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Abstract

In this paper, we classify up to isomorphism the groups that can be
represented as knit products of two groups. More precisely, some necessary
and sufficient conditions for two knit products to be isomorphic are given.
We mainly deal with isomorphisms leaving one of the two factors or even
both invariant. In particular, we decide under some conditions how the
knit products arise as split extensions. Furthermore, the decomposition of
unfaithful knit products is investigated.
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1. Introduction

The classification of groups up to isomorphisms is one of the most classical prob-
lems in group theory. This problem is frequently reduced to the theory of exten-
sions of groups and cohomology theory of groups (see [5, 8, 10–14]). This work
investigate the classification of groups using a well known structure operation,
namely the knit product. Knit products were introduced by Zappa in [19], and
have been intensively studied starting with the classical papers by Szép [15–17].
Other terms referring to Knit products used in the literature are Zappa-Szép
products, bicrossed products, general products, and factorisable groups, as stated
in ( [1,3,16,18] and the references therein). One of the most important examples
of knit product is Hall’s theorem which shows that every finite soluble group is
a knit product of a Sylow p-subgroup and a Hall p-subgroup [6]. In order to fix
our notation, we recall first the construction of knit products.
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Let G1 and G2 be two groups. A group G is called the internal knit product
of G1 and G2 if G = G1G2 and G1 ∩ G2 = 1, or, equivalently, for each g ∈ G
there exists a unique g1 ∈ G1 and a unique g2 ∈ G2 such that g = g1g2. The knit
product is a generalization of the semidirect product of two groups for the case
when neither factor is required to be normal.

The factorization problem is one of the most famous open problems of group
theory which can be divided into two distinct subproblems. The first is to describe
all groups which arise as knit products of G1 and G2. The second is to classify up
to isomorphism all the knit products of G1 and G2 (The isomorphism problem).
This is a problem of classifying whether two knit products are isomorphic. The
first problem is solved for knit products with cyclic factors. Notably, Rédei has
determined the structure of the knit product of two cyclic groups which are not
both finite [9]. Douglas and Huppert have studied the knit products of two finite
cyclic groups (see [4, 7]). In particular, in [1, Theorem 3.1], it is proved that
a knit product of two finite cyclic groups, one of them being of prime order, is
isomorphic to a semidirect product of the same cyclic groups. Apart from this, the
isomorphism problem is still an open question in general even for knit products
with cyclic factors. In this paper, we study the isomorphism problem for knit
products in some cases. More precisely, we deal with isomorphisms of certain
type, namely leaving one of the two factors or both invariant. In particular, we
determine how the knit product can be reduced to the semidirect product of
groups. Some examples of isomorphic knit products of two finite cyclic groups
are given. Furthermore, we show possibility of various decompositions of a given
unfaithful knit product.

Throughout this paper, we denote by Z(G), Bij(G), End(G) and Aut(G),
respectively, the center, the group of all bijections, the monoid of all endomor-
phisms, and the automorphism group of G. Let θ ∈ Aut(G), γθ denotes the conju-
gation by θ in Aut(G). For an endomorphism ρ ofG, we denote the fixed subgroup
of ρ by FixG(ρ). For any two groups H and K, let Map(H,K), Hom(H,K) and
AHom(H,K) denote the set of all maps, the set of all homomorphisms and the
set of all anti-homomorphism from H to K, respectively.

2. Preliminaries and properties

Let G1 and G2 be two groups and G an internal knit product of G1 and G2. For
each g1 ∈ G1 and g2 ∈ G2, there exist α(g1, g2) ∈ G1 and β(g1, g2) ∈ G2 such
that g2g1 = α(g1, g2)β(g1, g2). This defines a homomorphism α : G2 → Bij(G1)
and an anti-homomorphism β : G1 → Bij(G2), where α(g2)(g1) = α(g1, g2) and
β(g1)(g2) = β(g1, g2), and satisfying the following conditions
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α(1)(g1) = g1 and β(1)(g2) = g2,(1)

α(g2)(1) = β(g1)(1) = 1,(2)

α(g2)(g1g
′

1) = α(g2)(g1)α(β(g1)(g2))(g
′

1),(3)

β(g1)(g2g
′

2) = β(α(g′2)(g1))(g2)β(g1)(g
′

2)(4)

for all g1, g
′

1 ∈ G1 and g2, g
′

2 ∈ G2. More concisely, the first condition above
asserts the mapping α is a left action of G2 on G1 and that β is a right action
of G1 on G2. Now, let G1 and G2 be two groups, and let α : G2 → Bij(G1)
be a group homomorphism and β : G1 → Bij(G2) an anti-homomorphism which
satisfy the above conditions. Define the external bicrossed product of G1 and
G2 induced by (α, β) as the group G1 α⊲⊳β G2 with underlying set G1 ×G2 and
operation given by

(x, y) ·
α,β

(x′, y′) = (xα(y)(x′), β(x′)(y)y′)

for all x, x′ ∈ G1, and y, y′ ∈ G2. The subsets G1 × {1} and {1} × G2 are
subgroups of G1 α⊲⊳βG2 isomorphic to G1 and G2, respectively. The internal knit
product and the external knit product are isomorphic and then we can identify
them in the sequel (see [2, Proposition 2.4]). If α is the trivial action then β is an
action by group automorphisms and the knit product G1 α⊲⊳β G2 is, in fact, the
right semidirect product G1 ⋊β G2. Similarly, if β is the trivial action then α is
an action by group automorphisms and the knit product G1α⊲⊳βG2 is exactly the
left semidirect product G1 α⋉G2. In particular, we have G1α⊲⊳βG2 = G1 ×G2 if
and only if α and β are trivial action. If α and β are both nontrivial actions then
we say that G1α⊲⊳βG2 is a proper knit product. Further, it is easy to check that
the bicrossed product G1α⊲⊳βG2 is abelian if and only if G1 and G2 are abelian
and the actions α and β are trivial. So, if G1 and G2 are both abelian, then
G1α⊲⊳βG2

∼= G1 ×G2 if and only if α and β are trivial actions. But, in general,
it is possible for a direct product to be isomorphic to a proper knit product as
shown in the following example.

Example 1. Let U3(F3) be the Heisenberg group over the finite field F3. This is
a finite group of order 27 and a Sylow 3-subgroup of the linear group GL3(F3).
The group U3(F3) has a fixed-point-free automorphism θ of order 8. Now, let
G = U3(F3)× U3(F3) and consider the subgroups G1 = {(g, g) | g ∈ U3(F3)} and
G2 = {(g, θ(g)) | g ∈ U3(F3)}. Clearly, we have G1

∼= G2
∼= U3(F3), G1∩G2 = {1}

and G = G1G2. Thus, the group G is the proper knit product of G1 and G2.

Now, in view of the preceding discussion the following problem seems natural.

Problem 2 (The isomorphism problem). Let G1 and G2 be two groups. Classify
up to an isomorphism all knit products of G1 and G2.
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3. Knit product and split extensions

Recall that a non-abelian group which has no non-trivial abelian direct factor is
said to be purely non-abelian. In the next result, we give sufficient conditions for
a proper knit product to be isomorphic to the direct product, for the case when
one of the factors is a finite purely non-abelian group.

Proposition 3. Let G1 be a finite purely non-abelian group and G2 a group. Sup-

pose that there exist homomorphisms δ ∈ Hom(G1, G2) and η ∈ Hom(G2, Z(G1))
such that

α(y)(x) = η(y)xη(β(x)(y))−1

and

β(x)(y) = δ(α(y)(x))−1yδ(x),

for all x ∈ G1, and y ∈ G2. Then the knit product G1 α⊲⊳β G2 is isomorphic to

the direct product G1 ×G2.

Proof. Define a map ϕ between G1 α⊲⊳β G2 and G1 × G2 given by ϕ(x, y) =
(xη(y), δ(x)y), for all x ∈ G1, y ∈ G2. By using the assumption, we check easily
that ϕ is a group homomorphism. Now, let ϕ(x, y) = 1. Then xη(y) = 1 and
δ(x)y = 1. Thus, we get η(δ(x)) = x. Since θ = η◦δ ∈ Hom(G1, Z(G1)), it follows
that Im(θ)EG1. Therefore, using Fitting’s Lemma and the fact that G1 is purely
non-abelian, we get x = 1 and then y = 1. Hence, ϕ is one-to-one. On the other
hand, take (g1, g2) ∈ G1 × G2 such that ϕ(x, y) = (g1, g2). Then, xη(y) = g1
and δ(x)y = g2, which follows that x−1θ(x) = η(g2)g

−1
1 . Since G1 is purely non-

abelian, it follows that the map fθ : g 7→ g−1θ(g) is an anti-monomorphism and
therefore, it defines an anti-automorphism of G1. Hence x = f−1

θ (η(g2)g
−1
1 ) and

y = δ(f−1
θ (g1η(g

−1
2 )))g2. Thus, ϕ is onto and then it is a group isomorphism. As

required.

Remark 4. The previous proposition will not be true if G1 is not purely non-
abelian. Indeed, assume that G2 is an abelian direct factor of G1. Let ϕ be the
map defined in the previous proof such that η(y) = δ(y) = y−1 for all y ∈ G2.
Thus, we get ϕ(y, y) = (1, 1) and therefore, ϕ is not an isomorphism.

Further, a proper knit product can be also isomorphic to a right or a left
semidirect product. For example, [1, Theorem 3.1] states that a knit product of
two cyclic groups G1 and G2, one of which has prime order, is isomorphic to a
semidirect product of G1 and G2. In general, we have

Proposition 5. Let G1 and G2 be two groups. Suppose that there exist a homo-

morphism δ ∈ Hom(G1,Ker(α)) such that β(x)(y) = δ(α(y)(x))−1yδ(x). Then

the knit product G1 α⊲⊳βG2 is isomorphic to the left semidirect product G1 α⋉G2.
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Proof. Indeed, the bijection ϕ between G1 α⊲⊳β G2 and G1 α⋉ G2 given by
ϕ(x, y) = (x, δ(x)y) is clearly a group isomorphism.

Similarly, we have

Proposition 6. Let G1 and G2 be two groups. Suppose that there exist a homo-

morphism η ∈ Hom(G2,Ker(β)) such that α(y)(x) = η(y)xη(β(x)(y))−1. Then

the knit product G1α⊲⊳βG2 is isomorphic to the right semidirect product G1⋊βG2.

4. Isomorphism problem for knit products

Let α, α′ ∈ Hom(G2,Bij(G1)) and β, β′ ∈ AHom(G1,Bij(G2)). Let pri : G1α′⊲⊳β′

G2 −→ Gi be the ith canonical projection and ti : Gi −→ G1 α⊲⊳β G2 be the
ith canonical injection. Let ϕ be a group homomorphism from G1 α⊲⊳β G2 to
G1 α′⊲⊳β′ G2 and set ϕij = pri ◦ ϕ ◦ tj where 1 ≤ i, j ≤ 2. So we can write ϕ in

the matrix form: ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
. Notice that tj is a group homomorphism

but pri is not. Furthermore, we have the following lemmas which we need in the
sequel.

Lemma 7. Let ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
be a group homomorphism from G1 α⊲⊳β G2

to G1 α′⊲⊳β′ G2. Then

(5) ϕ(x, y) = (ϕ11(x)α
′(ϕ21(x))(ϕ12(y)), β′(ϕ12(y))(ϕ21(x))ϕ22(y))

for all x ∈ G1, and y ∈ G2.

Proof. Indeed, the required equation follows directly by applying the homo-
morphism ϕ to the formula (x, y) = (x, 1) ·

α,β
(1, y) and using the equations

ϕ(x, 1) = (ϕ11(x), ϕ21(x)) and ϕ(1, y) = (ϕ12(y), ϕ22(y)).

Let ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
be an isomorphism between G1 α⊲⊳β G2 and G1 α′⊲⊳β′

G2 and let ϕ−1 =

(
ϕ′

11 ϕ′

12

ϕ′

21 ϕ′

22

)
be its inverse. The following lemma follows

directly from the matrix identities ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ =

(
IdG1

1
1 IdG2

)
.

Lemma 8. Keep the preceding notations. We have

ϕ11(ϕ
′

11(x))α
′(ϕ21(ϕ

′

11(x)))(ϕ12(ϕ
′

21(x))) = x,(6)

ϕ′

11(ϕ11(x))α(ϕ
′

21(ϕ11(x)))(ϕ
′

12(ϕ21(x))) = x,(7)

β′(ϕ12(ϕ
′

22(y)))(ϕ21(ϕ
′

12(y)))ϕ22(ϕ
′

22(y)) = y,(8)

β(ϕ′

12(ϕ22(y)))(ϕ
′

21(ϕ12(y)))ϕ
′

22(ϕ22(y)) = y,(9)
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for all x ∈ G1, and y ∈ G2.

From now, if ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
is a map from G1 α⊲⊳β G2 to G1 α′⊲⊳β′ G2,

then ϕ is defined by the formula (5).

Definition. The groups G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2 are called lower isomorphic,
if there exists an isomorphism ϕ : G1α⊲⊳βG2 −→ G1α′⊲⊳β′G2 leaving G2 invariant.

Theorem 9. Let G1 and G2 be two groups. The knit products G1 α⊲⊳β G2 and

G1 α′⊲⊳β′ G2 are lower isomorphic if and only if there exist ϕ22 ∈ Aut(G2), ϕ11 ∈
Bij(G1) and a map ϕ21 ∈ Map(G1, G2) such that

(i) ϕ11(xx
′) = ϕ11(x)α

′(ϕ21(x))(ϕ11(x
′)),

(ii) ϕ21(xx
′) = β′(ϕ11(x

′))(ϕ21(x))ϕ21(x
′),

(iii) ϕ22(β(x)(y)) = ϕ21(α(y)(x))
−1β′(ϕ11(x))(ϕ22(y))ϕ21(x),

(iv) α′(ϕ22(y)) = ϕ11 ◦ α(y) ◦ ϕ
−1
11 ,

for all x, x′ ∈ G1 and y ∈ G2.

Proof. Let ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
be a group isomorphism between G1 α⊲⊳β G2 and

G1 α′⊲⊳β′ G2 leaving the group G2 invariant. Evaluate the left hand side and right
hand side of the formula ϕ(x, 1) ·

α′,β′

ϕ(x′, 1) = ϕ(xx′, 1), we get the conditions

(i) and (ii). Similarly, the formula ϕ(1, y) ·
α′,β′

ϕ(1, y′) = ϕ(1, yy′) implies that

ϕ22 ∈ End(G2). Further, the conditions (iii) and (iv) follow from the formula
ϕ(1, y) ·

α′,β′

ϕ(x′, 1) = ϕ(α(y)(x′), β(x′)(y)). On the other hand, by Lemma 8,

the equations (6)–(9) imply that ϕ11 ◦ ϕ
′

11 = ϕ′

11 ◦ ϕ11 = IdG1
and ϕ22 ◦ ϕ

′

22 =
ϕ′

22◦ϕ22 = IdG2
. Therefore, ϕ11 and ϕ22 are bijective. Conversely, a computation

shows that the map ϕ =

(
ϕ11 1
ϕ21 ϕ22

)
is a group homomorphism. So, it remains

to prove that ϕ is bijective. If ϕ(x, y) = 1, we obtain ϕ21(x)ϕ22(y) = 1 and
ϕ11(x) = 1. So x = 1 and then ϕ22(y) = 1 since ϕ21 is unitary. This implies that
y = 1 and therefore ϕ is one-to-one. Now, let (x, y) ∈ G1 α′⊲⊳β′ G2, we can quickly
check that ϕ(ϕ−1

11 (x), ϕ
−1
22 (ϕ21(ϕ

−1
11 (x))

−1y)) = (x, y). Therefore ϕ is onto. Thus,
the proof is completed

Let G1 =< x > and G2 =< y > be two cyclic groups of orders p2 and n,
where p is an odd prime dividing n. Let r and t be two numbers prime to p
such that (pr + 1)p ≡ 1 mod n. Consider the actions α : G2 → Bij(G1) and
β : G1 → Bij(G2) defined by α(y)(x) = xt, α(yp)(x) = x, β(x)(y) = ypr+1 and
β(x)(yp) = yp(pr+1) such that gcd((t− 1), p2) = p and p(pr + 1)p ≡ p mod n. In
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this case, the corresponding knit product G1 α⊲⊳β G2 is denoted by G1 t⊲⊳r G2.
Note that G1 t⊲⊳r G2 is the group G defined by Yacoub in [18, Theorem 5].

Example 10. Keep the above notation. For two different numbers pairs (r, t)
and (r′, t′), suppose that jt′s ≡ jt mod p2 and s(pr′ + 1)j ≡ s(pr + 1) mod n
for some numbers s and j such that gcd(j, p2) = 1 and gcd(s, n) = 1. Then, the
knit products G1 t⊲⊳r G2 and G1 t′⊲⊳r′ G2 are lower isomorphic.

Proof. Indeed, consider the automorphisms ϕ11 ∈ Aut(G1) and ϕ22 ∈ Aut(G2)
defined by ϕ22(y) = ys and ϕ11(x) = xj. Define the map ϕ21 : G1 → G2 by

ϕ21(x
k) = yp

∑k−1

v=0
(pr+1)jv . Inductively, using (3), we have α′(yp)(xu) = xu and

then α′(yv)(xu) = xut
′v

for all u and v. So α′(ϕ21(x))◦ϕ11 = ϕ11 and then we get
the condition (i). Similarly, by using (4), we get β′(xu)(yλp) = yλp(pr

′+1)u for all
u and λ, and then we obtain (ii). Furthermore, the equation (iv) follows directly
from the condition jt′s ≡ jt mod p2. Now, the condition p(pr + 1)p ≡ p mod n
implies that ϕ21(α(y

v)(xu)) = ϕ21(x
u) for all u and v. Since (pr + 1)t−1 ≡ 1

mod n and (pr′+1)t−1 ≡ 1 mod n, it follow from (4) that β(xu)(yv) = yv(pr+1)u

and β′(xu)(yv) = yv(pr
′+1)u for all u and v. Hence, the condition s(pr′ + 1)j ≡

s(pr + 1) mod n gives us ϕ22(β(x
u)(yv)) = β′(ϕ11(x

u))(ϕ22(y
v)) for all u and

v. Thus, we obtain (iii). Therefore, by the previous theorem, the knit products
G1 t⊲⊳r G2 and G1 t′⊲⊳r′ G2 are lower isomorphic.

As direct consequences of Theorem 9, we have

Corollary 11. Let G1 and G2 be two groups. The groups G1 α⊲⊳β G2 and G1 α′⋉

G2 are lower isomorphic if and only if there exist ρ ∈ Aut(G2), δ ∈ Hom(G1, G2)
and a bijective 1-cocycle σ ∈ Z1(G1, G1, α

′ ◦ δ) such that

ρ(β(x)(y)) = δ(α(y)(x))−1ρ(y)δ(x),

α′(ρ(y)) = σ ◦ α(y) ◦ σ−1,

for all x ∈ G1 and y ∈ G2.

Corollary 12. Let G1 and G2 be two groups. The groups G1 α⊲⊳β G2 and G1⋊β′

G2 are lower isomorphic if and only if the action α is trivial and there exist

σ ∈ Aut(G1), ρ ∈ Aut(G2) and a 1-cocycle δ ∈ Z1(G1, G2, β
′ ◦ σ) such that

ρ(β(x)(y)) = δ(x)−1β′(σ(x))(ρ(y))δ(x) for all x ∈ G1 and y ∈ G2.

Definition. The knit products G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2 are called upper
isomorphic, if there exists an isomorphism ϕ : G1 α⊲⊳β G2 −→ G1 α′⊲⊳β′ G2

leaving G1 invariant. If in addition the isomorphism ϕ leaves G2 invariant, then
G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2 are said to be diagonally isomorphic.
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Theorem 13. Let G1 and G2 be two groups. The knit products G1 α⊲⊳β G2

and G1 α′⊲⊳β′ G2 are upper isomorphic if and only if there exist ϕ11 ∈ Aut(G1),
ϕ22 ∈ Bij(G2) and ϕ12 ∈ Map(G2, G1) such that

(i) ϕ22(yy
′) = β′(ϕ12(y

′))(ϕ22(y))ϕ22(y
′),

(ii) ϕ12(yy
′) = ϕ12(y)α

′(ϕ22(y))(ϕ12(y
′)),

(iii) ϕ11(α(y)(x
′)) = ϕ12(y)α

′(ϕ22(y))(ϕ11(x
′))ϕ12(β(x

′)(y))−1,

(iv) β′(ϕ11(x
′)) = ϕ22 ◦ β(x

′) ◦ ϕ−1
22 ,

for all x, x′ ∈ G1 and y, y′ ∈ G2.

Proof. Let ϕ be a map between G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2. By apply-
ing the same arguments as those used in the proof of Theorem 9, we claim
that the map ϕ is a group homomorphism leaving the group G1 invariant if

and only if ϕ =

(
ϕ11 ϕ12

1 ϕ22

)
such that ϕ11 ∈ End(G1), ϕ22 ∈ Map(G2, G2)

and ϕ12 ∈ Map(G2, G1) satisfying the conditions (i)–(iv). It remains to prove
that ϕ is bijective if and only if ϕ11 and ϕ22 are bijective. If ϕ is bijective,
by Lemma 8, the maps ϕ11 and ϕ22 are clearly bijective. Conversely, sup-
pose that ϕ11 and ϕ22 are bijective and let (x, y) ∈ G1 α′⊲⊳β′ G2. We see that
ϕ(ϕ−1

11 (xϕ12(ϕ
−1
22 (y))

−1), ϕ−1
22 (y)) = (x, y) which implies that ϕ is surjective. The

injectivity is clear and then ϕ is bijective. As required.

Example 14. Let (r, t) and (r′, t′) be the pairs given in Example 10. The knit
products G1 t⊲⊳r G2 and G1 t′⊲⊳r′ G2 are also upper isomorphic. Indeed, consider
the automorphisms ϕ11 ∈ Aut(G1) and ϕ22 ∈ Aut(G2) defined in Example 10 and
define the map ϕ12 : G2 → G1 by ϕ12(y

k) = xkp for all k. Using t ≡ 1 mod p, we
get (ii). Furthermore, the condition (i) follows by using (pr′ + 1)p ≡ 1 mod n.
Similarly, the relation jt′s ≡ jt mod p2 gives us the condition (iii). Finally,
the condition (iv) follows immediately from the relation s(pr′ + 1)j ≡ s(pr + 1)
mod n. Thus, by the previous result, the knit products G1 t⊲⊳rG2 and G1 t′⊲⊳r′ G2

are upper isomorphic.

Now, as consequences of Theorem 13, we give the following results.

Corollary 15. Let G1 and G2 be two groups. The groups G1 α⊲⊳β G2 and G1 α′⋉

G2 are upper isomorphic if and only if the action β is trivial and there exist

σ ∈ Aut(G1), ρ ∈ Aut(G2) and a 1-cocycle η ∈ Z1(G2, G1, α
′ ◦ ρ) such that

σ(α(y)(x)) = η(y)α′(ρ(y))(σ(x))η(y)−1 for all x ∈ G1 and y ∈ G2.

Corollary 16. Let G1 and G2 be two groups. The groups G1 α⊲⊳β G2 and G1⋊β′

G2 are upper isomorphic if and only if there exist σ ∈ Aut(G1), η ∈ Hom(G2, G1)
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and a bijective 1-cocycle ρ ∈ Z1(G2, G2, β
′ ◦ η) such that

σ(α(y)(x)) = η(y)σ(x)η(β(x)(y))−1 ,

β′(σ(x)) = ρ ◦ β(x) ◦ ρ−1,

for all x ∈ G1 and y ∈ G2.

Corollary 17. Let G1 and G2 be two groups. The knit products G1 α⊲⊳β G2 and

G1 α′⊲⊳β′ G2 are diagonally isomorphic if and only if there exist σ ∈ Aut(G1) and
ρ ∈ Aut(G2) such that α′ ◦ ρ = γσ ◦ α and β′ ◦ σ = γρ ◦ β.

Example 18. Let G1 =< x > and G2 =< y > be two cyclic groups of orders
12 and 3, respectively. Consider the actions α, α′ : G2 → Bij(G1) and β : G1 →
Aut(G2) defined by

β(x)(y) = y−1,

α(y)(xk) =

{
xk, k even

xk+4, k odd

and

α′(y)(xk) =

{
xk, k even

xk+8, k odd .

Now, consider the automorphisms σ ∈ Aut(G1) and ρ ∈ Aut(G2) defined by
ρ(y) = y2 and σ(x) = x7. By a simple computation, we get α′ ◦ ρ = γσ ◦ α and
β ◦ σ = γρ ◦ β. Hence, by the previous corollary, the knit products G1 α⊲⊳β G2

and G1 α′⊲⊳β G2 are diagonally isomorphic.

Remark 19. Under some conditions, it is possible for two isomorphic knit prod-
ucts to be upper, lower or diagonally isomorphic. Indeed, suppose that G1 and

G2 have coprime order. Let ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
be an isomorphism between

G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2. By evaluating the left hand side and the right hand
side of the formulas ϕ(x, 1) ·

α′,β′

ϕ(x′, 1) = ϕ(xx′, 1) and ϕ(1, y) ·
α′,β′

ϕ(1, y′) =

ϕ(1, yy′), we get the condition (ii) of Theorem 9 and the condition (ii) of The-
orem 13. If Im(ϕ11) ≤ Ker(β′), then ϕ21 is group homomorphism and therefore
it must be trivial. That is G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2 are lower isomorphic.
Similarly, if Im(ϕ22) ≤ Ker(α′) then they must be upper isomorphic. Hence, if
we have the both conditions, the isomorphic knit products are in fact diagonally
isomorphic.

Remark 20. Let G1 and G2 be two groups. Suppose that the knit products
G1 α⊲⊳β G2 and G1 α′⊲⊳β′ G2 are diagonally isomorphic. In view of the preceding
corollary, one can find automorphisms σ ∈ Aut(G1) and ρ ∈ Aut(G2) so that



186 N. Snanou

α′(ρ(G2)) = σ◦α(G2)◦σ
−1 and β′(σ(G1)) = ρ◦β(G1)◦ρ

−1. Since ρ(G2) = G2 and
σ(G1) = G1, it follows that the images α′(G2) and α(G2) are conjugate subgroups
of Aut(G1), and β′(G1) and β(G1) are conjugate subgroups of Aut(G2).

Conversely, the conjugacy of the images of the corresponding actions does
not necessarily give us isomorphic knit products. For example, let G1 = 〈g〉 be
the cyclic group of order 7 and G2 = 〈a, b | a3 = b7 = 1, a−1ba = b2〉. Let β and β′

be trivial actions and define α such that α(a)(g) = g2 and α(b) = IdG1
. Similarly,

we define α′ such that α′(a)(g) = g4 and α′(b) = IdG1
. We have α′(G2) = α(G2)

and β′(G1) = β(G1) = {IdG2
}, but the corresponding knit products

〈
a, b, g | a3 = b7 = g7 = 1, bg = gb, a−1ba = b2, a−1ga = g2

〉

and 〈
a, b, g | a3 = b7 = g7 = 1, bg = gb, a−1ba = b2, a−1ga = g4

〉

are not isomorphic.

5. Unfaithful knit product decompositions

Definition. Let G = G1 α⊲⊳β G2 be a knit product of G1 and G2. We call
G a faithful knit product if the actions α and β are faithful, that is α is a
monomorphism and β is an anti-monomorphism.

Let G1 α⊲⊳β G2 be an unfaithful knit product. Take H1 = Ker(β) and H2 =
Ker(α). Let πi be the canonical projection of Gi onto Gi/Hi and let si : Gi/Hi →
Gi be a group homomorphism such that πi◦si = IdGi/Hi

and Im(si◦πi) ≤ Z(Gi).
Define the maps fx : G2 → G2 and fy : G1 → G1 by fx(y) = yβ(x)(y)−1 and
fy(x) = α(y)(x)−1x. The following result shows that the characterization of
isomorphism classes of the unfaithful knit product G1 α⊲⊳β G2 is reduced to that
of the faithful knit product G1/H1 α⊲⊳β G2/H2 with α ◦ π2(y) ◦ π1 = π1 ◦ α(y)

and β ◦ π1(x) ◦ π2 = π2 ◦ β(x) for all x ∈ G1 and y ∈ G2.

Proposition 21. Keep the above notations and assumptions and let G1 be a

group and G2 an abelian group. Suppose that Im(fx) ≤ FixG2
(s2 ◦ π2) and

Im(fy) ≤ FixG1
(s1 ◦ π1) for all x ∈ G1 and y ∈ G2. Then the knit product

G1/H1 α⊲⊳β G2/H2 is a direct factor of G.

Proof. Indeed, it is directly checked that α(π2(y)) ∈ Epi(G1/H1). Now, if
α(π2(y))(π1(x)) = H1 then α(y)(x) ∈ H1. But, it follows from the equation
(4) that β ◦ α(y) = β for all y ∈ G2, so β(x) = IdG2

and then x ∈ H1. Hence
α(π2(y)) ∈ Aut(G1/H1). Similarly, we get β(π1(x)) ∈ Aut(G2/H2). Further-
more, it is obvious to see that α : G2/H2 → Aut(G1/H1) is a group homomor-
phism and the map β : G1/H1 → Aut(G2/H2) is an anti-homomorphism. Now,
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define the bijection ϕ : G1 α⊲⊳β G2 −→ H1 × (G1/H1 α⊲⊳β G2/H2)×H2 by

ϕ(x, y) = (xs1(π1(x
−1)), (π1(x), π2(y)), ys2(π2(y

−1)))

for all x ∈ G1, y ∈ G2. Let x, x
′ ∈ G1 and y, y′ ∈ G2, we have

ϕ((x, y) ·
α,β

(x′, y′)) = ϕ(xα(y)(x′), β(x′)(y)y′)

= (xα(y)(x′)s1(π1(α(y)(x
′)−1x−1)),

(π1(x)π1(α(y)(x
′)), π2(β(x

′)(y))π2(y
′)),

β(x′)(y)y′s2(π2(y
′−1β(x′)(y)−1)))

using the assumption = (xs1(π1(x
−1))x′s1(π1(x

′−1)),

(π1(x)α(π2(y))(π1(x
′)), β(π1(x

′))(π2(y))π2(y
′)),

ys2(π2(y
−1)y′s2(π2(y

′−1)))

= (xs1(π1(x
−1))x′s1(π1(x

′−1)),

(π1(x), π2(y)) ·
α,β

(π1(x
′), π2(y

′)),

ys2(π2(y
−1)y′s2(π2(y

′−1)))

= ϕ(x, y)ϕ(x′, y′).

Thus ϕ is a group homomorphism and then it is a group isomorphism, as re-
quired.

Using a similar computation as in the previous proof, the following proposi-
tion provides another factorisation of G1 α⊲⊳β G2.

Proposition 22. Let G1 and G2 be two groups. Suppose that Im(fx) ≤ FixG2
(s2◦

π2) and Im(fy) ≤ FixG1
(s1 ◦ π1) for all x ∈ G1 and y ∈ G2. Then

G1 α⊲⊳β G2
∼= (H2 ×G1/H1) α̃⊲⊳β̃ (G2/H2 ×H1)

where α̃(π2(y), h1)(h2, π1(x)) = (h2, π1(α(y)(x))) and β̃(h2, π1(x))(π2(y), h1) =
(π2(β(x)(y)), h1).
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