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Abstract
We introduce the concept of B*-pure ordered semigroups, and give some
properties of B*-pure ordered semigroups.
Keywords: semigroup, ordered semigroup, B*-pure, normal, weakly com-
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1. INTRODUCTION

A bi-ideal A of a semigroup S is said to be B-pure if ANzS =xA and ANSx =
Az for all x € S. A semigroup S is said to be B*-pure if every bi-ideal of
S is B-pure. The concept B*-pure semigroups was studied by Kuroki [3]. In
this paper, the concept of B*-pure ordered semigroups is introduced. We shall
give some properties of B*-pure ordered semigroups, and characterize B*-pure
Archimedean ordered semigroups. We prove that any B*-pure ordered semigroup
is a semilattices of Archimedean semigroup. Let us recall some certain definitions
and results used throughout the paper. A semigroup (S, -) together with a partial
order < that is compatible with the semigroup operation, meaning that, for any
z,y,z in S,

x <y implies zzx < zy and zz < yz

is called a partially ordered semigroup (or simply an ordered semigroup)(see [2]).
Under the trivial relation, x < y if and only if z = y, it is observed that every
semigroup is an ordered semigroup. Let (S,-, <) be an ordered semigroup. For
A, B nonempty subsets of S, we write AB for the set of all elements zy in S
where x € A and y € B, and write (A] for the set of all elements z in S such that
x < a for some ¢ in A, i.e.,
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2 P. SUMMAPRAB

(Al ={z €S|z <afor someac A}.

In particular, we write Az for A{z}, and zA for {z}A. It was shown in [10] that
the followings hold:

The concepts of left, right and two-sided ideals of an ordered semigroup can
be found in [2]. Let (5,-, <) be an ordered semigroup. A nonempty subset A of
S is called a left (resp., right) ideal of S if it satisfies the following conditions:

(i) SA C A (resp., AS C A);
(ii)) A = (A], that is, for any z in A and y in S, y < x implies y € A.

If A is both a left and a right ideal of .S, then A is called a two-sided ideal,
or simply an ideal of S. It is known that the union or intersection of two ideals
of S is an ideal of S.

Let (S, -, <) be an ordered semigroup. A left ideal A of S is said to be proper
if A C S. The symbol C stands for proper subset of sets. A proper right and
two-sided ideals are defined similarly. S is said to be left (resp., right) simple if
S does not contain proper left (resp., right) ideals. If S does not contain proper
ideals then we call S simple. A proper ideal A of S is said to be mazimal if for
any ideal B of S, if AC B C S, then B=S.

For any element a of an ordered semigroup (S, -, <), the principal ideal gen-

erated by a is of the form I(a) = (a U SaUaS U Sas].
A nonempty subset B is called a bi-ideal of S if

(i) BSB C B;
(ii) for any = in B and y in S, y < x implies y € B (see [5]).

For any element a of an ordered semigroup (S, -, <) the bi-ideal generated by
a is of the form B(a) = ({a} U aSal.

An equivalence relation o on S is called congruence if (a,b) € o implies
(ac,bc) € o and (ca,cb) € o for every ¢ € S. A congruence o on S is called semi-
lattice congruence if (a?,a) € o and (ab,ba) € o for every a,b € S. A semilattice
congruence o on S is called complete if a < b implies (a,ab) € 0. An ordered
semigroup S is called a semilattice of Archimedean semigroups (resp., complete
semilattice of Archimedean semigroups) if there exists a semilattice congruence
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ON B*-PURE ORDERED SEMIGROUP 3

(resp., complete semilattice congruence) o on S such that the o-class (z), of S
containing x is a Archimedean subsemigroup of S for every x € S.
A subsemigroup F' is called a filter of S if

(i) a,b€ S, ab € F implies a € F and b € F;
(ii) ifa€ Fand bin S, a < b, then b € F (see [6]).

For an element x of S, we denote by N(z) the filter of S generated by = and
N the equivalence relation on S defined by N := {(x,y) | N(z) = N(y)}. The
relation N is the least complete semilattice congruence on S. An element e of
an ordered semigroup (S, -, <) is called an ordered idempotent if e < e2. We call
an ordered semigroup S idempotent ordered semigroup if every element of S is
an ordered idempotent (see [1]). The set of all ordered idempotent of an ordered
semigroup S denoted by E(S) and the set of all positive integers denoted by N.

An ordered semigroup (5, -, <) is called Archimedean if for any a,b in S there
exists a positive integer n such that a™ € (SbS] (see [8]). An ordered semigroup
S is called regular if for every a € S, there exists € S such that a < aza.
Equivalent definitions are as follows: (1) A C (ASA] for any A C S or (2)
a € (aSa] for any a € S (see [7]). An ordered semigroup S is said to be normal
if (#S] = (Sz] for all z € S. An ordered semigroup S is said to be weakly
commutative if for any a,b € S, then there exists positive integer n such that
(ab)™ € (bSa] (see [4]). An ideal A of an ordered semigroup S is called globally
idempotent if A = (A?] (see [9]). An ideal A of an ordered semigroup S is called
complete if A = (AS] = (SA] (see [9]).

Definition. Let (S, -, <) be an ordered semigroup. A bi-ideal A of S is said to
be B-pure if AN (zS] = (zA] and AN (Sz|] = (Azx] for all z € S. An ordered
semigroup S is said to be B*-pure if every bi-ideal of S is B-pure.

Example 1. Let S = {a,b}, zy = b for all z,y € S, <= {(a,a), (b,b), (a,b)}.
It is clear that S is an ordered semigroup. We show that S is B*-pure. We
determine all bi-ideals in S. We have two candidates: {a} and S. Of course, S is
a bi-ideal, but {a} is not a bi-ideal, because {a}S{a} = {b}. So there exists only
one bi-ideal in S, namely S. Bi-deal S is B-pure, because S N (Sz] = (Sz] and
SN (zS] = (xS] forall z € S.

2. MAIN RESULTS
First, we have the following lemma.
Lemma 2. Any normal ordered semigroups are weakly commutative.

Proof. Let S be a normal ordered semigroup and a,b € S. We have
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4 P. SUMMAPRAB

(ab)® = ababab € (SbSaS] C ((Sb]S(aS]] C ((bS])S(Sa]] C (bSal.

Hence S is weakly commutative. [ |

Lemma 3. Let S be a B*-pure ordered semigroup. Then S has the following
properties:

) (aS] = (a®9] and (Sa] = (Sa?] for all a € S;

S is normal;

S is weakly commutative;

for eachx € S, N(z) ={y € S| 2" € (ySy| for somen € N};

is regular for all a € S.

(1
(2
(3
(4
(5

)
)
)
) a

Proof. (1) Let a € S. Since S is B*-pure, the bi-ideal (aS] is B-pure. Thus
(aS] = (aS] N (aS] = (a(aS]] € (a®S]. The converse is obvious. Hence (aS] =
(a%S). Similarly, we have (Sa] = (Sa?].

(2) Let a € S. By (1), we have

(aS] = (a®S] C (SaS] C ((Sa)S] = (Sa] N (SS] C (Ya).

Similarly, we have (Sa] C (aS]. It follows that (aS] = (Sa]. Hence S is normal.

(3) This follows by (2) and Lemma 2.

(4) This follows by (3) and lemma in [4].

(5) Let a be any element of S. By (1) and (2) we have

2 € (aS] = (a%9] = (a*S] C (a®(a?®S]] = (a*(Sa?]] C (a*Sa?].

Thus a? is regular. [ |

The following Corollary 4 can be obtained from Lemma 2 and theorem in [4].

Corollary 4. Any normal ordered semigroups are semilattices of Archimedean
Semigroups.

The following Theorem 5 can be obtained from Lemma 3 and theorem in [4].

Theorem 5. Any B*-pure ordered semigroups are semilattices of Archimedean
semigroups.

Theorem 6. Let (S,-,<) be an ordered semigroup such that (aS] = (a%S] and
(Sa] = (Sa?] for all a in S. The following statements are equivalent:

(1) (Se] = (eS] for all e in E(S);

(2) S is normal;

(3) S is weakly commutative;
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ON B*-PURE ORDERED SEMIGROUP 5

(4) for each x € S, N(x) ={y € S| 2" € (ySy| for some n € N}.

Proof. By Lemma 2, (2) implies (3). We have that (3) and (4) are equivalent
by lemma in [4].

(1)=>(2) Let a € S. We have a? € (aS] = (a®5] = (a*S] and a® € (Sa] =
(Sa?] = (Sa'] . Thus a® < a*r and a? < ya* for some x,y in S. This implies
that a* < a*rya*. Hence xya* € E(S). Let b € (aS] = (a®S] = (a*S]. Then
b < a*z for some z in S. We have

b < a*z < atzyatz € (a*xyaS]

NN 1IN 1IN

Similarly, we have (Sa] C (aS]. Hence S is normal.

(3)=(1) Let e € E(S) and z € (eS]. Then x < ea for some a € S. Since S is
weakly commutative, then there exists positive integer n such that (ea)”™ € (aSe].
It follows that

z < ea < eea € (Sea] C (S(ea)”] C (S(aSe]] C (SaSe] C (55Se] C (Se].
Similarly, we have (Se] C (eS]. Hence (Se] = (eS]. This complete the proof. m

Now we have shown that if an ordered semigroup S is B*-pure, then the
converse of Lemma 2 holds.
The following Theorem 7 can be obtained from Lemma 3 and Theorem 6.

Theorem 7. For a B*-pure ordered semigroup S. The following statements are
equivalent:

(1) (Se] = (eS] for all e in E(S);

(2) S is normal;

(3) S is weakly commutative;

(4) for each x € S, N(x) ={y € S| 2" € (ySy| for some n € N}.

Theorem 8. For a B*-pure ordered semigroup S. The following statements are
equivalent:

(1) every ideal of S is globally idempotent;
(2) every ideal of S is complete.

Proof. By Theorem 2.3 in [9], (1) implies (2).
(2)=(1) Let A be any ideal of S and b € A. Since A is complete, A = (AS].

We have b € (aS] for some a € A. Since S is B*-pure and every ideal is a bi-ideal,
AN (aS] = (aA]. We have
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be AN (aS] = (aA] C (A2].

Thus A C (A?]. As is easily seen, (A%] C A. Hence A = (A2]. ]

Theorem 9. For an idempotent ordered semigroup S. The following statements
are equivalent:

(1) S is B*-pure;
(2) S is normal and (Sa] = (Sa?] for alla € S.

Proof. By Lemma 3, (1) implies (2).

(2) = (1). Let A be any bi-ideal of S, x € S. Let a € AN (Sx] = AN (Sx?].
Then a < yz? for some y € S. Since ay € (aS] = (Sa] = (Sa?], ay < za? for
some z € S. We have

SaaSz)
(Sa] (aS]a]
(aS](Salz]

aSSax]

S S Az]

Az].

Thus AN (Sx] C (Az]. Let b € (Az]. Then b < ax for some a in A. We have

a§a2§ayw2§za

,\,\,\,-\,-\/'\

NN IN I N m

b<ax € (aS) = (Sa] = (Sa?] C (aSa] C (ASA] C A,

and so (Az] C A. Since (Az] C (Sz], then (Az] € AN(Sz]. Thus AN(Sz] = (Ax].
Similarly, we have AN (zS] = (xA]. Hence A is B-pure. |

Theorem 10. Any normal regular ordered semigroups are B*-pure.

Proof. Let S be a normal regular ordered semigroup, A be a bi-deal of S and
x € S. Let b € (xA]. Then b < za for some a in A. Since S is regular, then
a < aya for some y in S. We have

b < za < zaya € (SaSa] C ((Sa]Sa] = ((aS]Sal
(aSSa]
(aSal
(ASA] C

NN iN

Thus (zA] C A. Since (zA] C (xS5], then (zA] C AN (zS]. Let a € AN (xS5].
Then a < xb for some b in S. Since S is regular, then a < aya for some y in S.
We have
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(xSaya]
(z(Salyal
(x(aS]SA]
(raSSA|
(
(z

a < aya < ayaya < xbyaya = x(by)aya

zASSA|
Al.

Thus AN (zS] = (zA]. Similarly, we have AN (Sz] = (Az]. Hence A is a
B-pure. [ |

NN ININ N M

The following Corollary 11 can be obtained from Lemma 3 and Theorem 10.

Corollary 11. For a reqular ordered semigroup S. The following statements are
equivalent:

(1) S is B*-pure;

(2) S is normal.

Theorem 12. For a B*-pure ordered semigroup S. The following statements are
equivalent:

(1) S is Archimedean;

(2) (SaS] = (SbS] for all a,be S;
(3) (aS] = (bS] for all a,b € S;

(4) (aSa] = (bSH] for all a,b € S;
(5) for any e, € B(S), (e, ) € N
(6)

every bi-ideal of S is Archimedean.

Proof. 1t is clear that (6) implies (1).

(1)=(2) Let a,b € S. Since S is Archimedean, then there exists positive
integer n such that a" € (SbS]. By Lemma 3, we have

(SaS] C (Sa™S] C (S(SbS]S] C (SSbSS] C (SbS].

Similarly, we have (SbS] C (SaS]. Hence (SaS] = (SbS]. It follows from Lemma
3 (1) and (3) that (2) implies (3) and (3) implies (4).

(4)=(5) Let e, f € E(S). Then (eSe] = (fSf]. This implies that N(e) =
N(f). Hence (e, f) € N.

(5)=(6) Let A be a bi-deal of S and a,b € A. Since S is B*-pure, a? and b?
are regular by Lemma 3. Then a? < a?za? and b* < b?yb? for some x,y € S. This
implies that a?z,b%y € E(S). We have b%y € N(a’x). Then (a?z)" € (b*ySb*y]
for some positive integer n. Thus (a?z)" < b?yzb?y for some z € S. We have
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a® < ad’za? < aa’va’za’ —a(a r)a? xa
< ala?z)"a

a(b*yzb*y)a®

ab(b(yzb*ya)a)

(Ab(ASA)]

C (AbA].

Hence A is Archimedean. This completes the proof of the theorem. [ |

m I/\

Theorem 13. Any B*-pure Archimedean regular ordered semigroup S does not
contain proper bi-ideals.

Proof. Let A be any bi-ideal of S. Let a € A and b € S. Since S is Archimedean,
then there exists positive integer n such that b € (SaS]. Since S is B*-pure,
(aSa] is B-pure. Then by the regularity of S and Lemma 3, we have

€ (bS] C (b"Sb"] C ((SasS]S(Sas]]
SaSSSaS)|
SaSSS(aS]
SaSSS(Sal]
SaSSSSal
S(asi

] (aSal
SA]

AAAA,_\/_\,_\/_\

Iﬂ NN NN INiIN N

Thus S C A. Hence S = A. ]
The following Theorem 14 can be obtained from Theorem 13 .

Theorem 14. Any B*-pure Archimedean regular ordered semigroups are left and
right simple.

Theorem 15. For a B*-pure Archimedean ordered semigroup S. The following
statements are equivalent:
(1) S is reqular;
(2) S does not contain proper bi-ideals;
(3) S are left and right simple.
Proof. By Theorem 13, (1) implies (2). It is clear that (2) implies (3).
(3) = (1). Let a € S. As is easily seen, (Sa] is a left ideal and (aS] is a right

ideal. Since S are left and right simple, then S = (Sa] and S = (aS]. We have
€ (aS] = (a(Sal]] € (aSa]. This completes the proof of the theorem. |
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