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Abstract

In this paper, we introduce and characterize solvable B-algebras. We
also establish some of the basic properties of solvable B-algebras.
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1. INTRODUCTION

A B-algebra [21] is an algebra (X;x,0) of type (2, 0) satisfying the following
axioms:
() xx2z=0,
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2 J. ENDAM, G. DAEL AND B. OMAMALIN

(I) x % 0 = =,
(IT1) (zxy)xz=x* (2% (0*y)), for any z,y,z € X.
This algebra was introduced and established by Neggers and Kim (2002). From
then on, several properties and characterizations as well as several notions relating
to B-algebras were established, including the basic properties of B-algebras [2, 3,
7,9, 11, 13, 29, 30], homomorphisms of B-algebras [14, 22, 28], B,-subalgebras
[8, 10, 12], cyclic B-algebras [15, 16], and fuzzy B-algebras [1, 4, 5, 6, 17, 18,
20, 23, 24, 25, 26, 27]. In this paper, we introduce and characterize solvable
B-algebras. We also establish some of the basic properties of solvable B-algebras.
We recall first some concepts needed in this study. Throughout this paper,
let X be a B-algebra (X;*,0). In [21], X is said to be commutative if zx(0xy) =
y* (0% x) for any z,y € X.

Example 1. Let X = {0, 1, 2, 3, 4, 5} be a set with the following table of
operations:

QUi W N~ Of %
T W N~ OO
W U = O N
=NV S el R V)
N~ O Ok W W
— O N W O
O N~ W oot

Then (X; *, 0) is a B-algebra [22]. Since 2% (0%3) =5 # 4 =3*(0%2), X is not
commutative.

In [22], a nonempty subset N of X is called a subalgebra of X if xxy € N for
any z,y € N. A subalgebra N of X is called normal in X if (zxa)* (y*xb) € N
for any x * y,axb € N. A map ¢ : X — Y is called a B-homomorphism if
e(x xy) = o(x) * p(y) for any x,y € X. The subset {z € X : p(z) = Oy}
of X is called the kernel of the B-homomorphism ¢, denoted by Ker ¢. If
N is normal in X, then X/N is a B-algebra, called the quotient B-algebra of
X by N, where binary operation in X/N is defined by aN « yN = (z x y)N;
X/N={zN :z€ X}; 2N ={y € X : x ~y y} the equivalence class containing
x by oN;  ~y y if and only if x xy € N. In [7], for subalgebra H of X and
x € X, we have tH = {x (0% h) : h € H} and Hr = {hx(0xxz) : h € H},
called the left and right B-cosets of H in X, respectively. In [14], if H, K are
subalgebras of X, we define the subset HK of X to be the set HK = {x €
X :x=hx(0xk) for some h € H,k € K}. In [10], we say that a B-algebra is
B-simple if it has no nontrivial normal subalgebras.
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SOLVABILITY OF B-ALGEBRAS 3

2. DB-SERIES

This section presents the notions of subnormal, normal, composition, and solvable
B-series of B-algebras.

Definition. Let X = Hy D H; O Hy O --- O H,, = {0} be a series of subalgebras
of X. The series is called a subnormal B-series if each H; is normal in H;_1. The
series is called a normal B-series if each H; is normal in X. The series is called
a composition B-series if each H; is a maximal normal subalgebra of H; 1. The
number of proper inclusions D in the series is called the length of the series. The
quotient B-algebras H;_1/H; are called the factors of the series.

If H,_1 = H;, then the quotient B-algebra H;_1/H; consists of a single el-
ement and is called a trivial factor of the series. Given a series of subalgebras
X =Hy 2 Hy 2 Hy D -2 H, = {0} of X, then the length of the series is
the number of nontrivial factors H;_1/H; of the series. Since {0} is normal in X,
every B-algebra has a normal B-series.

Lemma 2. H is a mazimal normal in X if and only if X/H is B-simple.

Proof. This follows from [8, Corollary 16]. [

Theorem 3. Ewvery finite B-algebra has a composition B-series.

Proof. Let X be a finite B-algebra. Since X is finite, there exists a maximal
normal subalgebra Hy of X. Thus, by Lemma 2, X/H; is B-simple. If H; # {0},
then since H; is finite, there exists a maximal normal subalgebra Hs of Hj.
Hence, Hi/Hj is B-simple. If Hy # {0}, then continuing the process, we obtain
the following series X = Hy D Hy D Hy D --- D H, D --- such that H;/H;
is B-simple for all i. Since X is finite, there exists n > 0 such that H,, = {0}.
Thus, X = Hy D Hy D Hy D --- D H, = {0} is a composition B-series for X. m

Example 4. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} be a set with the
following table of operations:
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* o 1 2 3 4 5 6 7 8 9 10 11
0 0 17 100 9 8 7 6 5 4 3 2 1
1 1 0 1 100 9 8 7 6 5 4 3 2
2 2 1 0 11 10 9 8 7 6 5 4 3
3 3 2 1 0 1 10 9 8 7 6 5 4
4 4 3 2 1 0 11 10 9 8 7 6 )
) 5 4 3 2 1 0 11 10 9 8 7 6
6 6 5 4 3 2 1 0 11 10 9 8 7
7 T 6 5 4 3 2 1 0 11 10 9 8
8 8§ 7 6 5 4 3 2 1 0 11 10 9
9 9 8 7 6 5 4 3 2 1 0 11 10
(10 9 8 7 6 5 4 3 2 1 0 11
111 10 9 8 7 6 5 4 3 2 1 0

Then (X; #, 0) is a B-algebra [10]. Moreover, X is commutative. Thus, by [30,
Corollary 2.3], the subalgebras {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}

are normal in X. The following series are normal B-series for X:
X D {0,6} > {0},
X ©1{0,3,6,9} > {0,6} > {0},
X 0{0,2,4,6,8,10} D {0,6} D {0},
X 0{0,2,4,6,8,10} D {0,4,8} D {0}.

The first normal B-series is not a composition B-series for X. The remaining
three normal B-series are composition B-series for X.

Definition. Let
(1) X=Hy2H 2 H;2 - 2 Hy1 2 Hy, = {0},

be a subnormal B-series in X. A one-step refinement of this series is any series
of the form

X=HyoH2---DH;1+2HDOH;D---2H, 12 H,={0},

where H is a normal subalgebra of H; 1 and H; is a normal subalgebra of H,
i =1,2,...,n. A refinement of (1) is a subnormal B-series which is obtained
from (1) by a finite sequence of one-step refinements. A refinement

(2) X=Ki2Ki2Ky2---2Ky12 Ky ={0},

of (1) is called a proper refinement if there exists a subalgebra K in (2) which is
different from each H; of (1). Thus, a series of subalgebras

X=KyDK i DKyD---D Ky 2K,y ={0}
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SOLVABILITY OF B-ALGEBRAS 5

of X is called a refinement of a series of subalgebras
X=Hy2H2Hy2---2DH, 12H,=0,

of X if
{Hy,Hy,Hs,...,H,} C{Ky,K1,Ks,...,Kp}

and is called a proper refinement if
{Ho,Hl, HQ, - ,Hn} C {Ko,Kl, KQ, . ,Km}.

Example 5. In Example 4, X D {0,3,6,9} D {0,6} D {0} is a refinement of
X 5 {0,6} > {0} while X > {0,2,4,6,8,10} > {0,4,8} > {0} is not.

Theorem 6. A subnormal B-series in X is a composition B-series if and only
if it has no proper refinement.

Proof. Let

(3) X=Hy2H 2H;2 - 2 Hy,y 2 Hy={0}

be a composition B-series of X. Suppose that
X=Hy>oH2---2Hi1wW2HDH;D---2H, 1 2H,={0}

is a one-step refinement of (3). Since (3) is a composition B-series, H; is a normal
subalgebra of H; 1. Thus, either H = H; 1 or H = H;. Hence, it follows that
(3) has no proper refinement. Conversely, suppose that

(4) X=Hy2H 2Hy2---2Hy, 12 H,={0}

is a subnormal B-series which has no proper refinement. Suppose that (4) is not
a composition B-series. Then there exists a subalgebra H; in (4) such that H;
is not a maximal normal subalgebra in H;_;. Thus, there exists a subalgebra
H such that H; | # H # H;, H is normal in H;_1, and H; is normal in H.
This produces a proper refinement of (4), a contradiction. Therefore, (4) is a
composition B-series. u

Definition. Two subnormal B-series

(5) X=Hy2H 2HyD---2H, 12H,={0}
and
(6) X=KyDK 2KyD---D Ky 2K, ={0}

for a B-algebra X are called equivalent if there is a one-one correspondence be-
tween the nontrivial factors of (5) and (6) such that correponding factors are
B-isomorphic.
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Lemma 7. Let H', H, K', and K be subalgebras of X such that H' is a normal
subalgebra of H and K' is a normal subalgebra of K. Then H' (HNK') is a normal
subalgebra of H'(H N K) and K'(H' N K) is a normal subalgebra of K'(H N K).

Furthermore,
HHNK)/HHNKY>2K'(HNK)/K'(H NK).

Proof. Since H' is normal in H and K’ is normal in K, HN K’ and H' N K are
normal subalgebras of HNK by [14, Lemma 2.10]. Also (HNK')(H'NK) is normal
in HN K by [14, Lemma 2.12]. For simplicity, let J = (HNK')(H' N K). Define
f:HHNK)— (HNK)/J as follows: if z € H'(HNK), then = h' % (0 xy),
where h/ € H and y € HN K. Set f(x) = Jy.

Let aj,ap € H'(HN K). Then a; = k) * (0% by) and ag = hf * (0 * by) for some
R, Wy € H' and by,by € HN K.

Claim 1: f is well-defined.

Suppose that a; = az. Then by (III), (I), and [21, Lemma 2.6], we have

Ry (0% b1) = hyx*(0x*by)
by * (R * (0 % by)) bo * (R * (0 b))
(b % by) * Iy (b2 % ba) * hy
(by % by) * h) 0 * h
((bp b)) * (0% h)) = (0xhd)*(0xh})
boxby = (0%hy) = (0xh))

Thus, (0%h%)*(0xh]) =bexby € HNK. Hence, (0xhh)*(0xh}) € H'(HNK)
H'NK C J. It follows that by x by € J. By [7, Theorem 3.3(ii)], f(a1) = Jb;
Jba = f(a2). This proves Claim 1.

Claim 2: f is a B-homomorphism.

First, take note that H'(HNK) = (HNK)H'. Since H and HNK are subalgebras
of H with H' normal in H, by [14, Lemma 2.11], H'(H N K) is a subalgebra of
H. And by [14, Theorem 2.8], H/(HNK) = (HNK)H'.

So, for hly % (0% (by xb1) € H(HNK), hly % (0% (byxby) € (HN K)H'. That is,
Yy % (0% (b % by) = (bg x by) * (0 x hY), for some hf in H'.

Now, by (IIT), [29, Lemma 2.3(v)], and [21, Proposition 2.8|, we have,

1M

0% b1)) * (hl * (0% bo))
((RY * (0 % by)) * by)

(R * (by * b))

(R * (0% (b % b1)))

1% ((ba % by) * (0% hY))

aixay = (hy*

—~~

1%

h/
h/1 *
m
h/

*



150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

166

167

168

169

170

171

172

SOLVABILITY OF B-ALGEBRAS 7

= (W] * hf) * (by * by)
= hl* (0% (b % by))

for ny € H'.
Then,

flarxaz) = f(hy* (0% (b1 b))
J(bl *bg)
Jby * Jbo

= f(a1) * f(a2)

This proves Claim 2.
Claim 3: f is onto.
Let Jye (HNK)/J. Theny =0%(0xy) € H(HNK) and f(y) = Jy. This
proves Claim 3.
Therefore, by [22, Theorem 3.11], H/(HNK)/Kerf = (HNK)/J.
Claim 4: Kerf = H'(HNK').
Let (h)*(0xby)) € Kerf, for hy € H and by € HNK. Then J = f(h}*(0%b1)) =
Jby. By [7, Theorem 3.3(ii)], (0xby) € J. If (0xby) € J = (HNK')(H' NK),
then (0% by) = hl* (0% bg) for hy € HNK' and by € H' N K.
Hence, (R} * (0% ;1)) € Kerf if and only if h] % (0% by) = k] = (bl * (0 * bg)) =
(R} % bg) = hl,. Note that h} x by = b} * (0% (0% be)) € H'(H' N K) implies that,
by [14, Lemma 2.7], b * bo € H'. Hence, (R} x (0% b1)) € H'(H N K'. Therefore,
Kerf=H'(HNK').
Therefore, H/(HNK)/H'(HNK') =2 (HNK)/(HNK)(H' NK).
Similar argument applies for K'(HNK)/K'(HNK)=2 HNK/(HNK'")(H'NK).
Therefore, H/(HNK)/H'(HNK') =2 K'(HNK)/K'(H N K). |

Theorem 8. Any two subnormal B-series
X=HyoH 2Hy;2---2H, 2 H,={0}

and

X=KyDK 2KyD---DK,_1 2K, ={0}
of X have refinements which are equivalent.
Proof. Between each H; and H; 1, insert the subalgebra
HipW(HiNnKj),j=0,1,2,...,m.
Between each K; and K11, insert the subalgebra

Kjq (KjﬂHi),i:O,l,Q,...,n.
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These refinements are subnormal B-series with mn inclusions. The final refine-
ments are

D Hiyp (HiNKj) 2 Hipy (HiNKjpq) D -+

and
D K (KN H) 2 Ky (KGN Higq) 2.

By Lemma 7,

Hiv1 (Hi N Kj) /Higr (Hi N K1) = Kj (K50 H;y) [Kj (K50 Higg).
The result follows. n
Theorem 9. Any two composition B-series of X are equivalent.

Proof. Any two composition B-series of X have equivalent refinements and by
Theorem 6, a composition B-series has no proper refinements. Thus, a com-
position B-series is equivalent to every refinement of itself. Therefore, any two
composition B-series of X are equivalent. [ |

If X has a subnormal B-series X = Hy 2 Hy D Hy, D --- 2 H,_1 2O H, = {0}
such that H;/H;; is commutative, ¢ = 0,1,...,n — 1, then we say that X is
solvable. Such a subnormal B-series is called a solvable B-series for X.

Remark 10. Every commutative B-algebra is solvable.

Example 11. The noncommutative B-algebra X in Example 1 is solvable since
X D{0,1,2} D {0} is a solvable B-series for X.

3. PROPERTIES OF SOLVABLE B-ALGEBRA

We now present some of the basic properties of solvable B-algebras.
Theorem 12. Fvery subalgebra of a solvable B-algebra is solvable.

Proof. Let X = Hy 2D Hi 2 Hy 2 --- O H,_1 2 H, = {0} be a solvable
B-series of X. Let K be any subalgebra of X. Set K; = KN H;,i=0,1,...,n.
Since H;y1 is a normal subalgebra of H;, H;y1 N K is a normal subalgebra of
H; N K. Thus, K;;1 is a normal subalgebra of K;. Now, K;11 = KN H;41 =
KNH;NH;;1 = K;NH;;+1. Hence, Ki/Ki—I—l = KZ‘/(KZ'QHZ'+1). By [14, Theorem
34], K/L'/K/L'+1 = K/L'H/L'+1/Hi+1. Since KiHi+1/Hl'+1 is a Subalgebra of Hi/Hi+1
and H;/H; 1 is commutative, K;H;1/H;}1 is commutative. Therefore, K;/K; 1
is commutative and so the series

K=KyDK DKyD---D K, 12K,={0}
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is a solvable B-series for K. Consequently, K is a solvable. [ |
Theorem 13. FEvery homomorphic image of a solvable B-algebra is solvable.

Proof. Let f : X — Y be a B-epimorphism. Suppose that X is solvable. Let
X =Hy2>H 2 Hy D2 H, 1 2 H, = {0} be a solvable B-series of
X. Set K; = f(H;), i = 0,1,...,n. Since f is a B-epimorphism, f(H;;1) is
a normal subalgebra of f(H;). Since H; O H;i1, f(H;) O f(Hiy1). Hence,
Y=Ky2>DKi DKy D 2K, 12 K, ={0} is a subnormal B-series of Y.
Define g : H; — K;/K;+1 by g(h;) = f(h;)Ki+1. Since f is a B-epimorphism, g
is a B-epimorphism of H; onto K;/K;1. Note that for any h;11 € K;11 C K,
g(hit1) = f(hix1)Kiv1 = f(hi1)f(Hiv1) = f(Hit1). Hence, Hiy1 C Kerg.
Thus, g induces a B-epimorphism of H;/H;1 onto K;/K;y1. Since H;/H;q
is commutative, K;/K;y1 is commutative. Therefore, the subnormal B-series
Y=Ky2Ki2Ky;D---2K, 12K, =1{0} is a solvable B-series for Y and
so Y is solvable. [ |

Corollary 14. If X is solvable and H is normal in X, then H and X/H are
solvable.

Theorem 15. Let H be normal in X. If both H and X/H are solvable, then X
s solvable.

Proof. Suppose that H and X/H are solvable. Let
X/H = K2 K| 2 K32+ 2 Kip_y 2 Kby = {0H} = {H)
be a solvable B-series for X/H. By [8, Corollary 16], there are subalgebras K;
of X,i=0,1,...,m, such that K;1; is a normal subalgebra of K;, K| = K;/H,
i=0,1,....,m—1, X = Ky, and H = K,,,. By [22, Theorem 3.14],
K;/Kiy1 = Kj/Kj,,
Since H is solvable, H has a solvable B-series
H=Hy2Hy2Hy;2 -2 H, 12 H,={0}.
Thus,
X=KyoK\2---2Kn, 12HDOHD---2H,12H,={0}
is a solvable B-series for X. Therefore, X is solvable. [ |

Corollary 16. Let H and K be subalgebras of X and H be normal in X. If both
H and K are solvable, then HK is solvable.
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Proof. Suppose that H and K are solvable. By [14, Lemma 2.11], HK is a
subalgebra of X. By [14, Theorem 34|, HK/H = K/H N K. By [14, Lemma
2.1], HN K is a subalgebra of K. Thus, by Theorem 12, HNK is solvable. Hence,
K/H N K is solvable by Corollary 14. Therefore, HK/H is solvable. Therefore,
by Theorem 15, H K is solvable. [ |

Corollary 17. Let H and K be normal subalgebras of X such that X/H and
X/K are solvable. Then X is solvable if and only if HN K is solvable.

Proof. Suppose that X is solvable. By Theorem 12, H N K is solvable. Con-
versely, suppose that HNK is solvable. By [14, Theorem 3.4], HK/H =~ K/HNK.
Since HK/H is a subalgebra of a solvable B-algebra X/H, HK/H is solvable by
Theorem 12. Thus, K/H N K is solvable. By Theorem 15, K is solvable. There-
fore, by Theorem 15, X is solvable. [ |

Theorem 18. Any refinement of a solvable B-series of X is a solvable B-series.

Proof. Let

(7) X=Hy>oH DHy;D---DH, 12 H,={0}

be a solvable B-series for X and let

8 X=HyoH2---D2H 12H2H;D---2H, 12 H,=1{0}

be a one-step refinement of (7). From (7), H;_1/H; is commutative. Since
H/H; is a subalgebra of H;,_1/H;, H/H; is commutative. By [22, Theorem 3.14],
(Hi—1/H;)/(H/H;) = H,_1/H and so H;_1/H is commutative. Thus, (8) is a
solvable B-series. Hence, any one-step refinement of (7) is a solvable B-series. By
induction, any refinement of (7) is a solvable B-series. ]

Recall from [2] that the center of X is given by
Z(X)={xeX:xx(0xy)=yx(0xx) for all y € X}.
Note that Z(X) is a subalgebra of X [2]. Moreover, it is normal in X [30].
Theorem 19. X is solvable if and only if X/Z(X) is solvable.

Proof. 1f X is solvable, then X/Z(X) is solvable by Corollary 14. Conversely, if
X/Z(X) is solvable, then X is solvable by Remark 10 and Theorem 15. ]

Acknowledgement. The authors would like to thank the referee and the
editor for the remarks, comments, and suggestions which were incorporated into
this revised version.
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