Discussiones Mathematicae
 General Algebra and Applications xx (xxxx) 1–15

MEDIAN FILTERS OF PSEUDO-COMPLEMENTED DISTRIBUTIVE LATTICES

M. Sambasiva Rao

Department of Mathematics

MVGR College of Engineering, Vizianagaram

Andhra Pradesh, India-535005

e-mail: mssraomaths35@rediffmail.com

11 Abstract

Coherent filters, strongly coherent filters, and τ -closed filters are introduced in pseudo-complemented distributive lattices and their characterization theorems are derived. A set of equivalent conditions is derived for every filter of a pseudo-complemented distributive lattice to become a coherent filter. The notion of median filters is introduced and some equivalent conditions are derived for every maximal filter of a pseudo-complemented distributive lattice to become a median filter which leads to a characterization of Stone lattices.

Keywords: Coherent filter; strongly coherent filter; median filter; minimal prime filter; maximal filter; Stone lattice.

2010 Mathematics Subject Classification: 06D99.

1. Introduction

The theory of pseudo-complements in lattices, and particularly in distributive lattices was developed by M.H. Stone [10], O. Frink [5], and George Gratzer [6]. Later many authors like R. Balbes [1], T.P. Speed [9], and O. Frink [5]etc., extended the study of pseudo-complements to characterize Stone lattices. In [3], I. Chajda, R. Halaš and J. Kühr extensively studied the structure of pseudo-complemented semilattices. In [7], the concept of δ -ideals was introduced in pseudo-complemented distributive lattices and then Stone lattices were characterized in terms of δ -ideals. In [8], the authors investigated the properties of D-filters and prime D-filters of distributive lattices and characterized the minimal prime D-filters of distributive lattices.

In this note, the concepts of coherent filters and strongly coherent filters are introduced in pseudo-complemented distributive lattices. A set of equivalent con-35 ditions is derived for every filter of a pseudo-complemented distributive lattice to 36 become a coherent filter which characterizes a Boolean algebra. It is showed that every strongly coherent filter of a pseudo-complemented distributive lattice is coherent. The concepts of τ -closed filters and semi Stone lattices are introduced within pseudo-complemented distributive lattices and the class of all semi Stone lattices is characterized using the τ -closed filters. It is observed that the classes of maximal filters and prime D-filters coincide in a pseudo-complemented lattice. 42 This observation precisely motivates to investigate the properties of certain class of filters under the name median filters as a special subclass of maximal filters of pseudo-complemented distributive lattices. Median filters are characterized and it is shown that every median filter of a pseudo-complemented distributive lattice is a coherent filter. A set of equivalent conditions is derived for every maximal filter of a pseudo-complemented distributive lattice to become a strongly coherent filter. Some equivalent conditions are stated for maximal filters of a pseudo-complemented distributive lattice to become median filters which leads to a characterization of Stone lattices.

2. **PRELIMINARIES**

The reader is referred to [2], [3] and [8] for the elementary notions and notations of pseudo-complemented distributive lattices. However some of the preliminary definitions and results are presented for the ready reference of the reader.

A non-empty subset A of a lattice L is called an *ideal* (filter) [2] of L if $a \lor b \in A$ $(a \land b \in A)$ and $a \land x \in A$ $(a \lor x \in A)$ whenever $a, b \in A$ and $x \in L$. The set $[a] = \{x \in L \mid x \leq a\}$ (resp. $[a] = \{x \in L \mid a \leq x\}$) is called a principal ideal (resp. principal filter) generated by a. The set $\mathcal{I}(L)$ of all ideals of a distributive lattice L with 0 forms a complete distributive lattice. The set $\mathcal{F}(L)$ of all filters of a distributive lattice L with 1 forms a complete distributive lattice in which $F \vee G = \{i \wedge j \mid i \in F \text{ and } j \in G\}$ for any two filters F and G. A proper filter P of a lattice L is said to be prime if for any $x, y \in L$, $x \vee y \in P$ implies $x \in P$ or $y \in P$. A proper filter P of a lattice L is called maximal if there exists no proper filter Q of L such that $P \subset Q$. A proper filter P of a distributive lattice is minimal if there exists no prime filter Q of L such that $Q \subset P$.

The pseudo-complement b^* of an element b is the element satisfying

$$a \wedge b = 0 \iff a \wedge b^* = a \iff a \leq b^*$$

where \leq is the induced order of L. 69

34

37

39

41

47

52

53

54

55

56

67

68

70

A distributive lattice L in which every element has a pseudo-complement is

called a *pseudo-complemented distributive lattice*. For any two elements a, b of a pseudo-complemented semilattice [3], we have the following.

- (1) $a \le b$ implies $b^* \le a^*$,
- 74 (2) $a \le a^{**}$,

84

95

101

- 75 (3) $a^{***} = a^*,$
- 76 $(4) (a \lor b)^* = a^* \land b^*,$
- 77 $(5) (a \wedge b)^{**} = a^{**} \wedge b^{**}.$
- An element a of a pseudo-complemented distributive lattice L is called a *dense* element if $a^* = 0$ and the set D of all dense elements of L forms a filter in L.
- Definition [2]. A pseudo-complemented distributive lattice L is called a Stone lattice if $x^* \vee x^{**} = 1$ for all $x \in L$
- Theorem 1 [2]. The following conditions are equivalent in a pseudo-complemented distributive lattice L:
 - (1) L is a Stone lattice;
- 85 (2) for $x, y \in L$, $(x \wedge y)^* = x^* \vee y^*$;
- 86 (3) for $x, y \in L$, $(x \vee y)^{**} = x^{**} \vee y^{**}$.

A filter F of a distributive lattice L is called a D-filter [8] if $D \subseteq F$. For any non-empty subset A of a distributive lattice L, the set $A^{\circ} = \{x \in L \mid x \vee a \in D \text{ for all } a \in A\}$ is a D-filter of L. In case of $A = \{a\}$, we simply represent $\{a\}^{\circ}$ by $(a)^{\circ}$. A prime D-filter of a distributive lattice is minimal if it is the minimal element in the poset of all prime D-filters. A prime D-filter of a distributive lattice is minimal [8] if and only if to each $x \in P$, there exists $y \notin P$ such that $x \vee y \in D$. Throughout this note, all lattices are considered to be bounded pseudo-complemented distributive lattices unless otherwise mentioned.

3. Coherent filters

In this section, the concepts of coherent filters and strongly coherent filter are introduced. Stone lattices are characterized with help of coherent filters. A set of equivalent conditions is derived for every filter of a lattice to become a coherent filter which leads to a characterization of a Boolean algebra.

Definition. For any non-empty subset A of a lattice L, define

$$A^{\tau} = \{ x \in L \mid a^{**} \lor x^{**} = 1 \text{ for all } a \in A \}$$

Clearly $D^{\tau} = D$ and $L^{\tau} = D$. For any $a \in L$, we denote $(\{a\})^{\tau}$ simply by $(a)^{\tau}$. It is obvious that $(0)^{\tau} = D$ and $(1)^{\tau} = L$. For any $\emptyset \neq A \subseteq L$, $A \cap A^{\tau} \subseteq D$.

110

Proposition 2. For any non-empty subset A of L, A^{τ} is a D-filter in L.

```
105 Proof. Clearly D \subseteq A^{\tau}. Let x, y \in A^{\tau}. For any a \in A, we get (x \wedge y)^{**} \vee a^{**} = (x^{**} \wedge y^{**}) \vee a^{**} = (x^{**} \vee a^{**}) \wedge (y^{**} \vee a^{**}) = 1 \wedge 1 = 1. Hence x \wedge y \in A^{\tau}. Again, 107 let x \in A^{\tau} and x \leq y. Then x^{**} \vee a^{**} = 1 for any a \in A. Since x \leq y, we get 108 x^{**} \leq y^{**}. For any c \in A, we get 1 = x^{**} \vee c^{**} \leq y^{**} \vee c^{**}. Thus y^{**} \vee c^{**} = 1. 109 Hence y \in A^{\tau}. Therefore A^{\tau} is a D-filter of L.
```

The following lemma is a direct consequence of the above definition.

Lemma 3. For any two non-empty subsets A and B of a lattice L, we have

```
112 (1) A \subseteq B \text{ implies } B^{\tau} \subseteq A^{\tau}
```

- 113 (2) $A \subseteq A^{\tau\tau}$
- 114 (3) $A^{\tau\tau\tau} = A^{\tau}$
- 115 (4) $A^{\tau} = L$ if and only if A = D

Proposition 4. For any two filters F, G of a lattice $L, (F \vee G)^{\tau} = F^{\tau} \cap G^{\tau}$.

```
Proof. Clearly (F \vee G)^{\tau} \subseteq F^{\tau} \cap G^{\tau}. Conversely, let x \in F^{\tau} \cap G^{\tau}. Let c \in F \vee G
be an arbitrary element. Then c = i \wedge j for some i \in F and j \in G. Now
x^{**} \vee c^{**} = x^{**} \vee (i \wedge j)^{**} = x^{**} \vee (i^{**} \wedge j^{**}) = (x^{**} \vee i^{**}) \wedge (x^{**} \vee j^{**}) = 1 \wedge 1 = 1.
Thus x \in (F \vee G)^{\tau} and therefore (F \vee G)^{\tau} = F^{\tau} \cap G^{\tau}.
```

The following corollary is a direct consequence of the above results.

122 Corollary 5. Let L be a lattice. For any $a, b \in L$, the following properties hold:

```
(1) a \leq b \text{ implies } (a)^{\tau} \subseteq (b)^{\tau},
```

- 124 $(2) (a \wedge b)^{\tau} = (a)^{\tau} \cap (b)^{\tau},$
- (3) $(a)^{\tau} = L$ if and only if a is dense,
- 126 (4) $a \in (b)^{\tau}$ implies $a \vee b \in D$,
- 127 (5) $a^* = b^* \text{ implies } (a)^{\tau} = (b)^{\tau}.$

Clearly $A^{\tau} \subseteq A^{\circ}$. We derive a set of equivalent conditions for a filter to satisfy the reverse inclusion which leads to a characterization of Stone lattices.

Theorem 6. The following assertions are equivalent in a lattice L:

- (1) L is a Stone lattice;
- 132 (2) for any filter F of L, $F^{\tau} = F^{\circ}$;
- 133 (3) for any $a \in L$, $(a)^{\tau} = (a)^{\circ}$;
- 134 (4) for any two filters F, G of $L, F \cap G \subseteq D$ if and only if $F \subseteq G^{\tau}$;
- 135 (5) for $a, b \in L, a \lor b \in D$ implies $a^{**} \lor b^{**} = 1$;
- 136 (6) for $a \in L$, $(a)^{\tau\tau} = (a^*)^{\tau}$.

137 **Proof.** (1) \Rightarrow (2): Assume that L is a Stone lattice. Let F be a filter of L.

Clearly $F^{\tau} \subseteq F^{\circ}$. Conversely, let $x \in F^{\circ}$. Then $x \vee y \in D$ for all $y \in F$. Since L

is Stone, $x^{**} \vee y^{**} = (x \vee y)^{**} = 0^* = 1$ for all $y \in F$. Therefore $x \in F^{\tau}$.

140 $(2) \Rightarrow (3)$: It is clear.

 $(3) \Rightarrow (4)$: Assume condition (3). Let F, G be two filters of L. Suppose $F \cap G \subseteq D$.

Let $x \in F$. For any $y \in G$, we get $x \vee y \in F \cap G \subseteq D$. Hence $x \vee y \in D$. Now

$$x \lor y \in D$$
 for all $y \in G \implies x \in (y)^{\circ}$ for all $y \in G$
 $\Rightarrow x \in (y)^{\tau}$ for all $y \in G$
 $\Rightarrow x^{**} \lor y^{**} = 1$ for all $y \in G$

which yields that $x \in G^{\tau}$. Conversely, suppose that $F \subseteq G^{\tau}$. Let $x \in F \cap G$.

Then $x \in F \subseteq G^{\tau}$ and $x \in G$. Hence $x \in G \cap G^{\tau} \subseteq D$. Therefore $F \cap G \subseteq D$.

(4) \Rightarrow (5): Assume condition (4). Let $a, b \in L$ be such that $a \lor b \in D$. Then

$$a \lor b \in D \implies [a) \cap [b) \subseteq D$$

 $\Rightarrow [a) \subseteq [b)^{\tau} \quad \text{by (4)}$
 $\Rightarrow a \in [b)^{\tau}$
 $\Rightarrow a^{**} \lor b^{**} = 1$

146 (5) \Rightarrow (6): Assume condition (5). Let $a \in L$. Clearly, we have $a \vee a^* \in D$. By

assumption (5), we get that $a^{**} \vee a^{***} = 1$. Hence $a^* \in (a)^{\tau}$. Thus $(a)^{\tau\tau} \subseteq (a^*)^{\tau}$.

Conversely, let $x \in (a^*)^{\tau}$ and $t \in (a)^{\tau}$. Since $t \in (a)^{\tau}$, we get that $a^{**} \vee t^{**} = 1$.

149 Hence $a^* \wedge t^* = 0$. Thus $t^* \leq a^{**}$. Now

$$x \in (a^*)^{\tau} \quad \Rightarrow \quad a^* \vee x^{**} = 1$$

$$\Rightarrow \quad a^{**} \wedge x^* = 0$$

$$\Rightarrow \quad t^* \wedge x^* = 0 \quad \text{ since } t^* \le a^{**}$$

$$\Rightarrow \quad t \vee x \in D$$

$$\Rightarrow \quad t^{**} \vee x^{**} = 1 \quad \text{ by (5)}$$

which holds for all $t \in (a)^{\tau}$. Hence $x \in (a)^{\tau\tau}$. Therefore $(a^*)^{\tau} \subseteq (a)^{\tau\tau}$.

151 (6) \Rightarrow (1): Assume condition (6). Let $a \in L$. Since $a \in (a)^{\tau\tau} = (a^*)^{\tau}$, we get 152 $a^* \lor a^{**} = a^{***} \lor a^{**} = 1$. Therefore L is a Stone lattice.

Now, we define coherent filters.

Definition. A filter F of a lattice L is called a *coherent filter* if for all $x, y \in L, (x)^{\tau} = (y)^{\tau}$ and $x \in F$ imply that $y \in F$.

Clearly each $(x)^{\tau}, x \in L$ is a coherent filter. It is evident that any filter F is a coherent filter if it satisfies $(x)^{\tau\tau} \subseteq F$ for all $x \in F$.

Theorem 7. The following assertions are equivalent in a lattice L:

```
(1) L is a Boolean algebra;
```

- (2) every element is closed;
- 161 (3) for any filter F, $x^{**} \in F$ implies $x \in F$;
- (4) every principal filter is a coherent filter;
- (5) every filter is a coherent filter;
- 164 (6) every prime filter is a coherent filter;
- 165 (7) for $a, b \in L, (a)^{\tau} = (b)^{\tau}$ implies a = b;
- 166 (8) for $a, b \in L, a^* = b^*$ implies a = b.

167 **Proof.** $(1) \Rightarrow (2)$: It is proved in [[7], Theorem 2.15].

168 $(2) \Rightarrow (3)$: It is clear.

169 (3) \Rightarrow (4): Assume that every element of L is closed. Let [x) be a principal filter 170 of L. Since $x \vee x^* \in D$, we get $(x \vee x^*)^{**} = 1 \in [1)$. By (3), we get $x \vee x^* \in [1)$, which gives $x \vee x^* = 1$. Let $a, b \in L$ be such that $(a)^{\tau} = (b)^{\tau}$ and $a \in [x)$. Then

$$x \lor x^* = 1 \quad \Rightarrow \quad a \lor x^* = 1 \quad \text{ since } a \in [x)$$

$$\Rightarrow \quad a^{**} \lor x^{***} = 1$$

$$\Rightarrow \quad x^* \in (a)^{\tau} = (b)^{\tau}$$

$$\Rightarrow \quad b^{**} \lor x^* = 1$$

$$\Rightarrow \quad (b^{**} \lor x^*)^* = 0$$

$$\Rightarrow \quad b^* \land x^{**} = 0$$

$$\Rightarrow \quad b^* \land x = 0 \quad \text{ since } x \le x^{**}$$

$$\Rightarrow \quad x < b^{**}$$

which yields $b^{**} \in [x)$. By (3), we get $b \in [x)$. Hence [x) is a coherent filter.

 $(4) \Rightarrow (5)$: Assume condition (4). Let F be a filter of L. Choose $a, b \in L$.

Suppose $(a)^{\tau} = (b)^{\tau}$ and $a \in F$. Then clearly $[a] \subseteq F$. Since $(a)^{\tau} = (b)^{\tau}$ and [a]

is a coherent filter, we get that $b \in [a] \subseteq F$. Therefore F is a coherent filter.

 $(5) \Rightarrow (6)$: It is clear.

(6) \Rightarrow (7): Assume that every prime filter of L is a coherent filter. Let $a, b \in L$

such that $(a)^{\tau} = (b)^{\tau}$. Suppose $a \neq b$. Then there exists a prime filter P such

that $a \in P$ and $b \notin P$. By the hypothesis, P is a coherent filter of L. Since

 $(a)^{\tau} = (b)^{\tau}$ and $a \in P$, we get $b \in P$, which is a contradiction. Therefore a = b.

181 (7) \Rightarrow (8): By Corollary 5(5), it is direct.

182 (8) \Rightarrow (1): Assume condition (8). Then L has a unique dense element. Therefore L is a Boolean algebra.

Definition. For any filter F of a lattice L, define $\pi(F)$ as follows:

$$\pi(F) = \{ x \in L \mid (x)^{\tau} \lor F = L \}$$

The following lemma is an immediate consequence of the above definition.

Lemma 8. For any two filters F, G of a lattice L, the following properties hold:

- (1) $F \subseteq G \text{ implies } \pi(F) \subseteq \pi(G)$
 - (2) $\pi(F \cap G) = \pi(F) \cap \pi(G)$.
- 190 **Proof.** Routine verification.

185

186

188

189

Proposition 9. For any filter F of a lattice L, $\pi(F)$ is a D-filter of L.

192 **Proof.** Clearly $D \subseteq \pi(F)$. Let $x, y \in \pi(F)$. Then $(x)^{\tau} \vee F = (y)^{\tau} \vee F = L$.

193 Hence $(x \wedge y)^{\tau} \vee F = \{(x)^{\tau} \cap (y)^{\tau}\} \vee F = \{(x)^{\tau} \vee F\} \cap \{(y)^{\tau} \vee F\} = L$. Hence

 $x \wedge y \in \pi(F)$. Again let $x \in \pi(F)$ and $x \leq y$. Then $L = (x)^{\tau} \vee F \subseteq (y)^{\tau} \vee F$.

Thus $y \in \pi(F)$. Therefore $\pi(F)$ is a D-filter in L.

Lemma 10. Let F be a filter of a lattice L. Then F is a D-filter of L if and only if $\pi(F) \subseteq F$.

198 **Proof.** Assume that F is a D-filter of L. Let $x \in \pi(F)$. Then $(x)^{\tau} \vee F = L$.

Hence $x = a \wedge b$ for some $a \in (x)^{\tau} \subseteq (x)^{\circ}$ and $b \in F$. Then $x \vee a \in D \subseteq F$ and

200 $x \lor b \in F$. Thus $x = x \lor x = x \lor (a \land b) = (x \lor a) \land (x \lor b) \in F$. Therefore

 $\pi(F) \subseteq F$. Converse is clear because of $D \subseteq \pi(F) \subseteq F$.

Definition. A filter F of a lattice L is called strongly coherent if $F = \pi(F)$.

Proposition 11. Every strongly coherent filter of a lattice is a coherent filter.

Proof. Let F be a strongly coherent filter of a lattice L. Clearly F is a D-filter of

205 L. Let $x, y \in L$ be such that $(x)^{\tau} = (y)^{\tau}$ and $x \in F = \pi(F)$. Then $(x)^{\tau} \vee F = L$.

Hence $(y)^{\tau} \vee F = L$ and so $y \in \pi(F) = F$. Thus F is a coherent filter of L.

For any filter F of a lattice L, it can be noted that $F \subseteq D$ if and only if $F^{\tau\tau} = D$. A D-filter F of a lattice L is called a τ -closed if $F = F^{\tau\tau}$. Clearly D is the smallest τ -closed filter and L is the largest τ -closed filter of the lattice L.

Proposition 12. Every τ -closed filter of a lattice is a coherent filter.

Proof. Let F be a τ -closed filter of a lattice L. Let $x, y \in L$ be such that $(x)^{\tau} = (y)^{\tau}$. Suppose $x \in F$. Then, we get that $y \in (y)^{\tau\tau} = (x)^{\tau\tau} \subseteq F^{\tau\tau} = F$.

Therefore F is a coherent filter of L.

Definition. A lattice L is called a *semi Stone lattice* if $(x)^{\tau} \lor (x)^{\tau\tau} = L$ for all $x \in L$.

222

225

226

232

241

Theorem 13. Every Stone lattice is a semi Stone lattice.

Proof. Assume that L is a Stone lattice. Let $x \in L$. Suppose $(x)^{\tau} \vee (x)^{\tau\tau} \neq L$. Then there exists a maximal filter M such that $(x)^{\tau} \vee (x)^{\tau\tau} \subseteq M$. Then $(x)^{\tau} \subseteq M$ and $x \in (x)^{\tau\tau} \subseteq M$. Since M is maximal, we get $x^* \notin M$. Since L is Stone, we get $x^* \vee x^{**} = 1$. Hence $x^* \in (x)^{\tau}$. Thus $(x)^{\tau} \nsubseteq M$, which is a contradiction. Hence $(x)^{\tau} \vee (x)^{\tau\tau} = L$. Therefore L is a semi Stone lattice.

The converse of the above theorem is not true. For, consider

Example 14. Consider the following bounded and finite distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given by:

Clearly L is a pseudo-complemented lattice. It can be easily observed that $(a)^{\tau} = (b)^{\tau} = D$ and $(c)^{\tau} = (1)^{\tau} = L$. Hence $(a)^{\tau\tau} = (b)^{\tau\tau} = L$. Observe that L is a semi Stone lattice. But L is not a Stone lattice because of $a^* \vee a^{**} = b \vee a = c \neq 1$.

Theorem 15. The following assertions are equivalent in a lattice L:

- (1) L is a semi Stone lattice;
 - (2) every τ -closed filter is strongly coherent;
- 233 (3) for each $x \in L, (x)^{\tau \tau}$ is strongly coherent.

Proof. (1) \Rightarrow (2): Assume that L is a semi Stone lattice. Let F be a τ -closed filter of L. Then F is a D-filter with $F^{\tau\tau} = F$. Clearly $\pi(F) \subseteq F$. Conversely, let $x \in F$. It can be easily verified that $(x)^{\tau\tau} \subseteq F^{\tau\tau}$. Hence $L = (x)^{\tau} \vee (x)^{\tau\tau} \subseteq (x)^{\tau} \vee F^{\tau\tau} = (x)^{\tau} \vee F$. Thus $x \in \pi(F)$. Therefore F is strongly coherent. (2) \Rightarrow (3): Since each $(x)^{\tau\tau}$ is τ -closed, it is obvious. (3) \Rightarrow (1): Assume condition (3). Let $x \in L$. Then we get $\pi((x)^{\tau\tau}) = (x)^{\tau\tau}$. Since $x \in (x)^{\tau\tau}$, we get $(x)^{\tau} \vee (x)^{\tau\tau} = L$. Therefore L is a semi Stone lattice.

4. Median filters

In this section, the notion of a median filter is introduced in lattices. Characterization theorems of median filters are derived for every prime D-filter to become median and every maximal filter to become median.

```
Proposition 16. Let P be a prime filter of a lattice L. Then the following
    assertions are equivalent:
246
       (1) D \subseteq P;
247
       (2) for any x \in L, x \in P if and only if x^* \notin P;
248
       (3) for any x \in L, x^{**} \in P if and only if x \in P;
       (4) for any x, y \in L with x^* = y^*, x \in P implies that y \in P;
250
       (5) D \cap (L-P) = \emptyset.
251
    Proof. (1) \Rightarrow (2): Assume that D \subseteq P. Suppose x \in P. If x^* \in P, then
252
    0 = x \wedge x^* \in P, which is a contradiction. Hence x^* \notin P. Conversely, let x^* \notin P.
253
    Clearly x \vee x^* \in D \subseteq P. Since P is prime and x^* \notin P, we get x \in P.
254
    (2) \Rightarrow (3): It is clear.
255
    (3) \Rightarrow (4): It is clear.
    (4) \Rightarrow (5): Assume condition (4). Suppose x \in D \cap (L-P). Then, we get
257
    x^* = 0 = 1^* and x \notin P. Since 1 \in P, by (4), we get that x \in P which is a
258
    contradiction. Therefore D \cap (L - P) = \emptyset.
259
    (5) \Rightarrow (1): It is obvious.
260
    Theorem 17. Let M be a proper filter of a lattice L. The following assertions
261
    are equivalent:
262
       (1) M is maximal;
263
       (2) M is a prime D-filter;
264
       (3) x \notin M \text{ implies } x^* \in M.
265
    Proof. (1) \Rightarrow (2): Assume that M is a maximal filter of L. Clearly M is a prime
266
    filter. Let x \in D. Then, we get x^* = 0. Suppose x \notin M. Then M \vee [x] = L.
267
    Hence 0 = m \land x for some 0 \neq m \in M. Then m \leq x^* = 0, which is a contradiction.
268
    Hence x \in M. Thus D \subseteq M. Therefore M is a prime D-filter.
269
    (2) \Rightarrow (3): Assume that M is a prime D-filter of L. Suppose x \notin M. Clearly
    x \vee x^* \in D \subseteq M. Since M is prime and x \notin M, we have x^* \in M.
271
    (3) \Rightarrow (1): Assume condition (3). Suppose M is not maximal. Let Q be a proper
272
    filter such that M \subset Q. Choose x \in Q - M. Since x \notin M, by (3), we get that
    x^* \in M \subset Q. Therefore 0 = x \wedge x^* \in Q, which is a contradiction.
         From Theorem 17, one can notice that the class of all maximal filters and
275
    the class of all prime D-filters are the same. Since every prime D-filter is max-
276
    imal, we can conclude that every prime D-filter is minimal. Therefore maximal
277
    filters, prime D-filter, and minimal prime D-filters are the same in a pseudo-
278
    complemented distributive lattice. The notion of median filters is now introduced.
```

Definition. A maximal filter M of a lattice L is called *median* if to each $x \in M$,

there exists $y \notin M$ such that $x^{**} \vee y^{**} = 1$.

280

10 M. Sambasiva Rao

```
From Example 14, we initially observe that a maximal filter of a lattice need
282
    not be median, For consider the maximal filter M = \{1, a, c\} of L. Notice that
283
    for a \in M, there is no x \notin M such that a^{**} \vee x^{**} = 1. Therefore M is not median.
284
    Lemma 18. Let M be a maximal filter of a lattice L. For any x \in L, it holds
285
    x \notin M
                implies (x)^{\tau} \subseteq M
286
     Proof. Suppose x \notin M. Let a \in (x)^{\tau}. Then a^{**} \vee x^{**} = 1. Hence (a \vee x)^{**} = 1
287
     and so a \vee x \in D \subseteq M. Since x \notin M, we get a \in M. Therefore (x)^{\tau} \subseteq M.
288
    Lemma 19. Let M be a median filter of a lattice L. For any x \in L, we have
289
    x \in M if and only if (x)^{\tau\tau} \subseteq M
290
     Proof. Suppose that x \in M. Let a \in (x)^{\tau\tau}. Then, we get (x)^{\tau} \subseteq (a)^{\tau}. Since
291
     x \in M and M is a median filter, there exists y \notin M such that x^{**} \vee y^{**} = 1.
292
     Then, we get y \in (x)^{\tau} \subseteq (a)^{\tau}. Since y \notin M, we must have (y)^{\tau} \subseteq M. Hence
293
     a \in (a)^{\tau\tau} \subseteq (y)^{\tau} \subseteq M. Therefore (x)^{\tau\tau} \subseteq M.
          In the following, we derive a characterization theorem of median filters.
295
    Theorem 20. Let M be a maximal filter of a lattice L. For each x \in L, the
296
     following assertions are equivalent:
297
        (1) M is median;
298
        (2) x \notin M if and only if (x)^{\tau} \subseteq M;
299
        (3) x^{**} \in M \text{ implies } (x)^{\tau} \not\subset M.
300
     Proof. (1) \Rightarrow (2): Assume that M is a median filter of L and x \in L. Suppose
301
    x \notin M. By Lemma 18, we have (x)^{\tau} \subseteq M. Conversely, assume that (x)^{\tau} \subseteq M.
302
    Suppose x \in M. Since M is median, there exists y \notin M such that x^{**} \vee y^{**} = 1.
303
    Hence y \in (x)^{\tau} \subseteq M, which is a contradiction. Therefore x \notin M.
304
     (2) \Rightarrow (3): Assume condition (2). Let x \in L. Suppose x^{**} \in M. By Proposition
305
     16, we get x \in M. By (2), we get (x)^{\tau} \nsubseteq M.
306
     (3) \Rightarrow (1): Assume that condition (3) holds. Suppose x \in M. Clearly x^{**} \in M.
307
    By the assumed condition, we get that (x)^{\tau} \nsubseteq M. Then there exists y \in (x)^{\tau}
308
    such that y \notin M. Hence x^{**} \vee y^{**} = 1 where y \notin M. Therefore M is median.
309
    Theorem 21. Every median filter of a lattice is a coherent filter.
310
     Proof. Let M be a median filter of a lattice L. Suppose x, y \in L be such that
311
     (x)^{\tau} = (y)^{\tau} and x \in M. Since M is median, there exists a \notin M such that
312
    x^{**} \vee a^{**} = 1. Hence a \in (x)^{\tau} = (y)^{\tau}. Thus 1 = y^{**} \vee a^{**} \leq (y \vee a)^{**}. Hence
```

 $(y \vee a)^{**} = 1$, which gives that $(y \vee a)^* = 0$. Thus $y \vee a \in D \subseteq M$. Since M is

prime and $a \notin M$, it yields that $y \in M$. Therefore M is a coherent filter.

314

In the following theorem, we derive a set of equivalent conditions for a Stone lattice to become a Boolean algebra in terms of median filters and maximal filters.

Theorem 22. Let L be a Stone lattice. Then the following are equivalent:

- (1) L is a Boolean algebra;
- (2) every prime filter is maximal;
- 321 (3) every prime filter is median;
- 322 (4) every prime filter is a D-filter.
- 323 **Proof.** $(1) \Rightarrow (2)$: It is well known.

329

- $(2) \Rightarrow (3)$: Since L is a Stone lattice, it is through.
- $(3) \Rightarrow (4)$: Since every median filter is a *D*-filter, it is clear.
- 326 (4) \Rightarrow (1): Assume condition (3). Then $D \subseteq \bigcap \{P \mid P \text{ is a prime filter}\} = \{1\}.$
- Hence $D = \{1\}$, which gives $x \vee x^* \in D = \{1\}$. Thus it is through.

Definition. For any maximal filter M of a lattice L, define

$$\Omega(M) = \{ x \in L \mid (x)^{\tau} \not\subseteq M \}.$$

Lemma 23. For any maximal filter M, $\Omega(M)$ is a D-filter contained in M.

Proof. Clearly $D \subseteq \Omega(M)$. Let $x, y \in \Omega(M)$. Then $(x)^{\tau} \nsubseteq M$ and $(y)^{\tau} \nsubseteq M$.

Since M is prime, we get $(x \wedge y)^{\tau} = (x)^{\tau} \cap (y)^{\tau} \not\subseteq M$. Hence $x \wedge y \in \Omega(M)$.

Let $x \in \Omega(M)$ and $x \leq y$. Then $(x)^{\tau} \not\subseteq M$ and $(x)^{\tau} \subseteq (y)^{\tau}$. Since $(x)^{\tau} \not\subseteq M$,

we get $(y)^{\tau} \not\subseteq M$. Thus $y \in \Omega(M)$. Therefore $\Omega(M)$ is a D-filter of L. Now,

let $x \in \Omega(M)$. Then, we get $(x)^{\tau} \nsubseteq M$. Hence there exists $a \in (x)^{\tau}$ such that

336 $a \notin M$. Since $a \in (x)^{\tau}$, we get $1 = a^{**} \vee x^{**} \leq (a \vee x)^{**}$. Thus $a \vee x \in D \subseteq M$.

Since $a \notin M$, we must have $x \in M$. Therefore $\Omega(M) \subseteq M$.

Let us denote that \mathcal{M} is the set of all maximal filters of a lattice L. For any $a \in L$, we also denote $\mathcal{M}_{a^*} = \{M \in \mathcal{M} \mid a^* \in M\}$.

Theorem 24. Let L be a lattice and $a \in L$. Then $(a)^{\tau} \subseteq \bigcap_{M \in \mathcal{M}_{a^*}} \Omega(M)$.

Proof. Let $x \in (a)^{\tau}$ and $M \in \mathcal{M}_{a^*}$. Then $x^{**} \vee a^{**} = 1$ and $a^* \in M$. Suppose

 $a \in M$. Then $0 = a \wedge a^* \in M$, which is a contradiction Hence $a \notin M$. Hence

 $a \in (x)^{\tau}$ such that $a \notin M$. Thus $(x)^{\tau} \nsubseteq M$. Hence $x \in \Omega(M)$. Thus $(a)^{\tau} \subseteq \Omega(M)$

which is true for all $M \in \mathcal{M}_{a^*}$. Therefore $(a)^{\tau} \subseteq \bigcap_{M \in \mathcal{M}_{a^*}} \Omega(M)$.

Corollary 25. Let L be a lattice and $a \in L$. Then $a^* \in M$ implies $(a)^{\tau} \subseteq \Omega(M)$.

In Example 14, consider $P = \{1, a, c\}$. Clearly $D = \{1, c\}$ and P is a prime

D-filter. For any element $x \in P$, there exists no $y \notin P$ such that $x^{**} \vee y^{**} = 1$.

Hence P is not median. However, in the following, some equivalent conditions

are derived for every prime *D*-filter of a lattice to become a median filter.

12 M. Sambasiva Rao

Theorem 26. The following conditions are equivalent in a lattice L:

```
(1) L is a Stone lattice;
351
        (2) every D-filter is strongly coherent;
352
        (3) every maximal filter is strongly coherent;
353
        (4) every maximal filter is median;
354
        (5) for any M \in \mathcal{M}, \Omega(M) is median;
355
        (6) for any a, b \in L, a \lor b \in D implies (a)^{\tau} \lor (b)^{\tau} = L;
356
        (7) for any a \in L, (a)^{\tau} \vee (a^*)^{\tau} = L.
357
     Proof. (1) \Rightarrow (2): Assume that L is a Stone lattice. Let F be a D-filter of L.
358
     Clearly \pi(F) \subseteq F. Conversely, let x \in F. Since L is a Stone lattice, we get
359
     x^* \vee x^{**} = 1. Suppose (x)^{\tau} \vee F \neq L. Then there exists a maximal filter M of
360
     L such that (x)^{\tau} \vee F \subseteq M. Hence (x)^{\tau} \subseteq M and x \in F \subseteq M. Since M is a
361
     prime, we get x^* \notin M. Since x^{***} \vee x^{**} = 1, we get x^* \in (x)^{\tau} \subseteq M which is a
362
     contradiction. Thus (x)^{\tau} \vee F = L. Therefore F is a strongly coherent filter.
363
     (2) \Rightarrow (3): It is obvious.
364
365
366
```

 $(3) \Rightarrow (4)$: Assume that every maximal filter is strongly coherent. Let M be a maximal filter of L. Then by our assumption, $\pi(M) = M$. Let $x \in M$. Then $(x)^{\tau} \vee M = L$. Hence $a \wedge b = 0$ for some $a \in (x)^{\tau}$ and $b \in M$. Since $a \in (x)^{\tau}$, we 367 get $a^{**} \vee x^{**} = 1$. Suppose $a \in M$. Then $0 = a \wedge b \in M$, which is a contradiction. Hence $a \notin M$. Therefore M is median.

 $(4) \Rightarrow (5)$: Assume condition (4). Let $M \in \mathcal{M}$. Clearly $\Omega(M) \subseteq M$. Conversely, let $x \in M$. Since M is median, there exists $y \notin M$ such that $x^{**} \vee y^{**} = 1$. Hence $(x)^{\tau} \not\subseteq M$. Thus $x \in \Omega(M)$. Therefore $\Omega(M) = M$ is a median filter. 372 $(5) \Rightarrow (6)$: Assume condition (5). Let $a, b \in L$ be such that $a \vee b \in D$. Suppose

370

373 $(a)^{\tau} \vee (b)^{\tau} \neq L$. Then there exists a maximal filter M such that $(a)^{\tau} \vee (b)^{\tau} \subseteq M$. Since $\Omega(M)$ is median, by Theorem 20, we get

$$\begin{split} (a)^\tau \vee (b)^\tau &\subseteq M \quad \Rightarrow \quad (a)^\tau \subseteq M \quad \text{and} \quad (b)^\tau \subseteq M \\ &\Rightarrow \quad (a)^\tau \subseteq \Omega(M) \quad \text{and} \quad (b)^\tau \subseteq \Omega(M) \\ &\Rightarrow \quad a \notin \Omega(M) \quad \text{and} \quad b \notin \Omega(M) \quad \text{ since } \Omega(M) \text{ is median} \\ &\Rightarrow \quad a \vee b \notin M \end{split}$$

which is a contradiction to that $a \vee b \in D \subseteq M$. Therefore $(a)^{\tau} \vee (b)^{\tau} = L$. $(6) \Rightarrow (7)$: Let $a \in L$. Since $a \vee a^* \in D$, by (6), we are through. $(7) \Rightarrow (1)$: Assume condition (7). Let $x \in L$. Then by (7), we have $(x)^{\tau} \vee (x^*)^{\tau} =$ L. Hence $0 \in (x)^{\tau} \vee (x^*)^{\tau}$. Then $0 = a \wedge b$ for some $a \in (x)^{\tau}$ and $b \in (x^*)^{\tau}$. Since $b \in (x^*)^{\tau}$, we get $b^{**} \vee x^* = 1$, and so $b^* \wedge x^{**} = 0$. Thus $b^* \leq x^*$. Now

$$1 = a^{**} \lor x^{**} \quad \text{since } a \in (x)^{\tau}$$

$$\leq b^* \vee x^{**}$$
 since $a \wedge b = 0$
 $\leq x^* \vee x^{**}$ since $b^* \leq x^*$

which gives that $x^* \vee x^{**} = 1$. Therefore L is a Stone lattice.

For any filter F of a lattice L, we denote $\mathcal{M}_F = \{M \in \mathcal{M} \mid F \subseteq M\}$.

Theorem 27. For any filter F of a lattice $L, \pi(F) = \bigcap_{M \in \mathcal{M}_F} \Omega(M)$.

Proof. Let $x \in \pi(F)$ and $F \subseteq M$ where $M \in \mathcal{M}$. Then $L = (x)^{\tau} \vee F \subseteq (x)^{\tau} \vee M$. Suppose $(x)^{\tau} \subseteq M$, then M = L, which is a contradiction. Hence $(x)^{\tau} \nsubseteq M$.

Thus $x \in \Omega(M)$ for all $M \in \mathcal{M}_F$. Therefore $\pi(F) \subseteq \bigcap_{M \in \mathcal{M}_F} \Omega(M)$.

Conversely, let $x \in \bigcap_{M \in \mathcal{M}_F} \Omega(M)$. Then, we get $x \in \Omega(M)$ for all $M \in \mathcal{M}_F$.

Suppose $(x)^{\tau} \vee F \neq L$. Then there exists a maximal filter M_0 such that $(x)^{\tau} \vee F \subseteq$

389 M_0 . Hence $(x)^{\tau} \subseteq M_0$ and $F \subseteq M_0$. Since $F \subseteq M_0$, by hypothesis, we get

 $x \in \Omega(M_0)$. Thus $(x)^{\tau} \nsubseteq M_0$, which is a contradiction. Therefore $(x)^{\tau} \vee F = L$.

Thus $x \in \pi(F)$. Therefore $\bigcap_{M \in \mathcal{M}_F} \Omega(M) \subseteq \pi(F)$.

Theorem 28. The following assertions are equivalent in a lattice L:

1 (1) L is a Stone lattice;

382

397

- 394 (2) for any $M \in \mathcal{M}$, $\Omega(M)$ is maximal;
- 395 (3) for any $F, G \in \mathcal{F}(L)$, $F \vee G = L$ implies $\pi(F) \vee \pi(G) = L$;
- 396 (4) for any $F, G \in \mathcal{F}(L)$, $\pi(F) \vee \pi(G) = \pi(F \vee G)$;
 - (5) for any two distinct maximal filters $M, N, \Omega(M) \vee \Omega(N) = L$;
- 398 (6) for any $M \in \mathcal{M}$, M is the unique member of μ such that $\Omega(M) \subseteq M$.

399 **Proof.** (1) \Rightarrow (2): Assume that L is a Stone lattice. Let $M \in \mathcal{M}$. Clearly,

we have $\Omega(M) \subseteq M$. Conversely, let $x \in M$. Since L is a Stone lattice, By

Theorem 26, we get that M is a median filter. Then there exists $y \notin M$ such that

 $x^{**} \lor y^{**} = 1$. Hence $y \in (x)^{\tau}$ and $y \notin M$. Thus $(x)^{\tau} \nsubseteq \Omega(M)$. Hence $x \in \Omega(M)$.

Therefore $\Omega(M) = M$ is a maximal filter.

404 (2) \Rightarrow (3): Assume condition (2). Clearly $\Omega(M) = M$ for all $M \in \mathcal{M}$. Let

 $F,G \in \mathcal{F}(L)$ be such that $F \vee G = L$. Suppose $\pi(F) \vee \pi(G) \neq L$. Then there

exists a maximal filter M of L such that $\pi(F) \vee \pi(G) \subseteq M$. Hence $\pi(F) \subseteq M$

and $\pi(G) \subseteq M$. Now, we get

$$\pi(F) \subseteq M \quad \Rightarrow \quad \bigcap_{M \in \mathcal{M}_F} \Omega(M) \subseteq M$$

$$\Rightarrow \quad \Omega(M_i) \subseteq M \quad \text{for some } M_i \in \mathcal{M}_F \text{ (since } M \text{ is prime)}$$

$$\Rightarrow \quad M_i \subseteq M \qquad \text{By condition (2)}$$

$$\Rightarrow \quad F \subseteq M$$

M. Sambasiva Rao

Similarly, we can get $G \subseteq M$. Hence $L = F \vee G \subseteq M$, which is a contradiction.

Therefore $\pi(F) \vee \pi(G) = L$.

410 (3) \Rightarrow (4): Assume condition (3). Let $F, G \in \mathcal{F}(L)$. Clearly, we have $\pi(F) \vee \pi(G) \subseteq \pi(F \vee G)$. Let $x \in \pi(F \vee G)$. Then $((x)^{\tau} \vee F) \vee ((x)^{\tau} \vee G) = (x)^{\tau} \vee F \vee G = L$. Hence by condition (3), we get that $\pi((x)^{\tau} \vee F) \vee \pi((x)^{\tau} \vee G) = L$. Thus $x \in \pi((x)^{\tau} \vee F) \vee \pi((x)^{\tau} \vee G)$. Hence $x = r \wedge s$ for some $r \in \pi((x)^{\tau} \vee F)$ and $s \in \pi((x)^{\tau} \vee G)$. Now, we have

$$r \in \pi((x)^{\tau} \vee F) \quad \Rightarrow \quad (r)^{\tau} \vee (x)^{\tau} \vee F = L$$

$$\Rightarrow \quad L = ((r)^{\tau} \vee (x)^{\tau}) \vee F \subseteq (r \vee x)^{\tau} \vee F$$

$$\Rightarrow \quad (r \vee x)^{\tau} \vee F = L$$

$$\Rightarrow \quad r \vee x \in \pi(F)$$

Similarly, we can get $s \vee x \in \pi(G)$. Hence

$$\begin{array}{lll} x & = & x \vee x \\ & = & x \vee (r \wedge s) \\ & = & (x \vee r) \wedge (x \vee s) \in \pi(F) \vee \pi(G) \end{array}$$

Hence $\pi(F \vee G) \subseteq \pi(F) \vee \pi(G)$. Therefore $\pi(F) \vee \pi(G) = \pi(F \vee G)$.

417 $(4) \Rightarrow (5)$: Assume condition (4). Let M, N be two distinct maximal filters of 418 L. Choose $x \in M - N$ and $y \in N - M$. Since $x \notin N$ and $y \notin M$, we get $x^* \in N$ 419 and $y^* \in M$. Hence $(x \wedge y^*) \wedge (y \wedge x^*) = (x \wedge x^*) \wedge (y \wedge y^*) = 0$. Then

$$\begin{array}{ll} L &=& \pi(L) \\ &=& \pi([0)) \\ &=& \pi([(x \wedge y^*) \wedge (y \wedge x^*))) \\ &=& \pi([x \wedge y^*) \vee [y \wedge x^*)) \\ &=& \pi([x \wedge y^*)) \vee \pi([y \wedge x^*)) \quad \text{By condition (4)} \\ &\subseteq& \Omega(M) \vee \Omega(N) \quad \text{since } [x \wedge y^*) \subseteq M, [y \wedge x^*) \subseteq N \end{array}$$

Therefore $\Omega(M) \vee \Omega(N) = L$.

(5) \Rightarrow (6): Assume condition (5). Let $M \in \mathcal{M}$. Clearly $\Omega(M) \subseteq M$. Suppose $N \in \mathcal{M}$ such that $N \neq M$ and $\Omega(M) \subseteq N$. Since $\Omega(N) \subseteq N$, by hypothesis, we get $L = \Omega(M) \vee \Omega(N) \subseteq N$, which is a contradiction. Therefore M is the unique maximal filter of L such that $\Omega(M)$ is contained in M.

(6) \Rightarrow (1): Let M be a maximal filter of L. Suppose $\Omega(M) \neq M$. Then there exists a maximal filter M_0 such that $\Omega(M) \subseteq M_0$, which contradicts uniqueness of M. Hence $\Omega(M) = M$. Let $M \in M$ such that $M \in M$. Then there exists $M \in M$ such that $M \in M$ that $M \in M$ such that $M \in M$ there $M \in M$ is median. By Theorem 26, $M \in M$ is a Stone lattice.

Acknowledgements: The author would like to thank the referee for his valuable suggestions and comments.

431

432

References

- [1] R. Balbes and A. Horn, *Stone lattices*, Duke Math. Journal **37** (1970) 537–545.
- [2] G. Birkhoff, Lattice Theory (Amer. Math. Soc. Colloq. XXV, Providence,
 U.S.A, 1967).
- [3] I. Chajda, R. Halaš and J. Kühr, Semilattice structures (Heldermann Verlog,
 Germany, ISBN 978-3-88538-230-0, 2007).
- [4] W.H. Cornish, Congruences on distributive pseudo-complemented lattices, Bull. Austral. Math. Soc. 8 (1973) 167–179.
- [5] O. Frink, *Pseudo-complements in semi-lattices*, Duke Math. Journal **29** (1962) 505–514. doi: 10.1215/S0012-7094-62-02951-4.
- [6] G. Gratzer, General lattice theory (Academic press, New york, San Francisco, U.S.A., 1978).
- [7] M. Sambasiva Rao, δ-ideals in pseudo-complemented distributive lattices,
 Archivum Mathematicum 48(2) (2012) 97–105. doi:10.5817/AM2012-2-97.
- [8] A.P. Paneendra Kumar, M. Sambasiva Rao, and K. Sobhan Babu, Generalized prime D-filters of distributive lattices, Archivum Mathematicum **57(3)** (2021) 157–174. doi: 10.5817/AM2021-3-157.
- [9] T.P. Speed, On Stone lattices, Jour. Aust. Math. Soc. 9(3-4) (1969) 297–
 307. doi: https://doi.org/10.1017/S1446788700007217
- [10] M.H. Stone, A theory of representations for Boolean algebras, Tran. Amer. Math. Soc. 40 (1936) 37–111. doi:https://doi.org/10.2307/1989664.