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1. Introduction23

The theory of pseudo-complements in lattices, and particularly in distributive24

lattices was developed by M.H. Stone [10], O. Frink [5], and George Gratzer [6].25

Later many authors like R. Balbes [1], T.P. Speed [9], and O. Frink [5]etc., ex-26

tended the study of pseudo-complements to characterize Stone lattices. In [3],27

I. Chajda, R. Halaš and J. Kühr extensively studied the structure of pseudo-28

complemented semilattices. In [7], the concept of δ-ideals was introduced in29

pseudo-complemented distributive lattices and then Stone lattices were charac-30

terized in terms of δ-ideals. In [8], the authors investigated the properties of31

D-filters and prime D-filters of distributive lattices and characterized the mini-32

mal prime D-filters of distributive lattices.33
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In this note, the concepts of coherent filters and strongly coherent filters are34

introduced in pseudo-complemented distributive lattices. A set of equivalent con-35

ditions is derived for every filter of a pseudo-complemented distributive lattice to36

become a coherent filter which characterizes a Boolean algebra. It is showed that37

every strongly coherent filter of a pseudo-complemented distributive lattice is co-38

herent. The concepts of τ -closed filters and semi Stone lattices are introduced39

within pseudo-complemented distributive lattices and the class of all semi Stone40

lattices is characterized using the τ -closed filters. It is observed that the classes41

of maximal filters and prime D-filters coincide in a pseudo-complemented lattice.42

This observation precisely motivates to investigate the properties of certain class43

of filters under the name median filters as a special subclass of maximal filters44

of pseudo-complemented distributive lattices. Median filters are characterized45

and it is shown that every median filter of a pseudo-complemented distributive46

lattice is a coherent filter. A set of equivalent conditions is derived for every max-47

imal filter of a pseudo-complemented distributive lattice to become a strongly48

coherent filter. Some equivalent conditions are stated for maximal filters of a49

pseudo-complemented distributive lattice to become median filters which leads50

to a characterization of Stone lattices.51

2. Preliminaries52

The reader is referred to [2], [3] and [8] for the elementary notions and nota-53

tions of pseudo-complemented distributive lattices. However some of the prelim-54

inary definitions and results are presented for the ready reference of the reader.55

A non-empty subset A of a lattice L is called an ideal (filter) [2] of L if a∨b ∈ A56

(a ∧ b ∈ A) and a ∧ x ∈ A (a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set57

(a] = {x ∈ L | x ≤ a} (resp. [a) = {x ∈ L | a ≤ x}) is called a principal ideal58

(resp. principal filter) generated by a. The set I(L) of all ideals of a distributive59

lattice L with 0 forms a complete distributive lattice. The set F(L) of all filters60

of a distributive lattice L with 1 forms a complete distributive lattice in which61

F ∨ G = {i ∧ j | i ∈ F and j ∈ G} for any two filters F and G. A proper filter62

P of a lattice L is said to be prime if for any x, y ∈ L, x ∨ y ∈ P implies x ∈ P63

or y ∈ P . A proper filter P of a lattice L is called maximal if there exists no64

proper filter Q of L such that P ⊂ Q. A proper filter P of a distributive lattice65

is minimal if there exists no prime filter Q of L such that Q ⊂ P .66

The pseudo-complement b∗ of an element b is the element satisfying67

a ∧ b = 0 ⇔ a ∧ b∗ = a ⇔ a ≤ b∗68

where ≤ is the induced order of L.69

A distributive lattice L in which every element has a pseudo-complement is70
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called a pseudo-complemented distributive lattice. For any two elements a, b of a71

pseudo-complemented semilattice [3], we have the following.72

(1) a ≤ b implies b∗ ≤ a∗,73

(2) a ≤ a∗∗,74

(3) a∗∗∗ = a∗,75

(4) (a ∨ b)∗ = a∗ ∧ b∗,76

(5) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.77

An element a of a pseudo-complemented distributive lattice L is called a dense78

element if a∗ = 0 and the set D of all dense elements of L forms a filter in L.79

Definition [2]. A pseudo-complemented distributive lattice L is called a Stone80

lattice if x∗ ∨ x∗∗ = 1 for all x ∈ L81

Theorem 1 [2]. The following conditions are equivalent in a pseudo-complemented82

distributive lattice L:83

(1) L is a Stone lattice;84

(2) for x, y ∈ L, (x ∧ y)∗ = x∗ ∨ y∗;85

(3) for x, y ∈ L, (x ∨ y)∗∗ = x∗∗ ∨ y∗∗.86

A filter F of a distributive lattice L is called a D-filter [8] if D ⊆ F . For any87

non-empty subset A of a distributive lattice L, the set A◦ = {x ∈ L | x ∨ a ∈88

D for all a ∈ A} is a D-filter of L. In case of A = {a}, we simply represent {a}◦89

by (a)◦. A prime D-filter of a distributive lattice is minimal if it is the minimal90

element in the poset of all prime D-filters. A prime D-filter of a distributive91

lattice is minimal [8] if and only if to each x ∈ P , there exists y /∈ P such that92

x ∨ y ∈ D. Throughout this note, all lattices are considered to be bounded93

pseudo-complemented distributive lattices unless otherwise mentioned.94

3. Coherent filters95

In this section, the concepts of coherent filters and strongly coherent filter are96

introduced. Stone lattices are characterized with help of coherent filters. A set of97

equivalent conditions is derived for every filter of a lattice to become a coherent98

filter which leads to a characterization of a Boolean algebra.99

Definition. For any non-empty subset A of a lattice L, define100

Aτ = {x ∈ L | a∗∗ ∨ x∗∗ = 1 for all a ∈ A}101

Clearly Dτ = D and Lτ = D. For any a ∈ L, we denote ({a})τ simply by102

(a)τ . It is obvious that (0)τ = D and (1)τ = L. For any ∅ 6= A ⊆ L, A∩Aτ ⊆ D.103
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Proposition 2. For any non-empty subset A of L, Aτ is a D-filter in L.104

Proof. Clearly D ⊆ Aτ . Let x, y ∈ Aτ . For any a ∈ A, we get (x ∧ y)∗∗ ∨ a∗∗ =105

(x∗∗ ∧ y∗∗)∨ a∗∗ = (x∗∗ ∨ a∗∗)∧ (y∗∗ ∨ a∗∗) = 1∧ 1 = 1. Hence x∧ y ∈ Aτ . Again,106

let x ∈ Aτ and x ≤ y. Then x∗∗ ∨ a∗∗ = 1 for any a ∈ A. Since x ≤ y, we get107

x∗∗ ≤ y∗∗. For any c ∈ A, we get 1 = x∗∗ ∨ c∗∗ ≤ y∗∗ ∨ c∗∗. Thus y∗∗ ∨ c∗∗ = 1.108

Hence y ∈ Aτ . Therefore Aτ is a D-filter of L.109

The following lemma is a direct consequence of the above definition.110

Lemma 3. For any two non-empty subsets A and B of a lattice L, we have111

(1) A ⊆ B implies Bτ ⊆ Aτ112

(2) A ⊆ Aττ113

(3) Aτττ = Aτ114

(4) Aτ = L if and only if A = D115

Proposition 4. For any two filters F,G of a lattice L, (F ∨G)τ = F τ ∩Gτ .116

Proof. Clearly (F ∨G)τ ⊆ F τ ∩Gτ . Conversely, let x ∈ F τ ∩Gτ . Let c ∈ F ∨G117

be an arbitrary element. Then c = i ∧ j for some i ∈ F and j ∈ G. Now118

x∗∗∨ c∗∗ = x∗∗∨ (i∧ j)∗∗ = x∗∗∨ (i∗∗∧ j∗∗) = (x∗∗∨ i∗∗)∧ (x∗∗∨ j∗∗) = 1∧ 1 = 1.119

Thus x ∈ (F ∨G)τ and therefore (F ∨G)τ = F τ ∩Gτ .120

The following corollary is a direct consequence of the above results.121

Corollary 5. Let L be a lattice. For any a, b ∈ L, the following properties hold:122

(1) a ≤ b implies (a)τ ⊆ (b)τ ,123

(2) (a ∧ b)τ = (a)τ ∩ (b)τ ,124

(3) (a)τ = L if and only if a is dense,125

(4) a ∈ (b)τ implies a ∨ b ∈ D,126

(5) a∗ = b∗ implies (a)τ = (b)τ .127

Clearly Aτ ⊆ A◦. We derive a set of equivalent conditions for a filter to128

satisfy the reverse inclusion which leads to a characterization of Stone lattices.129

Theorem 6. The following assertions are equivalent in a lattice L:130

(1) L is a Stone lattice;131

(2) for any filter F of L, F τ = F ◦;132

(3) for any a ∈ L, (a)τ = (a)◦;133

(4) for any two filters F,G of L, F ∩G ⊆ D if and only if F ⊆ Gτ ;134

(5) for a, b ∈ L, a ∨ b ∈ D implies a∗∗ ∨ b∗∗ = 1;135

(6) for a ∈ L, (a)ττ = (a∗)τ .136
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Proof. (1) ⇒ (2): Assume that L is a Stone lattice. Let F be a filter of L.137

Clearly F τ ⊆ F ◦. Conversely, let x ∈ F ◦. Then x ∨ y ∈ D for all y ∈ F . Since L138

is Stone, x∗∗ ∨ y∗∗ = (x ∨ y)∗∗ = 0∗ = 1 for all y ∈ F . Therefore x ∈ F τ .139

(2)⇒ (3): It is clear.140

(3)⇒ (4): Assume condition (3). Let F,G be two filters of L. Suppose F∩G ⊆ D.141

Let x ∈ F . For any y ∈ G, we get x ∨ y ∈ F ∩G ⊆ D. Hence x ∨ y ∈ D. Now142

x ∨ y ∈ D for all y ∈ G ⇒ x ∈ (y)◦ for all y ∈ G
⇒ x ∈ (y)τ for all y ∈ G
⇒ x∗∗ ∨ y∗∗ = 1 for all y ∈ G

which yields that x ∈ Gτ . Conversely, suppose that F ⊆ Gτ . Let x ∈ F ∩ G.143

Then x ∈ F ⊆ Gτ and x ∈ G. Hence x ∈ G ∩Gτ ⊆ D. Therefore F ∩G ⊆ D.144

(4)⇒ (5): Assume condition (4). Let a, b ∈ L be such that a ∨ b ∈ D. Then145

a ∨ b ∈ D ⇒ [a) ∩ [b) ⊆ D
⇒ [a) ⊆ [b)τ by (4)

⇒ a ∈ [b)τ

⇒ a∗∗ ∨ b∗∗ = 1

(5) ⇒ (6): Assume condition (5). Let a ∈ L. Clearly, we have a ∨ a∗ ∈ D. By146

assumption (5), we get that a∗∗∨a∗∗∗ = 1. Hence a∗ ∈ (a)τ . Thus (a)ττ ⊆ (a∗)τ .147

Conversely, let x ∈ (a∗)τ and t ∈ (a)τ . Since t ∈ (a)τ , we get that a∗∗ ∨ t∗∗ = 1.148

Hence a∗ ∧ t∗ = 0. Thus t∗ ≤ a∗∗. Now149

x ∈ (a∗)τ ⇒ a∗ ∨ x∗∗ = 1

⇒ a∗∗ ∧ x∗ = 0

⇒ t∗ ∧ x∗ = 0 since t∗ ≤ a∗∗

⇒ t ∨ x ∈ D
⇒ t∗∗ ∨ x∗∗ = 1 by (5)

which holds for all t ∈ (a)τ . Hence x ∈ (a)ττ . Therefore (a∗)τ ⊆ (a)ττ .150

(6) ⇒ (1): Assume condition (6). Let a ∈ L. Since a ∈ (a)ττ = (a∗)τ , we get151

a∗ ∨ a∗∗ = a∗∗∗ ∨ a∗∗ = 1. Therefore L is a Stone lattice.152

Now, we define coherent filters.153

Definition. A filter F of a lattice L is called a coherent filter if for all x, y ∈154

L, (x)τ = (y)τ and x ∈ F imply that y ∈ F .155

Clearly each (x)τ , x ∈ L is a coherent filter. It is evident that any filter F is156

a coherent filter if it satisfies (x)ττ ⊆ F for all x ∈ F .157



6 M. Sambasiva Rao

Theorem 7. The following assertions are equivalent in a lattice L:158

(1) L is a Boolean algebra;159

(2) every element is closed;160

(3) for any filter F , x∗∗ ∈ F implies x ∈ F ;161

(4) every principal filter is a coherent filter;162

(5) every filter is a coherent filter;163

(6) every prime filter is a coherent filter;164

(7) for a, b ∈ L, (a)τ = (b)τ implies a = b;165

(8) for a, b ∈ L, a∗ = b∗ implies a = b.166

Proof. (1)⇒ (2): It is proved in [[7], Theorem 2.15].167

(2)⇒ (3): It is clear.168

(3)⇒ (4): Assume that every element of L is closed. Let [x) be a principal filter169

of L. Since x ∨ x∗ ∈ D, we get (x ∨ x∗)∗∗ = 1 ∈ [1). By (3), we get x ∨ x∗ ∈ [1),170

which gives x ∨ x∗ = 1. Let a, b ∈ L be such that (a)τ = (b)τ and a ∈ [x). Then171

x ∨ x∗ = 1 ⇒ a ∨ x∗ = 1 since a ∈ [x)

⇒ a∗∗ ∨ x∗∗∗ = 1

⇒ x∗ ∈ (a)τ = (b)τ

⇒ b∗∗ ∨ x∗ = 1

⇒ (b∗∗ ∨ x∗)∗ = 0

⇒ b∗ ∧ x∗∗ = 0

⇒ b∗ ∧ x = 0 since x ≤ x∗∗

⇒ x ≤ b∗∗

which yields b∗∗ ∈ [x). By (3), we get b ∈ [x). Hence [x) is a coherent filter.172

(4) ⇒ (5): Assume condition (4). Let F be a filter of L. Choose a, b ∈ L.173

Suppose (a)τ = (b)τ and a ∈ F . Then clearly [a) ⊆ F . Since (a)τ = (b)τ and [a)174

is a coherent filter, we get that b ∈ [a) ⊆ F . Therefore F is a coherent filter.175

(5)⇒ (6): It is clear.176

(6) ⇒ (7): Assume that every prime filter of L is a coherent filter. Let a, b ∈ L177

such that (a)τ = (b)τ . Suppose a 6= b. Then there exists a prime filter P such178

that a ∈ P and b /∈ P . By the hypothesis, P is a coherent filter of L. Since179

(a)τ = (b)τ and a ∈ P , we get b ∈ P , which is a contradiction. Therefore a = b.180

(7)⇒ (8): By Corollary 5(5), it is direct.181

(8)⇒ (1): Assume condition (8). Then L has a unique dense element. Therefore182

L is a Boolean algebra.183

Definition. For any filter F of a lattice L, define π(F ) as follows:184
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π(F ) = {x ∈ L | (x)τ ∨ F = L}185

The following lemma is an immediate consequence of the above definition.186

Lemma 8. For any two filters F,G of a lattice L, the following properties hold:187

(1) F ⊆ G implies π(F ) ⊆ π(G)188

(2) π(F ∩G) = π(F ) ∩ π(G).189

Proof. Routine verification.190

Proposition 9. For any filter F of a lattice L, π(F ) is a D-filter of L.191

Proof. Clearly D ⊆ π(F ). Let x, y ∈ π(F ). Then (x)τ ∨ F = (y)τ ∨ F = L.192

Hence (x ∧ y)τ ∨ F = {(x)τ ∩ (y)τ} ∨ F = {(x)τ ∨ F} ∩ {(y)τ ∨ F} = L. Hence193

x ∧ y ∈ π(F ). Again let x,∈ π(F ) and x ≤ y. Then L = (x)τ ∨ F ⊆ (y)τ ∨ F .194

Thus y ∈ π(F ). Therefore π(F ) is a D-filter in L.195

Lemma 10. Let F be a filter of a lattice L. Then F is a D-filter of L if and196

only if π(F ) ⊆ F .197

Proof. Assume that F is a D-filter of L. Let x ∈ π(F ). Then (x)τ ∨ F = L.198

Hence x = a ∧ b for some a ∈ (x)τ ⊆ (x)◦ and b ∈ F . Then x ∨ a ∈ D ⊆ F and199

x ∨ b ∈ F . Thus x = x ∨ x = x ∨ (a ∧ b) = (x ∨ a) ∧ (x ∨ b) ∈ F . Therefore200

π(F ) ⊆ F . Converse is clear because of D ⊆ π(F ) ⊆ F .201

Definition. A filter F of a lattice L is called strongly coherent if F = π(F ).202

Proposition 11. Every strongly coherent filter of a lattice is a coherent filter.203

Proof. Let F be a strongly coherent filter of a lattice L. Clearly F is a D-filter of204

L. Let x, y ∈ L be such that (x)τ = (y)τ and x ∈ F = π(F ). Then (x)τ ∨F = L.205

Hence (y)τ ∨ F = L and so y ∈ π(F ) = F . Thus F is a coherent filter of L.206

For any filter F of a lattice L, it can be noted that F ⊆ D if and only if207

F ττ = D. A D-filter F of a lattice L is called a τ -closed if F = F ττ . Clearly D208

is the smallest τ -closed filter and L is the largest τ -closed filter of the lattice L.209

Proposition 12. Every τ -closed filter of a lattice is a coherent filter.210

Proof. Let F be a τ -closed filter of a lattice L. Let x, y ∈ L be such that211

(x)τ = (y)τ . Suppose x ∈ F . Then, we get that y ∈ (y)ττ = (x)ττ ⊆ F ττ = F .212

Therefore F is a coherent filter of L.213

Definition. A lattice L is called a semi Stone lattice if (x)τ ∨ (x)ττ = L for all214

x ∈ L.215
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Theorem 13. Every Stone lattice is a semi Stone lattice.216

Proof. Assume that L is a Stone lattice. Let x ∈ L. Suppose (x)τ ∨ (x)ττ 6= L.217

Then there exists a maximal filter M such that (x)τ∨(x)ττ ⊆M . Then (x)τ ⊆M218

and x ∈ (x)ττ ⊆ M . Since M is maximal, we get x∗ /∈ M . Since L is Stone, we219

get x∗ ∨ x∗∗ = 1. Hence x∗ ∈ (x)τ . Thus (x)τ * M , which is a contradiction.220

Hence (x)τ ∨ (x)ττ = L. Therefore L is a semi Stone lattice.221

The converse of the above theorem is not true. For, consider222

Example 14. Consider the following bounded and finite distributive lattice223

L = {0, a, b, c, 1} whose Hasse diagram is given by:224

225

�
��

@
@@

@
@@

�
��

c
c c

c
c

0

a b

c

1

226

Clearly L is a pseudo-complemented lattice. It can be easily observed that (a)τ =227

(b)τ = D and (c)τ = (1)τ = L. Hence (a)ττ = (b)ττ = L. Observe that L is a228

semi Stone lattice. But L is not a Stone lattice because of a∗∨a∗∗ = b∨a = c 6= 1.229

Theorem 15. The following assertions are equivalent in a lattice L:230

(1) L is a semi Stone lattice;231

(2) every τ -closed filter is strongly coherent;232

(3) for each x ∈ L, (x)ττ is strongly coherent.233

Proof. (1) ⇒ (2): Assume that L is a semi Stone lattice. Let F be a τ -closed234

filter of L. Then F is a D-filter with F ττ = F . Clearly π(F ) ⊆ F . Conversely,235

let x ∈ F . It can be easily verified that (x)ττ ⊆ F ττ . Hence L = (x)τ ∨ (x)ττ ⊆236

(x)τ ∨ F ττ = (x)τ ∨ F . Thus x ∈ π(F ). Therefore F is strongly coherent.237

(2)⇒ (3): Since each (x)ττ is τ -closed, it is obvious.238

(3) ⇒ (1): Assume condition (3). Let x ∈ L. Then we get π((x)ττ ) = (x)ττ .239

Since x ∈ (x)ττ , we get (x)τ ∨ (x)ττ = L. Therefore L is a semi Stone lattice.240

4. Median filters241

In this section, the notion of a median filter is introduced in lattices. Char-242

acterization theorems of median filters are derived for every prime D-filter to243

become median and every maximal filter to become median.244
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Proposition 16. Let P be a prime filter of a lattice L. Then the following245

assertions are equivalent:246

(1) D ⊆ P ;247

(2) for any x ∈ L, x ∈ P if and only if x∗ /∈ P ;248

(3) for any x ∈ L, x∗∗ ∈ P if and only if x ∈ P ;249

(4) for any x, y ∈ L with x∗ = y∗, x ∈ P implies that y ∈ P ;250

(5) D ∩ (L− P ) = ∅.251

Proof. (1) ⇒ (2): Assume that D ⊆ P . Suppose x ∈ P . If x∗ ∈ P , then252

0 = x ∧ x∗ ∈ P , which is a contradiction. Hence x∗ /∈ P . Conversely, let x∗ /∈ P .253

Clearly x ∨ x∗ ∈ D ⊆ P . Since P is prime and x∗ /∈ P , we get x ∈ P .254

(2)⇒ (3): It is clear.255

(3)⇒ (4): It is clear.256

(4) ⇒ (5): Assume condition (4). Suppose x ∈ D ∩ (L − P ). Then, we get257

x∗ = 0 = 1∗ and x /∈ P . Since 1 ∈ P , by (4), we get that x ∈ P which is a258

contradiction. Therefore D ∩ (L− P ) = ∅.259

(5)⇒ (1): It is obvious.260

Theorem 17. Let M be a proper filter of a lattice L. The following assertions261

are equivalent:262

(1) M is maximal;263

(2) M is a prime D-filter;264

(3) x /∈M implies x∗ ∈M .265

Proof. (1)⇒ (2): Assume that M is a maximal filter of L. Clearly M is a prime266

filter. Let x ∈ D. Then, we get x∗ = 0. Suppose x /∈ M . Then M ∨ [x) = L.267

Hence 0 = m∧x for some 0 6= m ∈M . Thenm ≤ x∗ = 0, which is a contradiction.268

Hence x ∈M . Thus D ⊆M . Therefore M is a prime D-filter.269

(2) ⇒ (3): Assume that M is a prime D-filter of L. Suppose x /∈ M . Clearly270

x ∨ x∗ ∈ D ⊆M . Since M is prime and x /∈M , we have x∗ ∈M .271

(3)⇒ (1): Assume condition (3). Suppose M is not maximal. Let Q be a proper272

filter such that M ⊂ Q. Choose x ∈ Q −M . Since x /∈ M , by (3), we get that273

x∗ ∈M ⊂ Q. Therefore 0 = x ∧ x∗ ∈ Q, which is a contradiction.274

From Theorem 17, one can notice that the class of all maximal filters and275

the class of all prime D-filters are the same. Since every prime D-filter is max-276

imal, we can conclude that every prime D-filter is minimal. Therefore maximal277

filters, prime D-filter, and minimal prime D-filters are the same in a pseudo-278

complemented distributive lattice. The notion of median filters is now introduced.279

Definition. A maximal filter M of a lattice L is called median if to each x ∈M ,280

there exists y /∈M such that x∗∗ ∨ y∗∗ = 1.281
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From Example 14, we initially observe that a maximal filter of a lattice need282

not be median, For consider the maximal filter M = {1, a, c} of L. Notice that283

for a ∈M , there is no x /∈M such that a∗∗∨x∗∗ = 1. Therefore M is not median.284

Lemma 18. Let M be a maximal filter of a lattice L. For any x ∈ L, it holds285

x /∈M implies (x)τ ⊆M286

Proof. Suppose x /∈M . Let a ∈ (x)τ . Then a∗∗ ∨ x∗∗ = 1. Hence (a ∨ x)∗∗ = 1287

and so a ∨ x ∈ D ⊆M . Since x /∈M , we get a ∈M . Therefore (x)τ ⊆M .288

Lemma 19. Let M be a median filter of a lattice L. For any x ∈ L, we have289

x ∈M if and only if (x)ττ ⊆M290

Proof. Suppose that x ∈ M . Let a ∈ (x)ττ . Then, we get (x)τ ⊆ (a)τ . Since291

x ∈ M and M is a median filter, there exists y /∈ M such that x∗∗ ∨ y∗∗ = 1.292

Then, we get y ∈ (x)τ ⊆ (a)τ . Since y /∈ M , we must have (y)τ ⊆ M . Hence293

a ∈ (a)ττ ⊆ (y)τ ⊆M . Therefore (x)ττ ⊆M .294

In the following, we derive a characterization theorem of median filters.295

Theorem 20. Let M be a maximal filter of a lattice L. For each x ∈ L, the296

following assertions are equivalent:297

(1) M is median;298

(2) x /∈M if and only if (x)τ ⊆M ;299

(3) x∗∗ ∈M implies (x)τ *M .300

Proof. (1) ⇒ (2): Assume that M is a median filter of L and x ∈ L. Suppose301

x /∈ M . By Lemma 18, we have (x)τ ⊆ M . Conversely, assume that (x)τ ⊆ M .302

Suppose x ∈M . Since M is median, there exists y /∈M such that x∗∗ ∨ y∗∗ = 1.303

Hence y ∈ (x)τ ⊆M , which is a contradiction. Therefore x /∈M .304

(2)⇒ (3): Assume condition (2). Let x ∈ L. Suppose x∗∗ ∈M . By Proposition305

16, we get x ∈M . By (2), we get (x)τ *M .306

(3) ⇒ (1): Assume that condition (3) holds. Suppose x ∈ M . Clearly x∗∗ ∈ M .307

By the assumed condition, we get that (x)τ * M . Then there exists y ∈ (x)τ308

such that y /∈M . Hence x∗∗ ∨ y∗∗ = 1 where y /∈M . Therefore M is median.309

Theorem 21. Every median filter of a lattice is a coherent filter.310

Proof. Let M be a median filter of a lattice L. Suppose x, y ∈ L be such that311

(x)τ = (y)τ and x ∈ M . Since M is median, there exists a /∈ M such that312

x∗∗ ∨ a∗∗ = 1. Hence a ∈ (x)τ = (y)τ . Thus 1 = y∗∗ ∨ a∗∗ ≤ (y ∨ a)∗∗. Hence313

(y ∨ a)∗∗ = 1, which gives that (y ∨ a)∗ = 0. Thus y ∨ a ∈ D ⊆ M . Since M is314

prime and a /∈M , it yields that y ∈M . Therefore M is a coherent filter.315
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In the following theorem, we derive a set of equivalent conditions for a Stone316

lattice to become a Boolean algebra in terms of median filters and maximal filters.317

Theorem 22. Let L be a Stone lattice. Then the following are equivalent:318

(1) L is a Boolean algebra;319

(2) every prime filter is maximal;320

(3) every prime filter is median;321

(4) every prime filter is a D-filter.322

Proof. (1)⇒ (2): It is well known.323

(2)⇒ (3): Since L is a Stone lattice, it is through.324

(3)⇒ (4): Since every median filter is a D-filter, it is clear.325

(4) ⇒ (1): Assume condition (3). Then D ⊆
⋂
{P | P is a prime filter} = {1}.326

Hence D = {1}, which gives x ∨ x∗ ∈ D = {1}. Thus it is through.327

Definition. For any maximal filter M of a lattice L, define328

Ω(M) = {x ∈ L | (x)τ *M}.329

Lemma 23. For any maximal filter M , Ω(M) is a D-filter contained in M .330

Proof. Clearly D ⊆ Ω(M). Let x, y ∈ Ω(M). Then (x)τ * M and (y)τ * M .331

Since M is prime, we get (x ∧ y)τ = (x)τ ∩ (y)τ * M . Hence x ∧ y ∈ Ω(M).332

Let x ∈ Ω(M) and x ≤ y. Then (x)τ * M and (x)τ ⊆ (y)τ . Since (x)τ * M ,333

we get (y)τ * M . Thus y ∈ Ω(M). Therefore Ω(M) is a D-filter of L. Now,334

let x ∈ Ω(M). Then, we get (x)τ * M . Hence there exists a ∈ (x)τ such that335

a /∈ M . Since a ∈ (x)τ , we get 1 = a∗∗ ∨ x∗∗ ≤ (a ∨ x)∗∗. Thus a ∨ x ∈ D ⊆ M .336

Since a /∈M , we must have x ∈M . Therefore Ω(M) ⊆M .337

Let us denote that M is the set of all maximal filters of a lattice L. For any338

a ∈ L, we also denote Ma∗ = {M ∈M | a∗ ∈M}.339

Theorem 24. Let L be a lattice and a ∈ L. Then (a)τ ⊆
⋂

M∈Ma∗
Ω(M).340

Proof. Let x ∈ (a)τ and M ∈ Ma∗ . Then x∗∗ ∨ a∗∗ = 1 and a∗ ∈ M . Suppose341

a ∈ M . Then 0 = a ∧ a∗ ∈ M , which is a contradiction Hence a /∈ M . Hence342

a ∈ (x)τ such that a /∈M . Thus (x)τ *M . Hence x ∈ Ω(M). Thus (a)τ ⊆ Ω(M)343

which is true for all M ∈Ma∗ . Therefore (a)τ ⊆
⋂

M∈Ma∗
Ω(M).344

Corollary 25. Let L be a lattice and a ∈ L. Then a∗ ∈M implies (a)τ ⊆ Ω(M).345

In Example 14, consider P = {1, a, c}. Clearly D = {1, c} and P is a prime346

D-filter. For any element x ∈ P , there exists no y /∈ P such that x∗∗ ∨ y∗∗ = 1.347

Hence P is not median. However, in the following, some equivalent conditions348

are derived for every prime D-filter of a lattice to become a median filter.349
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Theorem 26. The following conditions are equivalent in a lattice L:350

(1) L is a Stone lattice;351

(2) every D-filter is strongly coherent;352

(3) every maximal filter is strongly coherent;353

(4) every maximal filter is median;354

(5) for any M ∈M, Ω(M) is median;355

(6) for any a, b ∈ L, a ∨ b ∈ D implies (a)τ ∨ (b)τ = L;356

(7) for any a ∈ L, (a)τ ∨ (a∗)τ = L.357

Proof. (1) ⇒ (2): Assume that L is a Stone lattice. Let F be a D-filter of L.358

Clearly π(F ) ⊆ F . Conversely, let x ∈ F . Since L is a Stone lattice, we get359

x∗ ∨ x∗∗ = 1. Suppose (x)τ ∨ F 6= L. Then there exists a maximal filter M of360

L such that (x)τ ∨ F ⊆ M . Hence (x)τ ⊆ M and x ∈ F ⊆ M . Since M is a361

prime, we get x∗ /∈ M . Since x∗∗∗ ∨ x∗∗ = 1, we get x∗ ∈ (x)τ ⊆ M which is a362

contradiction. Thus (x)τ ∨ F = L. Therefore F is a strongly coherent filter.363

(2)⇒ (3): It is obvious.364

(3) ⇒ (4): Assume that every maximal filter is strongly coherent. Let M be a365

maximal filter of L. Then by our assumption, π(M) = M . Let x ∈ M . Then366

(x)τ ∨M = L. Hence a ∧ b = 0 for some a ∈ (x)τ and b ∈M . Since a ∈ (x)τ , we367

get a∗∗∨x∗∗ = 1. Suppose a ∈M . Then 0 = a∧ b ∈M , which is a contradiction.368

Hence a /∈M . Therefore M is median.369

(4)⇒ (5): Assume condition (4). Let M ∈M. Clearly Ω(M) ⊆M . Conversely,370

let x ∈M . Since M is median, there exists y /∈M such that x∗∗∨y∗∗ = 1. Hence371

(x)τ *M . Thus x ∈ Ω(M). Therefore Ω(M) = M is a median filter.372

(5)⇒ (6) : Assume condition (5). Let a, b ∈ L be such that a ∨ b ∈ D. Suppose373

(a)τ ∨ (b)τ 6= L. Then there exists a maximal filter M such that (a)τ ∨ (b)τ ⊆M .374

Since Ω(M) is median, by Theorem 20, we get375

(a)τ ∨ (b)τ ⊆M ⇒ (a)τ ⊆M and (b)τ ⊆M
⇒ (a)τ ⊆ Ω(M) and (b)τ ⊆ Ω(M)

⇒ a /∈ Ω(M) and b /∈ Ω(M) since Ω(M) is median

⇒ a ∨ b /∈M

which is a contradiction to that a ∨ b ∈ D ⊆M . Therefore (a)τ ∨ (b)τ = L.376

(6)⇒ (7): Let a ∈ L. Since a ∨ a∗ ∈ D, by (6), we are through.377

(7)⇒ (1): Assume condition (7). Let x ∈ L. Then by (7), we have (x)τ ∨(x∗)τ =378

L. Hence 0 ∈ (x)τ ∨ (x∗)τ . Then 0 = a∧ b for some a ∈ (x)τ and b ∈ (x∗)τ . Since379

b ∈ (x∗)τ , we get b∗∗ ∨ x∗ = 1, and so b∗ ∧ x∗∗ = 0. Thus b∗ ≤ x∗. Now380

1 = a∗∗ ∨ x∗∗ since a ∈ (x)τ
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≤ b∗ ∨ x∗∗ since a ∧ b = 0

≤ x∗ ∨ x∗∗ since b∗ ≤ x∗

which gives that x∗ ∨ x∗∗ = 1. Therefore L is a Stone lattice.381

For any filter F of a lattice L, we denote MF = {M ∈M | F ⊆M}.382

Theorem 27. For any filter F of a lattice L, π(F ) =
⋂

M∈MF

Ω(M).383

Proof. Let x ∈ π(F ) and F ⊆M where M ∈M. Then L = (x)τ∨F ⊆ (x)τ∨M .384

Suppose (x)τ ⊆ M , then M = L, which is a contradiction. Hence (x)τ * M .385

Thus x ∈ Ω(M) for all M ∈MF . Therefore π(F ) ⊆
⋂

M∈MF

Ω(M).386

Conversely, let x ∈
⋂

M∈MF

Ω(M). Then, we get x ∈ Ω(M) for all M ∈ MF .387

Suppose (x)τ∨F 6= L. Then there exists a maximal filter M0 such that (x)τ∨F ⊆388

M0. Hence (x)τ ⊆ M0 and F ⊆ M0. Since F ⊆ M0, by hypothesis, we get389

x ∈ Ω(M0). Thus (x)τ * M0, which is a contradiction. Therefore (x)τ ∨ F = L.390

Thus x ∈ π(F ). Therefore
⋂

M∈MF

Ω(M) ⊆ π(F ).391

Theorem 28. The following assertions are equivalent in a lattice L:392

(1) L is a Stone lattice;393

(2) for any M ∈M, Ω(M) is maximal;394

(3) for any F,G ∈ F(L), F ∨G = L implies π(F ) ∨ π(G) = L;395

(4) for any F,G ∈ F(L), π(F ) ∨ π(G) = π(F ∨G);396

(5) for any two distinct maximal filters M,N , Ω(M) ∨ Ω(N) = L;397

(6) for any M ∈M, M is the unique member of µ such that Ω(M) ⊆M .398

Proof. (1) ⇒ (2) : Assume that L is a Stone lattice. Let M ∈ M. Clearly,399

we have Ω(M) ⊆ M . Conversely, let x ∈ M . Since L is a Stone lattice, By400

Theorem 26, we get that M is a median filter. Then there exists y /∈M such that401

x∗∗ ∨ y∗∗ = 1. Hence y ∈ (x)τ and y /∈M . Thus (x)τ * Ω(M). Hence x ∈ Ω(M).402

Therefore Ω(M) = M is a maximal filter.403

(2) ⇒ (3) : Assume condition (2). Clearly Ω(M) = M for all M ∈ M. Let404

F,G ∈ F(L) be such that F ∨ G = L. Suppose π(F ) ∨ π(G) 6= L. Then there405

exists a maximal filter M of L such that π(F ) ∨ π(G) ⊆ M . Hence π(F ) ⊆ M406

and π(G) ⊆M . Now, we get407

π(F ) ⊆M ⇒
⋂

M∈MF

Ω(M) ⊆M

⇒ Ω(Mi) ⊆M for some Mi ∈MF (since M is prime)

⇒ Mi ⊆M By condition (2)

⇒ F ⊆M
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Similarly, we can get G ⊆ M . Hence L = F ∨G ⊆ M , which is a contradiction.408

Therefore π(F ) ∨ π(G) = L.409

(3) ⇒ (4) : Assume condition (3). Let F,G ∈ F(L). Clearly, we have π(F ) ∨410

π(G) ⊆ π(F ∨G). Let x ∈ π(F ∨G). Then ((x)τ ∨F )∨((x)τ ∨G) = (x)τ ∨F ∨G =411

L. Hence by condition (3), we get that π((x)τ ∨ F ) ∨ π((x)τ ∨ G) = L. Thus412

x ∈ π((x)τ ∨ F ) ∨ π((x)τ ∨ G). Hence x = r ∧ s for some r ∈ π((x)τ ∨ F ) and413

s ∈ π((x)τ ∨G). Now, we have414

r ∈ π((x)τ ∨ F ) ⇒ (r)τ ∨ (x)τ ∨ F = L

⇒ L = ((r)τ ∨ (x)τ ) ∨ F ⊆ (r ∨ x)τ ∨ F
⇒ (r ∨ x)τ ∨ F = L

⇒ r ∨ x ∈ π(F )

Similarly, we can get s ∨ x ∈ π(G). Hence415

x = x ∨ x
= x ∨ (r ∧ s)
= (x ∨ r) ∧ (x ∨ s) ∈ π(F ) ∨ π(G)

Hence π(F ∨G) ⊆ π(F ) ∨ π(G). Therefore π(F ) ∨ π(G) = π(F ∨G).416

(4) ⇒ (5) : Assume condition (4). Let M,N be two distinct maximal filters of417

L. Choose x ∈M −N and y ∈ N −M . Since x /∈ N and y /∈M , we get x∗ ∈ N418

and y∗ ∈M . Hence (x ∧ y∗) ∧ (y ∧ x∗) = (x ∧ x∗) ∧ (y ∧ y∗) = 0. Then419

L = π(L)

= π([0))

= π([(x ∧ y∗) ∧ (y ∧ x∗)))
= π([x ∧ y∗) ∨ [y ∧ x∗))
= π([x ∧ y∗)) ∨ π([y ∧ x∗)) By condition (4)

⊆ Ω(M) ∨ Ω(N) since [x ∧ y∗) ⊆M, [y ∧ x∗) ⊆ N

Therefore Ω(M) ∨ Ω(N) = L.420

(5) ⇒ (6) : Assume condition (5). Let M ∈ M. Clearly Ω(M) ⊆ M . Suppose421

N ∈ M such that N 6= M and Ω(M) ⊆ N . Since Ω(N) ⊆ N , by hypothesis, we422

get L = Ω(M)∨Ω(N) ⊆ N , which is a contradiction. Therefore M is the unique423

maximal filter of L such that Ω(M) is contained in M .424

(6) ⇒ (1) : Let M be a maximal filter of L. Suppose Ω(M) 6= M . Then there425

exists a maximal filter M0 such that Ω(M) ⊆ M0, which contradicts uniqueness426

of M . Hence Ω(M) = M . Let x ∈ M = Ω(M). Then there exists y /∈ M such427

that x∗∗ ∨ y∗∗ = 1. Hence M is median. By Theorem 26, L is a Stone lattice.428
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