${ }_{27}$ A B-algebra [21] is an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following axioms:
(I) $x * x=0$,
(II) $x * 0=x$
(III) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$.

This algebra was introduced and established by Neggers and Kim (2002). From then on, several properties and characterizations as well as several notions relating to B-algebras were established, including the basic properties of B-algebras $[2,3$, $7,9,11,13,29,30$], homomorphisms of B-algebras [14, 22, 28], B_{p}-subalgebras $[8,10,12]$, cyclic B-algebras [15, 16] , and fuzzy B-algebras $[1,4,5,6,17,18$, $20,23,24,25,26,27]$. In this paper, we introduce and characterize solvable B-algebras. We also establish some of the basic properties of solvable B-algebras.

We recall first some concepts needed in this study. Throughout this paper, let X be a B-algebra $(X ; *, 0)$. In [21], X is said to be commutative if $x *(0 * y)=$ $y *(0 * x)$ for any $x, y \in X$.

Example 1. Let $X=\{0,1,2,3,4,5\}$ be a set with the following table of operations:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X ; *, 0)$ is a B-algebra [22]. Since $2 *(0 * 3)=5 \neq 4=3 *(0 * 2), X$ is not commutative.

In [22], a nonempty subset N of X is called a subalgebra of X if $x * y \in N$ for any $x, y \in N$. A subalgebra N of X is called normal in X if $(x * a) *(y * b) \in N$ for any $x * y, a * b \in N$. A map $\varphi: X \rightarrow Y$ is called a B-homomorphism if $\varphi(x * y)=\varphi(x) * \varphi(y)$ for any $x, y \in X$. The subset $\left\{x \in X: \varphi(x)=0_{Y}\right\}$ of X is called the kernel of the B-homomorphism φ, denoted by $\operatorname{Ker} \varphi$. If N is normal in X, then X / N is a B-algebra, called the quotient B-algebra of X by N, where binary operation in X / N is defined by $x N *^{\prime} y N=(x * y) N$; $X / N=\{x N: x \in X\} ; x N=\left\{y \in X: x \sim_{N} y\right\}$ the equivalence class containing x by $x N ; x \sim_{N} y$ if and only if $x * y \in N$. In [7], for subalgebra H of X and $x \in X$, we have $x H=\{x *(0 * h): h \in H\}$ and $H x=\{h *(0 * x): h \in H\}$, called the left and right B-cosets of H in X, respectively. In [14], if H, K are subalgebras of X, we define the subset $H K$ of X to be the set $H K=\{x \in$ $X: x=h *(0 * k)$ for some $h \in H, k \in K\}$. In [10], we say that a B-algebra is B-simple if it has no nontrivial normal subalgebras.

2. B-SERIES

This section presents the notions of subnormal, normal, composition, and solvable B-series of B-algebras.

Definition. Let $X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n}=\{0\}$ be a series of subalgebras of X. The series is called a subnormal B-series if each H_{i} is normal in H_{i-1}. The series is called a normal B-series if each H_{i} is normal in X. The series is called a composition B-series if each H_{i} is a maximal normal subalgebra of H_{i-1}. The number of proper inclusions \supset in the series is called the length of the series. The quotient B-algebras H_{i-1} / H_{i} are called the factors of the series.

If $H_{i-1}=H_{i}$, then the quotient B-algebra H_{i-1} / H_{i} consists of a single element and is called a trivial factor of the series. Given a series of subalgebras $X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n}=\{0\}$ of X, then the length of the series is the number of nontrivial factors H_{i-1} / H_{i} of the series. Since $\{0\}$ is normal in X, every B-algebra has a normal B-series.

Lemma 2. H is a maximal normal in X if and only if X / H is B-simple.

Proof. This follows from [8, Corollary 16].

Theorem 3. Every finite B-algebra has a composition B-series.

Proof. Let X be a finite B-algebra. Since X is finite, there exists a maximal normal subalgebra H_{1} of X. Thus, by Lemma 2, X / H_{1} is B-simple. If $H_{1} \neq\{0\}$, then since H_{1} is finite, there exists a maximal normal subalgebra H_{2} of H_{1}. Hence, H_{1} / H_{2} is B-simple. If $H_{2} \neq\{0\}$, then continuing the process, we obtain the following series $X=H_{0} \supset H_{1} \supset H_{2} \supset \cdots \supset H_{n} \supset \cdots$ such that H_{i} / H_{i+1} is B-simple for all i. Since X is finite, there exists $n \geq 0$ such that $H_{n}=\{0\}$. Thus, $X=H_{0} \supset H_{1} \supset H_{2} \supset \cdots \supset H_{n}=\{0\}$ is a composition B-series for X.

Example 4. Let $X=\{0,1,2,3,4,5,6,7,8,9,10,11\}$ be a set with the following table of operations:

$$
\begin{equation*}
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} \tag{1}
\end{equation*}
$$

be a subnormal B-series in X. A one-step refinement of this series is any series of the form

$$
X=H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{i-1} \supseteq H \supseteq H_{i} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}
$$

$$
\begin{equation*}
X=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{m-1} \supseteq K_{m}=\{0\} \tag{2}
\end{equation*}
$$

$*$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	11	10	9	8	7	6	5	4	3	2	1
1	1	0	11	10	9	8	7	6	5	4	3	2
2	2	1	0	11	10	9	8	7	6	5	4	3
3	3	2	1	0	11	10	9	8	7	6	5	4
4	4	3	2	1	0	11	10	9	8	7	6	5
5	5	4	3	2	1	0	11	10	9	8	7	6
6	6	5	4	3	2	1	0	11	10	9	8	7
7	7	6	5	4	3	2	1	0	11	10	9	8
8	8	7	6	5	4	3	2	1	0	11	10	9
9	9	8	7	6	5	4	3	2	1	0	11	10
10	10	9	8	7	6	5	4	3	2	1	0	11
11	11	10	9	8	7	6	5	4	3	2	1	0

Then $(X ; *, 0)$ is a B-algebra [10]. Moreover, X is commutative. Thus, by [30, Corollary 2.3], the subalgebras $\{0,6\},\{0,4,8\},\{0,3,6,9\},\{0,2,4,6,8,10\}$ are normal in X. The following series are normal B-series for X :

$$
\begin{gathered}
X \supset\{0,6\} \supset\{0\} \\
X \supset\{0,3,6,9\} \supset\{0,6\} \supset\{0\} \\
X \supset\{0,2,4,6,8,10\} \supset\{0,6\} \supset\{0\} \\
X \supset\{0,2,4,6,8,10\} \supset\{0,4,8\} \supset\{0\} .
\end{gathered}
$$

The first normal B-series is not a composition B-series for X. The remaining three normal B-series are composition B-series for X.

Definition. Let

where H is a normal subalgebra of H_{i-1} and H_{i} is a normal subalgebra of H, $i=1,2, \ldots, n$. A refinement of (1) is a subnormal B-series which is obtained from (1) by a finite sequence of one-step refinements. A refinement
of (1) is called a proper refinement if there exists a subalgebra K_{j} in (2) which is different from each H_{i} of (1). Thus, a series of subalgebras

$$
X=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{m-1} \supseteq K_{m}=\{0\}
$$

of X is called a refinement of a series of subalgebras

$$
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=0,
$$

of X if

$$
\left\{H_{0}, H_{1}, H_{2}, \ldots, H_{n}\right\} \subseteq\left\{K_{0}, K_{1}, K_{2}, \ldots, K_{m}\right\}
$$

and is called a proper refinement if

$$
\left\{H_{0}, H_{1}, H_{2}, \ldots, H_{n}\right\} \subset\left\{K_{0}, K_{1}, K_{2}, \ldots, K_{m}\right\}
$$

Example 5. In Example 4, $X \supset\{0,3,6,9\} \supset\{0,6\} \supset\{0\}$ is a refinement of $X \supset\{0,6\} \supset\{0\}$ while $X \supset\{0,2,4,6,8,10\} \supset\{0,4,8\} \supset\{0\}$ is not.

Theorem 6. A subnormal B-series in X is a composition B-series if and only if it has no proper refinement.

Proof. Let

$$
\begin{equation*}
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} \tag{3}
\end{equation*}
$$

be a composition B-series of X. Suppose that

$$
X=H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{i-1} \supseteq H \supseteq H_{i} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}
$$

is a one-step refinement of (3). Since (3) is a composition B-series, H_{i} is a normal subalgebra of H_{i-1}. Thus, either $H=H_{i-1}$ or $H=H_{i}$. Hence, it follows that (3) has no proper refinement. Conversely, suppose that

$$
\begin{equation*}
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} \tag{4}
\end{equation*}
$$

is a subnormal B-series which has no proper refinement. Suppose that (4) is not a composition B-series. Then there exists a subalgebra H_{i} in (4) such that H_{i} is not a maximal normal subalgebra in H_{i-1}. Thus, there exists a subalgebra H such that $H_{i-1} \neq H \neq H_{i}, H$ is normal in H_{i-1}, and H_{i} is normal in H. This produces a proper refinement of (4), a contradiction. Therefore, (4) is a composition B-series.

Definition. Two subnormal B-series

$$
\begin{equation*}
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
X=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{m-1} \supseteq K_{m}=\{0\} \tag{6}
\end{equation*}
$$

for a B-algebra X are called equivalent if there is a one-one correspondence between the nontrivial factors of (5) and (6) such that correponding factors are B-isomorphic.

Lemma 7. Let $H^{\prime}, H, K^{\prime}$, and K be subalgebras of X such that H^{\prime} is a normal subalgebra of H and K^{\prime} is a normal subalgebra of K. Then $H^{\prime}\left(H \cap K^{\prime}\right)$ is a normal subalgebra of $H^{\prime}(H \cap K)$ and $K^{\prime}\left(H^{\prime} \cap K\right)$ is a normal subalgebra of $K^{\prime}(H \cap K)$. Furthermore,

$$
H^{\prime}(H \cap K) / H^{\prime}\left(H \cap K^{\prime}\right) \cong K^{\prime}(H \cap K) / K^{\prime}\left(H^{\prime} \cap K\right)
$$

Proof. Since H^{\prime} is normal in H and K^{\prime} is normal in $K, H \cap K^{\prime}$ and $H^{\prime} \cap K$ are normal subalgebras of $H \cap K$ by [14, Lemma 2.10]. Also $\left(H \cap K^{\prime}\right)\left(H^{\prime} \cap K\right)$ is normal in $H \cap K$ by [14, Lemma 2.12]. For simplicity, let $J=\left(H \cap K^{\prime}\right)\left(H^{\prime} \cap K\right)$. Define $f: H^{\prime}(H \cap K) \rightarrow(H \cap K) / J$ as follows: if $x \in H^{\prime}(H \cap K)$, then $x=h^{\prime} *(0 * y)$, where $h^{\prime} \in H^{\prime}$ and $y \in H \cap K$. Set $f(x)=J y$.
Let $a_{1}, a_{2} \in H^{\prime}(H \cap K)$. Then $a_{1}=h_{1}^{\prime} *\left(0 * b_{1}\right)$ and $a_{2}=h_{2}^{\prime} *\left(0 * b_{2}\right)$ for some $h_{1}^{\prime}, h_{2}^{\prime} \in H^{\prime}$ and $b_{1}, b_{2} \in H \cap K$.
Claim 1: f is well-defined.
Suppose that $a_{1}=a_{2}$. Then by (III), (I), and [21, Lemma 2.6], we have

$$
\begin{aligned}
h_{1}^{\prime} *\left(0 * b_{1}\right) & =h_{2}^{\prime} *\left(0 * b_{2}\right) \\
b_{2} *\left(h_{1}^{\prime} *\left(0 * b_{1}\right)\right) & =b_{2} *\left(h_{2}^{\prime} *\left(0 * b_{2}\right)\right) \\
\left(b_{2} * b_{1}\right) * h_{1}^{\prime} & =\left(b_{2} * b_{2}\right) * h_{2}^{\prime} \\
\left(b_{2} * b_{1}\right) * h_{1}^{\prime} & =0 * h_{2}^{\prime} \\
\left(\left(b_{2} * b_{1}\right) * h_{1}^{\prime}\right) *\left(0 * h_{1}^{\prime}\right) & =\left(0 * h_{2}^{\prime}\right) *\left(0 * h_{1}^{\prime}\right) \\
b_{2} * b_{1} & =\left(0 * h_{2}^{\prime}\right) *\left(0 * h_{1}^{\prime}\right)
\end{aligned}
$$

Thus, $\left(0 * h_{2}^{\prime}\right) *\left(0 * h_{1}^{\prime}\right)=b_{2} * b_{1} \in H \cap K$. Hence, $\left(0 * h_{2}^{\prime}\right) *\left(0 * h_{1}^{\prime}\right) \in H^{\prime}(H \cap K) \subseteq$ $H^{\prime} \cap K \subseteq J$. It follows that $b_{2} * b_{1} \in J$. By [7, Theorem 3.3(ii)], $f\left(a_{1}\right)=J b_{1}=$ $J b_{2}=f\left(a_{2}\right)$. This proves Claim 1.
Claim 2: f is a B-homomorphism.
First, take note that $H^{\prime}(H \cap K)=(H \cap K) H^{\prime}$. Since H^{\prime} and $H \cap K$ are subalgebras of H with H^{\prime} normal in H, by [14, Lemma 2.11], $H^{\prime}(H \cap K)$ is a subalgebra of H. And by [14, Theorem 2.8], $H^{\prime}(H \cap K)=(H \cap K) H^{\prime}$.
So, for $h_{2}^{\prime} *\left(0 *\left(b_{2} * b_{1}\right) \in H^{\prime}(H \cap K), h_{2}^{\prime} *\left(0 *\left(b_{2} * b_{1}\right) \in(H \cap K) H^{\prime}\right.\right.$. That is, $h_{2}^{\prime} *\left(0 *\left(b_{2} * b_{1}\right)=\left(b_{2} * b_{1}\right) *\left(0 * h_{3}^{\prime}\right)\right.$, for some h_{3}^{\prime} in H^{\prime}.
Now, by (III), [29, Lemma 2.3(v)], and [21, Proposition 2.8], we have,

$$
\begin{aligned}
a_{1} * a_{2} & =\left(h_{1}^{\prime} *\left(0 * b_{1}\right)\right) *\left(h_{2}^{\prime} *\left(0 * b_{2}\right)\right) \\
& =h_{1}^{\prime} *\left(\left(h_{2}^{\prime} *\left(0 * b_{2}\right)\right) * b_{1}\right) \\
& =h_{1}^{\prime} *\left(h_{2}^{\prime} *\left(b_{1} * b_{2}\right)\right) \\
& =h_{1}^{\prime} *\left(h_{2}^{\prime} *\left(0 *\left(b_{2} * b_{1}\right)\right)\right) \\
& =h_{1}^{\prime} *\left(\left(b_{2} * b_{1}\right) *\left(0 * h_{3}^{\prime}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\quad\left(h_{1}^{\prime} * h_{3}^{\prime}\right) *\left(b_{2} * b_{1}\right) \\
& =h_{4}^{\prime} *\left(0 *\left(b_{1} * b_{2}\right)\right)
\end{aligned}
$$

for $h_{4}^{\prime} \in H^{\prime}$.
Then,

$$
\begin{aligned}
f\left(a_{1} * a_{2}\right) & =f\left(h_{4}^{\prime} *\left(0 *\left(b_{1} * b_{2}\right)\right)\right) \\
& =J\left(b_{1} * b_{2}\right) \\
& =J b_{1} * J b_{2} \\
& =f\left(a_{1}\right) * f\left(a_{2}\right)
\end{aligned}
$$

This proves Claim 2.
Claim 3: f is onto.
Let $J y \in(H \cap K) / J$. Then $y=0 *(0 * y) \in H^{\prime}(H \cap K)$ and $f(y)=J y$. This proves Claim 3.
Therefore, by [22, Theorem 3.11], $H^{\prime}(H \cap K) / \operatorname{Kerf} \cong(H \cap K) / J$.
Claim 4: $\operatorname{Ker} f=H^{\prime}\left(H \cap K^{\prime}\right)$.
Let $\left(h_{1}^{\prime} *\left(0 * b_{1}\right)\right) \in \operatorname{Ker} f$, for $h_{1}^{\prime} \in H^{\prime}$ and $b_{1} \in H \cap K$. Then $J=f\left(h_{1}^{\prime} *\left(0 * b_{1}\right)\right)=$ $J b_{1}$. By [7, Theorem 3.3(ii)], $\left(0 * b_{1}\right) \in J$. If $\left(0 * b_{1}\right) \in J=\left(H \cap K^{\prime}\right)\left(H^{\prime} \cap K\right)$, then $\left(0 * b_{1}\right)=h_{2}^{\prime} *\left(0 * b_{2}\right)$ for $h_{2}^{\prime} \in H \cap K^{\prime}$ and $b_{2} \in H^{\prime} \cap K$.
Hence, $\left(h_{1}^{\prime} *\left(0 * b_{1}\right)\right) \in \operatorname{Kerf}$ if and only if $h_{1}^{\prime} *\left(0 * b_{1}\right)=h_{1}^{\prime} *\left(h_{2}^{\prime} *\left(0 * b_{2}\right)\right)=$ $\left(h_{1}^{\prime} * b_{2}\right) * h_{2}^{\prime}$. Note that $h_{1}^{\prime} * b_{2}=h_{1}^{\prime} *\left(0 *\left(0 * b_{2}\right)\right) \in H^{\prime}\left(H^{\prime} \cap K\right)$ implies that, by [14, Lemma 2.7], $h_{1}^{\prime} * b_{2} \in H^{\prime}$. Hence, $\left(h_{1}^{\prime} *\left(0 * b_{1}\right)\right) \in H^{\prime}\left(H \cap K^{\prime}\right.$. Therefore, $\operatorname{Kerf}=H^{\prime}\left(H \cap K^{\prime}\right)$.
Therefore, $H^{\prime}(H \cap K) / H^{\prime}\left(H \cap K^{\prime}\right) \cong(H \cap K) /(H \cap K)\left(H^{\prime} \cap K\right)$.
Similar argument applies for $K^{\prime}(H \cap K) / K^{\prime}\left(H^{\prime} \cap K\right) \cong H \cap K /\left(H \cap K^{\prime}\right)\left(H^{\prime} \cap K\right)$. Therefore, $H^{\prime}(H \cap K) / H^{\prime}\left(H \cap K^{\prime}\right) \cong K^{\prime}(H \cap K) / K^{\prime}\left(H^{\prime} \cap K\right)$.

Theorem 8. Any two subnormal B-series

$$
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}
$$

and

$$
X=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{m-1} \supseteq K_{m}=\{0\}
$$

of X have refinements which are equivalent.
Proof. Between each H_{i} and H_{i+1}, insert the subalgebra

$$
H_{i+1}\left(H_{i} \cap K_{j}\right), j=0,1,2, \ldots, m
$$

172 Between each K_{j} and K_{j+1}, insert the subalgebra

$$
K_{j+1}\left(K_{j} \cap H_{i}\right), i=0,1,2, \ldots, n
$$

These refinements are subnormal B-series with $m n$ inclusions. The final refinements are

$$
\cdots \supseteq H_{i+1}\left(H_{i} \cap K_{j}\right) \supseteq H_{i+1}\left(H_{i} \cap K_{j+1}\right) \supseteq \cdots
$$

and

$$
\cdots \supseteq K_{j+1}\left(K_{j} \cap H_{i}\right) \supseteq K_{j+1}\left(K_{j} \cap H_{i+1}\right) \supseteq \cdots
$$

By Lemma 7,

$$
H_{i+1}\left(H_{i} \cap K_{j}\right) / H_{i+1}\left(H_{i} \cap K_{j+1}\right) \cong K_{j+1}\left(K_{j} \cap H_{i}\right) / K_{j+1}\left(K_{j} \cap H_{i+1}\right)
$$

The result follows.
Theorem 9. Any two composition B-series of X are equivalent.
Proof. Any two composition B-series of X have equivalent refinements and by Theorem 6, a composition B-series has no proper refinements. Thus, a composition B-series is equivalent to every refinement of itself. Therefore, any two composition B-series of X are equivalent.

If X has a subnormal B-series $X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}$ such that H_{i} / H_{i+1} is commutative, $i=0,1, \ldots, n-1$, then we say that X is solvable. Such a subnormal B-series is called a solvable B-series for X.

Remark 10. Every commutative B-algebra is solvable.
Example 11. The noncommutative B-algebra X in Example 1 is solvable since $X \supset\{0,1,2\} \supset\{0\}$ is a solvable B-series for X.

3. Properties of Solvable B-algebra

We now present some of the basic properties of solvable B-algebras.
Theorem 12. Every subalgebra of a solvable B-algebra is solvable.
Proof. Let $X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}$ be a solvable B-series of X. Let K be any subalgebra of X. Set $K_{i}=K \cap H_{i}, i=0,1, \ldots, n$. Since H_{i+1} is a normal subalgebra of $H_{i}, H_{i+1} \cap K$ is a normal subalgebra of $H_{i} \cap K$. Thus, K_{i+1} is a normal subalgebra of K_{i}. Now, $K_{i+1}=K \cap H_{i+1}=$ $K \cap H_{i} \cap H_{i+1}=K_{i} \cap H_{i+1}$. Hence, $K_{i} / K_{i+1}=K_{i} /\left(K_{i} \cap H_{i+1}\right)$. By [14, Theorem 3.4], $K_{i} / K_{i+1} \cong K_{i} H_{i+1} / H_{i+1}$. Since $K_{i} H_{i+1} / H_{i+1}$ is a subalgebra of H_{i} / H_{i+1} and H_{i} / H_{i+1} is commutative, $K_{i} H_{i+1} / H_{i+1}$ is commutative. Therefore, K_{i} / K_{i+1} is commutative and so the series

$$
K=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{n-1} \supseteq K_{n}=\{0\}
$$

is a solvable B -series for K. Consequently, K is a solvable.
Theorem 13. Every homomorphic image of a solvable B-algebra is solvable.
Proof. Let $f: X \rightarrow Y$ be a B-epimorphism. Suppose that X is solvable. Let $X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}$ be a solvable B-series of X. Set $K_{i}=f\left(H_{i}\right), i=0,1, \ldots, n$. Since f is a B-epimorphism, $f\left(H_{i+1}\right)$ is a normal subalgebra of $f\left(H_{i}\right)$. Since $H_{i} \supseteq H_{i+1}, f\left(H_{i}\right) \supseteq f\left(H_{i+1}\right)$. Hence, $Y=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{n-1} \supseteq K_{n}=\{0\}$ is a subnormal B-series of Y. Define $g: H_{i} \rightarrow K_{i} / K_{i+1}$ by $g\left(h_{i}\right)=f\left(h_{i}\right) K_{i+1}$. Since f is a B-epimorphism, g is a B-epimorphism of H_{i} onto K_{i} / K_{i+1}. Note that for any $h_{i+1} \in K_{i+1} \subseteq K_{i}$, $g\left(h_{i+1}\right)=f\left(h_{i+1}\right) K_{i+1}=f\left(h_{i+1}\right) f\left(H_{i+1}\right)=f\left(H_{i+1}\right)$. Hence, $H_{i+1} \subseteq$ Kerg. Thus, g induces a B-epimorphism of H_{i} / H_{i+1} onto K_{i} / K_{i+1}. Since H_{i} / H_{i+1} is commutative, K_{i} / K_{i+1} is commutative. Therefore, the subnormal B-series $Y=K_{0} \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{n-1} \supseteq K_{n}=\{0\}$ is a solvable B-series for Y and so Y is solvable.

Corollary 14. If X is solvable and H is normal in X, then H and X / H are solvable.

Theorem 15. Let H be normal in X. If both H and X / H are solvable, then X is solvable.

Proof. Suppose that H and X / H are solvable. Let

$$
X / H=K_{0}^{\prime} \supseteq K_{1}^{\prime} \supseteq K_{2}^{\prime} \supseteq \cdots \supseteq K_{m-1}^{\prime} \supseteq K_{m}^{\prime}=\{0 H\}=\{H\}
$$

be a solvable B-series for X / H. By [8, Corollary 16], there are subalgebras K_{i} of $X, i=0,1, \ldots, m$, such that K_{i+1} is a normal subalgebra of $K_{i}, K_{i}^{\prime}=K_{i} / H$, $i=0,1, \ldots, m-1, X=K_{0}$, and $H=K_{m}$. By [22, Theorem 3.14],

$$
K_{i} / K_{i+1} \cong K_{i}^{\prime} / K_{i+1}^{\prime} .
$$

Since H is solvable, H has a solvable B-series

$$
H=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} .
$$

Thus,

$$
X=K_{0} \supseteq K_{1} \supseteq \cdots \supseteq K_{m-1} \supseteq H \supseteq H_{1} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}
$$

is a solvable B -series for X. Therefore, X is solvable.
Corollary 16. Let H and K be subalgebras of X and H be normal in X. If both H and K are solvable, then $H K$ is solvable.

Proof. Suppose that H and K are solvable. By [14, Lemma 2.11], $H K$ is a subalgebra of X. By [14, Theorem 3.4], $H K / H \cong K / H \cap K$. By [14, Lemma 2.1], $H \cap K$ is a subalgebra of K. Thus, by Theorem $12, H \cap K$ is solvable. Hence, $K / H \cap K$ is solvable by Corollary 14. Therefore, $H K / H$ is solvable. Therefore, by Theorem $15, H K$ is solvable.

Corollary 17. Let H and K be normal subalgebras of X such that X / H and X / K are solvable. Then X is solvable if and only if $H \cap K$ is solvable.

Proof. Suppose that X is solvable. By Theorem 12, $H \cap K$ is solvable. Conversely, suppose that $H \cap K$ is solvable. By [14, Theorem 3.4], $H K / H \cong K / H \cap K$. Since $H K / H$ is a subalgebra of a solvable B-algebra $X / H, H K / H$ is solvable by Theorem 12. Thus, $K / H \cap K$ is solvable. By Theorem $15, K$ is solvable. Therefore, by Theorem $15, X$ is solvable.

Theorem 18. Any refinement of a solvable B-series of X is a solvable B-series. Proof. Let

$$
\begin{equation*}
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} \tag{7}
\end{equation*}
$$

be a solvable B-series for X and let

$$
\begin{equation*}
X=H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{i-1} \supseteq H \supseteq H_{i} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} \tag{8}
\end{equation*}
$$

be a one-step refinement of (7). From (7), H_{i-1} / H_{i} is commutative. Since H / H_{i} is a subalgebra of $H_{i-1} / H_{i}, H / H_{i}$ is commutative. By [22, Theorem 3.14], $\left(H_{i-1} / H_{i}\right) /\left(H / H_{i}\right) \cong H_{i-1} / H$ and so H_{i-1} / H is commutative. Thus, (8) is a solvable B-series. Hence, any one-step refinement of (7) is a solvable B-series. By induction, any refinement of (7) is a solvable B-series.

Recall from [2] that the center of X is given by

$$
Z(X)=\{x \in X: x *(0 * y)=y *(0 * x) \text { for all } y \in X\}
$$

Note that $Z(X)$ is a subalgebra of X [2]. Moreover, it is normal in X [30].
Theorem 19. X is solvable if and only if $X / Z(X)$ is solvable.
Proof. If X is solvable, then $X / Z(X)$ is solvable by Corollary 14. Conversely, if $X / Z(X)$ is solvable, then X is solvable by Remark 10 and Theorem 15.

Acknowledgement. The authors would like to thank the referee and the editor for the remarks, comments, and suggestions which were incorporated into this revised version.

References

[1] Ahn, S.S., Bang, K., On fuzzy subalgebras in B-algebras, Commun. Korean Math. Soc. 18 (2003) 429-437.
https://doi.org/10.4134/CKMS.2003.18.3.429
[2] Allen, P.J., Neggers, J., Kim, H.S., B-algebras and groups, Sci. Math. Jpn. 9 (2003) 159-165. https://www.jams.or.jp/scm/contents/Vol-9-2/9-17.pdf
[3] Ameri, R., Borumand Saied, A., Nematolah Zadeh, S.A., Radfar, A., Borzooei, R.A., On finite B-algebra, Afr. Mat. 26 (2015) 825-847. https://doi.org/10.1007/s13370-014-0249-8
[4] Baghini, A.Z., Saeid, A.B., Redefined fuzzy B-algebras, Fuzzy Optimization and Decision Making 7 (2008) 373-386. https://doi.org/10.1007/s10700-008-9045-y
[5] Baghini, A.Z., Saeid, A.B., Generalized Fuzzy B-Algebras, Fuzzy Information and Engineering 40 (2007) 226-233. https://doi.org/10.1007/978-3-540-71441-5_25
[6] Balamurugan, M., Balasubramanian, G., Ragavan, C., Translations of intuitionistic fuzzy soft structure of B-algebras, Malaya Journal of Matematik 6 (2018) 685-700. 10.26637/MJM0603/0033
[7] Bantug, J.S., Endam, J.C., Lagrange's Theorem for B-algebras, Int. J. Algebra 11 (2017) 15-23. https://doi.org/10.12988/ija.2017.616
[8] Bantug, J.S., Endam, J.C., Maximal Bp-subalgebras of B-algebras, Discuss. Math. Gen. Algebra Appl 40 (2020) 25-36. doi:10.7151/dmgaa. 1323
[9] Cho, J.R., Kim, H.S., On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001) 1-6. http://www.quasigroups.eu/contents/download/2001/8_1.pdf
[10] Endam, J.C., A note on maximal Bp-subalgebras of B-algebras, Afr. Mat. 34 (2023). https://doi.org/10.1007/s13370-023-01042-y
[11] Endam, J.C., Centralizer and Normalizer of B-algebras, Sci. Math. Jpn. 81 (2018) 17-23.
https://www.jams.jp/scm/contents/e-2016-2/2016-11.pdf
[12] Endam, J.C., Banagua, E.C., B-algebras Acting on Sets, Sci. Math. Jpn. 2 (Online-2018) 1-7.
https://www.jams.jp/scm/contents/e-2018-1/2018-1.pdf
[13] Endam, J.C., Bantug, J.S., Cauchy's Theorem for B-algebras, Sci. Math. Jpn. 82 (2019) 221-228. https://www.jams.jp/scm/contents/e-2017-3/2017-21.pdf
[14] Endam, J.C., Vilela, J.P., The Second Isomorphism Theorem for B-algebras, Appl. Math. Sci. 8 (2014) 1865-1872. http://dx.doi.org/10.12988/ams.2014.4291
[15] Endam, J.C., Teves, R.C., Some Properties of Cyclic B-algebras, Int. Math. Forum. 11 (2016) 387-394. http://dx.doi.org/10.12988/imf.2016.6111
[16] Gonzaga, N.C., Vilela, J.P., On Cyclic B-algebras, Appl. Math. Sci. 9 (2015) 5507-5522.
http://dx.doi.org/10.12988/ams.2015.54299
[17] Gonzaga, N.C., Vilela, J.P., Fuzzy order relative to fuzzy B-algebras, Italian Journal of Pure and Applied Mathematics 42 (2019) 485-493.
https://ijpam.uniud.it/online_issue/201942/42\ Gonzaga-MS-Vilela.pdf
[18] Jun, Y.B., Roh, E.H., Kim, H.S., On fuzzy B-algebras, Czechoslovak Math. J. 52 (2002) 375-384.
https://cmj.math.cas.cz/full/52/2/cmj52_2_14.pdf
[19] Kim, H.S., Park, H.G., On 0-commutative B-algebras, Sci. Math. Jpn. 62 (2005) 7-12.
https://www.jams.jp/scm/contents/e-2005-1/2005-4.pdf
[20] Kim, Y.H., Yoem, S.J., Quotient B-algebras via Fuzzy Normal B-algebras, Honam Mathematical Journal 30 (2008) 21-32.
https://doi.org/10.5831/HMJ.2008.30.1.021
[21] Neggers, J., Kim, H.S., On B-algebras, Mat. Vesnik 54 (2002) 21-29. http://eudml.org/doc/253204
[22] Neggers, J., Kim, H.S., A fundamental theorem of B-homomorphism for Balgebras, Int. Math. J. 2 (2002) 207-214.
[23] Saeid, A.B., Fuzzy Topological B-algebras, International Journal of Fuzzy Systems 8 (2006) 160-164.
[24] Saeid, A.B., Interval-valued Fuzzy B-algebras, Iranian Journal of Fuzzy Systems 3 (2006) 63-73. 10.22111/IJFS.2006.467
[25] Senapati, T., Bhowmik, M., Pal, M., Fuzzy Dot Subalgebras and Fuzzy Dot Ideals of B-algebras, Journal of Uncertain Systems 8 (2014) 22-30.
http://www.worldacademicunion.com/journal/jus/jusVol08No1paper03.pdf
[26] Senapati, T., Bhowmik, M., Pal, M., Fuzzy Closed Ideals of B-Algebras, IJCSET 1 (2011) 669-673.
https://ijcset.net/docs/Volumes/volume1issue10/ijcset2011011011.pdf
[27] Senapati, T., Translations of Intuitionistic Fuzzy B-algebras, Fuzzy Information and Engineering 7 (2015) 389-404. https://doi.org/10.1016/j.fiae.2015.11.001
[28] Soleimani, R., A note on automorphisms of finite B-algebras, Afr. Mat. 29 (2018) 263-275.
https://doi.org/10.1007/s13370-017-0540-6
[29] Walendziak, A., Some Axiomatizations of B-algebras, Math. Slovaca 56 (2006) 301-306.
https://dml.cz/handle/10338.dmlcz/131319
[30] Walendziak, A., A note on normal subalgebras in B-algebras, Sci. Math. Jpn. 62 (2005) 1-6. https://www.jams.or.jp/scm/contents/e-2005-1/2005-6.pdf

Received 3 February 2023
Revised 13 May 2023
Accepted 15 May 2023

