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Abstract

Coherent filters, strongly coherent filters, and 7-closed filters are intro-
duced in pseudo-complemented distributive lattices and their characteriza-
tion theorems are derived. A set of equivalent conditions is derived for every
filter of a pseudo-complemented distributive lattice to become a coherent
filter. The notion of median filters is introduced and some equivalent con-
ditions are derived for every maximal filter of a pseudo-complemented dis-
tributive lattice to become a median filter which leads to a characterization
of Stone lattices.
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2010 Mathematics Subject Classification: 06D99.

1. INTRODUCTION

The theory of pseudo-complements in lattices, and particularly in distributive
lattices was developed by M.H. Stone [10], O. Frink [5], and George Gratzer [6].
Later many authors like R. Balbes [1], T.P. Speed [9], and O. Frink [5]etc., ex-
tended the study of pseudo-complements to characterize Stone lattices. In [3],
I. Chajda, R. Halas and J. Kiihr extensively studied the structure of pseudo-
complemented semilattices. In [7], the concept of d-ideals was introduced in
pseudo-complemented distributive lattices and then Stone lattices were charac-
terized in terms of d-ideals. In [8], the authors investigated the properties of
D-filters and prime D-filters of distributive lattices and characterized the mini-
mal prime D-filters of distributive lattices.
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2 M. SAMBASIVA RAO

In this note, the concepts of coherent filters and strongly coherent filters are
introduced in pseudo-complemented distributive lattices. A set of equivalent con-
ditions is derived for every filter of a pseudo-complemented distributive lattice to
become a coherent filter which characterizes a Boolean algebra. It is showed that
every strongly coherent filter of a pseudo-complemented distributive lattice is co-
herent. The concepts of 7-closed filters and semi Stone lattices are introduced
within pseudo-complemented distributive lattices and the class of all semi Stone
lattices is characterized using the 7-closed filters. It is observed that the classes
of maximal filters and prime D-filters coincide in a pseudo-complemented lattice.
This observation precisely motivates to investigate the properties of certain class
of filters under the name median filters as a special subclass of maximal filters
of pseudo-complemented distributive lattices. Median filters are characterized
and it is shown that every median filter of a pseudo-complemented distributive
lattice is a coherent filter. A set of equivalent conditions is derived for every max-
imal filter of a pseudo-complemented distributive lattice to become a strongly
coherent filter. Some equivalent conditions are stated for maximal filters of a
pseudo-complemented distributive lattice to become median filters which leads
to a characterization of Stone lattices.

2. PRELIMINARIES

The reader is referred to [2], [3] and [8] for the elementary notions and nota-
tions of pseudo-complemented distributive lattices. However some of the prelim-
inary definitions and results are presented for the ready reference of the reader.

A non-empty subset A of a lattice L is called an ideal (filter) [2] of LifaVb € A
(anbe A)andaNz € A (aVx € A) whenever a,b € A and x € L. The set
(a] ={z € L |z <a} (resp. [a) ={z € L | a < z})is called a principal ideal
(resp. principal filter) generated by a. The set Z(L) of all ideals of a distributive
lattice L with 0 forms a complete distributive lattice. The set F(L) of all filters
of a distributive lattice L with 1 forms a complete distributive lattice in which
FVvG={iNj|i€ F and je€ G} for any two filters F' and G. A proper filter
P of a lattice L is said to be prime if for any x,y € L, x Vy € P implies x € P
or y € P. A proper filter P of a lattice L is called maximal if there exists no
proper filter Q of L such that P C ). A proper filter P of a distributive lattice
is minimal if there exists no prime filter () of L such that @) C P.

The pseudo-complement b* of an element b is the element satisfying

aANb=0 & aAb*"=a & a<D*
where < is the induced order of L.

A distributive lattice L in which every element has a pseudo-complement is
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MEDIAN FILTERS OF PSEUDO-COMPLEMENTED DISTRIBUTIVE LATTICES3

called a pseudo-complemented distributive lattice. For any two elements a, b of a
pseudo-complemented semilattice [3], we have the following.

(1) a<bd implies b* <a*,

(2) a<a*

(3) a a*,
() (aVb)* :a*/\b*7

An element a of a pseudo-complemented distributive lattice L is called a dense
element if a* = 0 and the set D of all dense elements of L forms a filter in L.

Definition [2]. A pseudo-complemented distributive lattice L is called a Stone
lattice if ¥V x™ =1for allz € L

Theorem 1 [2]|. The following conditions are equivalent in a pseudo-complemented
distributive lattice L:

(1) L is a Stone lattice;
(2) forz,zye L, (x ANy)* =z*Vy*;
(3) forzyye L, (xVy)*™* =a™* vy

A filter F of a distributive lattice L is called a D-filter [8] if D C F. For any
non-empty subset A of a distributive lattice L, the set A° = {x € L | zVa €
D for all a € A} is a D-filter of L. In case of A = {a}, we simply represent {a}°
by (a)°. A prime D-filter of a distributive lattice is minimal if it is the minimal
element in the poset of all prime D-filters. A prime D-filter of a distributive
lattice is minimal [8] if and only if to each x € P, there exists y ¢ P such that
x Vy € D. Throughout this note, all lattices are considered to be bounded
pseudo-complemented distributive lattices unless otherwise mentioned.

3. COHERENT FILTERS

In this section, the concepts of coherent filters and strongly coherent filter are
introduced. Stone lattices are characterized with help of coherent filters. A set of
equivalent conditions is derived for every filter of a lattice to become a coherent
filter which leads to a characterization of a Boolean algebra.

Definition. For any non-empty subset A of a lattice L, define
AT ={zeL|a*Vva™ =1forall a € A}

Clearly D™ = D and L™ = D. For any a € L, we denote ({a})” simply by
(a)™. Tt is obvious that (0)" = D and (1)" = L. Forany ) # AC L, ANA™ C D.
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4 M. SAMBASIVA RAO

Proposition 2. For any non-empty subset A of L, A™ is a D-filter in L.

Proof. Clearly D C A7. Let z,y € A7. For any a € A, we get (x Ay)*™* Va** =
(* ANy*™)Va*™ = (2 Va*™*)AN(y™*Va*™*) =1A1=1. Hence x Ay € A”. Again,
let x € AT and x < y. Then ™ V o™ = 1 for any a € A. Since z < y, we get
o < y**. For any ¢ € A, we get 1 = 2™ VvV ™ < y** v ¢**. Thus y** V™ = 1.
Hence y € A7. Therefore A7 is a D-filter of L. ]

The following lemma is a direct consequence of the above definition.

Lemma 3. For any two non-empty subsets A and B of a lattice L, we have
(1) AC B implies BT C A”
(2) ACA™T™

(3) ATTT — AT

(4) A" =1L if and only if A= D

Proposition 4. For any two filters F,G of a lattice L, (FV G)" = FTNG".

Proof. Clearly (FVG)” C FTNG". Conversely, let x € FTNG™. Let c€ FVG
be an arbitrary element. Then ¢ = ¢ A j for some ¢ € F and j € G. Now
VT =V (AT =2V (@A) = (V) A (V) = TAT =1
Thus x € (F V G)" and therefore (FVG)" = FTNG". ]

The following corollary is a direct consequence of the above results.

Corollary 5. Let L be a lattice. For any a,b € L, the following properties hold:
(1) a < b implies (a)™ C (b)7,

2) (anb)" = (a)" N ()7,

3) (a)” = L if and only if a is dense,

4) a € (b)" impliesaVbe D,

5) a* =b* implies (a)” = (b)7.

~~ I~/

Clearly A™ C A°. We derive a set of equivalent conditions for a filter to
satisfy the reverse inclusion which leads to a characterization of Stone lattices.

Theorem 6. The following assertions are equivalent in a lattice L:

(1) L is a Stone lattice;

(2) for any filter F of L, F™ = F°;

(3) foranyae L, (a)” = (a)°;

(4) for any two filters F,G of L, FNG C D if and only if FF C G7;
(5) fora,be L,aVbe D implies a™ Vb =1;

(6) foraelL, (a)" = (a*)".
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Proof. (1) = (2): Assume that L is a Stone lattice. Let F' be a filter of L.
Clearly F™ C F°. Conversely, let x € F°. Then zVy € D for all y € F. Since L
is Stone, ** V y** = (x V y)™* = 0* =1 for all y € F. Therefore x € F".

(2) = (3): It is clear.
(3) = (4): Assume condition (3). Let F, G be two filters of L. Suppose FNG C D.
Let x € F. Foranyy € G, we get tVy € FNG C D. Hence z Vy € D. Now

xVyeDforalye G = xze€(y)forallyeG
= xe€(y) forallyeG
= zVvyT=1forallyeG

which yields that x € G7. Conversely, suppose that FF C G". Let x € FFNG.
Then 2 € F C G" and x € G. Hence x € GNG™ C D. Therefore F NG C D.
(4) = (5): Assume condition (4). Let a,b € L be such that a Vb € D. Then

avbeD = [a)N[b)CD
= la) C[b)7 by (4)
= a€clb)
= A VDt =1

(5) = (6): Assume condition (5). Let a € L. Clearly, we have a V a* € D. By
assumption (5), we get that a** Va™* = 1. Hence a* € (a)”. Thus (a)™™ C (a*)".
Conversely, let x € (a*)” and t € (a)”. Since t € (a)7, we get that a** VvV t** = 1.
Hence a* At* = 0. Thus t* < a™. Now

z€ (@) = avzTr=1
= a"ANz"=0
= t'"Az*=0 since t* <a**
= tVzeD
= t"™vaz™ =1 Dby (5

which holds for all ¢t € (a)”. Hence = € (a)™". Therefore (a*)” C (a)™".
(6) = (1): Assume condition (6). Let a € L. Since a € (a)™” = (a*)7, we get
a*Va*™ =a** Va*™ = 1. Therefore L is a Stone lattice. [ ]

Now, we define coherent filters.

Definition. A filter F' of a lattice L is called a coherent filter if for all z,y €
L,(z)" = (y)" and € F imply that y € F.

Clearly each (z)",z € L is a coherent filter. It is evident that any filter F' is
a coherent filter if it satisfies (z)™” C F for all z € F.
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6 M. SAMBASIVA RAO

Theorem 7. The following assertions are equivalent in a lattice L:

(1) L is a Boolean algebra;

(2) every element is closed;

(3) for any filter F, o™ € F implies x € F’;
(4) every principal filter is a coherent filter;
(5) ewvery filter is a coherent filter;

(6) every prime filter is a coherent filter;
(7) fora,be L,(a)” = (b)" implies a = b;
(8) fora,be L,a* =b* implies a = b.

Proof. (1) = (2): It is proved in [[7], Theorem 2.15].

(2) = (3): It is clear.

(3) = (4): Assume that every element of L is closed. Let [z) be a principal filter
of L. Since z Vz* € D, we get (x Va*)™ =1 € [1). By (3), we get vV z* € [1),
which gives  V 2* = 1. Let a,b € L be such that (a)” = (b)” and a € [z). Then

zVz*=1 = aVz*=1 sincea € [r)

= vz =1

= z"€(a)" =(b)"

= b*vaer=1

= (B"Vvz")" =0

= bV"AT=0

= bV'Ax=0 -since z <™
= x<b”

which yields b** € [z). By (3), we get b € [z). Hence [z) is a coherent filter.

(4) = (5): Assume condition (4). Let F be a filter of L. Choose a,b € L.
Suppose (a)” = (b)" and a € F. Then clearly [a) C F. Since (a)” = (b)" and [a)
is a coherent filter, we get that b € [a) C F. Therefore F is a coherent filter.

(5) = (6): It is clear.

(6) = (7): Assume that every prime filter of L is a coherent filter. Let a,b € L
such that (a)” = (b)". Suppose a # b. Then there exists a prime filter P such
that a € P and b ¢ P. By the hypothesis, P is a coherent filter of L. Since
()T = (b)" and a € P, we get b € P, which is a contradiction. Therefore a = b.

(7) = (8): By Corollary 5(5), it is direct.

(8) = (1): Assume condition (8). Then L has a unique dense element. Therefore
L is a Boolean algebra. [ |

Definition. For any filter F' of a lattice L, define w(F") as follows:
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m(F)={xeL|(z)"VF =L}
The following lemma is an immediate consequence of the above definition.

Lemma 8. For any two filters F,G of a lattice L, the following properties hold:
(1) F C G implies 7(F) C n(G)
(2) 71(FNG)=n(F)Nn(G).

Proof. Routine verification. [ |
Proposition 9. For any filter F' of a lattice L, w(F') is a D-filter of L.

Proof. Clearly D C n(F). Let z,y € n(F). Then (z)" VF = (y)" VF = L.
Hence (x Ay)"VE ={(z)"N(y)"} VF ={(x)" VF}N{(y)" vV F} = L. Hence
x Ay € m(F). Again let z,€ n(F) and x <y. Then L = ()" VF C (y)" V F.
Thus y € 7(F). Therefore w(F') is a D-filter in L. |

Lemma 10. Let F be a filter of a lattice L. Then F is a D-filter of L if and
only if m(F) C F.

Proof. Assume that F' is a D-filter of L. Let x € n(F). Then (x)” V F = L.
Hence x = a A b for some a € (z)” C (x)° and b € F. Then xVa € D C F and
xVbeF. Thusex=zVzez=zV(aAb) = (xVa)A(zxVb) € F. Therefore
7w(F) C F. Converse is clear because of D C 7(F') C F. |

Definition. A filter F' of a lattice L is called strongly coherent if F' = 7(F).
Proposition 11. Every strongly coherent filter of a lattice is a coherent filter.

Proof. Let F be a strongly coherent filter of a lattice L. Clearly F'is a D-filter of
L. Let z,y € L be such that (z)” = (y)” and © € F = n(F). Then (z)"V F = L.
Hence (y)" V F = L and so y € w(F) = F. Thus F is a coherent filter of L. =

For any filter F' of a lattice L, it can be noted that F C D if and only if
F™™ = D. A D-filter F of a lattice L is called a 7-closed if F' = F77. Clearly D
is the smallest 7-closed filter and L is the largest 7-closed filter of the lattice L.

Proposition 12. Every t-closed filter of a lattice is a coherent filter.

Proof. Let F be a 71-closed filter of a lattice L. Let z,y € L be such that
()™ = (y)". Suppose x € F. Then, we get that y € (y)™” = ()" C F'" = F.
Therefore F' is a coherent filter of L. [ |

Definition. A lattice L is called a semi Stone lattice if (x)” V (z)"" = L for all
x € L.
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8 M. SAMBASIVA RAO

Theorem 13. FEvery Stone lattice is a semi Stone lattice.

Proof. Assume that L is a Stone lattice. Let = € L. Suppose (z)” V (z)"" # L.
Then there exists a maximal filter M such that (z)"V(z)™™ € M. Then (z)” C M
and = € (x)”” C M. Since M is maximal, we get * ¢ M. Since L is Stone, we
get x* V 2** = 1. Hence z* € (z)7. Thus (z)” ¢ M, which is a contradiction.
Hence (z)7 V (z)"" = L. Therefore L is a semi Stone lattice. [ ]

The converse of the above theorem is not true. For, consider

Example 14. Consider the following bounded and finite distributive lattice
L ={0,a,b,c,1} whose Hasse diagram is given by:

1

0

Clearly L is a pseudo-complemented lattice. It can be easily observed that (a)” =
(b)" = D and (¢)” = (1)" = L. Hence (a)™™ = (b)"" = L. Observe that L is a
semi Stone lattice. But L is not a Stone lattice because of a*Va** = bva = ¢ # 1.

Theorem 15. The following assertions are equivalent in a lattice L:

(1) L is a semi Stone lattice;
(2) every T-closed filter is strongly coherent;

(3) for each x € L,(x)™ is strongly coherent.

Proof. (1) = (2): Assume that L is a semi Stone lattice. Let F' be a 7-closed
filter of L. Then F is a D-filter with F7™ = F. Clearly n(F) C F. Conversely,
let z € F. It can be easily verified that (x)™” C F7". Hence L = (z)" V (z)"7 C
(x)"VF™ = (2)" VF. Thus x € n(F). Therefore F is strongly coherent.

(2) = (3): Since each (x)7" is T-closed, it is obvious.

(3) = (1): Assume condition (3). Let x € L. Then we get w((z)™") = (z)"".
Since x € ()77, we get (z)” V ()" = L. Therefore L is a semi Stone lattice. m

4. MEDIAN FILTERS

In this section, the notion of a median filter is introduced in lattices. Char-
acterization theorems of median filters are derived for every prime D-filter to
become median and every maximal filter to become median.
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Proposition 16. Let P be a prime filter of a lattice L. Then the following
assertions are equivalent:

(1) DCP;
(2) foranyx € L, x € P if and only if z* ¢ P;
(3) for any x € L, x* € P if and only if v € P;
(4) for any x,y € L with =* = y*, x € P implies that y € P;
(5) DN(L—-P)=10.
Proof. (1) = (2): Assume that D C P. Suppose x € P. If z* € P, then

0=z Az* € P, which is a contradiction. Hence z* ¢ P. Conversely, let * ¢ P.
Clearly x V z* € D C P. Since P is prime and z* ¢ P, we get x € P.

(2) = (3): It is clear.

(3) = (4): It is clear.

(4) = (5): Assume condition (4). Suppose x € D N (L — P). Then, we get
¥ =0=1"and x ¢ P. Since 1 € P, by (4), we get that x € P which is a
contradiction. Therefore D N (L — P) = ().

(5) = (1): It is obvious. ]

Theorem 17. Let M be a proper filter of a lattice L. The following assertions
are equivalent:

(1) M is mazimal;
(2) M is a prime D-filter;
(3) = ¢ M implies z* € M.

Proof. (1) = (2): Assume that M is a maximal filter of L. Clearly M is a prime
filter. Let x € D. Then, we get * = 0. Suppose x ¢ M. Then M V [x) = L.
Hence 0 = mAz for some 0 # m € M. Then m < z* = 0, which is a contradiction.
Hence x € M. Thus D C M. Therefore M is a prime D-filter.

(2) = (3): Assume that M is a prime D-filter of L. Suppose = ¢ M. Clearly
xVa*eDC M. Since M is prime and x ¢ M, we have x* € M.

(3) = (1): Assume condition (3). Suppose M is not maximal. Let @ be a proper
filter such that M C Q. Choose z € QQ — M. Since x ¢ M, by (3), we get that
x* € M C Q. Therefore 0 = x A x* € @), which is a contradiction. [

From Theorem 17, one can notice that the class of all maximal filters and
the class of all prime D-filters are the same. Since every prime D-filter is max-
imal, we can conclude that every prime D-filter is minimal. Therefore maximal
filters, prime D-filter, and minimal prime D-filters are the same in a pseudo-
complemented distributive lattice. The notion of median filters is now introduced.

Definition. A maximal filter M of a lattice L is called median if to each x € M,
there exists y ¢ M such that z** vV y*™* = 1.
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From Example 14, we initially observe that a maximal filter of a lattice need
not be median, For consider the maximal filter M = {1,a,c} of L. Notice that
for a € M, there is no x ¢ M such that a** vVa** = 1. Therefore M is not median.

Lemma 18. Let M be a maximal filter of a lattice L. For any x € L, it holds
x ¢ M implies (z)" CM

Proof. Suppose x ¢ M. Let a € (z)". Then a** vV 2** = 1. Hence (a V)" =1
and so a Vo € D C M. Since x ¢ M, we get a € M. Therefore (z)” C M. |

Lemma 19. Let M be a median filter of a lattice L. For any x € L, we have
x €M if and only if (x)7" C M

Proof. Suppose that © € M. Let a € (z)"". Then, we get (z)” C (a)”. Since
x € M and M is a median filter, there exists y ¢ M such that z** v y** = 1.
Then, we get y € (z)” C (a)”. Since y ¢ M, we must have (y)” C M. Hence
a€ (a)” C (y)” € M. Therefore ()" C M. ]

In the following, we derive a characterization theorem of median filters.

Theorem 20. Let M be a mazimal filter of a lattice L. For each x € L, the
following assertions are equivalent:

(1) M is median;
(2) ¢ M if and only if ()™ C M;
(3) x** € M implies (x)™ € M.

Proof. (1) = (2): Assume that M is a median filter of L and x € L. Suppose
x ¢ M. By Lemma 18, we have (z)” C M. Conversely, assume that (z)” C M.
Suppose x € M. Since M is median, there exists y ¢ M such that z** v y** = 1.
Hence y € ()" € M, which is a contradiction. Therefore = ¢ M.

(2) = (3): Assume condition (2). Let € L. Suppose z** € M. By Proposition
16, we get x € M. By (2), we get (z)” € M.

(3) = (1): Assume that condition (3) holds. Suppose x € M. Clearly ™ € M.
By the assumed condition, we get that ()7 ¢ M. Then there exists y € (z)"
such that y ¢ M. Hence ** V y** = 1 where y ¢ M. Therefore M is median. m

Theorem 21. Every median filter of a lattice is a coherent filter.

Proof. Let M be a median filter of a lattice L. Suppose z,y € L be such that
()" = (y)” and x € M. Since M is median, there exists a ¢ M such that
r*Va** = 1. Hence a € ()" = (y)”. Thus 1 = y** vV a*™* < (y Va)*™*. Hence
(y Va)*™ =1, which gives that (y Va)* =0. Thus yVa € D C M. Since M is
prime and a ¢ M, it yields that y € M. Therefore M is a coherent filter. |
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In the following theorem, we derive a set of equivalent conditions for a Stone
lattice to become a Boolean algebra in terms of median filters and maximal filters.

Theorem 22. Let L be a Stone lattice. Then the following are equivalent:
(1) L is a Boolean algebra;

(2) every prime filter is maximal;
(3) every prime filter is median;
(4) every prime filter is a D-filter.

Proof. (1) = (2): It is well known.

(2) = (3): Since L is a Stone lattice, it is through.

(3) = (4): Since every median filter is a D-filter, it is clear.

(4) = (1): Assume condition (3). Then D C (\{P | P is a prime filter} = {1}.
Hence D = {1}, which gives 2 V 2* € D = {1}. Thus it is through. |

Definition. For any maximal filter M of a lattice L, define
QM) ={zeL|(x)" ¢ M}.
Lemma 23. For any mazimal filter M, Q(M) is a D-filter contained in M.

Proof. Clearly D C Q(M). Let z,y € Q(M). Then (z)" € M and (y)” € M.
Since M is prime, we get (z Ay)” = ()" N (y)” € M. Hence x Ay € Q(M).
Let z € Q(M) and # < y. Then (z)” € M and ()" C (y)". Since (z)" € M,
we get (y)” € M. Thus y € Q(M). Therefore Q(M) is a D-filter of L. Now,
let z € Q(M). Then, we get ()7 € M. Hence there exists a € (z)7 such that
a ¢ M. Since a € ()7, we get 1 =a*™* Va* < (aVz)*™. ThusaVze D C M.
Since a ¢ M, we must have x € M. Therefore Q(M) C M. [ ]

Let us denote that M is the set of all maximal filters of a lattice L. For any
a € L, we also denote Mg+ = {M € M | a* € M}.
Theorem 24. Let L be a lattice and a € L. Then (a)” € [ Q(M).

MeM  x
Proof. Let z € (a)” and M € My+. Then 2** V o™ =1 and a* € M. Suppose
a € M. Then 0 = a Aa* € M, which is a contradiction Hence a ¢ M. Hence
a € (z)7 such that a ¢ M. Thus (z)” € M. Hence z € Q(M). Thus (a)” C Q(M)
which is true for all M € Mg«. Therefore (a)” € ) Q(M). [ ]
MeM

Corollary 25. Let L be a lattice and a € L. Then a* € M implies (a)” C Q(M).

In Example 14, consider P = {1, a,c}. Clearly D = {1,c} and P is a prime
D-filter. For any element x € P, there exists no y ¢ P such that ** v y*™* = 1.
Hence P is not median. However, in the following, some equivalent conditions
are derived for every prime D-filter of a lattice to become a median filter.
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Theorem 26. The following conditions are equivalent in a lattice L:

(1) L is a Stone lattice;

every D-filter is strongly coherent;

w

every maximal filter is strongly coherent;

N

every maximal filter is median;

for any M € M, Q(M) is median;

for any a,b € L, aVbe D implies (a)” V (b)" = L;
for anya € L, (a)” V (a*)" = L.

N N N N N/
(=2
~— O — — —

7

Proof. (1) = (2): Assume that L is a Stone lattice. Let F' be a D-filter of L.
Clearly 7(F) C F. Conversely, let € F. Since L is a Stone lattice, we get
x* V™ = 1. Suppose ()" V F # L. Then there exists a maximal filter M of
L such that ()™ VF C M. Hence ()" C M and x € FF C M. Since M is a
prime, we get * ¢ M. Since z*** vV 2** = 1, we get z* € (x)” C M which is a
contradiction. Thus (z)” V F' = L. Therefore F' is a strongly coherent filter.

(2) = (3): It is obvious.

(3) = (4): Assume that every maximal filter is strongly coherent. Let M be a
maximal filter of L. Then by our assumption, m(M) = M. Let x € M. Then
(x)™V M = L. Hence a Ab =0 for some a € ()" and b € M. Since a € (z)7, we
get a** Va* = 1. Suppose a € M. Then 0 = aAb € M, which is a contradiction.
Hence a ¢ M. Therefore M is median.

(4) = (5): Assume condition (4). Let M € M. Clearly Q(M) C M. Conversely,
let 2 € M. Since M is median, there exists y ¢ M such that ** Vy** = 1. Hence
(z)" € M. Thus z € Q(M). Therefore Q(M) = M is a median filter.

(5) = (6) : Assume condition (5). Let a,b € L be such that a Vb € D. Suppose
(a)"V (b)" # L. Then there exists a maximal filter M such that (a)” Vv (b)” C M.
Since (M) is median, by Theorem 20, we get

(@™ VMO)TCM = (a)7CM and (b))’ C M
= (a)T CQ(M) and (b)" C QM)
= a¢ QM) and b¢ QM)  since Q(M) is median
= aVb¢M

which is a contradiction to that a Vb € D C M. Therefore (a)” V (b)” = L.

(6) = (7): Let a € L. Since aVa* € D, by (6), we are through.

(7) = (1): Assume condition (7). Let x € L. Then by (7), we have (z)"V (z*)" =
L. Hence 0 € ()" V (2*)". Then 0 = aAb for some a € (z)” and b € (z*)". Since
be (z*)7, we get b** vV a* =1, and so b* A z** = 0. Thus b* < z*. Now

1 = a™va™ since a € ()"
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< bva** since a Ab=0
< zFva™ since b* < z*
which gives that x* V ™ = 1. Therefore L is a Stone lattice. [

For any filter F' of a lattice L, we denote Mp ={M € M | F C M}.

Theorem 27. For any filter F' of a lattice L,m(F) = () Q(M).

MeMp
Proof. Let x € m(F) and F C M where M € M. Then L = (z)"VF C (z)" VM.
Suppose (z)” C M, then M = L, which is a contradiction. Hence (z)” ¢ M.

Thus =z € Q(M) for all M € Mp. Therefore 7(F)C (] Q(M).
MeMp

Conversely, let x € [ Q(M). Then, we get x € Q(M) for all M € Mp.
MeMp
Suppose (z)"VF # L. Then there exists a maximal filter My such that (x)"VF C

My. Hence ()™ C My and F C Mj. Since F' C My, by hypothesis, we get

z € Q(My). Thus (x)™ ¢ My, which is a contradiction. Therefore (z)” V F = L.

Thus = € n(F'). Therefore (| QM) C w(F). ]
MeMpgp

Theorem 28. The following assertions are equivalent in a lattice L:

(1) L is a Stone lattice;

(2) for any M € M, Q(M) is maximal;

(3) forany F,G € F(L), FV G = L implies n(F)V n(G) = L;

(4) forany F,G € F(L), m(F)Vr(G) =7(FVG);

(5) for any two distinct mazimal filters M, N, Q(M)V Q(N) = L;

(6) for any M € M, M is the unique member of p such that Q(M) C M.

Proof. (1) = (2) : Assume that L is a Stone lattice. Let M € M. Clearly,
we have Q(M) C M. Conversely, let z € M. Since L is a Stone lattice, By
Theorem 26, we get that M is a median filter. Then there exists y ¢ M such that
z**Vy* =1. Hence y € (z)" and y ¢ M. Thus (z)" € Q(M). Hence z € Q(M).
Therefore Q(M) = M is a maximal filter.

(2) = (3) : Assume condition (2). Clearly Q(M) = M for all M € M. Let
F,G € F(L) be such that F'V G = L. Suppose 7(F)V n(G) # L. Then there
exists a maximal filter M of L such that «(F) V n(G) C M. Hence n(F) C M
and 7(G) C M. Now, we get

nF)cM = () QMM
MeMp
= Q(M;) C M for some M; € Mp (since M is prime)
M; C M By condition (2)
FCM

¢ d
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Similarly, we can get G C M. Hence L = F'V G C M, which is a contradiction.
Therefore 7(F) V n(G) = L.

(3) = (4) : Assume condition (3). Let F,G € F(L). Clearly, we have w(F) V
m(G) Cw(FVG). Let z € m(FVG). Then ((z)"VE)V((x)"VG) = ()" VFVG =
L. Hence by condition (3), we get that 7((z)” V F)V n((z)” V G) = L. Thus
zen((z)"VF)V7r((z)" VG). Hence x = r A s for some r € w((x)” V F') and
s € m((z)” VG). Now, we have

ren((z)"VF) = (r)"V(z)"VF=1L
= L=((r)V v
= (rvaz)'VF=1L
= rVazemn(F)

Similarly, we can get s Vz € 7(G). Hence

r = zVr
= xV(rAs)
(xVr)A(zVs)en(F)Vr(Q)

Hence n(F VvV G) C w(F)V 7(G). Therefore n(F)V 7n(G) = n(F V G).

(4) = (5) : Assume condition (4). Let M, N be two distinct maximal filters of
L. Choose x € M — N and y € N — M. Since x ¢ N and y ¢ M, we get 2* € N
and y* € M. Hence (z Ay*) A (yAx*) = (xAz*) A (y Ay*) =0. Then

L = =(L)

=

NV a(lyAz*)) By condition (4)
C QM)VQN) since [z Ay*) C M,[ynz") C N

=

(
(
=
(
(

Therefore Q(M) VvV Q(N) = L.

(5) = (6) : Assume condition (5). Let M € M. Clearly Q(M) C M. Suppose
N € M such that N # M and Q(M) C N. Since Q(N) C N, by hypothesis, we
get L =Q(M)VQ(N) C N, which is a contradiction. Therefore M is the unique
maximal filter of L such that (M) is contained in M.

(6) = (1) : Let M be a maximal filter of L. Suppose Q(M) # M. Then there
exists a maximal filter My such that Q(M) C My, which contradicts uniqueness
of M. Hence Q(M) = M. Let v € M = Q(M). Then there exists y ¢ M such
that «** vV 4™ = 1. Hence M is median. By Theorem 26, L is a Stone lattice. m
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