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1. Introduction20

The theory of pseudo-complements in lattices, and particularly in distributive21

lattices was developed by M.H. Stone [13], O. Frink [8], and George Gratzer [9].22

Later many authors like R. Balbes [1], T.P. Speed [12], and O. Frink [8]etc., ex-23

tended the study of pseudo-complements to characterize Stone lattices. In [4],24

I. Chajda, R. Halaš and J. Kühr extensively studied the structure of pseudo-25

complemented semilattices. In [6], W.H. Cornish investigated various signifi-26

cant properties of pseudo-complemented distributive lattices in terms of congru-27

ences. O. Frink in [8], generalized and extended most of the theory of pseudo-28

complements to semi-lattices without making use of the join operation. In [10],29

the concept of δ-ideals was introduced in pseudo-complemented distributive lat-30

tices and Stone lattices are characterized in terms of δ-ideals.31

In this paper, the notion of disjunctive inclusion property is introduced in32
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pseudo-complemented distributive lattices and observed that every maximal fil-33

ter of a pseudo-complemented lattice satisfies this property. It is showed that34

every prime filter of a pseudo-complemented lattice satisfies the disjunctive in-35

clusion property if and only if the pseudo-complemented lattice is a Boolean36

algebra. Similarly, it is showed that the disjunctive inclusion property of prime37

ideals of a pseudo-complemented lattice is equivalent to the lattice to become a38

Boolean algebra. Some equivalent conditions are given for every Stone lattice39

to become a Boolean algebra. A pseudo-complemented lattice is proved to be a40

Boolean algebra if and only if every minimal prime ideal satisfies the disjunctive41

inclusion property.42

It is observed that every prime ideal of a pseudo-complemented lattice need not43

satisfy the disjunctive inclusion property and whenever every prime ideal satisfies44

the same than the lattice will become a Boolean algebra. It is proved that every45

prime ∗-ideal as well as every median prime ideal of a pseudo-complemented lat-46

tice satisfy the disjunctive inclusion property. Finally, the class of Stone lattice47

is characterized with the help of prime ∗-ideals, prime δ-ideals and median prime48

ideals of pseudo-complemented lattices.49

2. Preliminaries50

The reader is referred to [2], [3], [6], [10] and [12] for the elementary notions and51

notations of pseudo-complemented lattices. However some of the preliminary52

definitions and results are presented for the ready reference of the reader.53

A non-empty subset A of a lattice L is called an ideal (filter) of L if a ∨ b ∈54

A (a ∧ b ∈ A) and a ∧ x ∈ A (a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set55

(a] = {x ∈ L | x ≤ a} (resp. [a) = {x ∈ L | a ≤ x}) is called a principal ideal56

(resp. principal filter) generated by a. The set I(L) of all ideals of a distributive57

lattice L with 0 forms a complete distributive lattice. The set F(L) of all filters58

of a distributive lattice L with 1 forms a complete distributive lattice. A proper59

ideal (resp. filter) P of a distributive lattice L is said to be prime if for any60

x, y ∈ L, x ∧ y ∈ P (resp. x ∨ y ∈ P ) implies x ∈ P or y ∈ P . A proper ideal61

(resp. proper filter) P of a lattice L is called maximal if there exists no proper62

ideal (resp. filter) Q of L such that P ⊂ Q. A proper ideal (resp. proper filter)63

P of a distributive lattice L is minimal if there exists no prime ideal (resp. prime64

filter) Q of L such that Q ⊂ P . Every maximal ideal (resp. maximal filter)65

of a distributive lattice is a prime ideal (resp. prime filter). A complemented66

distributive lattice is a Boolean algebra.67

The pseudo-complement b∗ of an element b is the element satisfying68

a ∧ b = 0 ⇔ a ∧ b∗ = a ⇔ a ≤ b∗69
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where ≤ is the induced order of L.70

A distributive lattice L in which every element has a pseudo-complement is71

called a pseudo-complemented distributive lattice. For any two elements a, b of a72

pseudo-complemented semilattice [4], we have the following.73

(1) a ≤ b implies b∗ ≤ a∗,74

(2) a ≤ a∗∗,75

(3) a∗∗∗ = a∗,76

(4) (a ∨ b)∗ = a∗ ∧ b∗,77

(5) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.78

An element a of a pseudo-complemented distributive lattice L is called a dense79

element if a∗ = 0 and the set D of all dense elements of L forms a filter in L.80

A pseudo-complemented distributive lattice is a Boolean algebra if and only if81

every prime ideal is maximal if and only if x ∨ x∗ = 1 for all x ∈ L.82

Definition. [2] A pseudo-complemented distributive lattice L is called a Stone83

lattice if x∗ ∨ x∗∗ = 1 for all x ∈ L84

Theorem 1. [12] The following assertions are equivalent in a pseudo-complemented85

distributive lattice L:86

(1) L is a Stone lattice;87

(2) for x, y ∈ L, (x ∧ y)∗ = x∗ ∨ y∗;88

(3) for x, y ∈ L, (x ∨ y)∗∗ = x∗∗ ∨ y∗∗.89

Theorem 2. [6] Let P be a prime ideal of a pseudo-complemented distributive90

lattice and x ∈ L. Then the following assertions are equivalent:91

(1) P is minimal;92

(2) x ∈ P implies x∗ /∈ P ;93

(3) x ∈ P if and only if x∗∗ ∈ P .94

An ideal I of a pseudo-complemented lattice L is called a δ-ideal [10] if95

there exists a filter F such that I = δ(F ) = {x ∈ L | x∗ ∈ F}. A prime ideal96

P of a pseudo-complemented lattice L is called median prime [11] if to each97

x ∈ P , there exists y /∈ P such that x∗ ∨ y∗ = 1. A congruence θ of a pseudo-98

complemented lattice L is called ∗-congruence [3] if, for all x, y ∈ L, (x, y) ∈ θ99

implies (x∗, y∗) ∈ θ. An ideal I of a pseudo-complemented lattice is called a100

kernel ideal [3] if there exists a ∗-congruence θ such that I = ker θ. An ideal I101

of a pseudo-complemented lattice L is called a ∗-ideal if for all x, y ∈ L, x∗ = y∗102

and x ∈ I imply that y ∈ I. Throughout this note, all lattices are bounded103

pseudo-complemented distributive lattices unless otherwise mentioned.104
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3. Disjunctive Inclusion Property in Lattices105

In this section, the notion of disjunctive inclusion property is introduced in106

pseudo-complemented lattices. The algebraic structures like Boolean algebras107

and Stone lattices are characterized with the help of disjunctive inclusion prop-108

erty. The disjunctive inclusion properties of certain classes of prime ideals and109

prime filters are derived.110

Lemma 3. The following properties hold in a pseudo-complemented lattice L:111

(1) every prime ideal contains either x or x∗ for all x ∈ L,112

(2) every maximal ideal contains either x or x∗ for all x ∈ L,113

(3) every maximal filter contains exactly one of x and x∗ for all x ∈ L.114

Proof. (1) Let P be a prime ideal of L and x ∈ L. Clearly x ∧ x∗ = 0 ∈ P .115

Since P is prime, we get either x ∈ P or x∗ ∈ P .116

(2) Since every maximal ideal is prime, it is clear.117

(3) Let M be a maximal filter of L. Let x ∈ D. Suppose x /∈ M . Since M is118

maximal, there exists 0 6= y ∈ M such that x∧y = 0. Hence y ≤ x∗ = 0, which is119

a contradiction. Thus x ∈ M , which gives that D ⊆ M . Hence x∨ x∗ ∈ D ⊆ M .120

Since M is prime, we get x ∈ M or x∗ ∈ M . Suppose M contains both x and x∗.121

Then 0 = x ∧ x∗ ∈ M , which is a contradiction. Therefore M contains exactly122

one of x and x∗.123

Definition. A subset A of a pseudo-complemented lattice L is said to satisfy124

disjunctive inclusion property if A contains exactly one of x and x∗ for all x ∈ L.125

Proposition 4. Every minimal prime ideal of a pseudo-complemented lattice126

satisfies disjunctive inclusion property.127

Proof. Let P be a minimal prime ideal of a pseudo-complemented lattice L.128

Then L−P is a maximal filter. By Lemma 3(3), we get L−P satisfies disjunctive129

inclusion property. Therefore P satisfies disjunctive inclusion property.130

Example 5. Consider the following bounded and finite distributive lattice L =131

{0, a, b, c, d, 1} whose Hasse diagram is given by:132
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Clearly L is a pseudo-complemented lattice. Observed that a∗ = b, b∗ = c,135

c∗ = b and d∗ = 0. This lattice contains only two maximal filters F1 = {1, b, d}136

and F2 = {1, a, c, d}. Clearly F1 and F2 are both satisfying disjunctive inclusion137

property. Observe that L is not a Boolean algebra because of a ∨ a∗ = d 6= 1.138

Further, the lattice contains only two maximal ideals, precisely M1 = {0, a, c}139

and M2 = {0, a, b, d}. Clearly neither of them are satisfying the property.140

From Lemma 3(3), every maximal filter of a pseudo-complemented lattice141

satisfies the disjunctive inclusion property. In general, every prime filter of a142

pseudo-complemented lattice need not satisfy the disjunctive inclusion property.143

In deed, consider the finite distributive lattice 0 < a, bc < d < 1 where a∗ =144

b, b∗ = a, c∗ = d∗ = 0. Clearly the prime filter P = {1, d} neither contains a nor145

a∗. However, we have the following result:146

Theorem 6. The following assertions are equivalent in a pseudo-complemented147

lattice L:148

(1) L is a Boolean algebra;149

(2) every prime filter satisfies disjunctive inclusion property;150

(3) every prime filter contains D;151

(2) every minimal prime filter contains D.152

Proof. (1) ⇒ (2): Assume that L is a Boolean algebra. Let x ∈ L and P be a153

prime filter of L. Since L is Boolean, we get x ∨ x∗ = 1 ∈ P . Since P is prime,154

we get either x ∈ P or x∗ ∈ P . Suppose P contains both of x or x∗. Then155

0 = x ∧ x∗ ∈ P , which is a contradiction. Therefore P contains exactly one of x156

and x∗ for all x ∈ L.157

(2) ⇒ (3): Assume condition (2). Let P be a prime filter of L. Let x ∈ D. Then158

x∗ = 0 /∈ P . By the assumption, we must have x ∈ P . Therefore P contains D.159

(3) ⇒ (4): It is obvious.160

(4) ⇒ (1): Assume condition (4). Let x ∈ L. Clearly x∨x∗ ∈ D. Since x∧x∗ = 0,161

it is enough to show that x ∨ x∗ = 1. Suppose x ∨ x∗ 6= 1. Then there exists a162

maximal ideal M such that x ∨ x∗ ∈ M . Then L−M is a minimal prime filter163

of L such that x ∨ x∗ /∈ L −M . Hence D * L −M , which is contradicting the164

hypothesis.165

Theorem 7. The following assertions are equivalent in a pseudo-complemented166

lattice L:167

(1) L is a Boolean algebra;168

(2) every prime ideal satisfies disjunctive inclusion property;169
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(3) every maximal ideal satisfies disjunctive inclusion property;170

(2) no maximal ideal contains a dense element.171

Proof. (1) ⇒ (2): Assume that L is a Boolean algebra. Let P be a prime ideal172

of L and x ∈ L. Since L is Boolean, we get x ∨ x∗ = 1. By Lemma 3(1), we get173

either x ∈ P or x∗ ∈ P . Suppose P contains both x and x∗. Then 1 = x∨x∗ ∈ P ,174

which is a contradiction. Therefore P contains exactly one of x and x∗.175

(2) ⇒ (3): Since every maximal ideal is prime, it is clear.176

(3) ⇒ (4): Assume condition (3). Let M be a maximal ideal of L. Let x ∈ D.177

Clearly x∗ = 0 ∈ M . Since M satisfies disjunctive inclusion property, we must178

have x /∈ M . Therefore M contains no dense element.179

(4) ⇒ (1): Assume condition (4). Let a ∈ L. Clearly a ∧ a∗ = 0. It is enough to180

show that a ∨ a∗ = 1. Suppose a ∨ a∗ 6= 1. Then there exists a maximal ideal M181

such that a ∨ a∗ ∈ M . Since a ∨ a∗ ∈ D, it is contradicting the hypothesis.182

Corollary 8. A pseudo-complemented lattice L is a Boolean algebra if and only183

if every minimal prime filter satisfies disjunctive inclusion property.184

Proof. Assume that L is a Boolean algebra. Let P be a minimal prime filter185

of L. Then L − P is a maximal ideal of L. By Theorem 7, we get that L − P186

satisfies disjunctive inclusion property. Therefore P satisfies disjunctive inclusion187

property. Conversely, assume that every minimal prime filter satisfies disjunc-188

tive inclusion property. Then every maximal ideal satisfies disjunctive inclusion189

property. By Theorem 7, it concludes that L is a Boolean algebra.190

Proposition 9. Every Boolean algebra is a Stone lattice.191

Proof. Let L be a Boolean algebra. By Theorem 7, every maximal ideal satisfies192

disjunctive inclusion property. Let x ∈ L. Suppose x∗ ∨ x∗∗ 6= 1. Then there193

exists a maximal ideal M such that x∗ ∨ x∗∗ ⊆ M . Hence x ∨ x∗ ∈ M . Thus194

x ∈ M and x∗ ∈ M , which is a contradiction. Therefore L is a Stone lattice.195

The converse of Proposition 9 is not true. For, consider any infinite chain196

L = {0, a1, a2, . . . , 1}. Clearly a∗
i
= 1∗ = 0 and 0∗ = 1. It can be easily seen that197

L is a Stone lattice. Clearly M = {x ∈ L | x 6= 1} is the unique maximal ideal of198

the chain L. Then ai ∈ M and a∗
i
= 0 ∈ M . Hence L is not a Boolean algebra.199

Though, every Stone lattice is not a Boolean algebra, in the following result, a200

set of equivalent conditions is given for every Stone lattice to Boolean.201

Theorem 10. Let L be a pseudo-complemented lattice. Suppose L is a Stone202

lattice and x, y ∈ L. Then the following assertions are equivalent in L:203

(1) L is a Boolean algebra;204

(2) for any maximal ideal M , x ∈ M if and only if x∗∗ ∈ M ;205

(3) for any maximal ideal M , x∗ = y∗ and x ∈ M imply that y ∈ M .206
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Proof. (1) ⇒ (2): Assume that L is Boolean. Let M be a maximal ideal of L207

and x ∈ M . By Theorem 7, we get x∗ /∈ M . Hence x∗∗ ∈ M . Converse is clear.208

(2) ⇒ (3): Assume that x∗ = y∗. Let M be a maximal ideal of L. Suppose209

x ∈ M . By (2), we get y∗∗ = x∗∗ ∈ M . Since y ≤ y∗∗, we get y ∈ M .210

(3) ⇒ (1): Assume condition (3). Let M be a maximal ideal of L and x ∈ L.211

Clearly x ∧ x∗ = 0 ∈ M . Since M is prime, we get either x ∈ M or x∗ ∈ M .212

Suppose M contains both x and x∗. Since x∗ = x∗∗∗ and x ∈ M , by (3), we get213

x∗∗ ∈ M . Hence 1 = x∗ ∨ x∗∗ ∈ M , which is a contradiction. Hence M contains214

exactly one of x and x∗. Thus M satisfies disjunctive inclusion property. By215

Theorem 7, L is Boolean.216

Lemma 11. No minimal prime ideal of a pseudo-complemented lattice contains217

a dense element.218

Proof. Let P be a minimal prime ideal of a pseudo-complemented lattice L.219

Suppose P ∩ D 6= ∅. Choose x ∈ P ∩ D. Then x ∈ P and x∗ = 0. Since P is220

minimal, there exists y /∈ P such that x ∧ y = 0. Hence y ≤ x∗. Since y /∈ P , we221

get 0 = x∗ /∈ P , which is a contradiction. Thus P contains no dense elements.222

Theorem 12. The following assertions are equivalent in a pseudo-complemented223

lattice L:224

(1) L is a Boolean algebra;225

(2) every prime ideal is minimal;226

(3) every prime ideal satisfies disjunctive inclusion property;227

(4) every prime filter satisfies disjunctive inclusion property;228

(5) for any x, y ∈ L, x∗ = y∗ implies x = y;229

(6) L has a unique dense element;230

(7) every prime ideal is maximal.231

Proof. (1) ⇒ (2): Assume that L is Boolean. Let x ∈ L and P be a prime ideal232

of L. Suppose x ∈ P . Since L is Boolean, we get x ∨ x∗ = 1. Suppose x∗ ∈ P .233

Then 1 = x∨x∗ ∈ P which is a contradiction. Hence x∗ /∈ P . Thus P is minimal.234

(2) ⇒ (3): Assume that every prime ideal is minimal. Let x ∈ L and P be a235

prime ideal of L. By Lemma 3(1), x ∈ P or x∗ ∈ P . Suppose P contains both x236

and x∗. Then, we get x∨ x∗ ∈ P ∩D. Since P is minimal, by Lemma 11, we get237

that x ∨ x∗ /∈ P . Thus we have arrived at a contradiction. Therefore P contains238

exactly one of x and x∗.239

(3) ⇒ (4): Assume condition (3). Let P be a prime filter of L. Then L − P is240

a prime ideal of L. Let x ∈ L. By (3), L− P contains exactly one of x and x∗.241

Hence P must contain exactly one of x and x∗. Therefore P satisfies disjunctive242

inclusion property.243
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(4) ⇒ (5): Assume condition (4). Let x, y ∈ L be such that x∗ = y∗. Suppose244

x 6= y. Then there exists a prime filter P such that x ∈ P and y /∈ P . By (4), we245

must have x∗ /∈ P and x∗ = y∗ ∈ P which is a contradiction. Therefore x = y.246

(5) ⇒ (6): Assume condition (5). Let x and y be two dense elements of L. Then247

x∗ = 0 = y∗. By (5), we get x = y. Therefore L contains a unique dense element.248

(6) ⇒ (7): Assume that L has a unique dense element, precisely 1. Let P be a249

prime ideal of L. Suppose Q is a proper ideal of L such that P ⊂ Q. Choose250

x ∈ Q− P . Clearly x ∨ x∗ ∈ D = {1}. Since x /∈ P , we must have x∗ ∈ P ⊂ Q.251

Hence 1 = x∨ x∗ ∈ Q, which is a contradiction. Therefore P is a maximal ideal.252

(7) ⇒ (1): Let x ∈ L. Clearly x ∧ x∗ = 0. It is enough to show that x ∨ x∗ = 1.253

Suppose x ∨ x∗ 6= 1. Then there exists a prime ideal P such that x ∨ x∗ ∈ P .254

Suppose Q is a prime ideal of L such that Q ⊆ P . By (7), Q is maximal and255

hence Q = P . Therefore P is minimal. Since x ∨ x∗ ∈ D, we get P ∩D 6= ∅ that256

contradicts Theorem 6. Therefore x∗ is the complement of x.257

In [3], T.S. Blyth studied the properties of kernel ideals and ∗-ideals of258

pseudo-complemented distributive lattices. In [10], the author introduced the no-259

tion of δ-ideals of pseudo-complemented distributive lattices. In [11], the author260

introduced the notion of median prime ideals and investigated certain properties261

of these classes of ideals and then characterized Stone lattices and Boolean alge-262

bras with the help of these ideals. In the following, we present the disjunctive263

inclusion properties of these class of ideals.264

Theorem 13. Every prime ∗-ideal of a pseudo-complemented lattice satisfies265

disjunctive inclusion property and hence a prime kernel ideal too.266

Proof. Let P be a prime ∗-ideal of a pseudo-complemented lattice L. Since P is267

proper, it contains no dense element. Otherwise, if d ∈ D∩P . Then 1 = d∗∗ ∈ P ,268

which is a contradiction. Let x ∈ L. Since P is prime, we get that P contains269

either x or x∗. Suppose P contains both of x and x∗. Then x∨x∗ ∈ D∩P , which270

is a contradiction. Therefore P contains exactly one of x and x∗ for all x ∈ L.271

Corollary 14. Every prime δ-ideal of a pseudo-complemented lattice satisfies272

disjunctive inclusion property.273

Proof. Let P be a prime δ-ideal of a pseudo-complemented lattice L. Then274

P = δ(F ) for some filter F of L. Let x, y ∈ L be such that x∗ = y∗. Suppose275

x ∈ P = δ(F ). Then y∗ = x∗ ∈ F , which gives y ∈ δ(F ) = P . Hence P is a276

prime ∗-ideal of L. By Theorem 13, P satisfies disjunctive inclusion property.277

Theorem 15. Every median prime ideal of a pseudo-complemented lattice sat-278

isfies disjunctive inclusion property.279
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Proof. Let P be a median prime ideals of a pseudo-complemented lattice L.280

Let x ∈ L. Since P is prime, we get that P contains either x or x∗. Suppose281

x ∈ P . Since P is median, there exists y /∈ P such that x∗ ∨ y∗ = 1. Then282

x ∧ y ≤ x∗∗ ∧ y∗∗ = (x∗ ∨ y∗)∗ = 1∗ = 0. Hence x ∧ y = 0 and thus y ≤ x∗. If283

x∗ ∈ P , then y ∈ P which is a contradiction. Hence x∗ /∈ P . Suppose x∗ ∈ P .284

Similarly, we get x /∈ P . Hence P contains exactly one of x and x∗. Thus P285

satisfies disjunctive inclusion property.286

Corollary 16. Every median prime ideal of a pseudo-complemented lattice is a287

∗-ideal as well as a kernel ideal.288

Proof. Let P be a median prime ideal of a pseudo-complemented lattice L. By289

the main theorem, P satisfies disjunctive inclusion property. Suppose x, y ∈ L290

such that x∗ = y∗ and x ∈ P . Since P satisfies disjunctive inclusion property,291

we must have y∗ = x∗ /∈ P . Since P is prime and y ∧ y∗ = 0 ∈ P , one must292

have y ∈ P . Hence P is a ∗-ideal of L. Since every ∗-ideal is a kernel ideal, the293

remaining part is clear.294

The converse of Corollary 16 is not true. In fact, every prime ∗-ideal need not295

to be a median prime ideal. Further, in [11], it is proved that every median prime296

ideal is a minimal prime ideal but not the converse. For consider the following297

example:298

Example 17. Consider the following bounded and finite distributive lattice299

L = {0, a, b, c, 1} whose Hasse diagram is given by:300
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Consider the prime ideal P = {0, a} of the lattice L. It can be routinely verified303

that P is prime ∗-ideal of L. Choose a ∈ P . Observe that there exists no x /∈ P304

such that a∗ ∨ x∗ = 1. Therefore P is not a median prime ideal of L. Further,305

it can be easily observed that P is a minimal prime ideal of L which is not a306

median prime ideal.307

In [7], W.H. Cornish introduced the notion of σ-ideals of distributive lattice.308

In [5], S.A. Celani investigated the properties of σ-ideals of distributive pseudo-309

complemented residuated lattices. In the following, we generalize these ideals310

in pseudo-complemented lattices and characterize Stone lattices with the help of311

σ-ideals of lattices.312
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Definition. For any ideal I of a pseudo-complemented lattice L, defined σ(I) =313

{x ∈ L | (x∗] ∨ I = L}. Then clearly σ(I) ⊆ I. An ideal I of a pseudo-314

complemented lattice is called a σ-ideal if I = σ(I).315

In the following theorem, a set of equivalent conditions is given for every316

minimal prime ideal is a median prime ideal as well as every prime ∗-ideal is a317

median prime ideal which together leads to a characterization of Stone lattices.318

Theorem 18. Let L be a pseudo-complemented lattice. Then the following as-319

sertions are equivalent in L:320

(1) L is a Stone lattice;321

(2) every prime ∗-ideal is median;322

(3) every prime δ-ideal is median;323

(4) every minimal prime ideal is median;324

(5) every minimal prime ideal is a σ-ideal.325

Proof. (1) ⇒ (2): Assume that L is a Stone lattice. Let x ∈ L and P be a prime326

∗-ideal of L. Suppose x ∈ P . Since P is a ∗-ideal, we get x∗∗ ∈ P . Suppose327

x∗ ∈ P . Then 1 = x∗ ∨ x∗∗ ∈ P , which is a contradiction. Hence x∗ /∈ P . Thus,328

for each x ∈ P , there exists x∗ /∈ P such that x∗ ∨ x∗∗ = 1. Therefore P is a329

median prime ideal of L.330

(2) ⇒ (3): Since every δ-ideal is a ∗-ideal, it is clear.331

(3) ⇒ (4): Since every minimal prime ideal is a prime δ-ideal [10], it is clear.332

(4) ⇒ (5): Assume condition (4). It is enough to show that every median prime333

ideal is a σ-ideal. Let P be a median prime ideal of L. Clearly σ(P ) ⊆ P .334

Conversely, let x ∈ P . Since P is median, there exists y /∈ P such that x∗∨y∗ = 1.335

Hence (x∗] ∨ (y∗] = L. Since y /∈ P , we get y∗ ∈ P and thus (y∗] ⊆ P . Hence336

L = (x∗] ∨ (y∗] ⊆ (x∗] ∨ P . Thus x ∈ σ(P ), which gives P ⊆ σ(P ). Therefore P337

is a σ-ideal.338

(5) ⇒ (1): Assume that every minimal prime ideal is a σ-ideal. Let x ∈ L.339

Suppose x∗ ∨ x∗∗ 6= 1. Then there exists a prime filter P such that x∗ ∨ x∗∗ /∈ P .340

Since every prime filter is contained in a maximal filter, there exists a maximal341

filter M such that P ⊆ M . Then L−M is a minimal prime ideal of L. By (4),342

L−M is a σ-ideal of L and thus L−M = σ(L−M). Suppose x ∈ M . Since M is343

maximal, there exists y /∈ M such that x∨ y = 1 ∈ P . Since y /∈ M and P ⊆ M ,344

one must have y /∈ P . Since P is prime, we get x ∈ P . Clearly x ≤ x∗∗ ≤ x∗∨x∗∗.345

Since x∗ ∨ x∗∗ /∈ P , we must have x /∈ P which is a contradiction. Hence x /∈ M .346

Thus x ∈ L − M = σ(L − M). Hence (x∗] ∨ (L − M) = L, which gives that347

1 = x∗∨a for some a ∈ L−M . Hence a /∈ M . Since P ⊆ M , we get a /∈ P . Since348

x∗ ∨ a = 1 ∈ P , we get x∗ ∈ P . Hence x∗ ∨ x∗∗ ∈ P , which is a contradiction.349

Therefore x∗ ∨ x∗∗ = 1 for all x ∈ L.350
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