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1. Introduction26

A B-algebra [21] is an algebra (X; ∗, 0) of type (2, 0) satisfying the following27

axioms:28

(I) x ∗ x = 0,29
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(II) x ∗ 0 = x,30

(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for any x, y, z ∈ X.31

This algebra was introduced and established by Neggers and Kim (2002). From32

then on, several properties and characterizations as well as several notions relating33

to B-algebras were established, including the basic properties of B-algebras [2, 3,34

7, 9, 11, 13, 29, 30], homomorphisms of B-algebras [14, 22, 28], Bp-subalgebras35

[8, 10, 12], cyclic B-algebras [15, 16], and fuzzy B-algebras [1, 4, 5, 6, 17, 18,36

20, 23, 24, 25, 26, 27]. In this paper, we introduce and characterize solvable37

B-algebras. We also establish some of the basic properties of solvable B-algebras.38

We recall first some concepts needed in this study. Throughout this paper,39

let X be a B-algebra (X; ∗, 0). In [21], X is said to be commutative if x∗(0∗y) =40

y ∗ (0 ∗ x) for any x, y ∈ X.41

Example 1. Let X = {0, 1, 2, 3, 4, 5} be a set with the following table of42

operations:43

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

44

Then (X; ∗, 0) is a B-algebra [22]. Since 2 ∗ (0 ∗ 3) = 5 6= 4 = 3 ∗ (0 ∗ 2), X is not45

commutative.46

In [22], a nonempty subset N of X is called a subalgebra of X if x∗y ∈ N for47

any x, y ∈ N . A subalgebra N of X is called normal in X if (x ∗ a) ∗ (y ∗ b) ∈ N48

for any x ∗ y, a ∗ b ∈ N . A map ϕ : X → Y is called a B-homomorphism if49

ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) for any x, y ∈ X. The subset {x ∈ X : ϕ(x) = 0Y }50

of X is called the kernel of the B-homomorphism ϕ, denoted by Ker ϕ. If51

N is normal in X, then X/N is a B-algebra, called the quotient B-algebra of52

X by N , where binary operation in X/N is defined by xN ∗′ yN = (x ∗ y)N ;53

X/N = {xN : x ∈ X}; xN = {y ∈ X : x ∼N y} the equivalence class containing54

x by xN ; x ∼N y if and only if x ∗ y ∈ N . In [7], for subalgebra H of X and55

x ∈ X, we have xH = {x ∗ (0 ∗ h) : h ∈ H} and Hx = {h ∗ (0 ∗ x) : h ∈ H},56

called the left and right B-cosets of H in X, respectively. In [14], if H, K are57

subalgebras of X, we define the subset HK of X to be the set HK = {x ∈58

X : x = h ∗ (0 ∗ k) for some h ∈ H, k ∈ K}. In [10], we say that a B-algebra is59

B-simple if it has no nontrivial normal subalgebras.60



Solvability of B-algebras 3

2. B-series61

This section presents the notions of subnormal, normal, composition, and solvable62

B-series of B-algebras.63

Definition. LetX = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn = {0} be a series of subalgebras64

of X. The series is called a subnormal B-series if each Hi is normal in Hi−1. The65

series is called a normal B-series if each Hi is normal in X. The series is called66

a composition B-series if each Hi is a maximal normal subalgebra of Hi−1. The67

number of proper inclusions ⊃ in the series is called the length of the series. The68

quotient B-algebras Hi−1/Hi are called the factors of the series.69

If Hi−1 = Hi, then the quotient B-algebra Hi−1/Hi consists of a single el-70

ement and is called a trivial factor of the series. Given a series of subalgebras71

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn = {0} of X, then the length of the series is72

the number of nontrivial factors Hi−1/Hi of the series. Since {0} is normal in X,73

every B-algebra has a normal B-series.74

Lemma 2. H is a maximal normal in X if and only if X/H is B-simple.75

Proof. This follows from [8, Corollary 16].76

Theorem 3. Every finite B-algebra has a composition B-series.77

Proof. Let X be a finite B-algebra. Since X is finite, there exists a maximal78

normal subalgebra H1 of X. Thus, by Lemma 2, X/H1 is B-simple. If H1 6= {0},79

then since H1 is finite, there exists a maximal normal subalgebra H2 of H1.80

Hence, H1/H2 is B-simple. If H2 6= {0}, then continuing the process, we obtain81

the following series X = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn ⊃ · · · such that Hi/Hi+182

is B-simple for all i. Since X is finite, there exists n ≥ 0 such that Hn = {0}.83

Thus, X = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn = {0} is a composition B-series for X.84

Example 4. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} be a set with the85

following table of operations:86
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∗ 0 1 2 3 4 5 6 7 8 9 10 11

0 0 11 10 9 8 7 6 5 4 3 2 1
1 1 0 11 10 9 8 7 6 5 4 3 2
2 2 1 0 11 10 9 8 7 6 5 4 3
3 3 2 1 0 11 10 9 8 7 6 5 4
4 4 3 2 1 0 11 10 9 8 7 6 5
5 5 4 3 2 1 0 11 10 9 8 7 6
6 6 5 4 3 2 1 0 11 10 9 8 7
7 7 6 5 4 3 2 1 0 11 10 9 8
8 8 7 6 5 4 3 2 1 0 11 10 9
9 9 8 7 6 5 4 3 2 1 0 11 10
10 10 9 8 7 6 5 4 3 2 1 0 11
11 11 10 9 8 7 6 5 4 3 2 1 0

87

Then (X; ∗, 0) is a B-algebra [10]. Moreover, X is commutative. Thus, by [30,88

Corollary 2.3], the subalgebras {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}89

are normal in X. The following series are normal B-series for X:90

X ⊃ {0, 6} ⊃ {0},
91

X ⊃ {0, 3, 6, 9} ⊃ {0, 6} ⊃ {0},
92

X ⊃ {0, 2, 4, 6, 8, 10} ⊃ {0, 6} ⊃ {0},
93

X ⊃ {0, 2, 4, 6, 8, 10} ⊃ {0, 4, 8} ⊃ {0}.

The first normal B-series is not a composition B-series for X. The remaining94

three normal B-series are composition B-series for X.95

Definition. Let96

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} ,(1)

be a subnormal B-series in X. A one-step refinement of this series is any series97

of the form98

X = H0 ⊇ H1 ⊇ · · · ⊇ Hi−1 ⊇ H ⊇ Hi ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} ,

where H is a normal subalgebra of Hi−1 and Hi is a normal subalgebra of H,99

i = 1, 2, . . . , n. A refinement of (1) is a subnormal B-series which is obtained100

from (1) by a finite sequence of one-step refinements. A refinement101

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0} ,(2)

of (1) is called a proper refinement if there exists a subalgebra Kj in (2) which is102

different from each Hi of (1). Thus, a series of subalgebras103

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0}
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of X is called a refinement of a series of subalgebras104

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = 0,

of X if105

{H0,H1,H2, . . . ,Hn} ⊆ {K0,K1,K2, . . . ,Km}

and is called a proper refinement if106

{H0,H1,H2, . . . ,Hn} ⊂ {K0,K1,K2, . . . ,Km}.

Example 5. In Example 4, X ⊃ {0, 3, 6, 9} ⊃ {0, 6} ⊃ {0} is a refinement of107

X ⊃ {0, 6} ⊃ {0} while X ⊃ {0, 2, 4, 6, 8, 10} ⊃ {0, 4, 8} ⊃ {0} is not.108

Theorem 6. A subnormal B-series in X is a composition B-series if and only109

if it has no proper refinement.110

Proof. Let111

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(3)

be a composition B-series of X. Suppose that112

X = H0 ⊇ H1 ⊇ · · · ⊇ Hi−1 ⊇ H ⊇ Hi ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}

is a one-step refinement of (3). Since (3) is a composition B-series, Hi is a normal113

subalgebra of Hi−1. Thus, either H = Hi−1 or H = Hi. Hence, it follows that114

(3) has no proper refinement. Conversely, suppose that115

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(4)

is a subnormal B-series which has no proper refinement. Suppose that (4) is not116

a composition B-series. Then there exists a subalgebra Hi in (4) such that Hi117

is not a maximal normal subalgebra in Hi−1. Thus, there exists a subalgebra118

H such that Hi−1 6= H 6= Hi, H is normal in Hi−1, and Hi is normal in H.119

This produces a proper refinement of (4), a contradiction. Therefore, (4) is a120

composition B-series.121

Definition. Two subnormal B-series122

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(5)

and123

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0}(6)

for a B-algebra X are called equivalent if there is a one-one correspondence be-124

tween the nontrivial factors of (5) and (6) such that correponding factors are125

B-isomorphic.126
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Lemma 7. Let H ′, H, K ′, and K be subalgebras of X such that H ′ is a normal127

subalgebra of H and K ′ is a normal subalgebra of K. Then H ′(H∩K ′) is a normal128

subalgebra of H ′(H ∩K) and K ′(H ′ ∩K) is a normal subalgebra of K ′(H ∩K).129

Furthermore,130

H ′(H ∩K)/H ′(H ∩K ′) ∼= K ′(H ∩K)/K ′(H ′ ∩K).

Proof. Since H ′ is normal in H and K ′ is normal in K, H ∩K ′ and H ′ ∩K are131

normal subalgebras ofH∩K by [14, Lemma 2.10]. Also (H∩K ′)(H ′∩K) is normal132

in H ∩K by [14, Lemma 2.12]. For simplicity, let J = (H ∩K ′)(H ′ ∩K). Define133

f : H ′(H ∩K) → (H ∩K)/J as follows: if x ∈ H ′(H ∩K), then x = h′ ∗ (0 ∗ y),134

where h′ ∈ H ′ and y ∈ H ∩K. Set f(x) = Jy.135

Let a1, a2 ∈ H ′(H ∩K). Then a1 = h′1 ∗ (0 ∗ b1) and a2 = h′2 ∗ (0 ∗ b2) for some136

h′1, h
′

2 ∈ H ′ and b1, b2 ∈ H ∩K.137

Claim 1: f is well-defined.138

Suppose that a1 = a2. Then by (III), (I), and [21, Lemma 2.6], we have139

h′1 ∗ (0 ∗ b1) = h′2 ∗ (0 ∗ b2)

b2 ∗ (h
′

1 ∗ (0 ∗ b1)) = b2 ∗ (h
′

2 ∗ (0 ∗ b2))

(b2 ∗ b1) ∗ h
′

1 = (b2 ∗ b2) ∗ h
′

2

(b2 ∗ b1) ∗ h
′

1 = 0 ∗ h′2

((b2 ∗ b1) ∗ h
′

1) ∗ (0 ∗ h
′

1) = (0 ∗ h′2) ∗ (0 ∗ h
′

1)

b2 ∗ b1 = (0 ∗ h′2) ∗ (0 ∗ h
′

1)

Thus, (0∗h′2)∗(0∗h
′

1) = b2 ∗b1 ∈ H ∩K. Hence, (0∗h′2)∗(0∗h
′

1) ∈ H ′(H ∩K) ⊆140

H ′ ∩K ⊆ J . It follows that b2 ∗ b1 ∈ J . By [7, Theorem 3.3(ii)], f(a1) = Jb1 =141

Jb2 = f(a2). This proves Claim 1.142

Claim 2: f is a B-homomorphism.143

First, take note thatH ′(H∩K) = (H∩K)H ′. SinceH ′ andH∩K are subalgebras144

of H with H ′ normal in H, by [14, Lemma 2.11], H ′(H ∩K) is a subalgebra of145

H. And by [14, Theorem 2.8], H ′(H ∩K) = (H ∩K)H ′.146

So, for h′2 ∗ (0 ∗ (b2 ∗ b1) ∈ H ′(H ∩K), h′2 ∗ (0 ∗ (b2 ∗ b1) ∈ (H ∩K)H ′. That is,147

h′2 ∗ (0 ∗ (b2 ∗ b1) = (b2 ∗ b1) ∗ (0 ∗ h
′

3), for some h′3 in H ′.148

Now, by (III), [29, Lemma 2.3(v)], and [21, Proposition 2.8], we have,149

a1 ∗ a2 = (h′1 ∗ (0 ∗ b1)) ∗ (h
′

2 ∗ (0 ∗ b2))

= h′1 ∗ ((h
′

2 ∗ (0 ∗ b2)) ∗ b1)

= h′1 ∗ (h
′

2 ∗ (b1 ∗ b2))

= h′1 ∗ (h
′

2 ∗ (0 ∗ (b2 ∗ b1)))

= h′1 ∗ ((b2 ∗ b1) ∗ (0 ∗ h
′

3))



Solvability of B-algebras 7

= (h′1 ∗ h
′

3) ∗ (b2 ∗ b1)

= h′4 ∗ (0 ∗ (b1 ∗ b2))

for h′4 ∈ H ′.150

Then,151

f(a1 ∗ a2) = f(h′4 ∗ (0 ∗ (b1 ∗ b2)))

= J(b1 ∗ b2)

= Jb1 ∗ Jb2

= f(a1) ∗ f(a2)

This proves Claim 2.152

Claim 3: f is onto.153

Let Jy ∈ (H ∩ K)/J . Then y = 0 ∗ (0 ∗ y) ∈ H ′(H ∩K) and f(y) = Jy. This154

proves Claim 3.155

Therefore, by [22, Theorem 3.11], H ′(H ∩K)/Kerf ∼= (H ∩K)/J .156

Claim 4: Kerf = H ′(H ∩K ′).157

Let (h′1∗(0∗b1)) ∈ Kerf , for h′1 ∈ H ′ and b1 ∈ H∩K. Then J = f(h′1∗(0∗b1)) =158

Jb1. By [7, Theorem 3.3(ii)], (0 ∗ b1) ∈ J . If (0 ∗ b1) ∈ J = (H ∩K ′)(H ′ ∩K),159

then (0 ∗ b1) = h′2 ∗ (0 ∗ b2) for h
′

2 ∈ H ∩K ′ and b2 ∈ H ′ ∩K.160

Hence, (h′1 ∗ (0 ∗ b1)) ∈ Kerf if and only if h′1 ∗ (0 ∗ b1) = h′1 ∗ (h
′

2 ∗ (0 ∗ b2)) =161

(h′1 ∗ b2) ∗ h
′

2. Note that h′1 ∗ b2 = h′1 ∗ (0 ∗ (0 ∗ b2)) ∈ H ′(H ′ ∩K) implies that,162

by [14, Lemma 2.7], h′1 ∗ b2 ∈ H ′. Hence, (h′1 ∗ (0 ∗ b1)) ∈ H ′(H ∩K ′. Therefore,163

Kerf = H ′(H ∩K ′).164

Therefore, H ′(H ∩K)/H ′(H ∩K ′) ∼= (H ∩K)/(H ∩K)(H ′ ∩K).165

Similar argument applies for K ′(H ∩K)/K ′(H ′∩K) ∼= H ∩K/(H ∩K ′)(H ′∩K).166

Therefore, H ′(H ∩K)/H ′(H ∩K ′) ∼= K ′(H ∩K)/K ′(H ′ ∩K).167

Theorem 8. Any two subnormal B-series168

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}

and169

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0}

of X have refinements which are equivalent.170

Proof. Between each Hi and Hi+1, insert the subalgebra171

Hi+1 (Hi ∩Kj) , j = 0, 1, 2, . . . ,m.

Between each Kj and Kj+1, insert the subalgebra172

Kj+1 (Kj ∩Hi) , i = 0, 1, 2, . . . , n.
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These refinements are subnormal B-series with mn inclusions. The final refine-173

ments are174

· · · ⊇ Hi+1 (Hi ∩Kj) ⊇ Hi+1 (Hi ∩Kj+1) ⊇ · · ·

and175

· · · ⊇ Kj+1 (Kj ∩Hi) ⊇ Kj+1 (Kj ∩Hi+1) ⊇ · · · .

By Lemma 7,176

Hi+1 (Hi ∩Kj) /Hi+1 (Hi ∩Kj+1) ∼= Kj+1 (Kj ∩Hi) /Kj+1 (Kj ∩Hi+1).177

The result follows.178

Theorem 9. Any two composition B-series of X are equivalent.179

Proof. Any two composition B-series of X have equivalent refinements and by180

Theorem 6, a composition B-series has no proper refinements. Thus, a com-181

position B-series is equivalent to every refinement of itself. Therefore, any two182

composition B-series of X are equivalent.183

IfX has a subnormal B-seriesX = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}184

such that Hi/Hi+1 is commutative, i = 0, 1, . . . , n − 1, then we say that X is185

solvable. Such a subnormal B-series is called a solvable B-series for X.186

Remark 10. Every commutative B-algebra is solvable.187

Example 11. The noncommutative B-algebra X in Example 1 is solvable since188

X ⊃ {0, 1, 2} ⊃ {0} is a solvable B-series for X.189

3. Properties of Solvable B-algebra190

We now present some of the basic properties of solvable B-algebras.191

Theorem 12. Every subalgebra of a solvable B-algebra is solvable.192

Proof. Let X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} be a solvable193

B-series of X. Let K be any subalgebra of X. Set Ki = K ∩Hi, i = 0, 1, . . . , n.194

Since Hi+1 is a normal subalgebra of Hi, Hi+1 ∩ K is a normal subalgebra of195

Hi ∩ K. Thus, Ki+1 is a normal subalgebra of Ki. Now, Ki+1 = K ∩ Hi+1 =196

K∩Hi∩Hi+1 = Ki∩Hi+1. Hence, Ki/Ki+1 = Ki/(Ki∩Hi+1). By [14, Theorem197

3.4], Ki/Ki+1
∼= KiHi+1/Hi+1. Since KiHi+1/Hi+1 is a subalgebra of Hi/Hi+1198

and Hi/Hi+1 is commutative, KiHi+1/Hi+1 is commutative. Therefore, Ki/Ki+1199

is commutative and so the series200

K = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {0}201
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is a solvable B-series for K. Consequently, K is a solvable.202

Theorem 13. Every homomorphic image of a solvable B-algebra is solvable.203

Proof. Let f : X → Y be a B-epimorphism. Suppose that X is solvable. Let204

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} be a solvable B-series of205

X. Set Ki = f(Hi), i = 0, 1, . . . , n. Since f is a B-epimorphism, f(Hi+1) is206

a normal subalgebra of f(Hi). Since Hi ⊇ Hi+1, f(Hi) ⊇ f(Hi+1). Hence,207

Y = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {0} is a subnormal B-series of Y .208

Define g : Hi → Ki/Ki+1 by g(hi) = f(hi)Ki+1. Since f is a B-epimorphism, g209

is a B-epimorphism of Hi onto Ki/Ki+1. Note that for any hi+1 ∈ Ki+1 ⊆ Ki,210

g(hi+1) = f(hi+1)Ki+1 = f(hi+1)f(Hi+1) = f(Hi+1). Hence, Hi+1 ⊆ Kerg.211

Thus, g induces a B-epimorphism of Hi/Hi+1 onto Ki/Ki+1. Since Hi/Hi+1212

is commutative, Ki/Ki+1 is commutative. Therefore, the subnormal B-series213

Y = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {0} is a solvable B-series for Y and214

so Y is solvable.215

Corollary 14. If X is solvable and H is normal in X, then H and X/H are216

solvable.217

Theorem 15. Let H be normal in X. If both H and X/H are solvable, then X218

is solvable.219

Proof. Suppose that H and X/H are solvable. Let220

X/H = K ′

0 ⊇ K ′

1 ⊇ K ′

2 ⊇ · · · ⊇ K ′

m−1 ⊇ K ′

m = {0H} = {H}

be a solvable B-series for X/H. By [8, Corollary 16], there are subalgebras Ki221

of X, i = 0, 1, . . . ,m, such that Ki+1 is a normal subalgebra of Ki, K
′

i = Ki/H,222

i = 0, 1, . . . ,m− 1, X = K0, and H = Km. By [22, Theorem 3.14],223

Ki/Ki+1
∼= K ′

i/K
′

i+1.

Since H is solvable, H has a solvable B-series224

H = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}.

Thus,225

X = K0 ⊇ K1 ⊇ · · · ⊇ Km−1 ⊇ H ⊇ H1 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}

is a solvable B-series for X. Therefore, X is solvable.226

Corollary 16. Let H and K be subalgebras of X and H be normal in X. If both227

H and K are solvable, then HK is solvable.228
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Proof. Suppose that H and K are solvable. By [14, Lemma 2.11], HK is a229

subalgebra of X. By [14, Theorem 3.4], HK/H ∼= K/H ∩ K. By [14, Lemma230

2.1], H∩K is a subalgebra of K. Thus, by Theorem 12, H∩K is solvable. Hence,231

K/H ∩K is solvable by Corollary 14. Therefore, HK/H is solvable. Therefore,232

by Theorem 15, HK is solvable.233

Corollary 17. Let H and K be normal subalgebras of X such that X/H and234

X/K are solvable. Then X is solvable if and only if H ∩K is solvable.235

Proof. Suppose that X is solvable. By Theorem 12, H ∩ K is solvable. Con-236

versely, suppose thatH∩K is solvable. By [14, Theorem 3.4], HK/H ∼= K/H∩K.237

Since HK/H is a subalgebra of a solvable B-algebra X/H, HK/H is solvable by238

Theorem 12. Thus, K/H ∩K is solvable. By Theorem 15, K is solvable. There-239

fore, by Theorem 15, X is solvable.240

Theorem 18. Any refinement of a solvable B-series of X is a solvable B-series.241

Proof. Let242

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(7)

be a solvable B-series for X and let243

X = H0 ⊇ H1 ⊇ · · · ⊇ Hi−1 ⊇ H ⊇ Hi ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(8)

be a one-step refinement of (7). From (7), Hi−1/Hi is commutative. Since244

H/Hi is a subalgebra of Hi−1/Hi, H/Hi is commutative. By [22, Theorem 3.14],245

(Hi−1/Hi)/(H/Hi) ∼= Hi−1/H and so Hi−1/H is commutative. Thus, (8) is a246

solvable B-series. Hence, any one-step refinement of (7) is a solvable B-series. By247

induction, any refinement of (7) is a solvable B-series.248

Recall from [2] that the center of X is given by249

Z(X) = {x ∈ X : x ∗ (0 ∗ y) = y ∗ (0 ∗ x) for all y ∈ X}.250

Note that Z(X) is a subalgebra of X [2]. Moreover, it is normal in X [30].251

Theorem 19. X is solvable if and only if X/Z(X) is solvable.252

Proof. If X is solvable, then X/Z(X) is solvable by Corollary 14. Conversely, if253

X/Z(X) is solvable, then X is solvable by Remark 10 and Theorem 15.254
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