Discussiones Mathematicae

General Algebra and Applications xx (xxxx) 1-9

ON B^{*}-PURE ORDERED SEMIGROUP

Pisan Summaprab
Department of Mathematics Rajamangala University of Technology Isan
Khon Kaen Campus, Khon Kaen 40000, Thailand
e-mail: pisansu9999@gmail.com

Abstract

We introduce the concept of B^{*}-pure ordered semigroups, and give some properties of B^{*}-pure ordered semigroups.

Keywords: semigroup, ordered semigroup, B^{*}-pure, normal, weakly commutative, Archimedean, semilattice, bi-ideal.
2020 Mathematics Subject Classification: 06F05.

1. Introduction

A bi-ideal A of a semigroup S is said to be B-pure if $A \cap x S=x A$ and $A \cap S x=$ $A x$ for all $x \in S$. A semigroup S is said to be B^{*}-pure if every bi-ideal of S is B-pure. The concept B^{*}-pure semigroups was studied by Kuroki [3]. In this paper, the concept of B^{*}-pure ordered semigroups is introduced. We shall give some properties of B^{*}-pure ordered semigroups, and characterize B^{*}-pure Archimedean ordered semigroups. We prove that any B^{*}-pure ordered semigroup is a semilattices of Archimedean semigroup. Let us recall some certain definitions and results used throughout the paper. A semigroup (S, \cdot) together with a partial order \leq that is compatible with the semigroup operation, meaning that, for any x, y, z in S,

$$
x \leq y \text { implies } z x \leq z y \text { and } x z \leq y z
$$

is called a partially ordered semigroup (or simply an ordered semigroup)(see [2]). Under the trivial relation, $x \leq y$ if and only if $x=y$, it is observed that every semigroup is an ordered semigroup. Let (S, \cdot, \leq) be an ordered semigroup. For A, B nonempty subsets of S, we write $A B$ for the set of all elements $x y$ in S where $x \in A$ and $y \in B$, and write $(A]$ for the set of all elements x in S such that $x \leq a$ for some a in A, i.e.,

$$
(A]=\{x \in S \mid x \leq a \text { for some } a \in A\} .
$$

In particular, we write $A x$ for $A\{x\}$, and $x A$ for $\{x\} A$. It was shown in [10] that the followings hold:
(1) $A \subseteq(A]$ and $((A]]=(A]$;
(2) $A \subseteq B \Rightarrow(A] \subseteq(B]$;
(3) $((A]) B]]=((A] B]=(A(B]]=(A B]$;
(4) $(A](B] \subseteq(A B]$;
(5) $(A] B \subseteq(A B]$ and $A(B] \subseteq(A B]$;
(6) $(A \cup B]=(A] \cup(B]$.

The concepts of left, right and two-sided ideals of an ordered semigroup can be found in [2]. Let (S, \cdot, \leq) be an ordered semigroup. A nonempty subset A of S is called a left (resp., right) ideal of S if it satisfies the following conditions:
(i) $S A \subseteq A$ (resp., $A S \subseteq A$);
(ii) $A=(A]$, that is, for any x in A and y in $S, y \leq x$ implies $y \in A$.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or simply an ideal of S. It is known that the union or intersection of two ideals of S is an ideal of S.

Let (S, \cdot, \leq) be an ordered semigroup. A left ideal A of S is said to be proper if $A \subset S$. The symbol \subset stands for proper subset of sets. A proper right and two-sided ideals are defined similarly. S is said to be left (resp., right) simple if S does not contain proper left (resp., right) ideals. If S does not contain proper ideals then we call S simple. A proper ideal A of S is said to be maximal if for any ideal B of S, if $A \subset B \subseteq S$, then $B=S$.

For any element a of an ordered semigroup (S, \cdot, \leq), the principal ideal generated by a is of the form $I(a)=(a \cup S a \cup a S \cup S a S]$.

A nonempty subset B is called a bi-ideal of S if
(i) $B S B \subseteq B$;
(ii) for any x in B and y in $S, y \leq x$ implies $y \in B$ (see [5]).

For any element a of an ordered semigroup (S, \cdot, \leq) the $b i$-ideal generated by a is of the form $B(a)=(\{a\} \cup a S a]$.

An equivalence relation σ on S is called congruence if $(a, b) \in \sigma$ implies $(a c, b c) \in \sigma$ and $(c a, c b) \in \sigma$ for every $c \in S$. A congruence σ on S is called semilattice congruence if $\left(a^{2}, a\right) \in \sigma$ and $(a b, b a) \in \sigma$ for every $a, b \in S$. A semilattice congruence σ on S is called complete if $a \leq b$ implies $(a, a b) \in \sigma$. An ordered semigroup S is called a semilattice of Archimedean semigroups (resp., complete semilattice of Archimedean semigroups) if there exists a semilattice congruence
(resp., complete semilattice congruence) σ on S such that the σ-class $(x)_{\sigma}$ of S containing x is a Archimedean subsemigroup of S for every $x \in S$.

A subsemigroup F is called a filter of S if
(i) $a, b \in S, a b \in F$ implies $a \in F$ and $b \in F$;
(ii) if $a \in F$ and b in $S, a \leq b$, then $b \in F$ (see [6]).

For an element x of S, we denote by $N(x)$ the filter of S generated by x and \mathcal{N} the equivalence relation on S defined by $\mathcal{N}:=\{(x, y) \mid N(x)=N(y)\}$. The relation \mathcal{N} is the least complete semilattice congruence on S. An element e of an ordered semigroup (S, \cdot, \leq) is called an ordered idempotent if $e \leq e^{2}$. We call an ordered semigroup S idempotent ordered semigroup if every element of S is an ordered idempotent (see [1]). The set of all ordered idempotent of an ordered semigroup S denoted by $E(S)$ and the set of all positive integers denoted by N.

An ordered semigroup (S, \cdot, \leq) is called Archimedean if for any a, b in S there exists a positive integer n such that $a^{n} \in(S b S]$ (see [8]). An ordered semigroup S is called regular if for every $a \in S$, there exists $x \in S$ such that $a \leq a x a$. Equivalent definitions are as follows: (1) $A \subseteq(A S A]$ for any $A \subseteq S$ or (2) $a \in(a S a]$ for any $a \in S$ (see [7]). An ordered semigroup S is said to be normal if $(x S]=(S x]$ for all $x \in S$. An ordered semigroup S is said to be weakly commutative if for any $a, b \in S$, then there exists positive integer n such that $(a b)^{n} \in(b S a]$ (see [4]). An ideal A of an ordered semigroup S is called globally idempotent if $A=\left(A^{2}\right]$ (see [9]). An ideal A of an ordered semigroup S is called complete if $A=(A S]=(S A]$ (see [9]).

Definition. Let (S, \cdot, \leq) be an ordered semigroup. A bi-ideal A of S is said to be B-pure if $A \cap(x S]=(x A]$ and $A \cap(S x]=(A x]$ for all $x \in S$. An ordered semigroup S is said to be B^{*}-pure if every bi-ideal of S is B-pure.

Example 1. Let $S=\{a, b\}, x y=b$ for all $x, y \in S, \leqslant=\{(a, a),(b, b),(a, b)\}$. It is clear that S is an ordered semigroup. We show that S is B^{*}-pure. We determine all bi-ideals in S. We have two candidates: $\{a\}$ and S. Of course, S is a bi-ideal, but $\{a\}$ is not a bi-ideal, because $\{a\} S\{a\}=\{b\}$. So there exists only one bi-ideal in S, namely S. Bi-deal S is B-pure, because $S \cap(S x]=(S x]$ and $S \cap(x S]=(x S]$ for all $x \in S$.

2. Main Results

First, we have the following lemma.
Lemma 2. Any normal ordered semigroups are weakly commutative.
Proof. Let S be a normal ordered semigroup and $a, b \in S$. We have

$$
(a b)^{3}=a b a b a b \in(S b S a S] \subseteq((S b] S(a S]] \subseteq((b S] S(S a]] \subseteq(b S a]
$$

Hence S is weakly commutative.
Lemma 3. Let S be a B^{*}-pure ordered semigroup. Then S has the following properties:
(1) $(a S]=\left(a^{2} S\right]$ and $(S a]=\left(S a^{2}\right]$ for all $a \in S$;
(2) S is normal;
(3) S is weakly commutative;
(4) for each $x \in S, N(x)=\left\{y \in S \mid x^{n} \in(y S y]\right.$ for some $\left.n \in N\right\}$;
(5) a^{2} is regular for all $a \in S$.

Proof. (1) Let $a \in S$. Since S is B^{*}-pure, the bi-ideal ($\left.a S\right]$ is B-pure. Thus $(a S]=(a S] \cap(a S]=(a(a S]] \subseteq\left(a^{2} S\right]$. The converse is obvious. Hence $(a S]=$ $\left(a^{2} S\right]$. Similarly, we have $(S a]=\left(S a^{2}\right]$.
(2) Let $a \in S$. By (1), we have

$$
(a S]=\left(a^{2} S\right] \subseteq(S a S] \subseteq((S a] S]=(S a] \cap(S S] \subseteq(S a]
$$

Similarly, we have $(S a] \subseteq(a S]$. It follows that $(a S]=(S a]$. Hence S is normal.
(3) This follows by (2) and Lemma 2.
(4) This follows by (3) and lemma in [4].
(5) Let a be any element of S. By (1) and (2) we have

$$
a^{2} \in(a S]=\left(a^{2} S\right]=\left(a^{4} S\right] \subseteq\left(a^{2}\left(a^{2} S\right]\right]=\left(a^{2}\left(S a^{2}\right]\right] \subseteq\left(a^{2} S a^{2}\right]
$$

Thus a^{2} is regular.
The following Corollary 4 can be obtained from Lemma 2 and theorem in [4].
Corollary 4. Any normal ordered semigroups are semilattices of Archimedean semigroups.

The following Theorem 5 can be obtained from Lemma 3 and theorem in [4].
Theorem 5. Any B^{*}-pure ordered semigroups are semilattices of Archimedean semigroups.

Theorem 6. Let (S, \cdot, \leq) be an ordered semigroup such that $(a S]=\left(a^{2} S\right]$ and $(S a]=\left(S a^{2}\right]$ for all a in S. The following statements are equivalent:
(1) $(S e]=(e S]$ for all e in $E(S)$;
(2) S is normal;
(3) S is weakly commutative;
(4) for each $x \in S, N(x)=\left\{y \in S \mid x^{n} \in(y S y]\right.$ for some $\left.n \in N\right\}$.

Proof. By Lemma 2, (2) implies (3). We have that (3) and (4) are equivalent by lemma in [4].
$(1) \Rightarrow(2)$ Let $a \in S$. We have $a^{2} \in(a S]=\left(a^{2} S\right]=\left(a^{4} S\right]$ and $a^{2} \in(S a]=$ $\left(S a^{2}\right]=\left(S a^{4}\right]$. Thus $a^{2} \leq a^{4} x$ and $a^{2} \leq y a^{4}$ for some x, y in S. This implies that $a^{4} \leq a^{4} x y a^{4}$. Hence $x y a^{4} \in E(S)$. Let $b \in(a S]=\left(a^{2} S\right]=\left(a^{4} S\right]$. Then $b \leq a^{4} z$ for some z in S. We have

$$
\begin{aligned}
b \leq a^{4} z \leq a^{4} x y a^{4} z \in\left(a^{4} x y a^{4} S\right] & \subseteq\left(a^{4}\left(x y a^{4} S\right]\right] \\
& =\left(a^{4}\left(S x y a^{4}\right)\right] \\
& \subseteq\left(a^{4} S x y a^{4}\right] \\
& \subseteq\left(S a^{4}\right] \\
& \subseteq(S a]
\end{aligned}
$$

Similarly, we have $(S a] \subseteq(a S]$. Hence S is normal.
$(3) \Rightarrow(1)$ Let $e \in E(S)$ and $x \in(e S]$. Then $x \leq e a$ for some $a \in S$. Since S is weakly commutative, then there exists positive integer n such that $(e a)^{n} \in(a S e]$. It follows that
$x \leq e a \leq e e a \in(S e a] \subseteq\left(S(e a)^{n}\right] \subseteq(S(a S e]] \subseteq(S a S e] \subseteq(S S S e] \subseteq(S e]$.
Similarly, we have $(S e] \subseteq(e S]$. Hence $(S e]=(e S]$. This complete the proof.
Now we have shown that if an ordered semigroup S is B^{*}-pure, then the converse of Lemma 2 holds.

The following Theorem 7 can be obtained from Lemma 3 and Theorem 6.
Theorem 7. For a B^{*}-pure ordered semigroup S. The following statements are equivalent:
(1) $(S e]=(e S]$ for all e in $E(S)$;
(2) S is normal;
(3) S is weakly commutative;
(4) for each $x \in S, N(x)=\left\{y \in S \mid x^{n} \in(y S y]\right.$ for some $\left.n \in N\right\}$.

Theorem 8. For a B^{*}-pure ordered semigroup S. The following statements are equivalent:
(1) every ideal of S is globally idempotent;
(2) every ideal of S is complete.

Proof. By Theorem 2.3 in [9], (1) implies (2).
$(2) \Rightarrow(1)$ Let A be any ideal of S and $b \in A$. Since A is complete, $A=(A S]$. We have $b \in(a S]$ for some $a \in A$. Since S is B^{*}-pure and every ideal is a bi-ideal, $A \cap(a S]=(a A]$. We have

$$
b \in A \cap(a S]=(a A] \subseteq\left(A^{2}\right]
$$

Thus $A \subseteq\left(A^{2}\right]$. As is easily seen, $\left(A^{2}\right] \subseteq A$. Hence $A=\left(A^{2}\right]$.

Theorem 9. For an idempotent ordered semigroup S. The following statements are equivalent:
(1) S is B^{*}-pure;
(2) S is normal and $(S a]=\left(S a^{2}\right]$ for all $a \in S$.

Proof. By Lemma 3, (1) implies (2).
$(2) \Rightarrow(1)$. Let A be any bi-ideal of $S, x \in S$. Let $a \in A \cap(S x]=A \cap\left(S x^{2}\right]$. Then $a \leq y x^{2}$ for some $y \in S$. Since $a y \in(a S]=(S a]=\left(S a^{2}\right]$, $a y \leq z a^{2}$ for some $z \in S$. We have

$$
\begin{aligned}
a \leq a^{2} \leq a y x^{2} \leq z a^{2} x^{2} & \in(S a a S x] \\
& \subseteq((S a](a S] x] \\
& =((a S](S a] x] \\
& \subseteq(a S S a x] \\
& \subseteq(A S S A x] \\
& \subseteq(A x]
\end{aligned}
$$

Thus $A \cap(S x] \subseteq(A x]$. Let $b \in(A x]$. Then $b \leq a x$ for some a in A. We have

$$
b \leq a x \in(a S]=(S a]=\left(S a^{2}\right] \subseteq(a S a] \subseteq(A S A] \subseteq A
$$

and so $(A x] \subseteq A$. Since $(A x] \subseteq(S x]$, then $(A x] \subseteq A \cap(S x]$. Thus $A \cap(S x]=(A x]$. Similarly, we have $A \cap(x S]=(x A]$. Hence A is B-pure.

Theorem 10. Any normal regular ordered semigroups are B^{*}-pure.
Proof. Let S be a normal regular ordered semigroup, A be a bi-deal of S and $x \in S$. Let $b \in(x A]$. Then $b \leq x a$ for some a in A. Since S is regular, then $a \leq a y a$ for some y in S. We have

$$
\begin{aligned}
b \leq x a \leq x a y a \in(S a S a] \subseteq((S a] S a] & =((a S] S a] \\
& \subseteq(a S S a] \\
& \subseteq(a S a] \\
& \subseteq(A S A] \subseteq A
\end{aligned}
$$

Thus $(x A] \subseteq A$. Since $(x A] \subseteq(x S]$, then $(x A] \subseteq A \cap(x S]$. Let $a \in A \cap(x S]$. Then $a \leq x b$ for some b in S. Since S is regular, then $a \leq a y a$ for some y in S. We have

$$
\begin{aligned}
a \leq \text { aya } \leq \text { ayay } a \leq x b y a y a=x(b y) a y a & \in(x S a y a] \\
& \subseteq(x(S a] y a] \\
& \subseteq(x(a S] S A] \\
& \subseteq(x a S S A] \\
& \subseteq(x A S S A] \\
& \subseteq(x A] .
\end{aligned}
$$

Thus $A \cap(x S]=(x A]$. Similarly, we have $A \cap(S x]=(A x]$. Hence A is a B-pure.

The following Corollary 11 can be obtained from Lemma 3 and Theorem 10.
Corollary 11. For a regular ordered semigroup S. The following statements are equivalent:
(1) S is B^{*}-pure;
(2) S is normal.

Theorem 12. For a B^{*}-pure ordered semigroup S. The following statements are equivalent:
(1) S is Archimedean;
(2) $(S a S]=(S b S]$ for all $a, b \in S$;
(3) $(a S]=(b S]$ for all $a, b \in S$;
(4) $(a S a]=(b S b]$ for all $a, b \in S$;
(5) for any $e, f \in E(S),(e, f) \in \mathcal{N}$;
(6) every bi-ideal of S is Archimedean.

Proof. It is clear that (6) implies (1).
$(1) \Rightarrow(2)$ Let $a, b \in S$. Since S is Archimedean, then there exists positive integer n such that $a^{n} \in(S b S]$. By Lemma 3 , we have

$$
(S a S] \subseteq\left(S a^{n} S\right] \subseteq(S(S b S] S] \subseteq(S S b S S] \subseteq(S b S]
$$

Similarly, we have $(S b S] \subseteq(S a S]$. Hence $(S a S]=(S b S]$. It follows from Lemma 3 (1) and (3) that (2) implies (3) and (3) implies (4).
$(4) \Rightarrow(5)$ Let $e, f \in E(S)$. Then $(e S e]=(f S f]$. This implies that $N(e)=$ $N(f)$. Hence $(e, f) \in \mathcal{N}$.
$(5) \Rightarrow(6)$ Let A be a bi-deal of S and $a, b \in A$. Since S is B^{*}-pure, a^{2} and b^{2} are regular by Lemma 3. Then $a^{2} \leq a^{2} x a^{2}$ and $b^{2} \leq b^{2} y b^{2}$ for some $x, y \in S$. This implies that $a^{2} x, b^{2} y \in E(S)$. We have $b^{2} y \in N\left(a^{2} x\right)$. Then $\left(a^{2} x\right)^{n} \in\left(b^{2} y S b^{2} y\right]$ for some positive integer n. Thus $\left(a^{2} x\right)^{n} \leq b^{2} y z b^{2} y$ for some $z \in S$. We have

$$
\begin{aligned}
a^{3} \leq a a^{2} x a^{2} \leq a a^{2} x a^{2} x a^{2} & =a\left(a^{2} x\right) a^{2} x a^{2} \\
& \leq a\left(a^{2} x\right)^{n} a^{2} \\
& \leq a\left(b^{2} y z b^{2} y\right) a^{2} \\
& =a b\left(b\left(y z b^{2} y a\right) a\right) \\
& \in(A b(A S A)] \\
& \subseteq(A b A] .
\end{aligned}
$$

Hence A is Archimedean. This completes the proof of the theorem.
Theorem 13. Any B^{*}-pure Archimedean regular ordered semigroup S does not contain proper bi-ideals.

Proof. Let A be any bi-ideal of S. Let $a \in A$ and $b \in S$. Since S is Archimedean, then there exists positive integer n such that $b^{n} \in(S a S]$. Since S is B^{*}-pure, ($a S a$] is B-pure. Then by the regularity of S and Lemma 3 , we have

$$
\begin{aligned}
b \in(b S b] \subseteq\left(b^{n} S b^{n}\right] & \subseteq((S a S] S(S a S]] \\
& \subseteq(S a S S S a S] \\
& \subseteq(S a S S S(a S]] \\
& \subseteq(S a S S S(S a]] \\
& \subseteq(S a S S S S a] \\
& \subseteq(S(a S a]] \\
& =(S S] \cap(a S a] \\
& \subseteq(A S A] \\
& \subseteq A
\end{aligned}
$$

Thus $S \subseteq A$. Hence $S=A$.
The following Theorem 14 can be obtained from Theorem 13 .
Theorem 14. Any B^{*}-pure Archimedean regular ordered semigroups are left and right simple.

Theorem 15. For a B^{*}-pure Archimedean ordered semigroup S. The following statements are equivalent:
(1) S is regular;
(2) S does not contain proper bi-ideals;
(3) S are left and right simple.

Proof. By Theorem 13, (1) implies (2). It is clear that (2) implies (3).
$(3) \Rightarrow(1)$. Let $a \in S$. As is easily seen, $(S a]$ is a left ideal and $(a S]$ is a right ideal. Since S are left and right simple, then $S=(S a]$ and $S=(a S]$. We have $a \in(a S]=(a(S a]] \subseteq(a S a]$. This completes the proof of the theorem.

References

[1] K. Hansda, Idempotent ordered semigroups (2017). arXiv:1706.08213v1
[2] L. Fuchs, Partially ordered Algebraic Systems (Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc, Reading, Mass.-Palo Alto, Calif.-London Pergamon Press, 1963).
[3] N. Kuroki, On B^{*}-pure semigroups, Acta Math. Hung. 43 (1984) 295-298.
[4] N. Kehayopulu, M. Tsingelis, On weakly commutative ordered semigroups, Semigroup Forum 56 (1998) 32-35. https://doi.org/10.1007/s00233-002-7002-6
[5] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1992) 123-130.
[6] N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum 34 (1987) 367-370. https://doi.org/10.1007/BF02573174
[7] N. Kehayopulu, On regular duo ordered semigroups, Math. Japonica 37 (1992) 535-540.
[8] T. Changphas, An Introduction to Ordered Semigroups (Lecture Note, 2016).
[9] T. Changphas, P. Kummoon, Purity of ideals and generalized ideals on ordered semigroups, Quasigroups and Related systems 26 (2018) 185-196.
[10] T. Changphas, P. Luangchaisri and R. Mazurek, On right chain ordered semigroups, Semigroup Forum 96 (2018) 523-535. https://doi.org/10.1007/s00233-017-9896-z

