉 = 〈SWS〉. Choose a nonzero element x ∈M \K.
Then x〈SWS〉 ⊂ 〈SWS〉. Moreover, considering the dimension, we observe that
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dimK x〈SWS〉 = dimK〈SWS〉. Hence x〈SWS〉 = 〈SWS〉. Since A is a Sidon
subspace, we have dimK(xA∩A) ≤ 1. Given that 〈SWS〉 ⊂ A, we conclude that

1 ≥ dimK(xA ∩A) ≥ dimK 〈x〈SWS〉 ∩ 〈SWS〉〉
= dimK〈SWS〉 = dimK〈S ∪ SVS〉 ≥ dimK S.

As a result, we find that dimK S = 1 as S 6= {0}. Now, it follows from (22) that
dimK〈SWS〉 < dimKWS , which is impossible.

In all parts (1)–(3), we have demonstrated that

dimK〈SWS〉 ≥ dimK S + dimKWS − 1,

which implies that dimK VS ≤ n − |J |, for every J ⊂ {1, . . . , n}. Therefore,
according to Theorem 25, we conclude that A is matched to B.

Remark 35. Theorem 4.2 from [3] is a direct consequence of Theorem 3, part (1).
In other words, if B is a primitive subspace in a separable field extension K ⊂ L,
then it is evident that B ∩M = {0}, for every intermediate field K ⊂ M ( L.
Therefore, the assumption of Theorem 2, part (1) holds, and A is matched to B.

Remark 36. Suppose K ⊂ L is a field extension that is purely transcendental
or [L : K] = p, for some prime p. In both cases, every algebraic element of L
is separable over K. That is, in purely transcendental situation, L \ K has no
algebraic element over K, and in the prime degree of extension, the extension is
simple and thus separable. Therefore, it follows from Theorem 6 part (1) that
K ⊂ L possesses the linear matching property.

Example 37. Consider the field extension Q ⊂ Q( 35
√
2). Let B be the Q-

subspace of Q( 35
√
2) spanned by 35

√
2, 35

√
4 and 35

√
8. Then, firstly, Q ⊂ Q( 35

√
2)

is separable, and secondly, B ∩M = {0}, for every intermediate field Q ( M ⊂
Q( 35

√
2). Then by Theorem 6, part (1), every 3-dimensional Q-subspace A of

Q( 35
√
2) is matched to B.

Proof of Theorem 7. Given that A is not matched to B, we can invoke The-
orem 25, which leads to the existence of a basis A = {a1, . . . , an} for A and a
subset J ⊂ {1, . . . , n} such that

dimK

⋂

i∈J

(

a−1

i A ∩B
)

> n− |J |.

Set VJ :=
⋂

i∈J

(

a−1

i ∩B
)

, WJ := K ⊕ VJ and SJ = 〈ai | i ∈ J〉. Then we have

dimK〈SJWJ〉 < dimK SJ + dimKWJ − 1.

Now, let M denote the 1-atom of WJ . We can deduce from Theorem 24 that M
is a subfield of L properly containing K. That is, B⊕K contains a subspace WJ

whose 1-atom M is a subfield of L properly containing K, as asserted.
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5. Two conjectures

5.1. Linear analogue of Theorem 2, part (7)

In Theorem 2 part (7), we basically deal with matchability between sets A and
B whose all nonempty subsets S ⊂ A and T ⊂ B satisfy the condition |ST | ≥
|S|+ |T |− 1. It is evident that this result relies on Proposition 10. It is tempting
to speculate that Proposition 10 can be extended to a linear setting. If such
an extension is successfully established, it could be employed to provide a linear
analogue for Theorem 2 part (7) in some obvious manners. Having said this, we
formulate the following conjecture.

Conjecture 38. Let K ⊂ L be a field extension and A,B ⊂ L be a K-subspace

of L of finite positive dimensions. Assume further that for every a, b ∈ L and

every nontrivial proper finite intermediate subfield K ⊂M ( L, we have

dimK(aM ∩A) + dimK(bM ∩B) ≤ [M : K] + 1.

Then for all K-subspaces S ⊂ A and T ⊂ B, the following holds

dimK〈ST 〉 ≥ dimK S + dimK T − 1.

5.2. Matchings in Chowla subspaces

In light of Hamidoune’s findings [21] regarding matchable sets A and B, with B
being a Chowla subset, we aim to formulate a linear analogue of Chowla subsets
and explore potential linear matchings in this setting. Consider a field extension
K ⊂ L and let A be a K-subspace of L. We define A as a Chowla subspace if, for
every a ∈ A \ {0}, we satisfy the condition [K(a) : K] ≥ dimK A + 1. Notably,
within a finite separable field extension, every primitive subspace is a Chowla
subspace. Therefore, it follows, based on Theorem 2.7 in [1], that the maximum
attainable dimension of a Chowla K-subspace in L is greater than or equal to

[L : K]− max
K⊂M(L

[M : K],

where M is a proper intermediate field.
Now, a natural question to ponder is: In separable (or general) field exten-

sions, what is the upper bound on the size of a Chowla subspace? Additionally,
it would be quite valuable if one could investigate the following question, serving
as a linear counterpart to Theorem 20, which asserts that in the abelian group
context, if |A| = |B| with B being a Chowla subset, then A must be matched
to B.

Conjecture 39. Let K ⊂ L be a field extension and A and B be two n-
dimensional K-subspaces of L. If B is a Chowla subspace, then A is matched

to B.
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