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1. Introduction36

Term is one of the principal concept of the study in universal algebra, which37

can be considered as an appropriate language for describing classes of algebras.38

Let τn := (ni)i∈I be a type of algebras in which all operation symbols fi are39

indexed by some set I and have arity ni = n, for a fixed positive integer n.40

Let Xn = {x1, . . . , xn} be an n-elements alphabet of variables. By Wτn(Xn) we41

denote the set of all n-ary terms of type τn. Recent contributions on terms can42

be found, for example, in [2, 3, 10, 12, 16]. Actually, in [5], K. Denecke and P.43

Jampachon defined n-ary full terms of type τn in the following way:44

(i) Let s : {1, . . . , n} → {1, . . . , n} and fi be an operation symbol of type τn.45

Then fi(xs(1), . . . , xs(n)) is an n-ary full term of type τn.46

(ii) If t1, . . . , tn are n-ary full terms of type τn, then fi(t1, . . . , tn) is an n-ary full47

term of type τn.48

The set of all n-ary full terms of type τn is closed under finite application of49

(ii) and is denoted by WF
τn
(Xn). If s is an identity mapping, then WF

τn
(Xn) is50

denoted by W SF
τn

(Xn), and it is called the set of all n-ary strongly full terms of51

type τn [4]. If s is a permutation, then WF
τn(Xn) is denoted by WPF

τn (Xn), and it52

is called the set of all n-ary permutational full terms of type τn [13]. Obviously,53

W SF
τn

(Xn) ⊆WPF
τn

(Xn) ⊆WF
τn
(Xn) ⊆Wτn(Xn).54

There are several possibilities to define other classes of terms by different55

mappings in a finite set. Recall that the semigroup of all mappings from a56

nonempty set X into itself under the usual composition is called the full trans-57

formation semigroup and denoted by T (X). If X = {1, . . . , n}, we may write Tn58

instead of T (X).59

Recently, Wattanatripop and Changphas introduced the notions of an60

K∗(n, r)-full terms [21] by considering a subsemigroup K∗(n, r) := {α ∈ Tn |61

|im(α)| ≤ r} ∪ {1id} of Tn in which each element is called a restricted range62

transformation. It is observed that K∗(n, r) = K(n, r) = Tn if r = n. Thus, a63

clone denoted by cloneK∗(n,r)(τn) consisting of the set of all n-ary K∗(n, r)-full64

terms of type τn and a superposition Sn was constructed. On the other hand, the65

set ODn = {α ∈ Tn | ∀k ∈ {1, . . . , n}, α(k) ≤ k} of all order-decreasing full trans-66

formations on a finite chain which is a submonoid of Tn was applied to define an67

n-ary order-decreasing full term of type τn in [22]. An identity of a variety that68

determined by a pair of terms in MAODn(τn) and full closed variesties were ex-69

amined. In [20], a semigroup S(n̄, Y ) := {β ∈ Tn | β(Y ) ⊆ Y } of transformations70

on a finite set n̄ leaving Y ⊆ n̄ invariant was applied to set a new term in such a71

way that each pair of these terms was extended to be S(n̄, Y )-hyperidentity of a72

variety V . Similarly, in [18], the theorem which gave the freeness of an algebra73
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consisting of the set of all terms generated by transformations with restricted74

range and (n+ 1)-ary operation satisfying certain equational laws was proved.75

In [11], Honyam and Sanwong introduced a semigroup Fix(X,Y ) which is76

called a transformation semigroup with fixed set, which contains the identity map-77

ping on X, denoted by 1X . Actually, for a fixed subset Y of X,78

Fix(X,Y ) = {α ∈ T (X) | α(a) = a for all a ∈ Y }.79

It is clear that Fix(X,Y ) = T (X) if Y = ∅ and Fix(X,Y ) contains only the80

identity mapping 1X if |X| = 1 or X = Y .81

Our main goal of this paper is to generalize the concepts of strongly full82

terms, permutational full terms and full terms. In Section 2, applying the notion83

of transformations with fixed set, we introduce a special kind of n-ary terms of84

type τn, the so-called Fix(In, Y )-full terms. The combination between full terms85

and transformation with fixed set is established. This leads us to form a Menger86

algebra of Fix(In, Y )-full terms consisting the set of all Fix(In, Y )-full terms87

with (n+ 1)-ary superposition operation. The generating system and freeness of88

such algebra are studied. We continue the results in Section 3 by introducing the89

monoid of Fix(In, Y )-full hypersubstitutions and Fix(In, Y )-full substitutions.90

Particularly, the relation between these monoids is provided. The last section,91

we apply the former results for classifying the algebras of type τn.92

2. The Menger algebra of Fix(In, Y )-full terms93

Let In = {1, . . . , n} where n is an arity of the operation symbol fi. Throughout94

this paper, we consider X = In. This leads us to define95

Fix(In, Y ) = {α ∈ T (In) | α(a) = a for all a ∈ Y }96

where T (In) is the semigroup of all mappings from In into itself under the usual97

composition of functions.98

We then have the following example.99

Example 1. Let τ4 = (4) be a type. This means that we have I4 = {1, 2, 3, 4}.100

If we let Y = {2, 4} ⊆ I4, then101

Fix(I4, Y ) =102 {(
1 2 3 4
1 2 1 4

)
,

(
1 2 3 4
1 2 2 4

)
,

(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
1 2 4 4

)
,103

(
1 2 3 4
2 2 1 4

)
,

(
1 2 3 4
2 2 2 4

)
,

(
1 2 3 4
2 2 3 4

)
,

(
1 2 3 4
2 2 4 4

)
,104
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(
1 2 3 4
3 2 1 4

)
,

(
1 2 3 4
3 2 2 4

)
,

(
1 2 3 4
3 2 3 4

)
,

(
1 2 3 4
3 2 4 4

)
,105

(
1 2 3 4
4 2 1 4

)
,

(
1 2 3 4
4 2 2 4

)
,

(
1 2 3 4
4 2 3 4

)
,

(
1 2 3 4
4 2 4 4

)}
.106

The following example shows that, if Y = ∅, then Fix(In, Y ) = Tn.107

Example 2. Consider a type τ2 = (2). Then we have I2 = {1, 2}. Let Y = ∅.108

Thus109

Fix(I2, Y ) =

{(
1 2
1 1

)
,

(
1 2
1 2

)
,

(
1 2
2 1

)
,

(
1 2
2 2

)}
= T (I2).110

In the case that In = Y , we have the following example.111

Example 3. Consider type τ3 = (3). Then I3 = {1, 2, 3}. If Y = I3, then112

Fix(I3, Y ) =

{(
1 2 3
1 2 3

)}
.113

The next example shows that, if |In| = 1, then Fix(In, Y ) = 1In where 1In114

is the identity mapping on In.115

Example 4. Consider a type τ1 = (1). That is I1 = {1}. For arbitrary subset116

Y of I1. Then Fix(I1, Y ) =

{(
1
1

)}
.117

Now, we inductively define n-ary Fix(In, Y )-full terms of type τn as follows.118

(i) If fi is an n-ary operation symbol and α ∈ Fix(In, Y ), then119

fi(xα(1), . . . , xα(n)) is an n-ary Fix(In, Y )-full term of type τn.120

(ii) If fi is an n-ary operation symbol and t1, . . . , tn are n-ary Fix(In, Y )-full121

terms of type τn, then fi(t1, . . . , tn) is an n-ary Fix(In, Y )-full term of122

type τn.123

The set of all n-ary Fix(In, Y )-full terms of type τn which is closed under124

finite applications of (ii), is denoted by W
F ix(In,Y )
τn (Xn).125

Example 5. Consider τ4 = (4) with a 4-ary operation symbol f . Let I4 =126

{1, 2, 3, 4}. If Y = ∅, then there are many elements in W
F ix(I4,Y )
τ4 (X4) such as127

f(x1, x1, x2, x3), f(x2, x3, x4, x1), f(x2, x4, x1, x1), f(x1, x4, x4, x4),128

f(x2, x3, x3, x1), f(x2, x2, x2, x3), f(f(x2, x3, x3, x1), f(x2, x4, x1, x1),129

f(x1, x2, x3, x4), f(x1, x1, x2, x3)). If Y = {1, 2, 3}, then W
F ix(I4,Y )
τ4 (X4) consists130

many elements, for instance,131

f(x1, x2, x3, x1), f(x1, x2, x3, x2), f(x1, x2, x3, x3), f(x1, x2, x3, x4),132
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f(f(x1, x2, x3, x1), f(x1, x2, x3, x2), f(x1, x2, x3, x3), f(x1, x2, x3, x4)).133

If Y = I4, then the followings are some elements in W
F ix(I4,Y )
τ4 (X4):134

f(x1, x2, x3, x4), f(f(x1, x2, x3, x4), f(x1, x2, x3, x4), f(x1, x2, x3, x4),135

f(x1, x2, x3, x4)).136

Remark 6. Let τn = (ni) where ni = n for every i ∈ I be a type. Let In =137

{1, . . . , n} and Y ⊆ In. Then the following statements are valid.138

(i) If Y = ∅, then W SF
τn

(Xn) ⊂WPF
τn

(Xn) ⊂W
F ix(In,Y )
τn (Xn) =WF

τn
(Xn).139

(ii) If ∅ 6= Y ⊂ In, then W
SF
τn (Xn) ⊂W

F ix(In,Y )
τn (Xn) ⊂WF

τn(Xn).140

(iii) If In = Y , then W SF
τn

(Xn) =W
F ix(In,Y )
τn (Xn) ⊂WPF

τn
(Xn) ⊂WF

τn
(Xn).141

Example 7. By Example 4, we have f(x1),f(f(x1)),f(f(f(x1)))∈W
F ix(I1,Y )
τ1 (X1).142

Remark 8. If |In| = 1 and Y ⊆ In, then143

W SF
τn (Xn) =WPF

τn (Xn) =WF ix(In,Y )
τn (Xn) =WF

τn(Xn).144

For W
F ix(In,Y )
τn (Xn), the set of all n-ary Fix(In, Y )-full terms of type τn, the145

superposition operation146

Sn : (WF ix(In,Y )
τn (Xn))

n+1 →WF ix(In,Y )
τn (Xn)147

is defined by148

(i) Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) := fi(tα(1), . . . , tα(n)).149

(ii) Sn(fi(s1, . . . , sn), t1, . . . , tn) := fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn))150

where α ∈ Fix(In, Y ).151

Now we may consider the following algebra of type (n+ 1)152

MAF ix(In,Y )(τn) := (WF ix(In,Y )
τn

(Xn), S
n).153

An algebra (M,Sn) of type τ = (n+ 1) is said to be a Menger algebra of rank n154

if (M,Sn) satisfies the superassociative law155

S̃n(S̃n(X0, Y1, . . . , Yn),X1, . . . ,Xn)156

≈ S̃n(X0, S̃
n(Y1,X1, . . . ,Xn), . . . , S̃

n(Yn,X1, . . . ,Xn))157

where S̃n is an (n + 1)-ary operation symbol and Xi, Yj are variables. For158

more details, see [7, 8, 14, 17]. The following theorem shows that an algebra159

MAF ix(In,Y )(τn) is a Menger algebra of rank n.160
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Theorem 9. The algebra MAF ix(In,Y )(τn) satisfies the superassociative law.161

Proof. We prove the theorem by induction on the complexity of the Fix(In, Y )-162

full term which is substituted for X0. Firstly, if X0 = fi(xα(1), . . . , xα(n)) where163

α ∈ Fix(In, Y ), then164

Sn(Sn(fi(xα(1), . . . , xα(n)), s1, . . . , sn), t1, . . . , tn)165

= Sn(fi(sα(1), . . . , sα(n)), t1, . . . , tn)166

= fi(S
n(sα(1), t1, . . . , tn), . . . , S

n(sα(n), t1, . . . , tn))167

= Sn(fi(xα(1), . . . , xα(n)), S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)).168

Let fi(r1, . . . , rn) ∈W
F ix(In,Y )
τn (Xn) be such that r1, . . . , rn satisfy the superasso-169

ciative law. Then170

Sn(Sn(fi(r1, . . . , rn), s1, . . . , sn), t1, . . . , tn)171

= Sn(fi(S
n(r1, s1, . . . , sn), . . . , S

n(rn, s1, . . . , sn)), t1, . . . , tn)172

= fi(S
n(Sn(r1, s1, . . . , sn), t1, . . . , tn), . . . , S

n(Sn(rn, s1, . . . , sn), t1, . . . , tn))173

= fi(S
n(r1, S

n(s1, t1, . . . , tn), . . . , S
n(sn, t1, . . . , tn)), . . . ,174

Sn(rn, S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)))175

= Sn(fi(r1, . . . , rn), S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)).176

This completes the proof.177

According to Theorem 9, if Y = In and α ∈ Fix(In, Y ) is the identity178

mapping, then the following corollary is obtained.179

Corollary 10 ([4], Proposition 2.1). Let t, t1, . . . , tn, s1, . . . , sn be strongly full180

terms of type τn. Then181

Sn(Sn(t, t1, . . . , tn), s1, . . . , sn) = Sn(t, Sn(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn)).182

In addition, if a subset Y of In is empty, then by Theorem 9, we have the183

following.184

Corollary 11 ([5], Proposition 1). Let t, t1, . . . , tn, s1, . . . , sn ∈WF
τn(Xn). Then185

Sn(Sn(t, t1, . . . , tn), s1, . . . , sn) = Sn(t, Sn(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn)).186

The next aim is to study the freeness of algebra MAF ix(In,Y )(τn). First, the187

generating system of such algebra is constructed. We see that188

F
W

Fix(In,Y )
τn (Xn)

:=
{
fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ Fix(In, Y )

}
189
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generates MAF ix(In,Y )(τn).190

Let VMenger be the variety of all Menger algebras of type (n + 1) satisfying191

(SASS), and let FVMenger
(Z) be the free algebra with respect to VMenger, freely192

generated by Z := {zj | j ∈ J} where Z is an alphabet of variables indexed by193

the set J := {(i, α) | i ∈ I, α ∈ Fix(In, Y )}. The operation of FVMenger
(Z) will194

be denoted by S̃n. We have the following theorem.195

Theorem 12. The algebra MAF ix(In,Y )(τn) is free with respect to the variety196

VMenger of Menger algebras of rank n, freely generated by the set197

Z =
{
z(i,α) | i ∈ I, α ∈ Fix(In, Y )

}
.198

Proof. Claim thatMAF ix(In,Y )(τn) is isomorphic to FVMenger
(Z) under the map-199

ping200

ϕ :WF ix(In,Y )
τn

(Xn) → FVMenger
(Z)201

defined by202

(i) ϕ(fi(xα(1), . . . , xα(n))) := z(i,α).203

(ii) ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) := S̃n(z(i,α), ϕ(t1), . . . , ϕ(tn)).204

We prove the theorem by induction on the complexity of the term t that205

ϕ(Sn(t, t1, . . . , tn)) = S̃n(ϕ(t), ϕ(t1), . . . , ϕ(tn))206

for all t, t1, . . . , tn ∈W
F ix(In,Y )
τn (Xn). If t = fi(xα(1), . . . , xα(n)), then207

ϕ(Sn(t, t1, . . . , tn)) = ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn))208

= S̃n(z(i,α), ϕ(t1), . . . , ϕ(tn))209

= S̃n(ϕ(fi(xα(1), . . . , xα(n))), ϕ(t1), . . . , ϕ(tn))210

= S̃n(ϕ(t), ϕ(t1), . . . , ϕ(tn)).211

Let t = fi(r1, . . . , rn) and assume that, for 1 ≤ k ≤ n,212

ϕ(Sn(rk, t1, . . . , tn)) = S̃n(ϕ(rk), ϕ(t1), . . . , ϕ(tn)).213

By the fact,214

ϕ(fi(t
′
1, . . . , t

′
n)) = S̃n(z(i,1n), ϕ(t

′
1), . . . , ϕ(t

′
n))215
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for all t′1, . . . , t
′
n ∈W

F ix(In,Y )
τn (Xn), we then have216

ϕ(Sn(t, t1, . . . , tn))217

= ϕ(Sn(fi(r1, . . . , rn), t1, . . . , tn))218

= ϕ(fi(S
n(r1, t1, . . . , tn), . . . , S

n(rn, t1, . . . , tn))219

= S̃n(z(i,1n), ϕ(S
n(r1, t1, . . . , tn)), . . . , ϕ(S

n(rn, t1, . . . , tn)))220

= S̃n(z(i,1n), S̃
n(ϕ(r1), ϕ(t1), . . . , ϕ(tn)), . . . , S̃

n(ϕ(rn), ϕ(t1), . . . , ϕ(tn)))221

= S̃n(S̃n(z(i,1n), ϕ(r1), . . . , ϕ(rn)), ϕ(t1), . . . , ϕ(tn))222

= S̃n(ϕ(t), ϕ(t1), . . . , ϕ(tn)).223

Here, ϕ is a homomorphism.224

For a bijection of mapping ϕ, it can be proved by the following225

z(i,α) = z(j,β) ⇒ (i, α) = (j, β) ⇒ fi(xα(1), . . . , xα(n)) = fj(xβ(1), . . . , xβ(n))226

and227

z(i,α) ∈ Z ⇒ ϕ(fi(xα(1), . . . , xα(n))) = z(i,α).228

Thus ϕ is an isomorphism.229

As we have seen in Theorem 12, if a mapping α ∈ Fix(In, Y ) is identity and230

a subset Y of In is empty, then we have Theorem 2.2 in [4] and Theorem 1 in [5],231

respectively.232

3. Embedding theorem of Fix(In, Y )-full hypersubstitutions and233

Fix(In, Y )-full substitutions234

The concept of hypersubstitutions was introduced by Graczyńska and Schweigert235

[9]. For more details about hypersubstitution theory, see [6]. In this section, the236

concept of a mapping which maps from the set of all operation symbols of type237

τn to the set of all n-ary Fix(In, Y )-full terms of type τn is defined as follows.238

A Fix(In, Y )-full hypersubstitution of type τn is a mapping239

σ : {fi | i ∈ I} → WF ix(In,Y )
τn (Xn)240

taking every n-ary operation symbol of type τn to an n-ary Fix(In, Y )-full term241

of the same type. The set of all Fix(In, Y )-full hypersubstitutions of type τn is242

denoted by HypF ix(In,Y )(τn).243

For t ∈ W
F ix(In,Y )
τn (Xn) and α, β ∈ Fix(In, Y ), we define a Fix(In, Y )-full244

term arising from a mapping β as follows:245

(i) If t = fi(xα(1), . . . , xα(n)), then tβ := fi(xβ(α(1)), . . . , xβ(α(n))).246
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(ii) If t = fi(t1, . . . , tn), then tβ := fi((t1)β, . . . , (tn)β).247

It is observed that if t is a Fix(In, Y )-full term of type τn, then tβ is a248

Fix(In, Y )-full term of type τn for all β ∈ Fix(In, Y ).249

Any Fix(In, Y )-full hypersubstitution σ : {fi | i ∈ I} → W
F ix(In,Y )
τn (Xn) of250

type τn can be extended to a mapping251

σ̂ : W
F ix(In,Y )
τn (Xn) →W

F ix(In,Y )
τn (Xn)252

defined by the following steps:253

(i) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α where α ∈ Fix(In, Y ).254

(ii) σ̂[fi(t1, . . . , tn)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tn]).255

Now, we define a binary operation ◦h as follows256

(σ1 ◦h σ2) := σ̂1 ◦ σ2257

where σ1, σ2 ∈ HypF ix(In,Y )(τn) and ◦ is the usual composition of functions.258

Now, we present connections between the superposition operation and σ̂.259

Lemma 13. Let t, t1, . . . , tn ∈W
F ix(In,Y )
τn (Xn). Then260

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn(tα, σ̂[t1], . . . , σ̂[tn])261

for all α ∈ Fix(In, Y ).262

Proof. Let t = fi(xβ(1), . . . , xβ(n)) where β ∈ Fix(In, Y ). For α ∈ Fix(In, Y ),263

we then have264

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn(fi(xβ(1), . . . , xβ(n)), σ̂[tα(1)], . . . , σ̂[tα(n)])265

= fi(σ̂[tα(β(1))], . . . , σ̂[tα(β(n))])266

= Sn(fi(xα(β(1)), . . . , xα(β(n))), σ̂[t1], . . . , σ̂[tn])267

= Sn(tα, σ̂[t1], . . . , σ̂[tn]).268

Let t = fi(s1, . . . , sn) and assume that269

Sn(sk, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn((sk)α, σ̂[t1], . . . , σ̂[tn])270

for all 1 ≤ k ≤ n and for all α ∈ Fix(In, Y ). Then, for α ∈ Fix(In, Y ), we have271

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)])272

= Sn(fi(s1, . . . , sn), σ̂[tα(1)], . . . , σ̂[tα(n)])273

= fi(S
n(s1, σ̂[tα(1)], . . . , σ̂[tα(n)]), . . . , S

n(sn, σ̂[tα(1)], . . . , σ̂[tα(n)]))274

= fi(S
n((s1)α, σ̂[t1], . . . , σ̂[tn]), . . . , S

n((sn)α, σ̂[t1], . . . , σ̂[tn]))275

= Sn(fi((s1)α, . . . , (sn)α), σ̂[t1], . . . , σ̂[tn])276

= Sn(tα, σ̂[t1], . . . , σ̂[tn]).277
278
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Applying Theorem 9 and Lemma 13, we can prove the following theorem.279

Theorem 14. For σ ∈ HypF ix(In,Y )(τn), an extension280

σ̂ : WF ix(In,Y )
τn (Xn) →WF ix(In,Y )

τn (Xn)281

is an endomorphism on the algebra MAF ix(In,Y )(τn).282

Proof. We prove the theorem by induction on the complexity of t0 that for any283

t0, t1, . . . , tn ∈W
F ix(In,Y )
τn (Xn), σ̂[S

n(t0, t1, . . . , tn)] = Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).284

Firstly, if we substitute for t0 a term fi(xα(1), . . . , xα(n)) where α ∈ Fix(In, Y ),285

then286

σ̂[Sn(t0, t1, . . . , tn)] = σ̂[Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn)]287

= σ̂[fi(tα(1), . . . , tα(n))]288

= Sn(σ(fi), σ̂[tα(1)], . . . , σ̂[tα(n)])289

= Sn((σ(fi))α, σ̂[t1], . . . , σ̂[tn])290

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).291

Assume t0 = fi(s1, . . . , sn) such that292

σ̂[Sn(sk, t1, . . . , tn)] = Sn(σ̂[sk], σ̂[t1], . . . , σ̂[tn])293

for all 1 ≤ k ≤ n. Then294

σ̂[Sn(t0, t1, . . . , tn)]295

= σ̂[Sn(fi(s1, . . . , sn), t1, . . . , tn)]296

= σ̂[fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)]297

= Sn(σ(fi), σ̂[S
n(s1, t1, . . . , tn)], . . . , σ̂[S

n(sn, t1, . . . , tn)])298

= Sn(σ(fi), S
n(σ̂[s1], σ̂[t1], . . . , σ̂[tn]), . . . , S

n(σ̂[sn], σ̂[t1], . . . , σ̂[tn]))299

= Sn(Sn(σ(fi), σ̂[s1], . . . , σ̂[sn]), σ̂[t1], . . . , σ̂[tn])300

= Sn(σ̂[fi(s1, . . . , sn)], σ̂[t1], . . . , σ̂[tn])301

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).302
303

The following proposition shows a property of term that arise from a mapping304

and the extension of each element in HypF ix(In,Y )(τn).305

Proposition 15. Let t ∈W
F ix(In,Y )
τn (Xn) and β ∈ Fix(In, Y ). Then306

σ̂[t]β = σ̂[tβ].307

Proof. It can be proved by induction on the complexity of the term t.308
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By using Theorem 14 and Proposition 15, we get the following result showing309

the relationship between the operation ◦h and the extension of σ.310

Lemma 16. Let σ̂1, σ̂2 ∈ Hyp
F ix(In,Y )(τn). Then311

(σ1 ◦h σ2)
ffl̂ = σ̂1 ◦ σ̂2.312

Proof. We prove the lemma by induction on the complexity of the Fix(In, Y )-full313

term which is substituted for t. If t = fi(xα(1), . . . , xα(n)) where α ∈ Fix(In, Y ),314

then315

(σ1 ◦h σ2)
ffl̂[t] = (σ1 ◦h σ2)

ffl̂[fi(xα(1), . . . , xα(n))]316

= (σ̂1 ◦ σ2)
ffl̂[fi(xα(1), . . . , xα(n))]317

= ((σ̂1 ◦ σ2)(fi))α318

= (σ̂1[σ2(fi)])α319

= σ̂1[σ2(fi)]α320

= σ̂1[σ̂2[fi(xα(1), . . . , xα(n))]]321

= (σ̂1 ◦ σ̂2)[t].322

Let t = fi(s1, . . . , sn). Assume that (σ1 ◦hσ2)
ffl̂[sk] = σ̂1 ◦ σ̂2[sk] for all 1 ≤ k ≤ n.323

Then324

(σ1 ◦h σ2)
ffl̂[t] = (σ1 ◦h σ2)

ffl̂[fi(s1, . . . , sn)]325

= Sn((σ̂1 ◦ σ2)(fi), (σ1 ◦h σ2)
ffl̂[s1], . . . , (σ1 ◦h σ2)

ffl̂[sn])326

= Sn((σ̂1 ◦ σ2)(fi), (σ̂1 ◦ σ̂2)[s1], . . . , (σ̂1 ◦ σ̂2)[sn])327

= Sn(σ̂1[σ2(fi)], σ̂1[σ̂2[s1]], . . . , σ̂1[σ̂2[sn]])328

= σ̂1[S
n(σ2(fi), σ̂2[s1], . . . , σ̂2[sn])]329

= σ̂1[σ̂2[fi(s1, . . . , sn)]]330

= (σ̂1 ◦ σ̂2)[t].331

Therefore (σ1 ◦h σ2)
ffl̂ = σ̂1 ◦ σ̂2.332

Now, we have the important result.333

Theorem 17. (HypF ix(In,Y )(τn); ◦h, σid) is a monoid where σid is the identity334

hypersubstitution which is defined by σid(fi) := fi(x1, . . . , xn).335

Proof. The associativity of a binary operation ◦h on HypF ix(In,Y )(τn) follows336

directly from Lemma 16. Furthermore, the proof of the identity element σid(fi) :=337

fi(x1, . . . , xn) with respect to ◦h is clearly straightforward.338
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If a subset Y of In is empty, then by Theorem 17 we have339

Corollary 18 [5]. (HypF (τn); ◦h, σid) forms a monoid.340

If Y = In and α ∈ Fix(In, Y ) is the identity mapping, then by Theorem 17341

we obtain342

Corollary 19 [4]. (HypSF (τn); ◦h, σid) forms a monoid.343

Applying an operation + on the set of all hypersubstitutions mentioned in344

[1], our next purpose is to define a second binary operation on HypF ix(In,Y )(τn).345

Let σ1 and σ2 be elements in HypF ix(In,Y )(τn). Define a binary operation on346

HypF ix(In,Y )(τn) by347

(σ1 + σ2)(fi) := Sn(σ2(fi), σ1(fi), . . . , σ1(fi)).348

It is observed that σ1 + σ2 is an element in HypF ix(In,Y )(τn).349

The following theorem shows that the set HypF ix(In,Y )(τn) together with two350

binary operations ◦h and + forms a left-seminearring.351

Theorem 20. (HypF ix(In,Y )(τn), ◦h,+) forms a left-seminearring.352

Proof. We first prove that the operation + is associative. For this, let σ1, σ2, σ3353

be elements in HypF ix(In,Y )(τn). By Theorem 9, we have354

((σ1 + σ2) + σ3)(fi)355

= Sn(σ3(fi), (σ1 + σ2)(fi), . . . , (σ1 + σ2)(fi))356

= Sn(σ3(fi), S
n(σ2(fi), σ1(fi), . . . , σ1(fi)), . . . , S

n(σ2(fi), σ1(fi), . . . , σ1(fi)))357

= Sn(Sn(σ3(fi), σ2(fi), . . . , σ2(fi)), σ1(fi), . . . , σ1(fi))358

= Sn((σ2 + σ3)(fi), σ1(fi), . . . , σ1(fi))359

= (σ1 + (σ2 + σ3))(fi).360

Next, the left distributive law σ1 ◦h (σ2 + σ3) = (σ1 ◦h σ2) + (σ1 ◦h σ3) is361

satisfied by using Theorem 14. In fact, we have362

(σ1 ◦h (σ2 + σ3))(fi) = σ̂1[(σ2 + σ3)(fi)]363

= σ̂1[S
n(σ3(fi), σ2(fi), . . . , σ2(fi))]364

= Sn(σ̂1[σ3(fi)], σ̂1[σ2(fi)], . . . , σ̂1[σ2(fi)])365

= Sn((σ1 ◦h σ3)(fi), (σ1 ◦h σ2), . . . , (σ1 ◦h σ2))366

= (σ1 ◦h σ2) + (σ1 ◦h σ3).367
368

It is not difficult to see that the right distributivity, (σ1 + σ2) ◦h σ3 =369

(σ1 ◦h σ3) + (σ2 ◦h σ3), is not true for arbitrary Fix(In, Y )-full hypersubstitu-370

tions σ1, σ2, σ3. The following counter example shows such statement.371
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Example 21. Let I be a singleton indexed set and τ2 = (2) with a binary372

operation symbol f . Assume that σ1, σ2, σ3 are elements in HypF ix(I2,{2})(2)373

which are defined by374

σ1(f) = f(xα1(1), xα1(2)) where α1 =

(
1 2
1 2

)
375

σ2(f) = f(xα2(1), xα2(2)) where α2 =

(
1 2
2 2

)
376

σ3(f) = f(f(xβ1(1), xβ1(2)), f(xβ2(1), xβ2(2))) where β1 =

(
1 2
2 2

)
and377

β2 =

(
1 2
1 2

)
.378

Consider379

((σ1 + σ2) ◦h σ3)(f)380

= (σ1 + σ2)
ffl̂ [f(f(xβ1(1), xβ1(2)), f(xβ2(1), xβ2(2)))]381

= S2((σ1 + σ2)(f), (σ1 + σ2)
ffl̂ [f(xβ1(1), xβ1(2))], (σ1 + σ2)

ffl̂ [f(xβ2(1), xβ2(2))])382

= S2(f(f(x1, x2), f(x1, x2)), f(f(x1, x2), f(x1, x2))β1 , f(f(x1, x2), f(x1, x2))β2)383

= f(f(f(f(x2, x2), f(x2, x2)), f(f(x1, x2), f(x1, x2))),384

f(f(f(x2, x2), f(x2, x2)), f(f(x1, x2), f(x1, x2))))385

and386

((σ1 ◦h σ3) + (σ2 ◦h σ3))(f) = S2((σ2 ◦h σ3)(f), (σ1 ◦h σ3)(f), (σ1 ◦h σ3)(f)).387

Since (σ1 ◦h σ3)(f) = f(f(x2, x2), f(x1, x2)) and (σ2 ◦h σ3)(f) = f(f(x2, x2),388

f(x2, x2)), a term ((σ1 ◦h σ3) + (σ2 ◦h σ3))(f) differs from ((σ1 + σ2) ◦h σ3)(f).389

Hence, (σ1 + σ2) ◦h σ3 6= (σ1 ◦h σ3) + (σ2 ◦h σ3). This means that the right390

distributivity does not hold.391

To close this section, we discuss an embedding theorem for Fix(In, Y )-full392

hypersubstitution. Since the algebra MAF ix(In,Y )(τn) is generated by the set393

F
W

Fix(In,Y )
τn (Xn)

:=
{
fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ Fix(In, Y )

}
,394

then any mapping395

η : F
W

Fix(In,Y )
τn (Xn)

→WF ix(In,Y )
τn (Xn),396

called a Fix(In, Y )-full substitution, can be uniquely extended to an endomor-397

phism398

η̄ : WF ix(In,Y )
τn

(Xn) →WF ix(In,Y )
τn

(Xn).399
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Let SubstF ix(In,Y )(τn) be the set of all Fix(In, Y )-full substitutions.400

For η1, η2 ∈ SubstF ix(In,Y )(τn), define401

η1 ⊙ η2 := η̄1 ◦ η2402

where ◦ is the usual composition. Let idF
W

Fix(In,Y )
τn (Xn)

be the identity mapping403

on F
W

Fix(In,Y )
τn (Xn)

. The equation η1 ◦ η2 = η1 ◦ η2 holds due to an applica-404

tion of Theorem 12. In fact, every clone substitution η in SubstF ix(In,Y )(τn) that405

maps from a generating set F
W

Fix(In,Y )
τn (Xn)

toW
F ix(In,Y )
τn (Xn) can be uniquely ex-406

tended to an endomorphism η from the algebra MAF ix(In,Y )(τn) to itself because407

MAF ix(In,Y )(τn) is free. Thus we have that (SubstF ix(In,Y )(τn);⊙, idF
W

Fix(In,Y )
τn (Xn)

)408

is a monoid.409

Consider σ ∈ HypF ix(In,Y )(τn). By Theorem 14,410

σ̂ : WF ix(In,Y )
τn (Xn) →WF ix(In,Y )

τn (Xn)411

is an endomorphism. Since F
W

Fix(In,Y )
τn (Xn)

generates MAF ix(In,Y )(τn), we have412

σ̂/F
W

Fix(In,Y )
τn (Xn)

is a Fix(In, Y )-full substitution with413

σ̂/F
W

Fix(In,Y )
τn (Xn)

= σ̂.414

Define a mapping ψ : HypF ix(In,Y )(τn) → SubstF ix(In,Y )(τn) by415

ψ(σ) = σ̂/F
W

Fix(In,Y )
τn (Xn)

.416

Let σ1, σ2 ∈ HypF ix(In,Y )(τn). By Lemma 16, we then have417

ψ(σ1 ◦h σ2) = (σ1 ◦h σ2)
ffl̂/F

W
Fix(In,Y )
τn (Xn)

418

= (σ̂1 ◦ σ̂2)/FW
Fix(In,Y )
τn (Xn)

419

= σ̂1/FW
Fix(In,Y )
τn (Xn)

◦ σ̂2/FW
Fix(In,Y )
τn (Xn)

420

= ψ(σ1) ◦ ψ(σ2)421

= ψ(σ1)⊙ ψ(σ2).422

Here, ψ is a homomorphism. Clearly, ψ is an injection. Hence we have the423

following theorem.424

Theorem 22. (HypF ix(In,Y )(τn); ◦h, σid) can be embedded into425

(SubstF ix(In,Y )(τn);⊙, idF
W

Fix(In,Y )
τn (Xn)

).426
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Using the definition of a Fix(In, Y )-full substitution, if we take Y = ∅ or427

|In| = 1, then W
F ix(In,Y )
τn (Xn) = WF

τn
(Xn). According to Theorem 22, we have428

the following corollary.429

Corollary 23 ([5], Proposition 3). The monoid (HypF (τn); ◦h, σid) can be em-430

bedded into the monoid (SubstFC ;⊙, idFsτn
).431

Moreover, if Y = In and α ∈ Fix(In, Y ) is an identity mapping, then the432

following result decribing a close connection between the monoid of strongly full433

hypersubstitutions and the monoid of strongly full substitutions is obtained di-434

rectly.435

Corollary 24 ([4], Proposition 3.3). The monoid (HypSF (τn); ◦h, σid) can be436

embedded into the monoid (SubstSF ;⊙, idFsτn
).437

4. Algebraic applications of Fix(In, Y )-full terms438

Let V be a variety of algebras of type τn, and let IdV be the set of all identities439

of V . Let IdF ix(In,Y )V be the set of all identities s ≈ t of V such that s and t440

are both Fix(In, Y )-full terms of type τn; that is441

IdF ix(In,Y )V := (WF ix(In,Y )
τn (Xn))

2 ∩ IdV.442

It is well-known that IdV is a congruence on the absolutely free algebra Fτn(Xn).443

However, in general, this is not true for IdF ix(In,Y )V .444

Recall from [6] that a congruence relation θ on an algebra A := (A, (fAi )i∈I)445

of type τn is said to be fully invariant if for all endomorphisms ϕ : A → A,446

(a, b) ∈ θ ⇒ (ϕ(a), ϕ(b)) ∈ θ for all a, b ∈ A.447

The following theorem shows that IdF ix(In,Y )V is a congruence relation on448

MAF ix(In,Y )(τn).449

Theorem 25. Let V be a variety of type τn. Then IdF ix(In,Y )V is a congruence450

relation on MAF ix(In,Y )(τn).451

Proof. Assume that452

r ≈ t, r1 ≈ t1, . . . , rn ≈ tn ∈ IdF ix(In,Y )V.453

We will prove that454

Sn(r, r1, . . . , rn) ≈ Sn(t, t1, . . . , tn) ∈ IdF ix(In,Y )V.455

Firstly, we prove by induction on the complexity of the Fix(In, Y )-full term r456

that457

Sn(r, r1, . . . , rn) ≈ Sn(r, t1, . . . , tn) ∈ IdF ix(In,Y )V.458
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Assume that r = fi(xα(1), . . . , xα(n)) for some α ∈ Fix(In, Y ). By the fact that459

IdV is compatible with the operations f̄i of the absolutely free algebra Fτn(Xn)460

and the definition of Fix(In, Y )-full terms, we have461

fi(rα(1), . . . , rα(n)) ≈ fi(tα(1), . . . , tα(n)) ∈ Id
F ix(In,Y )V .462

That is463

Sn(fi(xα(1), . . . , xα(n)), r1, . . . , rn)464

≈ Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) ∈ IdF ix(In,Y )V.465

And,466

Sn(r, r1, . . . , rn) ≈ Sn(r, t1, . . . , tn) ∈ IdF ix(In,Y )V .467

Assume that r = fi(s1, . . . , sn) such that for all 1 ≤ k ≤ n,468

Sn(sk, r1, . . . , rn) ≈ Sn(sk, t1, . . . , tn) ∈ IdF ix(In,Y )V.469

Thus470

fi(S
n(s1, r1, . . . , rn), . . . , S

n(sn, r1, . . . , rn))471

≈ fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)) ∈ IdF ix(In,Y )V472

and473

Sn(fi(s1, . . . , sn), r1, . . . , rn) ≈ Sn(fi(s1, . . . , sn), t1, . . . , tn) ∈ IdF ix(In,Y )V .474

This means475

Sn(r, r1, . . . , rn) ≈ Sn(r, t1, . . . , tn) ∈ IdF ix(In,Y )V .476

So we have the claim.477

Since IdV is a fully invariant congruence relation on the absolutely free al-478

gebra Fτn(Xn), r ≈ t ∈ IdF ix(In,Y )V implies479

Sn(r, t1, . . . , tn) ≈ Sn(t, t1, . . . , tn) ∈ IdF ix(In,Y )V .480

Finally, assume that r ≈ t, ri ≈ ti ∈ IdF ix(In,Y )V for all i = 1, . . . , n. Then481

Sn(r, r1, . . . , rn) ≈ Sn(t, r1, . . . , rn) ≈ Sn(t, t1, . . . , tn) ∈ IdF ix(In,Y )V,482

which shows that IdF ix(In,Y )V is a congruence relation on the algebra483

MAF ix(In,Y )(τn).484

By using the concept of Fix(In, Y )-full hypersubstitutions, a Fix(In, Y )-full485

closed identity and a Fix(In, Y )-full closed variety are introduced.486

Definition. Let V be a variety of type τn.487
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(i) An identity s ≈ t ∈ IdF ix(In,Y )V is called a Fix(In, Y )-full closed identity488

of V if σ̂[s] ≈ σ̂[t] ∈ IdF ix(In,Y )V for all σ ∈ HypF ix(In,Y )(τn).489

(ii) A variety V is called Fix(In, Y )-full closed if every identity in IdF ix(In,Y )V490

is a Fix(In, Y )-full closed identity.491

Then we have the following theorem.492

Theorem 26. Let V be a variety of type τn. If IdF ix(In,Y )V is a fully invariant493

congruence on MAF ix(In,Y )(τn), then V is Fix(In, Y )-full closed.494

Proof. Assume that IdF ix(In,Y )V is a fully invariant congruence on495

MAF ix(In,Y )(τn). Let s ≈ t ∈ IdF ix(In,Y )V and σ ∈ HypF ix(In,Y )(τn). By496

Theorem 14, σ̂ is an endomorphism of MAF ix(In,Y )(τn). Hence σ̂[s] ≈ σ̂[t] ∈497

IdF ix(In,Y )V , that is V is Fix(In, Y )-full closed.498

One of the concrete application of Theorem 26 can be shown by the following499

example.500

Example 27. Let CA be a variety of commutative algebras type τ2 = (2). This501

means that CA =Mod{f(x1, x2) ≈ f(x2, x1)}. We easily see that IdF ix(I2,Y )CA502

is a fully invariant congruence on MAF ix(I2,Y )(τ2). By Theorem 26, CA is a503

Fix(I2, Y )-full closed variety.504

For a variety V of type τn, Id
F ix(In,Y )V is a congruence on MAF ix(In,Y )(τn)505

by Theorem 25. We then form the quotient algebra506

MAF ix(In,Y )(V ) :=MAF ix(In,Y )(τn)/Id
F ix(In,Y )V .507

The quotient algebra obtained belongs to VMenger. Note that we have a natural508

homomorphism509

natIdFix(In,Y )V :MAF ix(In,Y )(τn) →MAF ix(In,Y )(V )510

such that511

natIdFix(In,Y )V (t) = [t]IdFix(In,Y )V .512

Finally, we prove the following theorem.513

Theorem 28. Let V be a variety of type τn. If s ≈ t ∈ IdF ix(In,Y )V , then s ≈ t514

is a Fix(In, Y )-full closed identity of V .515

Proof. Assume that s ≈ t ∈ IdF ix(In,Y )V and σ ∈ HypF ix(In,Y )(τn). By Theo-516

rem 14, we have that σ̂ :W
F ix(In,Y )
τn (Xn) →W

F ix(In,Y )
τn (Xn) is an endomorphism517

on the algebra MAF ix(In,Y )(τn). Thus518

natIdFix(In,Y )V ◦ σ̂ :MAF ix(In,Y )(τn) →MAF ix(In,Y )(V )519
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is a homomorphism. By the assumption,520

natIdFix(In,Y )V ◦ σ̂(s) = natIdFix(In,Y )V ◦ σ̂(t).521

That is522

natIdFix(In,Y )V (σ̂[s]) = natIdFix(In,Y )V (σ̂[t]).523

Thus524

[σ̂[s]]IdFix(In,Y )V = [σ̂[t]]IdFix(In,Y )V .525

That is526

σ̂[s] ≈ σ̂[t] ∈ IdF ix(In,Y )V.527

Hence s ≈ t is a Fix(In, Y )-full closed identity of V .528

Example 29. Let CA be a variety of commutative algebras of type τ2 = (2). We529

see that f(x1, x2) ≈ f(x2, x1) is an identity in MAF ix(I2,Y )(CA) where f(x1, x2)530

and f(x2, x1) are binary Fix(I2, Y )-full terms of type τ2 = (2). By Theorem531

28, we obtain that f(x1, x2) ≈ f(x2, x1) is a Fix(I2, Y )-full closed identity of a532

variety of commutative algebras of type τ2 = (2).533

5. Conclusions534

In this paper, we define n-ary Fix(In, Y )-full terms of type τn by using the535

concept of transformations with fixed set and n-ary full terms of type τn. The536

relationship between Fix(In, Y )-full terms, strongly full terms, permutational full537

terms and full terms of type τn are given. After that, the superposition operation538

for n-ary Fix(N, Y )-full terms is established. It turns out that the set of all such539

terms together with the superposition forms a Menger algebra. In Section 3, the540

concept of mapping from the collection of all operation symbols to the set of541

all n-ary Fix(In, Y )-full terms of type τn is studied. This leads us to construct542

three algebraic structures. Finally, we studied some properties of identities of543

Fix(In, Y )-full terms. Our results play essentially significant roles for the study of544

classical algebras in various directions, for examples, the algebraic construction of545

new algebras and the classification of algebras via Fix(In, Y )-full closed identity.546

The extending from a Fix(In, Y )-full terms to a generalized Fix(In, Y )-full terms547

(see the papers [15, 19] for this research direction) and the characterization of548

some special elements in the monoid (HypF ix(In,Y )(τn); ◦h, σid) based on theory549

of semigroups still remain open problem.550

Acknowledgment

This research was supported by Rajamangala University of Technology Rat-551

tanakosin, Thailand. The authors are deeply grateful to the referee for comments552

and valuable suggestions.553



Algebras of full terms constructed from transformations with ...19

References554

[1] T. Changphas and K. Denecke, Green’s relations on the seminearring of full hyper-555

substitutions of type (n), Algebra Discrete Math. 2 (2003) 6–19.556

[2] K. Denecke, The partial clone of linear terms, Sib. Math J. 57(4) (2016) 589–598.557

https://doi.org/10.1134/S0037446616040030558

[3] K. Denecke and H. Hounnon, Partial Menger algebras of terms, Asian-Eur. J. Math.559

14(6) (2021) 2150092.560

https://doi.org/10.1142/S1793557121500923561

[4] K. Denecke and L. Freiberg, The algebra of strongly full terms, Novi Sad J. Math.562

34 (2004) 87–98.563

[5] K. Denecke and P. Jampachon, Clones of full terms, Algebra and Discrete Math. 4564

(2004) 1–11.565

[6] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach566

Science Publishers, 2000).567

https://doi.org/10.1201/9781482287516568

[7] W.A. Dudek and V.S. Trohimenko, Algebras of Multiplace Functions (De Gruyter,569

Berlin, 2012).570

https://doi.org/10.1515/9783110269307571

[8] W.A. Dudek and V.S. Trokhimenko, Menger algebras of associative and self-572

distributive n-ary operations, Quasigroups Relat. Syst. 26 (2018) 45–52.573

[9] E. Graczynska and D. Schweigert, Hypervarieties of a given type, Algebra Univ. 27574

(1990) 305–318.575

https://doi.org/10.1007/BF01190711576

[10] Y. Guellouma and H. Cherroun, From tree automata to rational tree expressions,577

Int. J. Found. Comput. Sci. 29(6) (2018) 1045–1062.578

https://doi.org/10.1142/S012905411850020X579

[11] P. Honyam and J. Sanwong, Semigroups of transformations with fixed sets, Quaest580

Math. 36 (2013) 79–92.581

https://doi.org/10.2989/16073606.2013.779958582

[12] P. Kitpratyakul and B. Pibaljommee, Semigroups of an inductive composition of583

terms, Asian-Eur. J. Math. 15(2) (2022) 2250038.584

https://doi.org/10.1142/S1793557122500383585

[13] J. Koppitz and K. Denecke, M-Solid Varieties of Algebras (Springer, 2006).586

[14] T. Kumduang and S. Leeratanavalee, Left translations and isomorphism theorems587

of Menger algebras, Kyungpook Math. J. 61(2) (2021) 223–237.588

https://doi.org/10.5666/KMJ.2021.61.2.223589

[15] S. Leeratanavalee, Submonoids of generalized hypersubstitutions, Demonstr. Math.590

40 (2007) 13–22.591

https://doi.org/10.1515/dema-2007-0103592

https://doi.org/10.1134/S0037446616040030
https://doi.org/10.1142/S1793557121500923
https://doi.org/10.1201/9781482287516
https://doi.org/10.1515/9783110269307
https://doi.org/10.1007/BF01190711
https://doi.org/10.1142/S012905411850020X
https://doi.org/10.2989/16073606.2013.779958
https://doi.org/10.1142/S1793557122500383
https://doi.org/10.5666/KMJ.2021.61.2.223
https://doi.org/10.1515/dema-2007-0103


20 K. Wattanatripop, T. Changphas and T. Kumduang

[16] N. Lekkoksung and S. Lekkoksung, On partial clones of k-terms, Discuss. Math.593

Gen. Algebra Appl. 41 (2021) 361–379.594

https://doi.org/10.7151/dmgaa.1376595

[17] A. Nongmanee and S. Leeratanavalee, v-regular ternary Menger algebras and left596

translations of ternary Menger algebras, Mathematics 9(21) (2021) 2691.597

https://doi.org/10.3390/math9212691598

[18] S. Phuapong and T. Kumduang, Menger algebras of terms induced by transforma-599

tions with restricted range, Quasigroups Relat. Syst. 29 (2021) 255–268.600

[19] S. Phuapong and S. Leeratanavalee, The algebra of generalized full terms, Int. J.601

Open Problems Compt. Math. 4 (2011) 54–65.602

[20] S. Phuapong and C. Pookpienlert, S(n̄i, Yi)-terms and their algebraic properties,603

Thai J. Math. 20(1) (2021) 337–346.604

[21] K. Wattanatripop and T. Changphas, The clone of K∗(n, r)-full terms, Discuss.605

Math. Gen. Algebra Appl. 39(2) (2019) 277–288.606

https://doi.org/10.7151/dmgaa.1319607

[22] K. Wattanatripop and T. Changphas, The Menger algebra of terms induced by order-608

decreasing transformations, Commun. Algebra. 49(7) (2021) 3114–3123.609

https://doi.org/10.1080/00927872.2021.1888385610

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.7151/dmgaa.1376
https://doi.org/10.3390/math9212691
https://doi.org/10.7151/dmgaa.1319
https://doi.org/10.1080/00927872.2021.1888385
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

