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Abstract15

We show in this paper that for any graph E and for a commutative unital16

ring R, the nil ideals of the Leavitt path algebra LR(E) depend solely on17

the nil ideals of the ring R. A connection between the Jacobson radical of18

LR(E) and the Jacobson radical of R is obtained. We also prove that for19

a nil ideal I of a Leavitt path algebra LR(E) the ideal M2(I) is also nil,20

thus obtaining that Leavitt path algebras over arbitrary graphs satisfy the21

Köethe’s conjecture.22
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1. Introduction26

Throughout this paper, R denotes a commutative ring with identity, J(R) the27

Jacobson radical of R, N(R) the nilradical of R and LR(E) shall denote the28

Leavitt path algebra of a directed graph E with coefficients from R. An important29

note to make in these introductory lines about Leavitt path algebras is that they30

are locally unital. We recall that a ring R is locally unital if for each finite set F of31
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elements of R, there is an idempotent u (i.e., u2 = u ∈ R) such that ua = au = a32

for all a ∈ F . The set of all such idempotents u is said to be a set of local units.33

We begin this paper with some basic definitions concerning Leavitt path34

algebras. Some known properties of Leavitt path algebras which will be helpful35

to us later in establishing our main results are also included. We would like to36

refer to [1], [12] and [8] for the details of this section.37

A quadruple E = (E0, E1, r, s) consisting of a set of vertices E0, a set of38

edges E1 and two maps r, s : E1 −→ E0 (the range and source maps of E) is39

called a (directed) graph. A sink is a vertex that emits no edge. When a vertex40

emits a non-empty finite set of edges, it is called a regular vertex. We denote the41

set of regular vertices as E0
reg. A vertex which is a source of infinitely many edges42

is called an infinite emitter. For each e ∈ E1, we call e∗ a ghost edge such that43

the source and range of e∗ is equal to the range and source of e respectively.44

A path ρ of finite length |ρ| = n ≥ 0 is a sequence of n edges ρ = f1f2 · · · fn45

with r(fi) = s(fi+1) for all i = 1, · · ·, n − 1. Accordingly ρ∗ = f∗n · · · f∗2 f∗1 will46

be considered as the corresponding ghost path of ρ. A vertex is a path of length47

0. In this case, the vertex is considered as the ghost path of itself. The set of all48

vertices on the path µ is denoted by µ0. The set of all paths in E is denoted by49

Path(E) := ∪∞n=0E
n, where En is the set of paths of length n > 0.50

A path µ = e1e2 . . . en in E is closed if r(en) = s(e1), in which case µ is51

said to be based at the vertex s(e1). A closed path µ as above is called simple52

provided it does not pass through its base more than once, i.e., s(ei) 6= s(e1) for53

all i = 2, . . . , n. A closed path µ is called a cycle if it does not pass through any54

of its vertices twice, that is, if s(ei) 6= s(ej), for every i 6= j.55

Given an arbitrary graph E and a unital commutative ring R, the Leavitt path56

algebra LR(E) is defined to be the R-algebra generated by a set {v : v ∈ E0} of57

pair-wise orthogonal idempotents together with a set of variables {e, e∗ : e ∈ E1}58

which satisfy the following conditions:59

1. s(e)e = e = er(e) for all e ∈ E1.60

2. r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.61

3. (The CK-1 relations) For all e, f ∈ E1, e∗e = r(e) and e∗f = 0 if e 6= f .62

4. (The CK-2 relations) For every regular vertex v ∈ E0,

v =
∑

e∈E1, s(e)=v

ee∗.

The first useful observation about LR(E) is that every element a can be63

written in the form a =
∑n

i=1 kiαiβ
∗
i , where ki ∈ R, αi, βi are paths in E and n64

is a suitable integer. Secondly, elements of the subset {v, e, e∗ : v ∈ E0, e ∈ E1}65
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of LR(E) are all nonzero [Proposition 3.4 [11]]. Thirdly, a Leavitt path algebra66

is a Z− graded algebra [11].67

It may be recalled that a ring R is Z − graded (or, simply, graded) if there68

exists a collection of additive subgroups {Rk}k∈Z of R such that the following69

conditions hold:70

1. R =
⊕
k∈Z

Rk71

2. RjRk ⊆ Rj+k for all j, k ∈ Z.72

The subgroup Rk here is called the homogeneous component of R of degree k.
For a Leavitt path algebra, the homogeneous components are given as LR(E)k

:=

{
N∑
i=1

riαiβ
∗
i : αi, βi ∈ Path(E), ri ∈ R, and |αi| − |βi| = k, ∀i

}

In order to study the description of ideals in Leavitt path algebras, the following73

concepts concerning some subsets of LR(E) are needed.74

A subset H ⊆ E0 is hereditary if whenever a vertex v ∈ H, r(ρ) ∈ H for any
path ρ ∈ Path(E) with s(ρ) = v. Also, a subset S ⊆ E0 is saturated if whenever
the set {r(e)|e ∈ E1, s(e) = v} ⊆ S for a regular vertex v ∈ E0, v ∈ S. For a
hereditary saturated subset H of E0, the set of breaking vertices, BH of H is
defined to be the collection of infinite emitters of E0 \H emitting finitely many
edges into itself, i.e.,

BH := {v ∈ E0 \H : |s−1(v)| =∞, 0 < |s−1(v) ∩ r−1(E0 \H)| <∞}.

Also, for a vertex v ∈ BH , we denote75

vH := v −
∑

s(e)=v,r(e)/∈H

ee∗.

and BH
H := {vH | v ∈ BH}.76

Results about generators of ideals in Leavitt path algebras over a field have77

been studied extensively by [9], [2], [5], [3]. In [5] it has been proved that given78

a row-finite graph E, if K is a field and I is a two-sided ideal of LK(E), then I79

is generated by elements of the form v +
n∑

i=1
λig

i where v ∈ E0, g is a cycle at v80

and λi ∈ K, for 1 ≤ i ≤ n.81

Larki [8] made a study for ideals with coefficients in a commutative ring. A82

recent paper by Rigby and van den Hove [10] about generators of ideals in Leavitt83

path algebras over a commutative ring R with identity, proves that a two-sided84
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ideal of a Leavitt path algebra LR(E) is generated by elements of the following85

three types:86

Type 1: Scalar multiples of vertices.87

Type 2: Scalar multiples of elements of the form88

vH = v −
∑

e∈s−1(v),r(e)/∈H

ee∗,

with v a breaking vertex for a hereditary saturated subset H ⊆ E0.89

Type 3: Laurent polynomials evaluated at cycles in the graph E.90

Let us quickly recall here that, the formal expression of a Laurent polynomial91

f in a single indeterminate x with coefficients in a ring R is given by92

f(x, x−1) = a−nx
−n + · · ·+ a−1x

−1 + a0 + a1x+ · · ·+ amx
m,

where m,n ∈ Z+, ai ∈ R (cf. [13]).93

If c is any cycle in E, we write f(c, c∗) to mean the evaluation of f(x, x−1)
at the cycle c, that is,

f(c, c∗) = a−nc
∗n + · · ·+ a−1c

∗1 + a0s(c) + a1c+ · · ·+ amc
m.

Here a0s(c) is the degree 0 element of f(c, c∗).94

This recent discovery by Rigby and van den Hove prompted us to study the95

behaviour of nil ideals and Jacobson radical in Leavitt path algebras.96

Recall that an ideal I of a ring R is a nil ideal if each of its elements is97

nilpotent. The well-known Köethe’s conjecture asks whether the sum of two98

one-sided nil ideals is one-sided nil. In one of its equivalent forms the Köethe’s99

conjecture asks whether the ring of 2× 2 matrices over a nil ideal is nil. In this100

paper, we establish that for Leavitt path algebras (though they are in general101

non-commutative) over a commutative ring, the Köethe’s conjecture is indeed102

true. We also prove here that the nil ideals of Leavitt path algebras are locally103

nilpotent.104

Another algebraic object which is of interest to us is the Jacobson radical.105

In order to define Jacobson radical we first recall the definition of a right quasi-106

regular ideal. Following [6], an element a of an arbitrary ring R is called right107

quasi-regular if there exists an element a′ ∈ R (called the right quasi-inverse of108

a) such that a+a′+aa′ = 0. A right ideal is right quasi-regular if all its elements109

are right quasi-regular. The Jacobson radical of a ring is the join of all right110

quasi-regular right ideals of the ring.111

It may be noted here that the Jacobson radical of an arbitrary ring is a (right)112

quasi-regular two sided ideal [Theorem 1 [6]].113

To summarize, in this paper, we show how the nil ideals and the Jacobson114

radical of the Leavitt path algebra LR(E) depend on the ring R. Indeed, the nil115
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ideals of the Leavitt path algebra over R are defined by the nil ideals of the ring116

R.117

2. Results118

We begin this section with a lemma citing an example of a particular class of119

idempotent elements in LR(E).120

Lemma 1. For any u ∈ E0 and edges e1, e2, . . . , en with s(ei) = u, the element121

u−
n∑

i=1
eie
∗
i is idempotent.122

Proof. We first observe that for a single edge, say e1.

(u− e1e∗1)(u− e1e∗1) = (u− e1e∗1 − e1e∗1 + e1e
∗
1) = (u− e1e∗1)

Assuming that the result is true for (n− 1) edges, we get that123

(
u− e1e∗1 − e2e∗2 − · · · − en−1e∗n−1 − ene∗n

)2
=
(
u− e1e∗1 − · · · − en−1e∗n−1

)2 − ene∗n (u− e1e∗1 − · · · − en−1e∗n−1)+ ene
∗
n−(

u− e1e∗1 − · · · − en−1e∗n−1
)
ene
∗
n

=
(
u− e1e∗1 − · · · − en−1e∗n−1

)
− ene∗n + ene

∗
n − ene∗n

=
(
u− e1e∗1 − en−1e∗n−1 − ene∗n

)
Hence, u−

n∑
i=1

eie
∗
i is idempotent.124

Remark 2. For a breaking vertex u of a hereditary saturated subset H of E0,125

the set {e ∈ E1|e ∈ s−1(u), r(e) /∈ H} is finite and hence uH is an idempotent126

element of LR(E).127

Lemma 3. All coefficients of a nilpotent Laurent polynomial f evaluated at a128

cycle x of E are nilpotent in R.129

Proof. Let af(x, x∗) be a nilpotent Laurent monomial evaluated at a cycle x130

of E with index of nilpotency k, where a ∈ R is the coefficient of the mono-131

mial. Then it follows easily that ak = 0, i.e., a is nilpotent in R. Hence, the132

lemma is true for nilpotent Laurent monomials. We assume this to be true133

for nilpotent Laurent polynomials with less than n monomials. Let f ′(x, x∗) =134

bh(x, x∗) + g(x, x∗) be a nilpotent Laurent polynomial with n monomials and135

bh(x, x∗) be its highest degree monomial with coefficient b. Suppose m is the136
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index of nilpotency of f ′(x, x∗), then 0 = {f ′(x, x∗)}m = g′(x, x∗)+{bh(x, x∗)}m,137

where g′(x, x∗) = {g(x, x∗)}m + bH(x, x∗) for some polynomial H(x, x∗) with138

deg(g′(x, x∗)) < m{deg(bh(x, x∗)}. This implies that bm = 0, i.e., b is nilpo-139

tent and g′(x, x∗) = 0. So, {g(x, x∗)}m + bH(x, x∗) = 0. i.e., {g(x, x∗)}m =140

−bH(x, x∗), yielding {g(x, x∗)}m2
= (−b)m{H(x, x∗)}m = 0. Thus g is nilpotent.141

But g is a Laurent polynomial with less than n monomials. Hence according to142

our assumption, each coefficient of g is nilpotent. This implies that each coeffi-143

cient of f ′(x, x∗) is nilpotent. Thus the lemma is true for any nilpotent Laurent144

polynomial.145

For each ideal I in LR(E), we define I(R) to be the ideal of R generated by146

the coefficients of a system of generators of I.147

Theorem 4. An ideal I of LR(E) is nil iff I(R) is nil in R.148

Proof. By Corollary 5.6 of [10], each ideal I of LR(E) is generated by generators149

of the form k1v1, k2v2, . . . , l1u
H1
1 , l2u

H2
2 , . . . , f1, f2, . . . for some ki, lj ∈ R and150

vi ∈ E0, uj ∈ BHj , and Laurent polynomials fh’s evaluated at cycles of E over R.151

Let I(R) be the ideal of R generated by the coefficients ki, lj and the coefficients152

of the monomials of the Laurent polynomials fh.153

We first assume that I(R) is nil in R. If α ∈ I, then α is a finite sum of154

monomials with coefficients in I(R). If J is the ideal of R generated by the155

coefficients of the monomials occurring in α, then J is a subideal of I(R). Again156

since J is finitely generated, J is nilpotent of index (say) k. Now, the coefficient157

of each monomial in αk belongs to Jk. This yields αk = 0158

Conversely, if I is a nil ideal in LR(E), then the generators are nilpotent.159

So, for kivi, there exists a non negative integer di such that 0 = (kivi)
di = kdii vi160

(as vi is idempotent). Since each vi is a vertex, we get kdii = 0 and so each ki is161

nilpotent. Similarly each lj is nilpotent. Further as each fh is nilpotent, Lemma162

3 suggests that the coefficients of fh are nilpotent for all h = 1, 2, . . . .163

Recall that a ring R is a reduced ring if it has no non zero nilpotent elements164

[7].165

Corollary 5. Over a reduced ring R, LR(E) has no non-trivial nil ideal.166

Corollary 6. Sum of two nil ideals is again nil in LR(E).167

Theorem 7. For a Leavitt path algebra LR(E), and a nil ideal I of LR(E), M2(I)168

is a nil ideal of M2(LR(E)).169

Proof. Let A be a matrix with coefficients in a nil ideal I of LR(E), i.e., let170

A ∈M2(I) and I(R) be its corresponding ideal in R generated by the coefficients171

of a system of generators of I. If J is the ideal of R generated by the coefficients172
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of the monomials of the entries of A, then we may observe that J is a finitely173

generated subideal of I(R). Thus by Theorem 4, J is also nil in R. Being finitely174

generated, J is nilpotent. But the coefficients of the monomials of the entries of175

Ak belong to Jk, therefore the matrix A is also nilpotent.176

The above theorem shows that the Leavitt path algebra of an arbitrary graph177

over a unital commutative ring satisfies the Köethe’s conjecture.178

Below, we record another result about nil ideals in LR(E). Recall that a179

subset S of a ring T is locally nilpotent (see [7]) if for any finite subset {s1, . . . , sn}180

of S, there exists a positive integer k, such that any product of k elements from181

{s1, . . . , sn} is zero.182

Theorem 8. Every nil ideal of LR(E) is locally nilpotent.183

Proof. As in Theorem 4, if I is a nil ideal of LR(E), the ideal I(R) is a nil ideal184

of R and so is locally nilpotent. Therefore the ideal I is also locally nilpotent.185

We now turn our attention towards Jacobson radicals of Leavitt path algebras186

over a unital commutative ring. We first record the following two lemmas:187

Lemma 9. For any vertex v ∈ E0 \ E0
reg and a non-zero element a ∈ R, if188

av ∈ J(LR(E)) then a ∈ J(R).189

Proof. Let a(6= 0) ∈ R and v ∈ E0\E0
reg such that av ∈ J(LR(E)). That implies190

rv.av = rav ∈ J(LR(E)), ∀r ∈ R. Since any element in J(LR(E)) is right quasi191

regular, for each r ∈ R there exists br ∈ LR(E) such that rav+ br + (rav)br = 0.192

Without loss of generality, we may assume

br = vbrv = s′v +

n∑
i=1

kiαiβ
∗
i

with αiβ
∗
i 6= v where r(αi) = r(βi) and s′, ki ∈ R, for 1 ≤ i ≤ n.193

Thus the expression rav + br + (rav)br = 0 becomes

(ra+ s′ + ras′)v + (1 + ra)

n∑
i=1

kiαiβ
∗
i = 0.

Since αiβ
∗
i 6= v for any 1 ≤ i ≤ n, we get ra+ s′+ ras′ = 0 and hence ra is a194

right quasi regular element of R. Thus (1 + ra) is an unit in R for all r ∈ R and195

by Proposition 1.9 [14], a ∈ J(R).196

197

Lemma 10. For a breaking vertex v of hereditary saturated subset H of E0 and198

for a non-zero element a ∈ R, if avH ∈ J(LR(E)), a ∈ J(R).199
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Proof. Let a( 6= 0) ∈ R and v ∈ BH for a hereditary saturated subset H of200

E0 such that avH ∈ J(LR(E)). This implies that rv.avH = ravH ∈ J(LR(E)).201

Hence, there exists an element b ∈ LR(E) such that ravH + b+ (ravH)b = 0.202

Since it is clear by the definition of breaking vertices that the set A = {e | e ∈
s−1(v), r(e) /∈ H} is finite, let A = {e1, . . . , en}. Then vH = v −

∑
e∈A

ee∗ and we

may assume

b = vbv = s′v +
∑
e∈A

seee
∗ +

m∑
i=1

kiαiβ
∗
i ,

with ee∗ 6= αiβ
∗
i 6= v for each e ∈ A, and s′, ki, se ∈ R for 1 ≤ i ≤ m and

e ∈ A. The expression ravH + b+ ravHb = 0 becomes

(ra+ s′ + ras′)v − (ra+ ras′)
∑
e∈A

ee∗ +
∑
e∈A

seee
∗ + (1 + ra)

m∑
i=1

kiαiβ
∗
i

−ra
∑
e∈A

ee∗
m∑
i=1

kiαiβ
∗
i = 0.

Since ee∗, αiβ
∗
i and ee∗αiβ

∗
i are not equal to v for any e ∈ A and 1 ≤ i ≤ m,203

we get ra+s′+ras′ = 0. Thus (1+ra) is a unit for all r ∈ R and hence a ∈ J(R)204

[Proposition 1.9 [14]].205

Remark 11. Since the Jacobson radical of a Z-graded ring is a homogeneous ideal206

[Corollary 2 [4]], a Laurent polynomial evaluated at a cycle of E over R can be207

a generator of J(LR(E)) if the polynomial is homogeneous, i.e., it is a monomial208

of a Laurent polynomial.209

The fact that the Jacobson radical is a two-sided ideal, the monomials of a210

Laurent polynomial can be substituted by an R-multiple of their source vertex.211

Therefore they can be reduced to Type 1 generators of the Jacobson radical and212

hence for a graph E, with no regular vertex, we have the following result.213

Theorem 12.

J(LR(E)) ⊆ J(R)

(
E0 ∪

⋃
H∈H

BH
H

)

where H is the set of the hereditary and saturated subsets of E0 and BH is the214

set of the breaking vertices of H.215

Proof. The proof of this theorem follows directly from the proofs of Lemmas 9216

and 10 and also Remark 11.217
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Question : For any vertex v ∈ E0
reg with av ∈ J(LR(E)), is it necessary that218

a ∈ J(R)?219

It may be remarked that the converse of the above question is false in general.220

For if we take the power series R := Q[[Y ]] in one indeterminate Y and if E is221

the graph having one vertex v and a single loop c, then a = Y is in J(R) but222

av is not in J(LR(E)): indeed 1 + A(Y )Y is invertible in R for each A(Y ) ∈ R,223

while v + Y c = 1LR(E) + Y c is not invertible in LR(E). However, if the element224

a is in N(R), then we get the following result.225

Lemma 13. For all v ∈ E0, if a ∈ N(R) then av ∈ J(LR(E)) .226

Proof. Let a ∈ N(R) and n ∈ Z>0 be its index of nilpotency. We claim that
avLR(E) is a right quasi regular ideal of LR(E).

Let av
m∑
i=1

αiβ
∗
i = a

m∑
i=1

αiβ
∗
i be any arbitrary element of avLR(E), where s(αi) = v

and r(αi) = r(βi) for all 1 ≤ i ≤ m. We now choose

b = −a
m∑
i=1

αiβ
∗
i + a2(

m∑
i=1

αiβ
∗
i )2 − · · ·+ (−1)n−1an−1(

m∑
i=1

αiβ
∗
i )n−1.

It is now easy to see that

av
m∑
i=1

αiβ
∗
i + b+ (av

m∑
i=1

αiβ
∗
i )b = 0.

Hence every element of avLR(E) is right quasi regular. Thus it is a right quasi227

regular ideal and is contained in J(LR(E)). Therefore, av ∈ J(LR(E)).228

Lemma 14. For a breaking vertex v of a hereditary saturated subset H of E0, if229

a ∈ N(R) then avH ∈ J(LR(E)) .230

It may be noted that the reverse implication of Lemma 13 may not always231

hold. Taking R to be the power series ring Q[[Y ]] and E to be the oriented 2-line232

graph with two vertices and a single edge, we see that as LR(E) ∼= M2(R) of 2×2233

matrices over R, Y

(
0 1
0 0

)
is an element of J(LR(E)) but Y is not nilpotent in234

R.235

However, if we let I0 = {v ∈ E0 \E0
reg | there exists a closed path γ such that236

v ≥ s(γ) }, where v ≥ s(γ) denotes that there is a path from v to s(γ), then we237

have the following result.238

Theorem 15. For any v ∈ I0 and a non-zero element a ∈ R, av ∈ J(LR(E)) iff239

a ∈ N(R).240
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Proof. The proof of (⇐) follows from Lemma 13.
(⇒). Let av ∈ J(LR(E)), where v ∈ I0. Since v ∈ I0, there exists a closed
path γ and a path β in E such that 0 6= avβγ ∈ J(LR(E)), implying that
aγ ∈ J(LR(E)). Let ω ∈ LR(E) such that

aγ + ω + aγω = 0.

Without loss of generality, let us assume that

ω = (s′v′ +

n∑
i=1

aiγ
i +

m∑
j=1

bjαjβ
∗
j )

where v′ = s(γ), r(αj) = r(βj), αjβ
∗
j 6= γi 6= v′ and s′, ai, bj ∈ R for all 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Putting the value of ω in the equation aγ + ω + aγω = 0 we get

s′v′+(as′+a+a1)γ+
n∑

i=1

(ai+aai−1)γ
i+aanγ

n+1+
m∑
j=1

bjαjβ
∗
j +

m∑
j=1

abjγαjβ
∗
j = 0

Since αjβ
∗
j and γαjβ

∗
j are not equal to v′ or γi for any i, j, by comparing the

coefficients of v′ and γi for each i of both the sides we have the following equations,

s′ = 0

as′ + a+ a1 = 0 =⇒ a1 = −a

a2 + aa1 = 0 =⇒ a2 = a2

...

an + aan−1 = 0 =⇒ an = (−1)nan

aan = 0 =⇒ a(−1)nan = 0 =⇒ an+1 = 0.

Thus a ∈ N(R).241

242

We end this paper with the following question:243

244

Question : If v ∈ E0\I0 and a ∈ J(R)\N(R), is it necessary that av should245

be an element of J(LR(E))?246
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