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Abstract

Based on th notion of full transformations with fixed set, in this paper,
we present a novel concept of n-ary Fixz(I,,Y)-full terms. This term can
be considered as a generalization of strongly full terms, permutational full
terms and full terms. Together with the superposition operation, one can
form a Menger algebra of rank n. The freeness of such algebra with respect
to a variety of algebras of the same types is discussed. Furthermore, we
apply hypersubstitution theory to define a Fixz(I,,Y )-full closed identity, a
Fix(L,,Y)-full closed variety and present some concrete examples.
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2 K. WATTANATRIPOP, T. CHANGPHAS AND T. KUMDUANG

1. INTRODUCTION

Term is one of the principal concept of the study in universal algebra, which
can be considered as an appropriate language for describing classes of algebras.
Let 7, := (n;)icr be a type of algebras in which all operation symbols f; are
indexed by some set I and have arity n; = n, for a fixed positive integer n.
Let X,, = {z1,...,2,} be an n-elements alphabet of variables. By W, (X,,) we
denote the set of all n-ary terms of type 7,. Recent contributions on terms can
be found, for example, in [2, 3, 10, 12, 16]. Actually, in [5], K. Denecke and P.
Jampachon defined n-ary full terms of type 7, in the following way:

(i) Let s : {1,...,n} — {1,...,n} and f; be an operation symbol of type 7,,.
Then fi(zy1),- -, Tsn)) is an n-ary full term of type 7,.

(ii) If ty,...,t, are n-ary full terms of type 7,, then f;(t1,...,t,) is an n-ary full
term of type .

The set of all n-ary full terms of type 7, is closed under finite application of
(ii) and is denoted by W' (X,,). If s is an identity mapping, then W/ (X,,) is
denoted by WTiF (X,), and it is called the set of all n-ary strongly full terms of
type T, [4]. If s is a permutation, then W' (X,,) is denoted by W/ F(X,,), and it
is called the set of all n-ary permutational full terms of type 7, [13]. Obviously,

WEE(X,) C WEE(X,) C WE(X,) C W, (X,).

There are several possibilities to define other classes of terms by different
mappings in a finite set. Recall that the semigroup of all mappings from a
nonempty set X into itself under the usual composition is called the full trans-
formation semigroup and denoted by T'(X). If X = {1,...,n}, we may write T,
instead of T'(X).

Recently, Wattanatripop and Changphas introduced the notions of an
K*(n,r)-full terms [21] by considering a subsemigroup K*(n,r) := {a € T,, |
lim(a)] < r} U {1y} of T,, in which each element is called a restricted range
transformation. It is observed that K*(n,r) = K(n,r) = T, if r = n. Thus, a
clone denoted by cloneg-(, ) (7n) consisting of the set of all n-ary K*(n,r)-full
terms of type 7,, and a superposition 5™ was constructed. On the other hand, the
set OD, ={a €T, |Vk e {l,...,n},a(k) <k} of all order-decreasing full trans-
formations on a finite chain which is a submonoid of T;, was applied to define an
n-ary order-decreasing full term of type 7, in [22]. An identity of a variety that
determined by a pair of terms in MAop, (7,) and full closed variesties were ex-
amined. In [20], a semigroup S(n,Y) :=={8 €T, | B(Y) C Y} of transformations
on a finite set 7 leaving Y C 7 invariant was applied to set a new term in such a
way that each pair of these terms was extended to be S(72,Y')-hyperidentity of a
variety V. Similarly, in [18], the theorem which gave the freeness of an algebra
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consisting of the set of all terms generated by transformations with restricted
range and (n + 1)-ary operation satisfying certain equational laws was proved.

In [11], Honyam and Sanwong introduced a semigroup Fiz(X,Y) which is
called a transformation semigroup with fixed set, which contains the identity map-
ping on X, denoted by 1x. Actually, for a fixed subset Y of X,

Fiz(X,)Y)={aeT(X) | ala) =a for all a € Y}.

It is clear that Fiz(X,Y) = T(X) if Y = 0 and Fiz(X,Y) contains only the
identity mapping 1x if [X|=1or X =Y.

Our main goal of this paper is to generalize the concepts of strongly full
terms, permutational full terms and full terms. In Section 2, applying the notion
of transformations with fixed set, we introduce a special kind of n-ary terms of
type T, the so-called Fiz(I,,Y )-full terms. The combination between full terms
and transformation with fixed set is established. This leads us to form a Menger
algebra of Fixz(l,,Y)-full terms consisting the set of all Fizx(I,,Y)-full terms
with (n + 1)-ary superposition operation. The generating system and freeness of
such algebra are studied. We continue the results in Section 3 by introducing the
monoid of Fixz(l,,Y)-full hypersubstitutions and Fiz(Il,,Y )-full substitutions.
Particularly, the relation between these monoids is provided. The last section,
we apply the former results for classifying the algebras of type 7.

2. THE MENGER ALGEBRA OF Fiz(I,,Y)-FULL TERMS

Let I, = {1,...,n} where n is an arity of the operation symbol f;. Throughout
this paper, we consider X = I,,. This leads us to define

Fiz(1,,Y)={a e T(I,) | ala) =afor all a € Y}

where T'(I,,) is the semigroup of all mappings from I, into itself under the usual
composition of functions.
We then have the following example.

Example 1. Let 74 = (4) be a type. This means that we have Iy = {1,2,3,4}.
If we let Y = {2,4} C Iy, then

Fix(I,,Y) =

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
121 4)'\1 2 2 4)’\1 23 4)’\'1 2 4 4)°
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
321 4)°’\3 2 2 4)°’\3 23 4)/)’'\'3 2 4 4)°
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
4 2 1 4 )\ 4 2 2 4)°\ 42 3 4)’\ 4 2 4 4 '

The following example shows that, if Y = ), then Fix([,,Y) = T,.

Example 2. Consider a type 72 = (2). Then we have I = {1,2}. Let Y = (.
Thus

rann={(11). (0 D-(2 1) (3 1))

In the case that I,, =Y, we have the following example.

Example 3. Consider type 73 = (3). Then Is = {1,2,3}. If Y = I3, then

rewn-{ (122}

The next example shows that, if |I,,| = 1, then Fiz(l,,Y) = 1;, where 1,
is the identity mapping on I,,.

Example 4. Consider a type 71 = (1). That is I; = {1}. For arbitrary subset

Y of I. Then Fix([;,Y) = { < 1 ) }

Now, we inductively define n-ary Fiz(l,,Y )-full terms of type 7, as follows.

(i) If f; is an n-ary operation symbol and « € Fiz([,,Y), then
fi(Za)s - Tam)) 18 an n-ary Fiz(1,,Y)-full term of type Tn.

(ii) If f; is an n-ary operation symbol and t4,...,t, are n-ary Fiz(l,,Y)-full
terms of type 7, then f;(t1,...,t,) is an n-ary Fix(I,,Y)-full term of
type .

The set of all n-ary Fixz(I,,Y)-full terms of type 7, which is closed under
finite applications of (ii), is denoted by WTim(I"’Y) (Xn).

Example 5. Consider 74 = (4) with a 4-ary operation symbol f. Let I, =
{1,2,3,4}. If Y = (), then there are many elements in ng(l“’y) (X4) such as
f(@1, 21,2, 23), f(@2, 23, T4, 21), [ (22, 24, 21, 21), [ (21, T4, T4, T4),
f(x27x37w37w1)7 f(x27x27w27w3)7 f(f(x27x37w37w1)7 f(x27x4,x1,$1),

ey, wa, 23, 24), f(a1, 21, 22,23)). Y = {1,2,3}, then Wy, ") (Xy) consists
many elements, for instance,

f(x17x27w37w1)7 f(x17x27w37w2)7 f(x17x27x37w3)7 f(x17x27x37x4)7
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f(f (@1, 22, m3,21), (21, 22, 3, 22), (21, 2, 23, T3), f(21, 2, T3, 24)).
If Y = I4, then the followings are some elements in ng(u,Y) (X4):
f(x17x27w37w4)7 f(f(x1,$2,$3,1'4), f(x17x27w37w4)7 f(x1,x2,x3,1'4),
f($1,$2,$3,$4))-

Remark 6. Let 7, = (n;) where n; = n for every i € I be a type. Let I,, =
{1,...,n} and Y C I,,. Then the following statements are valid.
(i) IfY =0, then WSF(X,,) € WEF(X,,) ¢ WEInY)(x,y = WE (X,,).

(i) 10 #Y C I, then W5F(X,,) c WLV (x,) c WE(X,).

Fix

(iii) If I, = Y, then W5F(X,,) = WE=I Y (x,) c WPF(X,) c WE(X,).

Example 7. By Example 4, we have f(z1),f(f(21)).f(f(f(21)) € W “U1(x,).

Remark 8. If [I,] =1 and Y C [, then
WTiF(Xn) = WTZF(Xn) = WTIZM(I”’Y)(XVL) = WTZ (Xn).

For WTan(I"’Y) (Xp), the set of all n-ary Fixz(I,,Y)-full terms of type 7,, the
superposition operation

S (Wfix(ln,Y) (Xn))n—l—l N Wfix(ln,Y) (Xn)
is defined by

(1) S”(fi(xa(l), e ,xa(n)), tl, e ,tn) = fi(ta(1)7 e 7ta(n))-

(11) S"(fi(sl, ey Sn),tl, N ,tn) = fi(Sn(Sl,tl, N ,tn), e ,Sn(Sn,tl, e ,tn))
where a € Fiz(I,,Y).

Now we may consider the following algebra of type (n + 1)
M Apig(1,,v)(Tn) = (Wf;m(ln’y) (Xn),S™).

An algebra (M, S™) of type 7 = (n + 1) is said to be a Menger algebra of rank n
if (M, S™) satisfies the superassociative law

SM(S™M( X0, Y1, .., Yn), X1, ., Xn)

[ Sn(X(],Sn(Yl,Xl,. .. ,Xn), e ,Sn(Yn,Xl,. . ,Xn))

where S™ is an (n 4+ 1)-ary operation symbol and X;,Y; are variables. For
more details, see [7, 8, 14, 17]. The following theorem shows that an algebra
M Apig(r,,v)(Tn) is a Menger algebra of rank n.
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Theorem 9. The algebra M Ap;y(;, v (1n) satisfies the superassociative law.

Proof. We prove the theorem by induction on the complexity of the Fiz(l,,Y)-
full term which is substituted for Xo. Firstly, if Xo = fi(za(1), - - -, Ta(n)) Where
a € Fiz(I,,Y), then

S™(S™(fi(z, S Ta(n))y 815 Sn)yty s tn)
= S"(f (a(l ())751,--,75)
— F(S" (s, tl,...,t oo 5™ (Saguy b o)
= S"(fi(z, s Tam))s S (8151, -5 tn), - S (St t)).

Let fi(r1,...,mn) € WTan(I"’Y) (Xy) be such that rq,...,r, satisfy the superasso-
ciative law. Then

(S™(fi(r1y- oy 7n), 815y Sn) by e eytn)

Sn(fi(Sn(Tl,Sl, e ,Sn), e ,Sn(Tn,Sl, e ,Sn)),tl, e ,tn)

= fi(Sn(Sn(Tl,Sl, v 7Sn)7t17 st 7tn)7' .. 7Sn(Sn(rn7$17 v 7Sn)7t17 v 7tn))
(5™(

= fi(S"(r1, 8" (s1,t1,. .. ,tn), . ,S"(sn,tl, e ,tn)), RN
S (rpy S™(S1,t1, oy tn)y ey S (Sny 1y ey tn)))
= Sn(fz Tl?"' 7Tn)7sn(817t17"' ’tn),--- ’Sn(8n7t1"" ,tn))-

This completes the proof. [ |

According to Theorem 9, if Y = I, and o € Fix(I,,Y) is the identity
mapping, then the following corollary is obtained.

Corollary 10 ([4], Proposition 2.1). Let t,t1,...,tn,S1,...,5, be strongly full
terms of type 1,. Then

SISty b,y tn)y Sty ey Sn) = ST, S (1,81, -+ Sn)y ooy S (tny S1, -+ -5 ).

In addition, if a subset Y of I, is empty, then by Theorem 9, we have the
following.

Corollary 11 ([5], Proposition 1). Let t,t1,...,tn,51,...,5, € WI (X,,). Then
S™(S™(tyt1y ey tn)y S1ye vy Sn) = S™(t, 8™ (t1, 8155 Sn)s oy S (tny S15 -5 ).

The next aim is to study the freeness of algebra M Ap; (1, v (7). First, the
generating system of such algebra is constructed. We see that

Fyyriiny k) = {filw o) | i €10 € Fiz(I,,Y)}
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generates M Apiq1,.v)(Tn)-

7

Let Vifenger be the variety of all Menger algebras of type (n + 1) satisfying
(SASS), and let Fy,,,,..,.(Z) be the free algebra with respect to Visenger, freely
generated by Z := {z; | j € J} where Z is an alphabet of variables indexed by
the set J := {(i,a) | i € I,a € Fiz(l,,Y)}. The operation of Fy,,,, .. (Z) will
be denoted by S™. We have the following theorem.

Theorem 12. The algebra M Ap;y(q, v) (1n) is free with respect to the variety
VMenger of Menger algebras of rank n, freely generated by the set

Z={z4a li€l,ac Fiz(I,Y)}.

Proof. Claim that M Apjy 1, v)(7a) is isomorphic to Fy,,,, ... (Z) under the map-

ping

defined by

1) e(fi(zan),
(i) p(S"(fi(zan

We prove the theorem by induction on the complexity of the term ¢ that

o Wizx(ln,Y)(Xn) — }“VMEMET(Z)

. ,xa(n))) =

Z(i,a)'

Yo+ e 7wa(n))7t17"'

7tn) = gn(z(i,a)7 Sp(tl)7 s

,0(tn))-

@(Sn(tv liy ... 7tn)) = gn((p(t)’ Qp(tl), e ,(,D(tn))
for all ¢,t1,...,t, € WTIZW(I”’Y)(XTL). Ift = fi(zaq) s Ta(n)), then
o(S"(tt1,---5tn)) = @(S"(fi(Tar)s -+ Tam))s t1s- -+ tn))
= 5™ (210, P(t )---,sﬁ(tn))
S ( ( ( La(l)s 7w0¢(n)))790(t1)7"' 790(tn))
= S5™(p(t), (1), - --,w(tn))-
Let t = fi(r1,...,r,) and assume that, for 1 <k < n,
O(S™ (s t1s - -y tn)) = S™(@(1), @(t1); - - -, p(tn))-
By the fact,
PUfilth, 1)) = 8" (26,1, (1), p(1))
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for all ¢},...,t), € Wf;m(ln’y) (X,), we then have

(S (t,t1, ..., ty))
= (,O(Sn(fi(Tl, e ,Tn),tl, e ,tn))
(

= o(fi(S"(r1,t1, . ytn)y oo, S (rny 1, ooy tn)

= 5210, (S™(r1 1, o )y @(S™ (P s t)))

= S"(251,), " (1), (1), - @ltn)s - S (@(rn), 0 (t1), - -, (tn)))
= S™(S™(%(i,1,)s (1), - -, (rn)), 0(t1), -, ()

= S"(p(t), o(t1), ... o(tn)).

Here, ¢ is a homomorphism.
For a bijection of mapping ¢, it can be proved by the following

Z(ia) = 2(,8) = (6,0) = (5, 8) = fi(Ta1)s -+ Tam)) = Fi(@a)s - Tam))
and
Z(i,0) € Z = o(fi(Ta@1), - Tam))) = (i)

Thus ¢ is an isomorphism. [ |

As we have seen in Theorem 12, if a mapping o € Fiz([,,Y") is identity and
a subset Y of I, is empty, then we have Theorem 2.2 in [4] and Theorem 1 in [5],
respectively.

3. EMBEDDING THEOREM OF Fixz(l,,Y )-FULL HYPERSUBSTITUTIONS AND
Fiz(I,,Y)-FULL SUBSTITUTIONS

The concept of hypersubstitutions was introduced by Graczyriska and Schweigert

[9]. For more details about hypersubstitution theory, see [6]. In this section, the

concept of a mapping which maps from the set of all operation symbols of type

Tn, to the set of all n-ary Fix(I,,Y)-full terms of type 7, is defined as follows.
A Fix(I,,,Y)-full hypersubstitution of type T, is a mapping

o:{filiel} —»whelnY)(x,)

taking every n-ary operation symbol of type 7, to an n-ary Fixz(I,,Y )-full term
of the same type. The set of all Fiz(l,,Y)-full hypersubstitutions of type 7, is
denoted by Hyp?*UnY) (7).

For t € WTan(I"’Y) (Xp) and o, B € Fiz(1,,Y), we define a Fiz(I,,Y)-full
term arising from a mapping 3 as follows:

(1) Ift= fi(xa(l), e ,xa(n)), then tﬁ = fi(xﬁ(a(l)), Ces ,wg(a(n))).
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(11) Ift= fi(th cee ,tn), then tﬁ = fi((tl)ﬁa ey (tn)ﬁ)-

It is observed that if ¢t is a Fixz(l,,Y)-full term of type 7,, then tz is a
Fix(I,,Y)-full term of type 7, for all 8 € Fix(I,,Y).

Any Fiz(I,,Y)-full hypersubstitution o : {f; | i € I} — W. FZ:E(I"’Y)(XH) of
type 7, can be extended to a mapping

G- WTIZix(In,Y) (X)) — WTFnix(In,Y) (X,)
defined by the following steps:
(i) olfi(zaq), s Tam)] = (0(fi))a where a € Fia(ly,,Y).
(i) &[fi(tr, ... tn)] := S™(0(fi), 0[ta), - -, G tn])-
Now, we define a binary operation oj, as follows
(01 0p 09) 1= 01009
where o1, 09 € HypF@wnY) (5,) and o is the usual composition of functions.
Now, we present connections between the superposition operation and &.
Lemma 13. Let t,ty,...,t, € WTim(I"’Y) (Xn). Then
S"(t,c}[ta(l)], ey Oltamy]) = 8" (ta, 0lt1), - - - O tn])
for all o € Fiz(I,,Y).

Proof. Let t = fi(zg(1),...,73(n)) Where 8 € Fix(l,,Y). For a € Fiz(l,,Y),
we then have

S, 0(ta@)s -+ s ltam))) = S"(filza)s - Tam))s Flta@))s - - - s Flta(m)])
= fZ( [a(ﬁ(l ] 76'[ a(B(n)) ])
S™(filwas)) ) Olt], .. o tn])
= S"(ta,a[tl],...,&[tn]).

Let t = fi(s1,...,8,) and assume that

Sn(skv a-[ta(l)]a ce 76[to¢(n)]) = Sn((sk)a’ &[tl]v ce ,&[tn])
for all 1 <k <n and for all & € Fiz(l,,Y). Then, for o € Fiz(l,,Y), we have

SDas -5 (Sn)a), 0lt1], - .- ,c}[tn])
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Applying Theorem 9 and Lemma 13, we can prove the following theorem.
Theorem 14. For o € Hyp™*UnY)(7,), an extension
& Wfix(ln,Y) (Xn) N Wf‘im(ln,Y) (Xn)
is an endomorphism on the algebra M Ap;y 1, v) (Tn)-

Proof. We prove the theorem by induction on the complexity of ¢y that for any
to,tay -t € WETIY (XY 687 (1o, b1, ..., tn)] = S™(5 ko), 8[t1], - .., 6[tn]).
Firstly, if we substitute for tg a term fi(zq(1), - - -, Ta(m)) Where a € Fiz(l,,Y),

then

a[S"(to, t1s- -5 tn)] = GLS"(fi(za@)s -+ Tam))st1y- -5 tn)]

Il
n »
=
S
— R
=
Q>\:
~
o o
=
. 2
T2
P
Q>
"~
2
2
=

Assume tg = fi(s1,...,S,) such that
(S (Skyt1, -5 tn)] = S™(0[sk], 0[t1], ..., 0[tn])

for all 1 <k <n. Then

I
Q»
< ™
S

= Gfi(S"(s1,t1, - stn)ye ey S (Snyt1y .oy tn)]

S0 (f), 615™ (51 s )]s G (5t )

= S"(o(fi),S"(o[s1],0[t1],--.,0[tn])s-..,S™(O[sn], Olt1], ..., 0tn]))

=SS (0 (f), sl - 6la]), 6T, - 6ltn])

= S"(6[fi(s1,---,sn)l,6[ta, -, 0[tn])

= S"(6[to), o[t1], ..., o[tn]) -

The following proposition shows a property of term that arise from a mapping
and the extension of each element in Hyp®@(nY) (7).

Proposition 15. Let t € WTIZM

(zn,Y)(Xn) and B € Fix(I,,Y). Then
ot = olts].

Proof. It can be proved by induction on the complexity of the term t. [ |
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By using Theorem 14 and Proposition 15, we get the following result showing
the relationship between the operation o and the extension of o.

Lemma 16. Let 61,69 € Hyp™=UnY) (7). Then
(0'1 Op, 0_2)ﬂ1 = (5’1 o 6’2.

Proof. We prove the lemma by induction on the complexity of the Fiz(I,,Y )-full

term which is substituted for t. If £ = fi(zq(1);- - - Tan)) Where a € Fix(l,,Y),
then
(o1 0n 02)1%[15] = (01 0p 02 [ i(Ta(1)s - Tam))]
= (5-1 )fﬂ[fl( 7'roz(n))]
= ((610 0'2)(fz))a
(@1]o2(fi)])a

[t].
Let t = fi(s1,...,8n). Assume that (o1 o, 02)ﬁ1[sk] = 01009[sg] for all 1 < k < n.
Then
(0100 02)M[t] = (01 0 02)™[fi(s1,- .-, )]
= S™((61 0 32)(fi), (o1 o 02)8[s1], ..., (01 op, 02)P[s,])
= S"((61002)(fi), (61 002)[s1],...,(61072)[sn])
= 5"(61]o2(fi)], 61[02[s1]]; - - ., 61[d2[sn]])
= 01[5"™(02(fi), 62[s1], - .., 62[sn])]
= 61[02[fi(51,- -, Sn)]]
= (61 069)][t].
Therefore (o1 op ag)ﬁ1 = 610 69. [ |

Now, we have the important result.

Theorem 17. (Hyp™=UnY)(7,):0,0:4) is a monoid where o,q is the identity
hypersubstitution which is defined by o;q4(f;) == fi(x1,...,zy).

Proof. The associativity of a binary operation o, on Hyp® ix(l"’y)(Tn) follows

directly from Lemma 16. Furthermore, the proof of the identity element o;4(f;) :=
fi(z1,...,z,) with respect to o, is clearly straightforward. [
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If a subset Y of I, is empty, then by Theorem 17 we have
Corollary 18 [5]. (Hyp" (1,,);0n,0:q) forms a monoid.

IfY =1, and o € Fix(I,,,Y) is the identity mapping, then by Theorem 17
we obtain

Corollary 19 [4]. (Hyp®F(7,);0n,0i4) forms a monoid.

Applying an operation + on the set of all hypersubstitutions mentioned in
[1], our next purpose is to define a second binary operation on H yp¥ i (In,Y) (Tn).
Let o1 and o9 be elements in Hyp @ (n.Y) (7). Define a binary operation on
Hpri:v(In,Y) (Tn) by

(o1 + 02)(fi) == S™(o2(fi), 01(fi), - - -, 01(fi))-

Fie(InY) (1,.)

It is observed that o; 4+ o3 is an element in Hyp .
Fix(In,Y)(Tn)

The following theorem shows that the set Hyp
binary operations oj and + forms a left-seminearring.

together with two

Theorem 20. (Hyp"="Y)(7,) o, +) forms a left-seminearring.

Proof. We first prove that the operation + is associative. For this, let 01,02, 03
be elements in Hyp!@(nY) (1), By Theorem 9, we have

((o1+ 02) + 03)(fi)
= §"(o3(fi), (01 + 02)(fi), - - -, (01 + 02)(f3))
= S"(o3(f), S"(02(fi), o1(f: ) 5 01(fi), -, 8 (o2(fi), o1(fi), - - o1 (i)
= 5"(85™(o3(fi) 02(fi), - U2(fz))701(fi)a---aal(fi))
= 5"((o2 + 03)(fi) 01(fi), - - -, o1(fi)
= (01 + (02 + 03)) (fi)-
Next, the left distributive law oy oy, (02 + 03) = (01 0p, 02) + (071 o 03) is
satisfied by using Theorem 14. In fact, we have

(01 0n (02 +03))(fi) =

Q>

1[(o2 + 03)(f)]

= 61[5"(03(fi),02(fi)s - - -, 02(fi))]

= S"(&l[ag(fl)],al[ag(fz)] - 01[o2(fi)])

= 5"((o1 0n 03)(fi), (01 0 02),---,(01 op 02))

= (0104 02) + (01 01, 03). -

It is not difficult to see that the right distributivity, (o1 + o02) o, 03 =
(01 op, 03) + (02 op, 03), is not true for arbitrary Fix(I,,Y)-full hypersubstitu-
tions o1, 02, 03. The following counter example shows such statement.
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Example 21. Let I be a singleton indexed set and 7o = (2) with a binary
operation symbol f. Assume that o1,09,03 are elements in Hprm(I2’{2})(2)
which are defined by

1 2
o1(f) = f(Ta,(1), Ta, (2)) Where a1 = ( | 9 )

1 2
02(f) = f(waza)awaz(z)) where ag = ( 9 9 )

o3(f) = 1@ 5, (2)) [ (25201, Pa(2))) Where By = < ; g > and

1 2
B2 = ( 1 o )
Consider

((o1+ 02) o 03)(f)
= (o1 +02)™ [f(f(@5,01), 75:2)s F(@p201), Tpa2)))]
= 5%((o1 + 02)(f), (01 + 02)® [F (25,1, 25, 2))], (01 + 02)P [F(@5,01), T5502))])
= S*(f(f(x1,22), f(x1,22)), f(f (21, 22), f(21,22))5,, ([ (21, 22), f(1,22))5,)
= J(f(f(f(z2,22), f(z2,22)), [(f (21, 22), f(21,22))),

(S (2, m2), f(22,22)), f(f(21,22), (21, 22))))

and
(01 0 03) + (02 04 93))(f) = S*((02 08 3)(f), (01 01 03)(f), (91 o1 T3)([))-

Since (01 op 03)(f) = [(f (22, %2), f(%1,22)) and (02 0p 03)(f) = f(f (22, 22),
f(z2,22)), a term ((o1 op, 03) + (02 op, 03))(f) differs from ((o1 + o2) op, 03)(f).
Hence, (01 + 02) o, 03 # (071 o, 03) + (02 o, 03). This means that the right
distributivity does not hold.

To close this section, we discuss an embedding theorem for Fiz(l,,Y )-full
hypersubstitution. Since the algebra M Ap;y(1,, v) (1) is generated by the set

Fyyristn oy )= {file o) | i €1,a € Fiz(I,,Y)},

then any mapping

n: FWiiz(In’Y)(Xn) — Wiix(IMY) (Xn),
called a Fix(l,,Y)-full substitution, can be uniquely extended to an endomor-
phism

7 Wiix(ln,Y) (Xn) N Wf;i.’r(ln,Y) (Xn)
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Let Subst piz(r, vy (™) be the set of all Fiz(I,,Y )-full substitutions.
For n1,m2 € Substpig(1,,v)(Tn), define

N ON2:=1n10n2

where o is the usual composition. Let idp Fin(In,Y) be the identity mapping
W, N (X))

on FWFix(In,Y) The equation 77 012 = 71 © 12 holds due to an applica-

™ (Xn)

tion of Theorem 12. In fact, every clone substitution 1 in Substpiy(r, v)(7n) that

() to WTan(I"’Y) (X,,) can be uniquely ex-

tended to an endomorphism 7 from the algebra M Ap;, (1, v)(7) to itself because

MApiq(1,,y)(1s) is free. Thus we have that (Subst piy(r,,,v)(T0); ©,idp L., v, ?
WTn s Xn

maps from a generating set FWFiac(In,

is a monoid.
Consider o € Hyp"@(»Y)(z,). By Theorem 14,

& Wfix(ln,Y) (Xn) N Wf‘im(ln,Y) (Xn)

is an endomorphism. Since wa,-x(zn,y)(Xn) generates M Apz(r, y) (Tn), we have

n

&/quiiz(In,Y)(Xn) is a Fiz(I,,Y)-full substitution with

6/F rien = 6.
[Eyristn x,)

Define a mapping v : Hyp*UnY)(

Tn) - SU’bStFix(In,Y) (Tn) by
1/}(0-) = &/FW.,F,L”(I"’Y)(X”)'
Let 01,09 € Hyp?™®(nY) (7). By Lemma 16, we then have

¢(O-1 Op 02) = (Jl Oh 02)fH/waiI(In7Y)(Xn)

= (5‘1 9} 6-2)/FW.,{:1”(I”’Y)(X”)

01/ F._ Fix 069/F  rix

= ¢(01) 0 9(02)
= ¥(01) © Y(o2).

Here, v is a homomorphism. Clearly, ¢ is an injection. Hence we have the
following theorem.

Theorem 22. (Hyp"=nY)(1,);01,,044) can be embedded into

(SUbStFix(ImY) (Tn)’ O, Z.dFWf,jx(In,Y)(Xn)).
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Using the definition of a Fix(I,,Y)-full substitution, if we take Y = ) or
|I,| = 1, then Wf;m(ln’y) (Xn) = WE(Xy). According to Theorem 22, we have
the following corollary.

Corollary 23 ([5], Proposition 3). The monoid (Hyp" (1,,);0n,0:q) can be em-
bedded into the monoid (Substpc; ®,idp,,, ).

Moreover, if Y = I,, and a € Fiz([,,Y) is an identity mapping, then the
following result decribing a close connection between the monoid of strongly full
hypersubstitutions and the monoid of strongly full substitutions is obtained di-
rectly.

Corollary 24 ([4], Proposition 3.3). The monoid (Hyp>F(7,);0n,0:q) can be
embedded into the monoid (Substsp; ®,idp,, ).

4. ALGEBRAIC APPLICATIONS OF Fiz(I,,Y)-FULL TERMS

Let V be a variety of algebras of type 7,, and let IdV be the set of all identities
of V. Let IdF=UnY)V be the set of all identities s ~ t of V such that s and ¢
are both Fix(I,,Y)-full terms of type 7,; that is

[aF Iy = (W) (X)) N 1aV.

It is well-known that IdV is a congruence on the absolutely free algebra F, (X,,).
However, in general, this is not true for Id" =Yy

Recall from [6] that a congruence relation 6 on an algebra A := (A, (f)icr)
of type 7, is said to be fully invariant if for all endomorphisms ¢ : A — A,
(a,b) € 0 = (p(a),p(b)) € 6 for all a,b € A.

The following theorem shows that Id¥*U»Y)V is a congruence relation on

M Apig(1,,v)(Tn)-

Theorem 25. Let V be a variety of type 7. Then IdF=UnY)V is a congruence
relation on M Apiqy 1, v)(Tn)-

Proof. Assume that
ratr Rty Ty &ty € IdFEURY)Y
We will prove that
S™M(ryr1y ey ) = STt . t,) € I1dF=UnY)y,

Firstly, we prove by induction on the complexity of the Fiz(l,,Y)-full term r
that ‘
S™(r, 1,y rn) A St ty) € TdF IRy,
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Assume that 7 = fi(74x),- - Ta(n)) for some o € Fiz(l,,Y). By the fact that
IdV is compatible with the operations f; of the absolutely free algebra F, (X,)
and the definition of Fiz(l,,Y)-full terms, we have

firatys s Tam) = filtar)s - - - s tan)) € IaF @YY
That is
Sn(fi($a(1)a s 7xa(n))7rla s arn)

=~ Sn(fi(wa(l), R ,wa(n)), t1,... ,tn) S IdFix(I"’Y)V.
And,

S™(r 1, .. rn) R St ty) € TdF Y)Y
Assume that r = f;(s1,...,sy) such that for all 1 <k <mn,

S™ (S T1s -+ oy n) A S™(sky b1, . - - s by) € TdF=InY) Y,

Thus

Fi(S™ (1,715 oo sn)s ey S (Spy T1y ooy T))
~ fi(S™(51,t, o tn)s e S (Snyts e tn)) € TdF =YDy
and
S fi(51s ey Sn)sT1y s Tn) R S™(fi(S1, ..oy 8p),t1, ... tp) € IdF = Y)Y
This means
871y, .. ) RSP (r by, ty) € TdF Y)Y

So we have the claim.
Since IdV is a fully invariant congruence relation on the absolutely free al-
gebra F, (X,), r =t € IdF"=I»Y)V implies

Sty .. ty) &= S (Lt ... ty) € IdF=InY)Y
Finally, assume that r =~ t,7; = t; € IdF=InY)V for all i = 1,...,n. Then
S™(rry, ) A ST, ) A ST . ty) € TdPEIRY)Y
which shows that 7dF*®U»Y)V is a congruence relation on the algebra
M Apia(1,,v)(Tn)- n

By using the concept of Fix(I,,Y )-full hypersubstitutions, a Fiz(I,,Y)-full
closed identity and a Fiz(l,,Y )-full closed variety are introduced.

Definition. Let V be a variety of type 7,.



488

4

[
©

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

ALGEBRAS OF FULL TERMS CONSTRUCTED FROM TRANSFORMATIONS WITH ...17

(i) An identity s =t € Id"=UnY)V is called a Fixz(I,,Y)-full closed identity
of V if 6[s] ~ [t] € IdF=InY)V for all o € Hyp™=UnY) (7).

(ii) A variety V is called Fiz(I,,Y)-full closed if every identity in IdF=(nY)y
is a Fix(I,,Y)-full closed identity.

Then we have the following theorem.

Theorem 26. Let V be a variety of type 7. If IdV=InY)V s fully invariant
congruence on M Ay, vy(Tn), then V is Fix(I,,Y )-full closed.

Proof. Assume that IdF@UnY)V ig a fully invariant congruence on

MApir,,y)(mn). Let s = t € a7 Y)YV and o € Hyp'*UnY)(7,). By
Theorem 14, ¢ is an endomorphism of M Ap,;, v)(Tn). Hence &[s] =~ 4[t] €
IdF=UnY)V that is V is Fiz(I,,Y)-full closed. n

One of the concrete application of Theorem 26 can be shown by the following
example.

Example 27. Let C'A be a variety of commutative algebras type 7o = (2). This
means that CA = Mod{f(x1,z2) = f(x2,21)}. We easily see that IdF=(2Y)C A
is a fully invariant congruence on M Ap;y(r,y)(72). By Theorem 26, CA is a

Fiz(Iy,Y)-full closed variety.
For a variety V of type 7,, Id¥**(nY)V/ is a congruence on M Apig(1,,v)(Tn)
by Theorem 25. We then form the quotient algebra

MAFiz1, v)(V) = MApiyr, ) (Tn)/[dF”(I”’Y)V.

The quotient algebra obtained belongs to Vijenger. Note that we have a natural
homomorphism

natgrioiny)y  MApi1, v)(Tn) = MApiyr,,y)y(V)
such that
nat[dFiZ(In,Y)V(t) = [t]ldmzun,y)v-
Finally, we prove the following theorem.

Theorem 28. Let V be a variety of type 1. If s ~t € IdF=InY)V | then s ~ ¢
is a Fix(I,,Y)-full closed identity of V.

Proof. Assume that s ~ t € IdF*UnY)V and o € Hyptie(nY) (7n). By Theo-
rem 14, we have that & : Wf;w(ln’y) (Xn) — wi

nm(ln’y) (Xy) is an endomorphism
on the algebra M A gy, v)(Tn). Thus

nat yris(rn,y)y © 0 : MAFm(In,Y) (Tn) = MAFim(In,Y)(V)
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is a homomorphism. By the assumption,

natIdFix(In,Y)V o 6’(3) = natIdFix(In,Y)V o &(t)

That is
nat pgriz(m, vy (6[s]) = natjgriean. vy (6t).
Thus
[6[s]]jarietn iy = (61 fgriva v
That is
6[s] = 6[t] € 1dF =Yy,
Hence s ~ t is a Fiz(I,,Y)-full closed identity of V. ]

Example 29. Let C'A be a variety of commutative algebras of type 72 = (2). We
see that f(71,72) ~ f(w2,71) is an identity in M Apjy (s, y)(CA) where f(z1,72)
and f(zg,x1) are binary Fiz(ls,Y)-full terms of type 7o = (2). By Theorem
28, we obtain that f(xy,z2) = f(z2,x1) is a Fiz(l2,Y)-full closed identity of a
variety of commutative algebras of type 1o = (2).

5. CONCLUSIONS

In this paper, we define n-ary Fiz(I,,Y)-full terms of type 7, by using the
concept of transformations with fixed set and n-ary full terms of type 7,. The
relationship between Fixz(1,,Y )-full terms, strongly full terms, permutational full
terms and full terms of type 7, are given. After that, the superposition operation
for n-ary Fiz(N,Y)-full terms is established. It turns out that the set of all such
terms together with the superposition forms a Menger algebra. In Section 3, the
concept of mapping from the collection of all operation symbols to the set of
all n-ary Fiz(I,,Y)-full terms of type 7, is studied. This leads us to construct
three algebraic structures. Finally, we studied some properties of identities of
Fix(I,,Y)-full terms. Our results play essentially significant roles for the study of
classical algebras in various directions, for examples, the algebraic construction of
new algebras and the classification of algebras via Fliz(I,,,Y)-full closed identity.
The extending from a Fixz(l,,Y )-full terms to a generalized F'iz(I,,Y )-full terms
(see the papers [15, 19] for this research direction) and the characterization of
some special elements in the monoid (Hyp® i (In,Y) (Tn); on, 04q) based on theory
of semigroups still remain open problem.
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