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Abstract

Given a nonempty set X, and let P(X) denote the partial transformation
semigroup on X. For a nonempty subset Y of X, define PT(X,Y) as follows

PT(X,Y)={ae€ P(X):(domanY)a CY}.

Then PT(X,Y) is a generalization of P(X), consisting of all partial transfor-
mations on X that leave Y as an invariant set. In this paper, we investigate
the Green’s relations and explore all unit regular elements. Additionally, we
determine the necessary and sufficient conditions for PT(X,Y) to be unit
regular and directly finite.

Keywords: partial transformation semigroups, Green’s relations, unit reg-
ular semigroups, directly finite semigroups.
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1. INTRODUCTION AND PRELIMINARIES

Let X be a nonempty set, and let T(X) be the full transformation semigroup
on X under the composition of mappings. In semigroup theory, the semigroup
T'(X) holds significant importance since any semigroups can be considered as an
isomorphic subsemigroup of T'(X). Many prominent properties have been estab-
lished for T'(X), and several special subsemigroups of T'(X') have been extensively
investigated.
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As far back as 1955, Doss [9] demonstrated that T'(X) is a regular semigroup
and provided a description of Green’s relations on 7'(X). Tirasupa [20] then
showed in 1979 that T'(X) is factorizable if and only if X is finite. Moving
forward to 1980, Alarcao [1] established that T'(X) is directly finite if and only
if X is finite.

Over time, the concept of the full transformation semigroup has undergone
impressive expansion, incorporating and encompassing previous findings. One
well-known generalization of T(X) is a semigroup T(X,Y), where Y is a fixed
nonempty subset of X, defined as follows

T(X,Y)={aeT(X):YaCY}.

The investigation of this semigroup was initiated by Magill [13] in 1966. Subse-
quently, in 2005, Nenthein et al. [14] obtained a characterization for the regularity
of elements in T(X,Y) and illustrated that T((X,Y") is regular if and only if either
X =Y or Y is a singleton set. Later on, in 2007, Boonmee [2] examined the
factorization properties of T(X,Y) by establishing its connection with unit regu-
larity. In 2011, Honyam and Sangwong [10] provided a comprehensive description
of Green’s relations and the ideals within T'(X,Y"). Additional properties related
to T(X,Y) have been described [3, 18, 19].

In 2013, Honyam and Sanwong [11] introduced the concept of a transforma-
tion semigroup, which demonstrates simplicity yet significant capability. This
was achieved by considering a fixed subset Y of a nonempty set X and defining
the set as follows

Fiz(X,)Y)={aeT(X):ya =y forall y e Y}.

Notably, such a semigroup is a generalization of T'(X), as Fiz(X,0) = T(X),
and it is contained within T(X,Y’). The authors demonstrated that Fiz(X,Y)
forms a regular semigroup and provided a complete description of Green’s rela-
tions on Fiz(X,Y'). Later in 2017, Chaiya et al. [5] gave necessary and sufficient
conditions for Fiz(X,Y’) to be factorizable, unit regular, and directly finite. Fur-
thermore, several other properties concerning Fiz(X,Y) have been detailed in
previous studies [4, 6, 15, 16].

Consider P(X), the partial transformation semigroup, which comprises all
functions from a subset of X to X, operating under function composition, where
X is a nonempty set. It is evident that 7'(X), Fiz(X,Y), and T(X,Y) are strictly
contained within P(X). The description of Green’s relations on P(X) appeared
in [12]. The factorization, unit regularity, and directly finiteness of P(X) were
also described in [1, 20].

In 2020, Chinram and Yonthanthum [8] extended the study of the semigroup
Fiz(X,Y) to partial transformations by generalizing it to P(X). They achieved
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this by considering Y C X and defining the set as follows
PFiz(X,Y)={a € P(X) :ya =y for all y € domanNY}.

This construction generalizes P(X), as PFiz(X,0) = P(X). They demonstrated
that PFixz(X,Y) is not a regular semigroup; however, they provided a complete
and accurate description of the necessary and sufficient conditions for the ele-
ments of such a semigroup to be regular. Later in 2022, Wijarejak and Chaiya
[21] described Green’s relations on PFixz(X,Y’). Moreover, they showed the con-
ditions for PFiz(X,Y’) to be unit regular in [22].

The focus of this paper is on the semigroup PT(X,Y), which follows the same
concept of expanding the semigroup T(X) to yield T(X,Y). In 2021, Chinram
[7] introduced this semigroup similarly, encompassing a fixed nonempty subset ¥’
of X. It is defined as follows

PT(X,Y)={ae€ P(X):(domanY)a C Y}

In 2022, Pantarak and Chaiya [17] established that PT(X,Y) is a regular semi-
group if and only if X = Y, and PE = {a € PT(X,Y) : im(a)NY = Ya}
represents the set of all regular elements within PT(X,Y). In this paper, we
provide a characterization of Green’s relations on PT(X,Y) and discover that
D = J if and only if X is a finite set or X = Y. Moreover, we examine the
concepts of unit regularity and direct finiteness within PT(X,Y).

In this paper, we consider the set X, which can be either finite or infinite. The
cardinality of a set A is denoted by |A|, and the notation X = AUB indicates that
X is a disjoint union of A and B. Additionally, we adopt the convention of writing
functions on the right to the argument. Specifically, in the composition a3, the
transformation « is applied first. For a € P(X), the domain and the image of «
are denoted by dom « and im «, respectively. The inverse image of z € im « under
« is denoted by za~! and it is the set {z € doma : za = z}. An equivalence
relation ker @ on dom« is defined to be ker v = {(a,b) € doma x doma : ac =
ba}. Hence, the partition of dom o induced by ker o is {xa™! : x € im a}.

We usually represent o € P(X) in two-line notation as follows

- (2)

Here, we make the assumption that the subscript ¢ belongs to an unspecified
index set I. From the notation, we can deduce that dom « is the disjoint union
UierXis a;a~ ! = X;, {X; : i € I} is the partition of dom o induced by ker a, and
ima = {a; : i € I'}. To simplify notation, we represent {a; : i € I'} as {a;}, and
when A C X, we use A« to refer to (doma N A)a.
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In particular, when o € PT(X,Y), we can divide the domain of « into three

parts, as follows
o — <Ai B; C’k>
a; bj Cl

where A;NY # 0; Bj,Cy, € X\Y;{a;},{b;} CY;and {¢t} C X\Y. It is important
to note that the identity map on X, denoted as idx, belongs to PT(X,Y’), which
implies that PT(X,Y)! = PT(X,Y).

2.  GREEN’S RELATIONS ON PT(X,Y)

We start this section by presenting the known results from [17, 23], which serve
as a crucial tool for verifying Green’s relations on PT(X,Y).

Lemma 1 [17, 23]. Let o, 8 € PT(X,Y).

(1) a= A3 for some A € PT(X,Y) if and only ifima Cim 8 and Ya C Y j5.

(2) a = Bu for some p € PT(X,Y) if and only if doma C dom f3; ker B N
(dom 8 x doma) C kera; and x € (doma NdomB)\Y and zf € Y imply
za €Y.

(3) a = ABu for some \, u € PT(X,Y) if and only if |ima| < |im B3|, |Ya| < |V 3]
and |ima\Y| < |im B\Y].

Theorem 2. Let a,3 € PT(X,Y). Then a L3 if and only if ima = im 3 and
Ya=Yg.

Proof. Assume that o £ 8. Then a = A3 and 3 = pa for some \, u € PT(X,Y).
From Lemma 1(1), we get ima =im f and Ya =Y.

Conversely, assume that ima = imf and Ya = Y 5. Since ima C imf3
and Ya C Y, as stated in Lemma 1(1), it follows that o = A for some A €
PT(X,Y). Similarly, due to im 8 C ima and Y3 C Ya, we can conclude that
B = pa for some p € PT(X,Y). Therefore, we have established that a L 3, as
required. [ |

Theorem 3. Let o, 3 € PT(X,Y). Then aR B if and only if all of the following

conditions hold:

(1) ker v = ker 3;

(2) za €Y if and only if xB € Y for all x € dom Y.

Proof. Assume that R 5. This means that a = S\ and f = au for some

A\ i € PT(X,Y). Based on the first condition of Lemma 1(2), we conclude that
doma = dom 3. This implies ker & = ker 8 by utilizing the second condition.
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Since doma \ Y = (domaNdom ) \ Y, we can deduce that za € Y if and only
if 8 € Y according to the last condition.

Conversely, assume that the given conditions hold. Since ker a = ker 5, we
can conclude that dom o« = dom 8. As a result, « and ( satisfy all the conditions
in Lemma 1(2) (in the reverse direction). Consequently, & = S\ and = ap for
some A\, u € PT(X,Y). Therefore, we have shown that a R 3, as required. [ |

Theorem 4. Let a,3 € PT(X,Y). Then oDJ if and only if |Ya| = |Y 3],
ima\Y| = [im S\Y]| and |(imaNY)\Ya| = [(imBNY)\YS|.

Proof. Assume that aDfS. Then there exists some v € PT(X,Y) such that
aL~yRS. Since v R 3, we can apply Theorem 3 to obtain the following expression

7:<Ai Bj Ck> and 5:<Az Bj Ck>

a; bj ¢ T Y %k

where 4; NY # 0; B;, Cy € X\Yi{ai}, {i} CYi{b;} € Y\{ai}, {y;} C Y\ {wi}.
As aLl~, we can apply Theorem 2, which yields ima = im~v and Ya = Y.

Therefore, we can write
<Li M; Nk>
o =
a; bj Ci
where L; NY # () and M;, Nj; € X\Y. Subsequently, we obtain
Yaf = [ai}| = Hai} = [Y 5],
imo\Y| = [{er}| = {zr}] = |im 5\Y], and
[(ima NY)\Yea| = [{b;}| = Hy;}| = [(im BN Y)\Y S].

Conversely, under the given conditions. We can express a and [ as

o — <AZ- B C’k> and 3 — <Ui V; Wk>
a; bj ¢k u;  vj W
where A, NY # 0 # U; NY;B;,Cy, V;, W, € X\Y;{a;},{ui} C Y;{b;} C

Y\{ai}, {v;} € Y\{wi} and {ex}, {we} © X\Y. Since [{a;}[ = [{ui}]; [{0;}|
{v;}| and [{ci}| = [{wk}|, we can define

(U V; Wy
= a; bj Ck
and p belongs to PT(X,Y). Consequently, £ ;1 by Theorem 2. Additionally,

we have ker p = ker § and zp € Y if and only if 8 € Y for all z € dom p\Y.
Therefore, uR 5 by Theorem 3. Hence, aDS. [ |
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Due to the fact that imanNY = YaU[(imaNY)\Ya] for all « € PT(X,Y),
when Y is a finite subset of X, the following corollary is directly obtained from
Theorem 4 through straightforward set theoretical arguments.

Corollary 5. Let a, 3 € PT(X,Y). IfY is a finite subset of X, then aDJ3 if and
only if ima| = |im B, |Ya| = Y] and [imanNY|=|imBNY].

Theorem 6. Let a,3 € PT(X,Y). Then aJ B if and only if ima| = |im 3],
Ya| = Y| and |ima\Y| = |im 5\Y].

Proof. Assume that o J 3. Then oo = A\Bu and 3 = Nap' for some A\, N, pu, ' €
PT(X,Y). According to Lemma 1(3), we obtain |ima| = |[im 3|, |Y a| = |Y 3| and
lima\Y| = |im B\Y.

Conversely, assume that [im a| =|im §|, |[Ya| =|Y 8] and [im a\Y| =|im S\Y|.
Since [ima| < |im f], |Ya| < |Y 5| and [ima\Y| < |im 5\Y|, we can conclude that
a = \Bu for some \,u € PT(X,Y) by Lemma 1(3). In a similar manner, using
the inequalities, [im (| < |[imal,|Y S| < [Ya| and [imB\Y] < |[ima\Y|, we get
B = Nay' for some N, ' € PT(X,Y). Therefore, a7 3, as required. [ ]

Recall that D C J in any semigroup. In general, D C J in PT(X,Y). Then
we provide the necessary and sufficient conditions for D = J on PT(X,Y).

Theorem 7. D =7 on PT(X,Y) if and only if X is a finite set or X =Y.
Proof. Assume that X is infinite and Y C X. Two cases arise.

Case 1. Y is a finite set. Choose y € Y and z € X \ Y. Let X\(Y U{z}) =
{x; i € I'} and define o« and 3 in PT(X,Y) as follow

zZ x; N 2
o= <y $z> and (= <z $z>
Then [imaf = [(X\(Y U {z})) U{y}| = |[X\ V]| = [im f[,[Ya] = 0 = |[Y3] and
ima\Y| = | X\(Y U {z})| = |imB\Y|. According to Theorem 6, we find that

a J . Nevertheless, since [imaNY|=1%# 0= |imBNY|, we can deduce from
Corollary 5 that o and g are not D-related. Hence, D # J.

Case 2. Y is an infinite set. Choose distinct a and b from Y, and ¢ from

X\Y. Let Y\ {a,b} = {y; : i € I} and define o and 3 in PT(X,Y) as follows

_ {aab} C Y _[a b Yi
a-(a by andﬁ_abyi'
Then, we have |ima| = |Y| = |[imf|,|Ya| = [Y \ {b}] = |Y| = |Y3]| and
ima\Y| = 0 = [im5\Y|. According to Theorem 6, we find that o J 3. How-

ever, as |[(imaNY)\Ya| =1 # 0 = |(imB NY)\YS|, we can conclude from
Theorem 4 that o and S are not D-related. Hence, D # J.
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Conversely, assume that either X is a finite set or X = Y. If X is a finite
set, then PT(X,Y) becomes a periodic semigroup, and consequently, D = J
(see [12, Proposition 2.1.4] for details). On the other hand, if X = Y, then
PT(X,Y) = P(X), and again, D = J (see [12, p.63] for details). ]

3. UNIT REGULARITY AND DIRECTLY FINITENESS ON PT(X,Y)

This section aims to present a complete description of the unit regular elements
in PT(X,Y). Moreover, we establish the necessary and sufficient conditions for
PT(X,Y) to be unit regular and directly finite.

Lemma 8. Let o € PT(X,Y). Then « is a unit in PT(X,Y) if and only if o
is a bijection in T(X,Y) such that (X \Y)a C X\ Y.

Proof. Assume that « is a unit in PT(X,Y). Then there exists 3 € PT(X,Y)
such that af = idx = Pa. Since aff = idx and idx is injective, we conclude
that « is also injective, and its domain is X. Moreover, since Sa = idyxy and
idx is surjective, we deduce that « is also surjective. Thus, « is a bijection in
T(X,Y). For each x € X\Y, we have zaf = zidy = v € X\Y. If za € Y,
then, as 3 € PT(X,Y), we have (za)B = x € Y, which leads to a contradiction.
Therefore, za € X\Y, and as a result, (X\Y)a C X\Y.

Conversely, assume that o € T(X,Y) is a bijection such that (X\Y)a C
X\Y. Let 8= a!. Then 8 € T(X). To demonstrate that 3 € T(X,Y), consider
y € Y. There exists 4/ € Y such that y'a = y, and thus y8 = ya~! =4/ € Y.
So Y3 C Y, which implies 8 € PT(X,Y). Furthermore, we can observe that
af = idx = fa. Hence, a is a unit in PT(X,Y). [

For each a € P(X), let 7, = {xa™! : € ima}. A subset C, of doma
is called a cross-section of m, if each class in 7, contains exactly one element
of Cy, ie., |Co Nza™t| =1 for all za™! € m,. It is clear that |C,| = |im a.
Especially, for a € PT(X,Y), we use the previous notion to define 7,(Y) =
{xa™l 2z €¢imanY} and 74 (X\Y) = {za™! : za™! : 2 € ima\Y}. Specifically,
Co(Y) CYalis a cross-section of m,(Y) if each class in 7,(Y) contains exactly
one element of Cy(Y). The cross-section of mo(X \'Y) is defined similarly. Note
that 74 = mo(Y)Urme(X \ Y). Moreover, if C,, is a cross section of m,, then
Cop = (ConYa HU(C,N(X\Y)a™1) such that C,NYa ™! and CoN(X\Y)a™!
are cross sections of 7,(Y) and 7, (X \ Y), respectively.

Next, we aim to describe the properties of all unit regular elements in
PT(X,Y). It is important to note that () is always a unit regular element. The
following theorem provides the characterization of such elements in the remaining
cases.



224 J. SRISAWAT AND Y. CHAIYA

Theorem 9. Let ) # a € PT(X,Y). Then « is unit reqular if and only if the
following conditions hold:

(1) imanY =Ya,

(2) there exists a cross-section C,, of ma such that Co MY is a cross-section of
To(Y), I X\(Y Uima)| = | X\ (Y UCYL)|, and [Y\(imaNY)| =|Y\Cy|.

Proof. Assume that « is unit regular. Then there exists a unit 8 € PT(X,Y)
such that & = afa. As « is regular, according to [17], we deduce that imanNY =
Y a, leading to the conclusion that (1) is satisfied. Next, we consider imaNY =
{yi} and ima\Y = {¢;}. Then, there exists y, € doma such that yia = y;
for all 7, and there exists x; € doma such that z;a = ¢; for all j. Choose
Co = {yif} U{c;B}. To demonstrate that C, C dom «r, we assume the contrary,
ie., Cy € doma. Then, either there exists y;, € Cp\doma or there exists
¢jo3 € Cq\dom . In the first case, it implies that y; = yjo = yjafa = y;fa ¢
im «, which leads to a contradiction. Similarly, the second case also results in a
contradiction. Therefore, C,, C dom «. In order to show that C, is a cross-section
of mo = {yia™ 1} U {cja™t}, we first show that C, NY = {y;8} is a cross-section
of To(Y). It is clear, from o, € PT(X,Y), that (C, NY)a C Y. To show
|(Co NY) Ny;a~t| =1 for all i, we first suppose that there exists ig such that
(CoanNY)N yja~t = . Then, we have y;, = Yi, o = yj,aBa = yi,Ba # yi,
since y;, 8 ¢ yi, 1, leading to a contradiction. Next, we assume that (y;, 8)a =
(i, B)ax for some y;, B,yi,8 € Co NY. Then, we have y;; = y; o = y; afa =
yi, Ba = yi,fa =y afa =y o = y;,. Consequently, [(CoNY)Ny;a~t| = 1 for all
i. Similarly, we can deduce that C,\Y is a cross-section of 7, (X\Y'). Therefore,
C,, serves as a cross-section of m,. Consider, dompg = X = (Y\{y;}) U{y;} U
{e;FUX\(Y Ufes}) and im § = X = (V\{5i8}) U {uiB} U{es8} UX\(Y U{e;8)).
Since 8 is bijective, we get Bjx\(vuic}y) @ X\(Y U {ci}) = X\(Y U {¢;B}) and
Bivigwy + Y\yi} — Y\{y:8} are both bijective. Hence, | X \ (Y Uima)| =
[X\Y Ul = XAV U{e;p})] = [X\ (Y UG, and [V (ima NY)| =
Y\{wi} = Y\{1iB} = [Y'\ Cal-

Conversely, we assume that the conditions hold. According to (1), we can

represent « as follows
A A
=0 9)
Yi ¢

where 4; NY # 0;C; € X\Y;{y;} CY; and {¢;} C X\Y. Since C, NY forms
a cross section of 7, (Y) = {4;}, it follows that [(C, NY) N A;] = 1 for all 7.
Let y; € (CoNY) N A;. Hence, |Y\{y;}| = [Y'\{y}}|. Consequently, there exists a
bijection ¢ : Y\{y;} = Y\{y}}. Let Y\{y;} = {ws}. Moreover, since C,\Y forms
a cross section of m, (X\Y') = {C};}, it follows that |(C,\Y)NC;| =1 for all j. Let
cj € (Co\Y) N Cj. Hence, | X\(Y U{c;})| = |X\(Y U{c}})|. Consequently, there
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exists a bijection o : X\(Y U {¢;}) — X\(Y U{c}}). Let X\(Y U{c;}) = {=},
and define 8 : X — X as follows

g (¥ ws G o=
Y wsp c;- 2o )
Thus, 8 is a unit of PT(X,Y), and we have a = afa. Therefore, o is unit
regular. [ |

It is evident that if imaNY = Y «, then there exists a cross-section C,, of 7,
such that C, NY is a cross-section of 7, (Y). In fact |Co, \ Y|+ |CoNY| = |Cy| =
ima| = [ima \ Y|+ |imanY| and |C, NY| = |Yal. Particularly, in the case
where X is a finite set, such a cross-section satisfies condition (2) of Theorem 9.
Thus, we obtain the following corollary.

Corollary 10. Let X be a finite set and o € PT(X,Y). Then « is unit reqular
if and only if o is reqular.

Lemma 8 shows that the units in T(X,Y) and PT(X,Y) coincide. As a
result, an element in T(X,Y) is unit regular if and only if it possesses unit
regularity in PT(X,Y). Thus, Theorem 9 offers us the characterization of unit
regular elements in 7(X,Y’) when considering elements with their domain being
X. Moreover, since PT(X, X) = P(X), we can directly deduce the unit regularity
on P(X) as follows.

Corollary 11. Let a € P(X). Then « is unit reqular if and only if there exists
a cross-section Cq such that | X \ima| = | X \ Cyol.

Recall from [20, Theorem 3.1] that P(X) is a unit regular semigroup if and
only if X is finite. As for the semigroup PT(X,Y), we can observe that it is
almost never unit regular, as demonstrated in the following corollary.

Corollary 12. PT(X,Y) is unit reqular if and only if X is finite and X =Y.

Proof. If X is finite and X = Y, then PT(X,Y) = P(X) is unit regular by
the previous note. In contrast, if PT(X,Y) is unit regular, it is also regular,
which leads to the conclusion that X =Y, as mentioned in [17, Corollary 3.1.5].
Consequently, it follows that PT(X,Y) = P(X), implying the finiteness of X,
based on the earlier note. [ |

In 1980, Alarcao [1] provided a characterization for the conditions under
which a semigroup S with identity is unit regular and directly finite, respectively.

Proposition 13 [1]. Let S be a semigroup with identity 1.

(1) S is unit regular if and only if it is factorizable.
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(2) S is directly finite if and only if Hy = Ds.

By combining Proposition 13 and Theorem 12, we derive the following corol-
lary.

Corollary 14. The following statements are equivalent.
(1) PT(X,Y) is unit reqular;

(2) PT(X,Y) is factorizable;

(3) X is finite and X =Y.

In [1, Proposition 5], the author demonstrated that P(X) is unit regular if
and only if it is directly finite. However, we will show that this property does
not hold for PT(X,Y). Nonetheless, the finiteness of X remains a sufficient
condition, as illustrated in the following example.

Theorem 15. PT(X,Y) is directly finite if and only if X is a finite set.

Proof. Assume that X is a finite set. Let o,3 € PT(X,Y) be such that
aff = idx. Then a and B are bijective, and therefore they are group elements.
Consequently, a = 7!, and thus fa = idy.

Conversely, we assume that X is an infinite set. In order to demonstrate that
PT(X,Y) is not directly finite, we will consider two cases.

Case 1. Y is finite. Let Y = {y1,¥2,...,yx}. Thus, X\Y is infinite. Choose
b e X\Y. Then | X\(Y U{b})| = |X\Y|, and there exists a bijection o : X\(Y U
{b}) = X\Y. Let X\(YU{b}) = {z; : j € J}. Now, fix jo € J and let J' = J\{jo}.
Define B as follows

ﬁ_<y1 yk {who, 0} xa)

Y1 o Yk ijU {L'j/O'

Then, 8 € PT(X,Y) and im8 = X. So |YB| = |Y| = |Yidx|,|imB\Y| =
IX\Y| = |Xidx\Y| = |imidx\Y|, and [(imBNY)\YF| = |[Y\Y]| = [(Xidx N
Y)\Yidx| = [(imidx NY)\Yidx|. By Theorem 4, we obtain § € D4, . However,
B ¢ Hiq, since ker 8 # keridx. Hence, D;q, # H,q,. By Proposition 13(2), we
get PT(X,Y) is not directly finite.

Case 2. Y is infinite. We choose a € Y. Then |Y'\{a}| = |Y], so there exists
a bijection ¢ : Y\{a} — Y. Let Y\{a} = {y; : i € I'}. Now, fix ig € I, and let
I'=1\{io}. Let X \'Y ={x;:j € J} and define o € PT(X,Y) as follows

a= <{y"0’“} Yir xj> .

Yie Y Ty
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Thus, « is surjective, and hence |Ya| = |Y| = |Yidx|,[ima\Y| = | X\Y]| =
| Xidx \Y| = |imidx\Y|, and |(imanY\Ya)| = |Y\Y| = |(Xidx NY)\Yidx| =
|(imidx NY)\Yidy|. By Theorem 4, deduce that o € D;q,. However, we see
that ker a # keridx, so o ¢ Hiq, . Thus D4, # H;q, . According to Proposition
13(2), we conclude that PT(X,Y) is not directly finite. ]
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