
Discussiones Mathematicae
General Algebra and Applications 44 (2024) 319–331
https://doi.org/10.7151/dmgaa.1452

SOLVABILITY OF B-ALGEBRAS

Joemar Endam

Mathematics Department

Negros Oriental State University

Dumaguete City, Philippines

e-mail: joemar.endam@norsu.edu.ph

Gil Dael

Crisostomo O. Retes National High School

Division of Negros Oriental

San Jose, Negros Oriental, Philippines

e-mail: gil.dael@deped.gov.ph

and

Benjamin Omamalin

Bohol Island State University

Balilihan Campus Magsija

Balilihan, Bohol, Philippines

e-mail: benjamin.omamalin@bisu.edu.ph

Abstract

In this paper, we introduce and characterize solvable B-algebras. We
also establish some of the basic properties of solvable B-algebras.
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1. Introduction

A B-algebra [21] is an algebra (X; ∗, 0) of type (2, 0) satisfying the following
axioms:

(I) x ∗ x = 0,

(II) x ∗ 0 = x,
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(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for any x, y, z ∈ X.

This algebra was introduced and established by Neggers and Kim (2002).
From then on, several properties and characterizations as well as several no-
tions relating to B-algebras were established, including the basic properties of
B-algebras [2, 3, 7, 9, 11, 13, 29, 30], homomorphisms of B-algebras [14, 22, 28],
Bp-subalgebras [8, 10, 12], cyclic B-algebras [15, 16], and fuzzy B-algebras [1, 4,
5, 6, 17, 18, 20, 23, 24, 25, 26, 27]. In this paper, we introduce and characterize
solvable B-algebras. We also establish some of the basic properties of solvable
B-algebras.

We recall first some concepts needed in this study. Throughout this paper,
let X be a B-algebra (X; ∗, 0). In [21], X is said to be commutative if x∗(0∗y) =
y ∗ (0 ∗ x) for any x, y ∈ X.

Example 1. Let X = {0, 1, 2, 3, 4, 5} be a set with the following table of
operations:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X; ∗, 0) is a B-algebra [22]. Since 2 ∗ (0 ∗ 3) = 5 6= 4 = 3 ∗ (0 ∗ 2), X is not
commutative.

In [22], a nonempty subset N of X is called a subalgebra of X if x∗y ∈ N for
any x, y ∈ N . A subalgebra N of X is called normal in X if (x ∗ a) ∗ (y ∗ b) ∈ N
for any x ∗ y, a ∗ b ∈ N . A map ϕ : X → Y is called a B-homomorphism if
ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) for any x, y ∈ X. The subset {x ∈ X : ϕ(x) = 0Y }
of X is called the kernel of the B-homomorphism ϕ, denoted by Ker ϕ. If
N is normal in X, then X/N is a B-algebra, called the quotient B-algebra of
X by N , where binary operation in X/N is defined by xN ∗′ yN = (x ∗ y)N ;
X/N = {xN : x ∈ X}; xN = {y ∈ X : x ∼N y} the equivalence class containing
x by xN ; x ∼N y if and only if x ∗ y ∈ N . In [7], for subalgebra H of X and
x ∈ X, we have xH = {x ∗ (0 ∗ h) : h ∈ H} and Hx = {h ∗ (0 ∗ x) : h ∈ H},
called the left and right B-cosets of H in X, respectively. In [14], if H, K are
subalgebras of X, we define the subset HK of X to be the set HK = {x ∈
X : x = h ∗ (0 ∗ k) for some h ∈ H, k ∈ K}. In [10], we say that a B-algebra is
B-simple if it has no nontrivial normal subalgebras.
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2. B-series

This section presents the notions of subnormal, normal, composition, and solvable
B-series of B-algebras.

Definition. LetX = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn = {0} be a series of subalgebras
of X. The series is called a subnormal B-series if each Hi is normal in Hi−1. The
series is called a normal B-series if each Hi is normal in X. The series is called
a composition B-series if each Hi is a maximal normal subalgebra of Hi−1. The
number of proper inclusions ⊃ in the series is called the length of the series. The
quotient B-algebras Hi−1/Hi are called the factors of the series.

If Hi−1 = Hi, then the quotient B-algebra Hi−1/Hi consists of a single el-
ement and is called a trivial factor of the series. Given a series of subalgebras
X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn = {0} of X, then the length of the series is
the number of nontrivial factors Hi−1/Hi of the series. Since {0} is normal in X,
every B-algebra has a normal B-series.

Lemma 2. H is a maximal normal in X if and only if X/H is B-simple.

Proof. This follows from [8, Corollary 16].

Theorem 3. Every finite B-algebra has a composition B-series.

Proof. Let X be a finite B-algebra. Since X is finite, there exists a maximal
normal subalgebra H1 of X. Thus, by Lemma 2, X/H1 is B-simple. If H1 6= {0},
then since H1 is finite, there exists a maximal normal subalgebra H2 of H1.
Hence, H1/H2 is B-simple. If H2 6= {0}, then continuing the process, we obtain
the following series X = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn ⊃ · · · such that Hi/Hi+1

is B-simple for all i. Since X is finite, there exists n ≥ 0 such that Hn = {0}.
Thus, X = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn = {0} is a composition B-series for X.

Example 4. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} be a set with the
following table of operations:

∗ 0 1 2 3 4 5 6 7 8 9 10 11
0 0 11 10 9 8 7 6 5 4 3 2 1
1 1 0 11 10 9 8 7 6 5 4 3 2
2 2 1 0 11 10 9 8 7 6 5 4 3
3 3 2 1 0 11 10 9 8 7 6 5 4
4 4 3 2 1 0 11 10 9 8 7 6 5
5 5 4 3 2 1 0 11 10 9 8 7 6
6 6 5 4 3 2 1 0 11 10 9 8 7
7 7 6 5 4 3 2 1 0 11 10 9 8
8 8 7 6 5 4 3 2 1 0 11 10 9
9 9 8 7 6 5 4 3 2 1 0 11 10
10 10 9 8 7 6 5 4 3 2 1 0 11
11 11 10 9 8 7 6 5 4 3 2 1 0
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Then (X; ∗, 0) is a B-algebra [10]. Moreover, X is commutative. Thus, by [30,
Corollary 2.3], the subalgebras {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}
are normal in X. The following series are normal B-series for X:

X ⊃ {0, 6} ⊃ {0},

X ⊃ {0, 3, 6, 9} ⊃ {0, 6} ⊃ {0},

X ⊃ {0, 2, 4, 6, 8, 10} ⊃ {0, 6} ⊃ {0},

X ⊃ {0, 2, 4, 6, 8, 10} ⊃ {0, 4, 8} ⊃ {0}.

The first normal B-series is not a composition B-series for X. The remaining
three normal B-series are composition B-series for X.

Definition. Let

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} ,(1)

be a subnormal B-series in X. A one-step refinement of this series is any series
of the form

X = H0 ⊇ H1 ⊇ · · · ⊇ Hi−1 ⊇ H ⊇ Hi ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} ,

where H is a normal subalgebra of Hi−1 and Hi is a normal subalgebra of H,
i = 1, 2, . . . , n. A refinement of (1) is a subnormal B-series which is obtained
from (1) by a finite sequence of one-step refinements. A refinement

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0} ,(2)

of (1) is called a proper refinement if there exists a subalgebra Kj in (2) which is
different from each Hi of (1). Thus, a series of subalgebras

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0}

of X is called a refinement of a series of subalgebras

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = 0,

of X if
{H0,H1,H2, . . . ,Hn} ⊆ {K0,K1,K2, . . . ,Km}

and is called a proper refinement if

{H0,H1,H2, . . . ,Hn} ⊂ {K0,K1,K2, . . . ,Km}.

Example 5. In Example 4, X ⊃ {0, 3, 6, 9} ⊃ {0, 6} ⊃ {0} is a refinement of
X ⊃ {0, 6} ⊃ {0} while X ⊃ {0, 2, 4, 6, 8, 10} ⊃ {0, 4, 8} ⊃ {0} is not.
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Theorem 6. A subnormal B-series in X is a composition B-series if and only

if it has no proper refinement.

Proof. Let

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(3)

be a composition B-series of X. Suppose that

X = H0 ⊇ H1 ⊇ · · · ⊇ Hi−1 ⊇ H ⊇ Hi ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}

is a one-step refinement of (3). Since (3) is a composition B-series, Hi is a normal
subalgebra of Hi−1. Thus, either H = Hi−1 or H = Hi. Hence, it follows that
(3) has no proper refinement. Conversely, suppose that

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(4)

is a subnormal B-series which has no proper refinement. Suppose that (4) is not
a composition B-series. Then there exists a subalgebra Hi in (4) such that Hi

is not a maximal normal subalgebra in Hi−1. Thus, there exists a subalgebra
H such that Hi−1 6= H 6= Hi, H is normal in Hi−1, and Hi is normal in H.
This produces a proper refinement of (4), a contradiction. Therefore, (4) is a
composition B-series.

Definition. Two subnormal B-series

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(5)

and

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0}(6)

for a B-algebra X are called equivalent if there is a one-one correspondence be-
tween the nontrivial factors of (5) and (6) such that correponding factors are
B-isomorphic.

Lemma 7. Let H ′, H, K ′, and K be subalgebras of X such that H ′ is a normal

subalgebra of H and K ′ is a normal subalgebra of K. Then H ′(H∩K ′) is a normal

subalgebra of H ′(H ∩K) and K ′(H ′ ∩K) is a normal subalgebra of K ′(H ∩K).
Furthermore,

H ′(H ∩K)/H ′(H ∩K ′) ∼= K ′(H ∩K)/K ′(H ′ ∩K).
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Proof. Since H ′ is normal in H and K ′ is normal in K, H ∩K ′ and H ′ ∩K are
normal subalgebras ofH∩K by [14, Lemma 2.10]. Also (H∩K ′)(H ′∩K) is normal
in H ∩K by [14, Lemma 2.12]. For simplicity, let J = (H ∩K ′)(H ′ ∩K). Define
f : H ′(H ∩K) → (H ∩K)/J as follows: if x ∈ H ′(H ∩K), then x = h′ ∗ (0 ∗ y),
where h′ ∈ H ′ and y ∈ H ∩K. Set f(x) = Jy.

Let a1, a2 ∈ H ′(H ∩ K). Then a1 = h′1 ∗ (0 ∗ b1) and a2 = h′2 ∗ (0 ∗ b2) for
some h′1, h

′

2 ∈ H ′ and b1, b2 ∈ H ∩K.

Claim 1. f is well-defined.

Suppose that a1 = a2. Then by (III), (I), and [21, Lemma 2.6], we have

h′1 ∗ (0 ∗ b1) = h′2 ∗ (0 ∗ b2)

b2 ∗ (h
′

1 ∗ (0 ∗ b1)) = b2 ∗ (h
′

2 ∗ (0 ∗ b2))

(b2 ∗ b1) ∗ h
′

1 = (b2 ∗ b2) ∗ h
′

2

(b2 ∗ b1) ∗ h
′

1 = 0 ∗ h′2

((b2 ∗ b1) ∗ h
′

1) ∗ (0 ∗ h
′

1) = (0 ∗ h′2) ∗ (0 ∗ h
′

1)

b2 ∗ b1 = (0 ∗ h′2) ∗ (0 ∗ h
′

1).

Thus, (0∗h′2)∗(0∗h
′

1) = b2 ∗b1 ∈ H ∩K. Hence, (0∗h′2)∗(0∗h
′

1) ∈ H ′(H ∩K) ⊆
H ′ ∩K ⊆ J . It follows that b2 ∗ b1 ∈ J . By [7, Theorem 3.3(ii)], f(a1) = Jb1 =
Jb2 = f(a2). This proves Claim 1.

Claim 2. f is a B-homomorphism.

First, take note that H ′(H ∩ K) = (H ∩ K)H ′. Since H ′ and H ∩ K are
subalgebras of H with H ′ normal in H, by [14, Lemma 2.11], H ′(H ∩ K) is a
subalgebra of H. And by [14, Theorem 2.8], H ′(H ∩K) = (H ∩K)H ′.

So, for h′2 ∗ (0 ∗ (b2 ∗ b1) ∈ H ′(H ∩K), h′2 ∗ (0 ∗ (b2 ∗ b1) ∈ (H ∩K)H ′. That
is, h′2 ∗ (0 ∗ (b2 ∗ b1) = (b2 ∗ b1) ∗ (0 ∗ h

′

3), for some h′3 in H ′.

Now, by (III), [29, Lemma 2.3(v)], and [21, Proposition 2.8], we have

a1 ∗ a2 = (h′1 ∗ (0 ∗ b1)) ∗ (h
′

2 ∗ (0 ∗ b2))

= h′1 ∗ ((h
′

2 ∗ (0 ∗ b2)) ∗ b1)

= h′1 ∗ (h
′

2 ∗ (b1 ∗ b2))

= h′1 ∗ (h
′

2 ∗ (0 ∗ (b2 ∗ b1)))

= h′1 ∗ ((b2 ∗ b1) ∗ (0 ∗ h
′

3))

= (h′1 ∗ h
′

3) ∗ (b2 ∗ b1)

= h′4 ∗ (0 ∗ (b1 ∗ b2))

for h′4 ∈ H ′.
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Then,

f(a1 ∗ a2) = f(h′4 ∗ (0 ∗ (b1 ∗ b2)))

= J(b1 ∗ b2)

= Jb1 ∗ Jb2

= f(a1) ∗ f(a2).

This proves Claim 2.

Claim 3. f is onto.

Let Jy ∈ (H ∩K)/J . Then y = 0∗ (0∗ y) ∈ H ′(H ∩K) and f(y) = Jy. This
proves Claim 3.

Therefore, by [22, Theorem 3.11], H ′(H ∩K)/Kerf ∼= (H ∩K)/J .

Claim 4. Kerf = H ′(H ∩K ′).

Let (h′1 ∗ (0∗ b1)) ∈ Kerf , for h′1 ∈ H ′ and b1 ∈ H ∩K. Then J = f(h′1 ∗ (0∗
b1)) = Jb1. By [7, Theorem 3.3(ii)], (0∗b1) ∈ J . If (0∗b1) ∈ J = (H∩K ′)(H ′∩K),
then (0 ∗ b1) = h′2 ∗ (0 ∗ b2) for h

′

2 ∈ H ∩K ′ and b2 ∈ H ′ ∩K.

Hence, (h′1 ∗ (0 ∗ b1)) ∈ Kerf if and only if h′1 ∗ (0 ∗ b1) = h′1 ∗ (h
′

2 ∗ (0 ∗ b2)) =
(h′1 ∗ b2) ∗ h

′

2. Note that h′1 ∗ b2 = h′1 ∗ (0 ∗ (0 ∗ b2)) ∈ H ′(H ′ ∩K) implies that,
by [14, Lemma 2.7], h′1 ∗ b2 ∈ H ′. Hence, (h′1 ∗ (0 ∗ b1)) ∈ H ′(H ∩K ′. Therefore,
Kerf = H ′(H ∩K ′).

Therefore, H ′(H ∩K)/H ′(H ∩K ′) ∼= (H ∩K)/(H ∩K)(H ′ ∩K).

Similar argument applies for K ′(H ∩K)/K ′(H ′∩K) ∼= H ∩K/(H ∩K ′)(H ′∩K).

Therefore, H ′(H ∩K)/H ′(H ∩K ′) ∼= K ′(H ∩K)/K ′(H ′ ∩K).

Theorem 8. Any two subnormal B-series

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}

and

X = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km−1 ⊇ Km = {0}

of X have refinements which are equivalent.

Proof. Between each Hi and Hi+1, insert the subalgebra

Hi+1 (Hi ∩Kj) , j = 0, 1, 2, . . . ,m.

Between each Kj and Kj+1, insert the subalgebra

Kj+1 (Kj ∩Hi) , i = 0, 1, 2, . . . , n.
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These refinements are subnormal B-series with mn inclusions. The final refine-
ments are

· · · ⊇ Hi+1 (Hi ∩Kj) ⊇ Hi+1 (Hi ∩Kj+1) ⊇ · · ·

and
· · · ⊇ Kj+1 (Kj ∩Hi) ⊇ Kj+1 (Kj ∩Hi+1) ⊇ · · · .

By Lemma 7,

Hi+1 (Hi ∩Kj) /Hi+1 (Hi ∩Kj+1) ∼= Kj+1 (Kj ∩Hi) /Kj+1 (Kj ∩Hi+1).

The result follows.

Theorem 9. Any two composition B-series of X are equivalent.

Proof. Any two composition B-series of X have equivalent refinements and by
Theorem 6, a composition B-series has no proper refinements. Thus, a com-
position B-series is equivalent to every refinement of itself. Therefore, any two
composition B-series of X are equivalent.

IfX has a subnormal B-seriesX = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}
such that Hi/Hi+1 is commutative, i = 0, 1, . . . , n − 1, then we say that X is
solvable. Such a subnormal B-series is called a solvable B-series for X.

Remark 10. Every commutative B-algebra is solvable.

Example 11. The noncommutative B-algebra X in Example 1 is solvable since
X ⊃ {0, 1, 2} ⊃ {0} is a solvable B-series for X.

3. Properties of solvable B-algebra

We now present some of the basic properties of solvable B-algebras.

Theorem 12. Every subalgebra of a solvable B-algebra is solvable.

Proof. Let X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} be a solvable
B-series of X. Let K be any subalgebra of X. Set Ki = K ∩Hi, i = 0, 1, . . . , n.
Since Hi+1 is a normal subalgebra of Hi, Hi+1 ∩ K is a normal subalgebra of
Hi ∩ K. Thus, Ki+1 is a normal subalgebra of Ki. Now, Ki+1 = K ∩ Hi+1 =
K∩Hi∩Hi+1 = Ki∩Hi+1. Hence, Ki/Ki+1 = Ki/(Ki∩Hi+1). By [14, Theorem
3.4], Ki/Ki+1

∼= KiHi+1/Hi+1. Since KiHi+1/Hi+1 is a subalgebra of Hi/Hi+1

and Hi/Hi+1 is commutative, KiHi+1/Hi+1 is commutative. Therefore, Ki/Ki+1

is commutative and so the series

K = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {0}

is a solvable B-series for K. Consequently, K is a solvable.
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Theorem 13. Every homomorphic image of a solvable B-algebra is solvable.

Proof. Let f : X → Y be a B-epimorphism. Suppose that X is solvable. Let
X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0} be a solvable B-series of
X. Set Ki = f(Hi), i = 0, 1, . . . , n. Since f is a B-epimorphism, f(Hi+1) is
a normal subalgebra of f(Hi). Since Hi ⊇ Hi+1, f(Hi) ⊇ f(Hi+1). Hence,
Y = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {0} is a subnormal B-series of Y .
Define g : Hi → Ki/Ki+1 by g(hi) = f(hi)Ki+1. Since f is a B-epimorphism, g
is a B-epimorphism of Hi onto Ki/Ki+1. Note that for any hi+1 ∈ Ki+1 ⊆ Ki,
g(hi+1) = f(hi+1)Ki+1 = f(hi+1)f(Hi+1) = f(Hi+1). Hence, Hi+1 ⊆ Kerg.
Thus, g induces a B-epimorphism of Hi/Hi+1 onto Ki/Ki+1. Since Hi/Hi+1

is commutative, Ki/Ki+1 is commutative. Therefore, the subnormal B-series
Y = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {0} is a solvable B-series for Y and
so Y is solvable.

Corollary 14. If X is solvable and H is normal in X, then H and X/H are

solvable.

Theorem 15. Let H be normal in X. If both H and X/H are solvable, then X
is solvable.

Proof. Suppose that H and X/H are solvable. Let

X/H = K ′

0 ⊇ K ′

1 ⊇ K ′

2 ⊇ · · · ⊇ K ′

m−1 ⊇ K ′

m = {0H} = {H}

be a solvable B-series for X/H. By [8, Corollary 16], there are subalgebras Ki

of X, i = 0, 1, . . . ,m, such that Ki+1 is a normal subalgebra of Ki, K
′

i = Ki/H,
i = 0, 1, . . . ,m− 1, X = K0, and H = Km. By [22, Theorem 3.14],

Ki/Ki+1
∼= K ′

i/K
′

i+1.

Since H is solvable, H has a solvable B-series

H = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}.

Thus,

X = K0 ⊇ K1 ⊇ · · · ⊇ Km−1 ⊇ H ⊇ H1 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}

is a solvable B-series for X. Therefore, X is solvable.

Corollary 16. Let H and K be subalgebras of X and H be normal in X. If both

H and K are solvable, then HK is solvable.
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Proof. Suppose that H and K are solvable. By [14, Lemma 2.11], HK is a
subalgebra of X. By [14, Theorem 3.4], HK/H ∼= K/H ∩ K. By [14, Lemma
2.1], H∩K is a subalgebra of K. Thus, by Theorem 12, H∩K is solvable. Hence,
K/H ∩K is solvable by Corollary 14. Therefore, HK/H is solvable. Therefore,
by Theorem 15, HK is solvable.

Corollary 17. Let H and K be normal subalgebras of X such that X/H and

X/K are solvable. Then X is solvable if and only if H ∩K is solvable.

Proof. Suppose that X is solvable. By Theorem 12, H ∩ K is solvable. Con-
versely, suppose thatH∩K is solvable. By [14, Theorem 3.4], HK/H ∼= K/H∩K.
Since HK/H is a subalgebra of a solvable B-algebra X/H, HK/H is solvable by
Theorem 12. Thus, K/H ∩K is solvable. By Theorem 15, K is solvable. There-
fore, by Theorem 15, X is solvable.

Theorem 18. Any refinement of a solvable B-series of X is a solvable B-series.

Proof. Let

X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(7)

be a solvable B-series for X and let

X = H0 ⊇ H1 ⊇ · · · ⊇ Hi−1 ⊇ H ⊇ Hi ⊇ · · · ⊇ Hn−1 ⊇ Hn = {0}(8)

be a one-step refinement of (7). From (7), Hi−1/Hi is commutative. Since
H/Hi is a subalgebra of Hi−1/Hi, H/Hi is commutative. By [22, Theorem 3.14],
(Hi−1/Hi)/(H/Hi) ∼= Hi−1/H and so Hi−1/H is commutative. Thus, (8) is a
solvable B-series. Hence, any one-step refinement of (7) is a solvable B-series. By
induction, any refinement of (7) is a solvable B-series.

Recall from [2] that the center of X is given by

Z(X) = {x ∈ X : x ∗ (0 ∗ y) = y ∗ (0 ∗ x) for all y ∈ X}.

Note that Z(X) is a subalgebra of X [2]. Moreover, it is normal in X [30].

Theorem 19. X is solvable if and only if X/Z(X) is solvable.

Proof. If X is solvable, then X/Z(X) is solvable by Corollary 14. Conversely, if
X/Z(X) is solvable, then X is solvable by Remark 10 and Theorem 15.
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