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Abstract

Terms and formulas, which are formal expressions in first and second or-
der languages obtained by alphabets, operation symbols, and relation sym-
bols, are used to study algebras and algebraic systems. In this paper, we
introduce the notion of terms with fixed variables count. The partial many-
sorted superposition operations of such terms and their partial many-sorted
algebra satisfying clone axioms as weak identities are presented. We also
extend our structures from algebras to algebraic systems via the concept of
formulas with fixed variables count. Conditions for the set of such formulas
to be closed under taking of superposition of formulas are determined. We
construct the partial many-sorted algebra of formulas with fixed variables
count and investigate its satisfaction by clone axioms. Finally, we prove
that such partial structure is isomorphic to some Menger systems of the
same rank of partial multiplace functions.
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1. Introduction and preliminaries

For n ∈ N := {1, 2, . . .}, by On(A) we denote the set of n-ary operations on
a nonempty set A and O(A) :=

⋃

n∈NOn(A). Any subset of O(A) is called a
clone (or clone of operations) if it contains all n-ary proje ction operations prni
on A which are defined by prni (a1, . . . , an) = ai for all i = 1, . . . , n and is closed
under the following composition of operations: For f ∈ On(A), g1, . . . , gn ∈
Om(A), the m-ary operation f(g1, . . . , gn) (sometimes written as f ◦ (g1, . . . , gn),
On

m(f, g1, . . . , gn), or f [g1 · · · gn]), which is defined by

f(g1, . . . , gn)(a1, . . . , am) = f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)).

Actually, the notion of a clone is essential in many parts of universal algebra and
theoretical computer science. Two elementary examples of clones are now pro-
posed. The first one is the full clone O(A) of all finitary non-nullary operations
on A, particularly, the trivial clone which consists of the set J(A) of all projec-
tion operations defined on A. Another one is the clone (X,T ) of all continuous
operations on a given topological space (X,T ). For a brief knowledge on the
study of clones, see [16]. Other applications of clones in different aspects were
investigated, for example, in [17, 36].

One of the important concepts connecting with clones is the concept of many-
sorted algebras. To attain this concept, the S-sorted sets A = (As)s∈S are essen-
tial. In this case, the set S is called a set of sorts. Moreover, the sort mapping
φ : A → B from an S-sorted set A = (As)s∈S to an S-sorted set B = (Bs)s∈S is
an S-sorted family φ : (φs)s∈S of mappings φs : As → Bs where s ∈ S. Recent
developments in many-sorted algebras may be seen in [6, 24]. Accordingly, we
can describe clones in the sense of many-sorted algebras as follows: Let N be the
set of sorts and let (On(A))n∈N be a sorted set. A composition operation On

m

where n,m ∈ N,
On

m : On(A)× (Om(A))m → Om(A)

can be defined by On
m(f, g1, . . . , gn) 7→ f(g1, . . . , gn) where f(g1, . . . , gn) was al-

ready known. The projection operations prni , i ≤ n, n ∈ N act as nullary opera-
tions. Consequently, the many-sorted algebra

clone A = ((On(A))n∈N, (O
n
m)n,m∈N, (pr

n
i )i≤n,n∈N),

is formed.
The variety of all abstract clones, denoted by K0, is a family of N-sorted

algebras satisfying the following three identities:

(C1) S̃n
m(S̃p

n(Z̃, Ỹ1, . . . , Ỹp), X̃1, . . . , X̃n) ≈ S̃p
m(Z̃, S̃n

m(Ỹ1, X̃1, . . . , X̃n), . . . , S̃
n
m(Ỹp,

X̃1, . . . , X̃n)),m, n, p ∈ N;

(C2) S̃n
m(λj , X̃1, . . . , X̃n) ≈ X̃j , n,m ∈ N, 1 ≤ j ≤ n;
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(C3) S̃n
n(Ỹ , λ1, . . . , λn) ≈ Ỹ , n ∈ N;

where S̃n
m, S̃p

n, S̃
p
m, S̃n

n are operation symbols, Z̃, Ỹ1, . . . , Ỹp, X̃1, . . . , X̃n, Ỹ are
variables for terms, and λj are symbols for variables. In general, (C1) is said
to be the superassociative law since it generalizes the associative law. In fact,
if we set m = n = p = 1, one can reduce it to the associative law of the form
·(·(a, b), c) = ·(a, ·(b, c)). Each member of the variety K0 is called an abstract
clone. Note that every concrete clone can be considered as an abstract clone. For
the converse, every abstract clone is isomorphic to a concrete clone. This result
may be regarded as a generalization of Cayley’s theorem for groups and semi-
groups, which were stated that every group is isomorphic to a permutation group
and every semigroup can be isomorphically embedded into some transformation
semigroup.

From an applied point of view, clones are important in both, computational
complexity due to their connection to constraint satisfaction problems (CSPs)
and computer science. In universal algebras, clones were naturally studied in
various aspects. One of outstanding structures is the clone of term operations or
term algebras. Actually, the wide application of terms or trees as a natural tool
in computer science leads us to consider its theoretical basics. To mention them,
we present several basic ideas of terms concerning their definitions, operations
and structures which will be used in the sequel. Terms may be regarded as words
formed by letters. A construction of tree expressions by terms were proposed
in [14]. An equational approach to tree transformations induced by terms were
explored in [2]. Let I be a nonempty indexed set and (fi)i∈I be a sequence of
operation symbols. To every operation symbol fi, we assign a natural number
ni ∈ N, called the arity of fi. The sequence τ := (ni)i∈I is called a type. We
denote by Xn := {x1, . . . , xn} a finite set called an alphabet and its elements are
called variables. The set of all n-ary terms of type τ is the smallest set Wτ (Xn)
inductively defined by these two items:

(1) Xn ⊆ Wτ (Xn) and
(2) If t1, . . . , tni

∈ Wτ (Xn) and fi is an operation symbol of the arity ni

then fi(t1, . . . , tni
) ∈ Wτ (Xn). We denote by Wτ (X) :=

⋃

n∈NWτ (Xn) the set of
all terms of type τ . The most important operation on terms is a superposition
operation. For each natural numbers m,n ≥ 1, the superposition operation is a
many-sorted mapping

Sn
m : Wτ (Xn)× (Wτ (Xm))n → Wτ (Xm)

defined on the structure of s ∈ Wτ (Xn) by

(1) for s = xi, 1 ≤ j ≤ n, Sn
m(xj , t1, . . . , tn) := tj ,

(2) for s = fi(s1, . . . , sni
), Sn

m(fi(s1, . . . , sni
), t1, . . . , tn) := fi(S

n
m(s1, t1, . . . , tn),

. . . , Sn
m(sni

, t1, . . . , tn)).
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Then the many-sorted algebra can be defined by

clone(τ)=
(

(Wτ (Xn))n∈N+ , (Sn
m)n,m∈N+ , (xi)i≤n∈N+

)

,

which is called the clone of all terms of type τ . In this case, the variables
x1, . . . , xn act as the nullary operations. It turns out that clone(τ) satisfies the
axioms (C1)–(C3), and hence it belongs to the variety K0. Current topics in the
construction of new terms have been extensively studied, for example, linear terms
[9] and their extensions [25], full terms induced by order-decreasing transforma-
tions [34] and terms with a fixed variable [33]. Stable varieties of semigroups
characterized by terms were obtained in [30]. Furthermore, a mapping whose
range is the set of different kinds of terms was presented in [5, 22, 23].

In [12], functional measurements of a complexity of terms and various for-
mulas for measuring the complexity of a new term were introduced. The variable
count and the operation symbol count are two fundamental tools used to study
of measurements of terms. The variables count of a term t is the total num-
ber of occurring variables in t, and is denoted by vb(t). If t is a variable, then
vb(t) = 1 and if t = fi(t1, . . . , tni

), then vb(t) =
∑ni

j=1 vb(tj). The operation

symbol count of a term t, denoted by op(t), is the total number of occurring op-
eration symbols in t. If t is a variable, then op(t) = 0 and if t = fi(t1, . . . , tni

),
then op(t) = 1 +

∑ni

j=1 op(tj). The xk-variable count of t for k ∈ {1, . . . , n},
denoted by vbk(t), is defined by vbk(xk) = 1; if t is a variable or if xk does not
occur in t, then vbk(t) = 0, and vbk(t) =

∑ni

j=1 vbk(tj) if t = fi(t1, . . . , tni
) and

t1, . . . , tni
∈ Wτ (Xn). Several formulas for the complexity of the input terms

s, t1, . . . , tn under the many-sorted superposition operation of terms were con-
structed. In fact, it was proved that vb(Sn

m(s, t1, . . . , tn)) =
∑n

j=1 vbj(s)vb(tj)
and vbk(S

n
m(s, t1, . . . , tn)) =

∑n
j=1 vbj(s)vbk(tj), see [7]. Recently, in [1], the

concept of the total number of both occurring variables and occurring operation
symbols in a term t which is called the length of the term t, and denoted by
len(t). It can be normally defined inductively by len(t) = 1 if t is a variable and
len(t) =

∑ni

j=1 len(tj) + 1 if t = fi(t1, . . . , tni
).

One of outstanding structures that plays a vital role in the first and second
order languages considering in theoretical computer science is an algebraic system.
It is a triplet consisting of a nonempty set A, a sequence of ni-ary operations
defined on A, and a sequence of nj-ary relations on A. Normally, we may write
A = (A, (fA

i )i∈I , (γ
A
j )j∈J) for an algebraic system of type (τ, τ ′) where τ =

(ni)i∈I and fA
i : Ani → A for each i ∈ I and τ ′ = (nj)j∈J and γAj ⊆ Anj

for each j ∈ J . We remark here that if a sequence of nj-ary relations on A
is not defined this structure is reduced to an original algebra of type τ , i.e.,
A = (A, (fA

i )i∈I). For extensive information of algebraic systems, the reader
is referred to the monograph of Malcev [26]. Among recent contributions in
algebraic systems are [27, 28, 29, 37]. To investigate several properties of algebraic
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systems of type (τ, τ ′), we need the concept of formulas. Recall from [11] that
for n ∈ N an n-ary formula of type (τ, τ ′) is defined in the following way.

(1) If t1, t2 are n-ary terms of type τ , then the equation t1 ≈ t2 is an n-ary
formula of type (τ, τ ′).

(2) If j ∈ J and t1, . . . , tnj
are n-ary terms of type τ and γj is an nj-ary relation

symbol, then γj(t1, . . . , tnj
) is an n-ary formula of type (τ, τ ′).

(3) If F is an n-ary formula of type (τ, τ ′), then ¬F is an n-ary formula of type
(τ, τ ′).

(4) If F1 and F2 are n-ary formulas of type (τ, τ ′), then F1 ∨ F2 is an n-ary
formula of type (τ, τ ′).

(5) If F is an n-ary formula of type (τ, τ ′) and xi ∈ Xn, then ∃xi(F ) is an n-ary
formula of type (τ, τ ′).

Let F(τ,τ ′)(Wτ (Xn)) and F(τ,τ ′)(Wτ (X)) :=
⋃

n∈N F(τ,τ ′)(Wτ (Xn)) be the set of
all n-ary formulas of type (τ, τ ′) and the set of all formulas of type (τ, τ ′), respec-
tively. Actually, several classes of formulas of a given type and their related topics
were presented by many authors, for instance, linear formulas [8], C-formulas [4],
and formulas with fixed variables [32]. The links among formulas, semantic and
syntactic families were described in [31].

This paper is organized as follows: First, in Section 2, we introduce the con-
cept of terms in which variables count is equal and then we investigate the condi-
tions under which these defined terms are closed with respect to the superposition
operation. Additionally, the many-sorted algebra of such terms is constructed.
We continue our study in Section 3 with describing the total number of occurring
variables in any formula. This allows us to form the partial clone consisting of a
sequence of such formulas, a sequence of the partial operations defined on those
sets, and a sequence of nullary operations. Finally, a representation theorem in
our obtained structure by partial multiplace functions is given.

2. Terms with fixed variables count and their partial operations

This section aims to introduce a new term defined by variables count under some
conditions.

Definition. An n-ary term with fixed variables count of type τ is inductively
defined by:

(1) Every variable xi in Xn is an n-ary term with fixed variables count of type τ .

(2) If t1, . . . , tni
are n-ary terms with fixed variables count of type τ , and if

vb(tk) = vb(tl) for all 1 ≤ k < l ≤ ni, then fi(t1, . . . , tni
) is an n-ary term

with fixed variables count of type τ .



344 T. Kumduang and S. Leeratanavalee

Let W fvc
τ (Xn) be the set of all n-ary terms with fixed variables count of type

τ and let W fvc
τ (X) :=

⋃

n∈N W fvc
τ (Xn) be the set of all terms with fixed variables

count of type τ .
Now we will present some examples of terms with fixed variables count of

some types.

Example 1. Let τ = (2) be the type with one binary operation symbol f and
the set of variables X3. Then some examples of ternary terms with fixed variables
count of type (2) are x1, x2, x3, f(x1, x3), f(f(x1, x1), f(x2, x2)). But the following
are not f(x1, f(x3, x2)), f(f(f(x1, x1), f(x2, x2)), f(x2, x3)).

Example 2. We consider the type τ = (3, 2) with one ternary operation symbol
and one binary operation symbol, say f and g, repectively. Then

x1, x2, x3, f(x3, x2, x1), f(g(x1, x1), g(x3, x2), g(x1, x3)) ∈ W fvc

(3,2)(X3),

x1, x2, x3, x4, f(x4, x1, x2), g(x3, x2), g(f(x4, x3, x3), f(x1, x2, x2)) ∈ W fvc

(3,2)(X4),

but

f(g(x1, x1), x2, x3), g(x2, f(x1, x3, x3)) /∈ W fvc

(3,2)(X3),

f(x2, g(x4, x1), x2), g(f(x1, g(x4, x1), x4), f(x1, x2, x2)) /∈ W fvc

(3,2)(X4).

Generally, it turns out that the set W fvc
τ (Xn) of all n-ary terms with fixed

variables count of type τ is not closed under the usual superposition operations
Sn
m of terms. As an example we consider the type τ = (2) with the binary op-

eration symbol f and the superposition S2
2 . Then S2

2(f(x2, x1), f(x1, x2), x1) =
f(x1, f(x1, x2)) is not a binary term with fixed variables count of type (2), al-
though f(x1, x2) and x1 are binary terms with fixed variables count.

In order to ensure that the superposition operation of terms can be applied
to the set W fvc

τ (Xn), for all n ≥ 1, some essential conditions are considered.
Clearly, Sn

m(t, s1, . . . , sn) is again an m-ary term with fixed variables count of
type τ if t is a variable from Xn. Otherwise, we prove

Lemma 3. If fi(t1, . . . , tni
) ∈ W fvc

τ (Xn), s1, . . . , sn ∈ W fvc
τ (Xm), and vb(sj) =

vb(sk) for 1 ≤ j < k ≤ n, then

Sn
m(fi(t1, . . . , tni

), s1, . . . , sn) ∈ W fvc
τ (Xm).

Proof. Following the definition of the usual superposition Sn
m, we have

Sn
m(fi(t1, . . . , tni

), s1, . . . , sn) = fi(S
n
m(t1, s1, . . . , sn), . . . , S

n
m(tni

, s1, . . . , sn)).

We first prove that each term Sn
m(tj, s1, . . . , sn) belongs to the set W fvc

τ (Xm) for
1 ≤ j ≤ ni. For this, let 1 ≤ j ≤ ni, we substitute the terms from {s1, . . . , sn}
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for the variables that appear in tk, for 1 ≤ k ≤ ni. Since tj ∈ W fvc
τ (Xn),

by the assumption, and vb(sj) = vb(sk) for 1 ≤ j < k ≤ n, we have that
Sn
m(tj, s1, . . . , sn) is an m-ary term with fixed variables count of type τ .

Now we prove that the equations vb(Sn
m(tj, s1, . . . , sn)) = vb(Sn

m(tk, s1, . . . ,
sn)) hold for all 1 ≤ j < k ≤ ni. According to the hypothesis, we have

fi(t1, . . . , tni
) ∈ W fvc

τ (Xn), which means vb(tj) = vb(tk) for all 1 ≤ j < k ≤ ni.
Then, we obtain

∑n
i=1 vbi(tj) =

∑n
i=1 vbi(tk). Applying the condition vb(sj) =

vb(sk) for 1 ≤ j < k ≤ n, we have
∑n

i=1 vbi(tj)vb(si) =
∑n

i=1 vbi(tk)vb(si)
for all 1 ≤ j < k ≤ n. It follows directly from the formula for counting a
number of occurring variables in a composition Sn

m that vb(Sn
m(tj , s1, . . . , sn)) =

vb(Sn
m(tk, s1, . . . , sn)). As a consequence, the resulting term Sn

m(fi(t1, . . . , tni
),

s1, . . . , sn) belongs to the set W fvc
τ (Xm).

The previous result presented in Lemma 3 allows us to define a many-sorted
partial mapping on the sequence (W fvc

τ (xn))n≥1. In fact, for t ∈ W fvc
τ (Xn) and

s1, . . . , sn ∈ W fvc
τ (Xm), the many-sorted partial mapping

S
n

m : W fvc
τ (Xn)×

(

W fvc
τ (Xm)

)n
⊸→ W fvc

τ (Xm)

is inductively defined by

S
n

m(t, s1, . . . , sn) :=











Sn
m(t, s1, . . . , sn), if vb(sj) = vb(sk)

for all 1 ≤ j < k ≤ n;

not defined, otherwise.

As a consequence, by applying all of these preparations, the many-sorted
partial algebra

clonefvc(τ) :=
(

(

W fvc
τ (xn)

)

n∈N
, (S

n

m)n,m∈N, (xi)i≤n,n∈N

)

,

which is called the partial clone of terms with fixed variables count of type τ , is
constructed.

Our next aim is to examine the fact that the superassociativity and other
clone axioms are valid in this partial algebra. For this, the concept of weak
identities is given. We recall from [7] that an equation s ≈ t is said to be a weak
identity in an algebra A if one side is defined then another side is also defined
and both sides are equal. An excellent overview of partial algebras can be found
in [3, 15].

Theorem 4. The many-sorted partial operations (S
n

m)n,m∈N on the many-sorted

partial algebra clonefvc(τ) satisfy (C1)–(C3) as weak identities.
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Proof. To prove (C1), we let t1, . . . , tp ∈ W fvc
τ (Xn), s1, . . . , sn ∈ W fvc

τ (Xm) and

t ∈ W fvc
τ (Xp). Suppose that the left-hand side is defined. We have vb(tj) =

vb(tk) for all 1 ≤ j < k ≤ p and vb(sl) = vb(sr) for all 1 ≤ l < r ≤ n. It fol-
lows that S

n

m(S
p

n(t, t1, . . . , tp), s1, . . . , sn) equal to Sn
m(Sp

n(t, t1, . . . , tp), s1, . . . , sn).
Furthermore, for each 1 ≤ j ≤ p, the partial superposition S

n

m(tj , s1, . . . , sn) is
defined and equal to Sn

m(tj, s1, . . . , sn). For 1 ≤ j < k ≤ p, by our assumption, we
obtain vb(tj) = vb(tk), which means

∑n
i=1 vbi(tj) =

∑n
i=1 vbi(tk). Particularly,

we obtain
∑n

i=1 vbi(tj)vb(si) =
∑n

i=1 vbi(tk)vb(si). As a consequence, we have
vb(Sn

m(tj, s1, . . . , sn)) = vb(Sn
m(tk, s1, . . . , sn)). Therefore, the right-hand side of

(C1) is defined. In fact, we have

S
p

m(t, S
n

m(t1, s1, . . . , sn), . . . , S
n

m(tp, s1, . . . , sn))

= Sp
m(t, Sn

m(t1, s1, . . . , sn), . . . , S
n
m(tp, s1, . . . , sn)).

Because Sn
m satisfies (C1), our aim is directly obtained. To prove (C2), assume

that t1, . . . , tp are elements inW fvc
τ (xn) and vb(tj) = vb(tk) for all 1 ≤ j < k ≤ p.

Then the left-hand side of (C2) is defined. Thus, according to the definition
of Sn

m, we conclude S
n

m(xi, t1, . . . , tn) = Sn
m(xi, t1, . . . , tn) = ti. Finally,(C3) is

proved. Observe that vb(x1) = · · · = vb(xn) = 1. Then S
n

n(t, x1, . . . , xn) =
Sn
n(t, x1, . . . , xn) = t. The proof is finished.

3. A particular class of formulas and its partial structures

The reader may have noticed that the study of algebras presented in the previous
section were all defined via terms with fixed variables count. In this section,
we aim to extend our study to formulas with fixed variables count in algebraic
systems. To continue this intention, the superposition operations Rn

m, n,m ≥ 1
of formulas are recalled.

The operations on sets of formulas were introduced in [11]

Rn
m : Wτ (Xn) ∪ F(τ,τ ′)(Wτ (Xn))× (Wτ (Xm))n → Wτ (Xm) ∪ F(τ,τ ′)(Wτ (Xm))

are defined in the following way:

(1) If t ∈ Wτ (Xn), then Rn
m(t, s1, . . . , sn) := Sn

m(t, s1, . . . , sn).

(2) If t1 ≈ t2 ∈ F(τ,τ ′)(Wτ (Xn)), then Rn
m(t1 ≈ t2, s1, . . . , sn) is the formula

Rn
m(t1, s1, . . . , sn) ≈ Rn

m(t2, s1, . . . , sn).

(3) If γj(t1, . . . , tnj
) ∈ F(τ,τ ′)(Wτ (Xn)), then Rn

m(γj(t1, . . . , tnj
), s1, . . . , sn) is the

formula γj(R
n
m(t1, s1, . . . , sn), . . . , R

n
m(tnj

, s1, . . . , sn)).
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(4) If F ∈ F(τ,τ ′)(Wτ (Xn)), then Rn
m(¬F, s1, . . . , sn) is the formula

¬Rn
m(F, s1, . . . , sn).

(5) If F1, F2 ∈ F(τ,τ ′)(Wτ (Xn)), then Rn
m(F1 ∨ F2, s1, . . . , sn) is the formula

Rn
m(F1, s1, . . . , sn) ∨Rn

m(F2, s1, . . . , sn).

(6) If ∃xi(F ) ∈ F(τ,τ ′)(Wτ (Xn)), then Rn
m(∃xi(F ), s1, . . . , sn) is the formula

∃xi(R
n
m(F, s1, . . . , sn)).

These operations induce the many-sorted algebra

Formclone(τ, τ ′) := ((Wτ (Xn)∪F(τ,τ ′)(Wτ (Xn)))n∈N, (R
n
m)m,n∈N, (xi)1≤i≤n,i,n∈N),

which is called the formula-term clone of type (τ, τ ′). It was proved that the
algebra Formclone(τ, τ ′) satisfies the equations (C1)–(C3). Thus it belongs to
the variety K0.

We seperate the presentation of this section into two parts: Construction of
the partial many-sorted algebra of formulas with fixed variables count and their
representations via partial multiplace functions.

3.1. Partial clone of formulas with fixed variables count

The first aim of this section is to set formulas with fixed variables count which
have not been properly defined before and then to define their operations.

Based on a useful concept of vb(t) where t is a term, one can present its
generalizations in algebraic systems as follows:

Definition. For any formula F , the variable count of F , denoted by vb(F ), is
the total number of occurring variables in F . This can be defined inductively by
vb(F ) =

∑2
k=1 vb(tk) if F is an equation t1 ≈ t2, vb(F ) =

∑nj

k=1 vb(tk) if F =

γj(t1, . . . , tnj
), vb(¬F ) = vb(F ), vb(F1 ∨ F2) =

∑2
k=1 vb(Fk), and vb(∃xi(F )) =

vb(F ).

Example 5. We now consider the type (τ, τ ′) = ((3), (3, 2)) with a ternary
operation symbol f and two relation symbols of arities 3 and 2, say γ1 and
γ2, respectively. Then we have vb(f(x1, x5, x2) ≈ x2) = 4, vb(F ) = 5 if F =
γ1(x1, f(x2, x2, x1), x4), vb(F ) = 2 if F = ¬(γ2(x3, x3)), vb(F ) = 11 if F =
(f(x2, x2, x3) ≈ f(x1, x2, x8)) ∨ ¬(γ1(f(x1, x2, x3), x4, x6)).

Similarly, the situation for the xk-variable count of a formula F is extended.
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Definition. Let F be an n-ary formula of type (τ, τ ′). For each variable xk, the
xk-variable count vbk(F ) of F is defined by inductively as follows: vbk(t1 ≈ t2) =
∑2

i=1 vbk(ti), vbk(F ) =
∑nj

i=1 vbk(ti) if F = γj(t1, . . . , tnj
), vbk(¬F ) = vbk(F ),

vbk(F1 ∨ F2) =
∑2

i=1 vbk(Fi), and vb(∃xi(F )) = vbk(F ).

Example 6. Let (τ, τ ′) = ((2), (3, 1)) be a type with a binary operation sym-
bol g and two relation symbols of arities 3 and 1, say β1, β2, repectively. We
first consider the following two formulas F := g(x4, g(x1, x2)) ≈ x2 and Q =
¬(β1(x1, g(x4, x4), x4)) ∨ β2(g(g(x3, x1), g(x2, x3))). Then vb1(F ) = 1, vb2(F ) =
2, vb3(F ) = 0 and vb4(F ) = 1. On the other hand, vb1(Q) = 2, vb2(Q) =
1, vb3(Q) = 2 and vb4(Q) = 3.

Then we prove

Theorem 7. Let Q ∈ Wτ (Xn) ∪ F(τ,τ ′)(Wτ (Xn)) and s1, . . . , sn ∈ Wτ (Xm).
Then

vb
(

Rn
m(Q, s1, . . . , sn)

)

=

n
∑

k=1

vbk(Q) · vb(sk).

Proof. We give a proof on the complexity of Q. Firstly, the theorem is proved
if Q is an n-ary term of type τ . Now we consider only the case when Q ∈
F(τ,τ ′)(Wτ (Xn)). To do this, we begin with the case when Q is a formula s ≈ t
and assume that the theorem is satisfied for s, t. Then

vb(Rn
m(s ≈ t, s1, . . . , sn)) =

n
∑

k=1

vbk(s) · vb(sk) +

n
∑

k=1

vbk(t) · vb(sk)

=

n
∑

k=1

(

vbk(s) + vbk(t)
)

· vb(sk)

=
n
∑

k=1

vbk(s ≈ t) · vb(sk).

If Q = γj(t1, . . . , tnj
) ∈ F(τ,τ ′)(Wτ (Xn)) and assume that the formula is sat-

isfied for t1, . . . , tnj
. Then vb(Rn

m(F, s1, . . . , sn)) =
∑nj

i=1 vb(S
n
m(ti, s1, . . . , sn)) =

∑nj

i=1

(
∑n

k=1 vbk(ti)vb(sk)
)

=
∑n

k=1

((
∑nj

i=1 vbk(ti)
)

vb(sk)
)

=
∑n

k=1vbk(F ) vb(sk).
In the case Q = ¬F ∈ F(τ,τ ′)(Wτ (Xn)) and Q = ∃xi(F ) ∈ F(τ,τ ′)(Wτ (Xn)), we
inductively assume that

vb(Rn
m(F, s1, . . . , sn)) =

n
∑

k=1

vbk(F ) · vb(sk).
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Then we have

vb(Rn
m(¬F, s1, . . . , sn)) = vb(¬(Rn

m(F, s1, . . . , sn)))

= vb(Rn
m(F, s1, . . . , sn)) =

n
∑

k=1

vbk(F ) · vb(sk) =
n
∑

k=1

vbk(¬F ) · vb(sk)

and

vb(Rn
m(∃xi(F ), s1, . . . , sn)) = vb(∃xi(R

n
m(F, s1, . . . , sn)))

= vb(Rn
m(F, s1, . . . , sn)) =

n
∑

k=1

vbk(F ) · vb(sk) =

n
∑

k=1

vbk(∃xi) · vb(sk).

Finally, the theorem is satisfied if Q = F1 ∨ F2 ∈ F(τ,τ ′)(Wτ (Xn)). In fact,
we have

vb(Rn
m(F1 ∨ F2, s1, . . . , sn)) = vb(Rn

m(F1, s1, . . . , sn) ∨Rn
m(F2, s1, . . . , sn))

= vb(Rn
m(F1, s1, . . . , sn)) + vb(Rn

m(F2, s1, . . . , sn)) =

n
∑

k=1

vbk(F1) · vb(sk)

+

n
∑

k=1

vbk(F2) · vb(sk) =

( n
∑

k=1

vbk(F1) +

n
∑

k=1

vbk(F2)

)

vb(sk)

=
n
∑

k=1

(

vbk(F1) + vbk(F2)
)

vb(sk) =
n
∑

k=1

vbk(F1 ∨ F2)vb(sk).

This finishes a proof.

We now ready to define our main definition.

Definition. Let n ≥ 1. An n-ary formula with fixed variables count of type (τ, τ ′)
is inductively defined in the following way.

(1) If t1, t2 are n-ary terms with fixed variables count of type τ , then the equation
t1 ≈ t2 is an n-ary formula with fixed variables count of type (τ, τ ′).

(2) If j ∈ J and t1, . . . , tnj
are n-ary terms with fixed variables count of type

τ , if vb(tk) = vb(tl) for all 1 ≤ k < l ≤ nj and if γj is an nj-ary relation
symbol, then γj(t1, . . . , tnj

) is an n-ary formula with fixed variables count of
type (τ, τ ′).

(3) If F is an n-ary formula with fixed variables count of type (τ, τ ′), then ¬F
is an n-ary formula with fixed variables count of type (τ, τ ′).

(4) If F1 and F2 are n-ary formulas with fixed variables count of type (τ, τ ′), and
if vb(F1) = vb(F2), then F1 ∨ F2 is an n-ary formula with fixed variables
count of type (τ, τ ′).
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(5) If F is an n-ary formula with fixed variables count of type (τ, τ ′), then ∃xi(F )
is an n-ary formula with fixed variables count of type (τ, τ ′).

Let Ffvc

(τ,τ ′)

(

W fvc
τ (Xn)

)

be the set of all n-ary formulas with fixed variables

count of type (τ, τ ′) and let

Ffvc

(τ,τ ′)

(

W fvc
τ (X)

)

:=
⋃

n∈N

Ffvc

(τ,τ ′)

(

W fvc
τ (Xn)

)

be the set of all formulas with fixed variables count of type (τ, τ ′).

We can replace (1) by the following condition (1′).

(1′) If t1, t2 are n-ary terms with fixed variables count of type τ , and if
vb(t1) = vb(t2), then t1 ≈ t2 is called an n-ary strong formula with fixed variables
count of type (τ, τ ′). It can be seen that every strong formula with fixed variables
count of type (τ, τ ′) is a formula with fixed variables count of type (τ, τ ′).

Note that the formulas defined by (1) and (2) are called atomic formulas.

Example 8. Let (τ, τ ′) = ((3), (2)) be the type with a ternary operation sym-
bol f and a binary relation symbol γ. We provide lists of some elements in
Ffvc

((3),(2))(W
fvc

(3) (X3)). For this, some atomic formulas are firstly determined as fol-

lows: x1 ≈ x3, x2 ≈ x2, f(x1, x2, x3) ≈ x1, f(x2, x2, x2) ≈ f(x1, x3, x1), γ(x1, x2),
γ(x3, x3), γ(x2, x3), γ(f(x3, x3, x2), f(x1, x3, x1)). Apart form these are obtained
by using the following three logical connectors, say ¬,∃,∨.

It is not difficult to see that the operations Rn
m for n,m ≥ 1 can not di-

rectly applied to the sets Ffvc

(τ,τ ′)(W
fvc
τ (Xn)) for n ≥ 1. In fact, we consider

the superposition R2
3 on the sets Ffvc

((2),(2))(W
fvc

(2) (X2)),F
fvc

((2),(2))(W
fvc

(2) (X3)) and

let f(x2, x1) ≈ x2 be an element in Ffvc

((2),(2))(W
fvc

(2) (X2)), s1 = f(x1, x3), s2 =

x3, s3 = f(x2, x1) ∈ W fvc

(2) (X3). Particularly, we have

R2
3(f(x2, x1) ≈ x2, s1, s2, s3) = f(s2, s1) ≈ x2 /∈ Ffvc

((2),(2))(W
fvc

(2) (X3)).

For this reason, in order to guarantee that the set Ffvc

(τ,τ ′)(W
fvc
τ (Xn)) is closed

with respect to Rn
m with some additional conditions, the following two theorems

are needed

Theorem 9. If Q1 and Q2 are two elements in W fvc
τ (Xn) ∪ Ffvc

(τ,τ ′)

(

W fvc
τ (Xn)

)

satisfying vb(Q1) = vb(Q2) and if s1, . . . , sn are m-ary terms with fixed variables

count of type τ satisfying vb(sj) = vb(sk) for 1 ≤ j < k ≤ n, then

vb
(

Rn
m(Q1, s1, . . . , sn)

)

= vb
(

Rn
m(Q2, s1, . . . , sn)

)

.
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Proof. Let Q1, Q2 ∈ W fvc
τ (Xn) ∪ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Assume that the condi-

tions hold. To prove that vb(Rn
m(Q1, s1, . . . , sn)) = vb(Rn

m(Q2, s1, . . . , sn)), we
consider in a few cases. Let us start by considering the case of both Q1 and Q2

are elements in W fvc
τ (Xn). Suppose now that Q1 = xi and Q2 = xj . Then by the

definition of Rn
m and our hypothesis, we have vb(Rn

m(xi, s1, . . . , sn)) = vb(si) =
vb(sj) = vb(Rn

m(xj , s1, . . . , sn)). If Q1 = xi and Q2 = fi(t
′
1, . . . , t

′
ni
), then we

obtain vb(xi) = vb(fi(t
′
1, . . . , t

′
ni
)) = 1. Thus, we have vb(Rn

m(xi, s1, . . . , sn)) =
vb(si) and vb(Rn

m(fi(t
′
1, . . . , t

′
ni
), s1, . . . , sn)) =

∑n
k=1 vbk(fi(t

′
1, . . . , t

′
ni
))vb(sk) =

vb(sk), which implies that our goal are obtained. Assume thatQ1 = fi(t1, . . . , tni
)

and Q2 = fj(t
′
1, . . . , t

′
nj
) satisfying vb(fi(t1, . . . , tni

)) = vb(fj(t
′
1, . . . , t

′
nj
)). This

means that we have
∑ni

k=1 vb(tk) =
∑nj

k=1 vb(t
′
k). According to the definition of

vb(t) and vb(sj) = vb(sk) for 1 ≤ j < k ≤ n, we get

ni
∑

k=1

(

n
∑

a=1

vba(tk)

)

=

nj
∑

k=1

(

n
∑

a=1

vba(t
′
k)

)

,

particularly,

ni
∑

k=1

(

n
∑

a=1

vba(tk)vb(sa)

)

=

nj
∑

k=1

(

n
∑

a=1

vba(t
′
k)vb(sa)

)

,

and
ni
∑

k=1

(

n
∑

a=1

vba(tk)

)

vb(sa) =

nj
∑

k=1

(

n
∑

a=1

vba(t
′
k)

)

vb(sa),

which means
∑ni

k=1 vba(fi(t1, . . . , tni
))vb(sa) =

∑nj

k=1 vba(fj(t
′
1, . . . , t

′
nj
))vb(sa).

Now we let Q1 ∈ W fvc
τ (Xn) and Q2 ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). If Q1 = xi ∈ Xn

and Q2 is a formula of the form t′1 ≈ t′2, then we have vb(xi) = vb(t′1 ≈ t′2) = 1.
As a result, the thorem is proved since vb(sj) = vb(sk) for 1 ≤ j < k ≤ n and
by the definition of vb(t) and Rn

m. In the case Q1 = fi(t1, . . . , tni
) and Q2 is a

formula t′1 ≈ t′2, by the hypothesis, we obtain
∑ni

k=1 vb(tk) =
∑2

k=1 vb(t
′
k), in

particular, we have
∑ni

k=1(
∑n

a=1 vba(tk)) =
∑2

k=1(
∑n

a=1 vba(t
′
k)). Since we have

vb(s1) = · · · = vb(sn),

ni
∑

k=1

(

n
∑

a=1

vba(tk)

)

vb(sa) =
2
∑

k=1

(

n
∑

a=1

vba(t
′
k)

)

vb(sa).

This implies vb(Rn
m(fi(t1, . . . , tni

), s1, . . . , sn)) = vb(Rn
m(t′1 ≈ t′2, s1, . . . , sn)). In

general, we can prove by the same process that the theorem is valid if Q1 is a
term xi or fi(t1, . . . , tni

) and Q2 is a formula γj(t1, . . . , tnj
). Analogously, we can

prove the case Q1 ∈ Ffov

(τ,τ ′)(W
fov
τ (Xn)) and Q2 ∈ W fov

τ (Xn).
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We now consider atomic formulas Q1 and Q2 in Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Let us

begin by letting Q1 and Q2 be any two formulas s′1 ≈ s′2 and t′1 ≈ t′2, respectively.
Due to the presumption, we have vb(s′1)+vb(s′2) = vb(t′1)+vb(t′2), which means
∑n

k=1(vbk(s
′
1)) +

∑n
k=1(vbk(s

′
2)) =

∑n
k=1(vbk(t

′
1)) +

∑n
k=1(vbk(t

′
2)). According

to our assumption, we have
(

n
∑

k=1

(vbk(s
′
1)) +

n
∑

k=1

(vbk(s
′
2))

)

vb(sk) =

(

n
∑

k=1

(vbk(t
′
1)) +

n
∑

k=1

(vbk(t
′
2))

)

vb(sk),

and hence

2
∑

j=1

(

vb(Sn
m(s′j, s1, . . . , sn)

)

=
2
∑

j=1

(vb
(

Sn
m(t′j, s1, . . . , sn)

)

,

which gives vb(Rn
m(s′1 ≈ s′2, s1, . . . , sn)) = vb(Rn

m(t′1 ≈ t′2, s1, . . . , sn)). Similarl-
ity, we can prove in the case of Q1 is a formula s ≈ t and Q2 = γj(t1, . . . , tnj

).

Moreover, the proof is obtained if we consider
∑nj

k=1(vb(tj) and
∑np

k=1(vb(t
′
p)

when Q1 = γj(t1, . . . , tnj
) and Q2 = γp(t

′
1, . . . , t

′
np
).

In addition, it is not difficult to show that the theorem is satisfied after
applying steps (3) and (5) in Definition 3.1 because of

vb(F ) = vb(¬F ) = vb(∃xi(F )),

Rn
m(¬F, s1, . . . , sn) = ¬Rn

m(F, s1, . . . , sn)

Rn
m(∃xi(F ), s1, . . . , sn) = ∃xi(R

n
m(F, s1, . . . , sn)).

Finally, we give a proof of the theorem when either Q1 or Q2 is a formula that
generated by a logical connector ∨ or both of them are formulas of the form F ∨F ′

and Q∨Q′. If Q1 ∈ W fvc
τ (Xn) and Q2 = F ∨F ′, we have vb(t) = vb(F )+vb(F ′),

which means
∑n

k=1(vbk(t)) =
∑n

k=1(vbk(F )) +
∑n

k=1(vbk(F
′)). If follows from

the hypothesis that
(

n
∑

k=1

(vbk(t))

)

vb(sk) =

(

n
∑

k=1

(vbk(F )) +
n
∑

k=1

(vbk(F
′))

)

vb(sk),

which implies

vb
(

Rn
m(t, s1, . . . , sn)

)

= vb
(

Rn
m(F, s1, . . . , sn)

)

+ vb
(

Rn
m(F ′, s1, . . . , sn)

)

.

We can prove the case when Q1 is a formula of the steps (1), or (2), or (3) and
Q2 = Q ∨ Q′ in a similar way. Inductively, we finally obtain the proof both Q1

and Q2 are formulas of the form F ∨F ′ and Q2 = Q∨Q′. As a consequence, the
proof is finished.
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Consequently, we prove

Theorem 10. If Q ∈ W fvc
τ (Xn) ∪ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)) and if s1, . . . , sn are m-

ary terms with fixed variables count of type τ satisfying vb(sj) = vb(sk) for

1 ≤ j < k ≤ n, then

Rn
m(Q, s1, . . . , sn) ∈ W fvc

τ (Xm) ∪ Ffvc

(τ,τ ′)

(

W fvc
τ (Xm)

)

.

Proof. Clearly, if Q is a variable in Xn, the theorem is proved. It follows directly
from Lemma 3 that the statement is obtained if Q is an n-ary term fi(t1, . . . , , tni

)
with fixed variables count of type τ . We now prove that the theorem is also valid
if Q is an n-ary formula with fixed variables count of type (τ, τ ′). At first, we

assume that Q is an equation s ≈ t with s, t ∈ W fvc
τ (Xn). According to the defini-

tion of Rn
m, we have that Rn

m(s ≈ t, s1, . . . , sn) is the equation Sn
m(s, s1, . . . , sn) ≈

Sn
m(t, s1, . . . , sn). Because of vb(sj) = vb(sk) for 1 ≤ j < k ≤ n, by Lemma 3 and

our presumption, variables count of the terms on both sides of the equation are
equal and thus Rn

m(Q, s1, . . . , sn) ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Let Q be a formula of the

form γj(t1, . . . , tnj
) ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Using the definition of Rn

m, we obtain

Rn
m(γj(t1, . . . , tnj

), s1, . . . , sn) = γj(S
n
m(t1, s1, . . . , sn), . . . , S

n
m(tnj

, s1, . . . , sn)).
Applying the proof of Lemma 3, it is easy to show that Sn

m(tp, s1, . . . , sn) ∈

W fvc
τ (Xn) for all 1 ≤ p ≤ nj. Now we prove that for all 1 ≤ k < l ≤ nj the

equations
vb(Sn

m(tk, s1, . . . , sn)) = vb(Sn
m(tl, s1, . . . , sn))

hold. Since γj(t1, . . . , tnj
) ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)), vb(tk) = vb(tl) for all 1 ≤ k <

l ≤ nj, and hence
∑n

i=1 vbi(tk) =
∑n

i=1 vbi(tl), for all 1 ≤ k < l ≤ nj. It follows
from the condition vb(sj) = vb(sk) for 1 ≤ j < k ≤ n that

∑n
i=1 vbi(tk)vb(si) =

∑n
i=1 vbi(tl)vb(si) for all 1 ≤ k < l ≤ nj, which gives vb(Sn

m(tk, s1, . . . , sn)) =
vb(Sn

m(tl, s1, . . . , sn)). Consequently, γj(S
n
m(t1, s1, . . . , sn), . . . , S

n
m(tnj

, s1, . . . , sn))

belongs to Ffvc

(τ,τ ′)(W
fvc
τ (Xm)) and thus Rn

m(γj(t1, . . . , tnj
), s1, . . . , sn) is an m-

ary formula with fixed variables count of type (τ, τ ′)Let Q be an n-ary for-
mula with fixed variables count of type (τ, τ ′). We inductively assume that

Rn
m(Q, s1, . . . , sn) ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Since

Rn
m(¬Q, s1, . . . , sn) = ¬Rn

m(Q, s1, . . . , sn)

and
Rn

m(∃xi(Q), s1, . . . , sn) = ∃xi(R
n
m(Q, s1, . . . , sn)),

we also obtain
Rn

m(¬Q, s1, . . . , sn) ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)),

Rn
m(∃xi(Q), s1, . . . , sn) ∈ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)).
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Finally, we let F and Q be any two elements in Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Because of

Rn
m(F ∨Q, s1, . . . , sn) = Rn

m(F, s1, . . . , sn) ∨Rn
m(Q, s1, . . . , sn),

and the satisfaction of F and Q, using the result of Theorem 9, we also have that
the formula Rn

m(F ∨ Q, s1, . . . , sn) belongs to the set Ffvc

(τ,τ ′)(W
fvc
τ (Xm)). This

completes the proof.

As a consequence, using the fact that terms and formulas with fixed variables
count are closed with respect to the many-sorted operations Rn

m for n,m ≥ 1 in
Theorem 10, we define the partial operations denoted by R

n

m as follows.
For any Q ∈ W fvc

τ (xn) ∪ Ffvc

(τ,τ ′)(W
fvc
τ (Xn)), s1, . . . , sn ∈ W fvc

τ (Xm), the
many-sorted partial mapping

R
n

m :
(

W fvc
τ (Xn) ∪ Ffvc

(τ,τ ′)

(

W fvc
τ (Xn)

)

)

×
(

W fvc
τ (Xm)

)n

⊸→ W fvc
τ (Xm) ∪ Ffvc

(τ,τ ′)

(

W fvc
τ (Xm)

)

is inductively defined by:

R
n

m(Q, s1, . . . , sn) :=











Rn
m(Q, s1, . . . , sn), if vb(sj) = vb(sk)

for all 1 ≤ j < k ≤ n;

not defined, otherwise.

The following many-sorted algebra consisting of a sequence of the union be-
tween W fvc

τ (Xn) and Ffvc

(τ,τ ′)(W
fvc
τ (Xn)), a sequence of the partial operations R

n

m,
and a sequence of variables acting as projections, i.e.,

(

(

W fvc
τ (Xn) ∪ Ffvc

(τ,τ ′)(W
fvc
τ (Xn))

)

n∈N
, (R

n

m)n,m∈N, (xi)i≤n,n∈N

)

,

which is called the formulas clone with fixed variables count of type (τ, τ ′), is
formed and denoted by Formclonefvc(τ, τ ′).

Theorem 11. The axioms (C1), (C2), and (C3) are weak identities in the many-

sorted partial algebra Formclonefvc(τ, τ ′).

Proof. To prove (C1), we replace Z̃ in (C1) by an arbitrary element Q ∈

W fvc
τ (Xn)∪F

fvc

(τ,τ ′)(W
fvc
τ (Xn)), Ỹ1, . . . , Ỹp by n-ary terms t1, . . . , tp with fixed vari-

ables count of type τ , X̃1, . . . , X̃n by m-ary terms s1, . . . , sn with fixed variables
count of type τ , and the operation symbols by the following partial operations
R

n

m, R
p

n and R
p

m. As a result, we obtain

R
n

m(R
p

n(Q, t1, . . . , tp), s1, . . . , sn)

= R
p

m(Q,R
n

m(t1, s1, . . . , sn), . . . , R
n

m(tp, s1, . . . , sn)).
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It follows immediately from Theorem 4 that the above equation is satisfied if
Q is an element of W fvc

τ (Xn). Otherwise, let Q be an arbitrary formula in

Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Suppose first that vb(tj) = vb(tk) for all 1 ≤ j < k ≤ p

and vb(sl) = vb(sr) for all 1 ≤ l < r ≤ n. Then the left-hand side of above
equation is defined and equals to Rn

m(Rp
n(Q, t1, . . . , tp), s1, . . . , sn). Moreover, for

each 1 ≤ j ≤ p, the partial superposition R
n

m(tj , s1, . . . , sn) is defined and equals
to Sn

m(tj , s1, . . . , sn). For 1 ≤ j < k ≤ p, according to our presumption, we have
vb(tj) = vb(tk), which means

∑n
i=1 vbi(tj) =

∑n
i=1 vbi(tk). Consequently, we

have
n
∑

i=1

vbi(tj)vb(si) =

n
∑

i=1

vbi(tk)vb(si),

and hence vb(Sn
m(tj, s1, . . . , sn)) = vb(Sn

m(tk, s1, . . . , sn)). Therefore, the right-
hand side of above equation is defined and equals to

Rp
m(Q,Sn

m(t1, s1, . . . , sn), . . . , S
n
m(tp, s1, . . . , sn)).

Actually, it was proved in [11] that the operations Rn
m satisfy (C1). Thus, our

equation is obtained.
In order to show (C2), we replace λj in (C2) by a variable xj in W fvc

τ (Xn),

X̃1, . . . , X̃n by terms s1, . . . , sn from W fvc
τ (Xn), and the symbol S̃n

m by R
n

m and
obtain R

n

m(xi, s1, . . . , sn) = si. Since vb(sl) = vb(sr) for all 1 ≤ l < r ≤ n,
R

n

m(xi, s1, . . . , sn) is defined and thus R
n

m(xi, s1, . . . , sn) = Rn
m(xi, s1, . . . , sn) =

si.
Finally, if we replace S̃n

n , Ỹ , λ1, . . . , λn in (C3) by R
n

n, Q, x1 . . . , xn, repec-
tively, we have R

n

n(Q,x1, . . . , xn) = Rn
n(Q,x1, . . . , xn) = Q by the satisfaction of

Rn
m which was proved in [11]. This completes the proof.

3.2. Representation of formulas with fixed variables count

This section is devoted to a new construction of partial multiplace functions
which correspond to formulas with fixed variables count. To achieve this, the no-
tions of Menger systems and algebras of functions are essential. In [13], algebras
represented by some kinds of operations were discussed. The authors defined
left translations of n-ary operations in [19]. Menger hyperalgebras generalizing
Menger algebras were introduced by the authors in [20]. Algebras of weak-near
unanimity functions were recently studied by the authors in [21]. A nice connec-
tion of Menger algebras and terms was mentioned in [10, 35]. Let (Gn)n∈I be
a family of nonempty sets and n,m be positive integers belonging to nonempty
index set I of positive integers. Consider the many-sorted operations

◦nm : Gn × (Gm)n → Gm

satisfying the following conditions:
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(1) if n,m ∈ I, x ∈ Gn, y1, . . . , yn ∈ Gm, then ◦nm(x, y1, . . . , yn) is defined and it
belongs to Gm,

(2) the superassociative law holds:

◦nm(◦pn(x, y1, . . . , yn), z1, . . . , zn)

= ◦pm(x, ◦nm(y1, z1, . . . , zn), . . . , ◦
n
m(yp, z1, . . . , zn)),

for all n,m, p ∈ I, x ∈ Gp, y1, . . . , yp ∈ Gn, z1, . . . , zn ∈ Gm.

The many-sorted algebra G = ((Gn)n∈I , (◦
n
m)n,m∈I) is called aMenger system

of rank I or a many-sorted Menger algebra of rank I. In general, this structure
can be regarded as a natural generalization of Menger algebras and semigroups
if I = {n} and I = {1}, respectively.

For an index set I, by |I| we mean the cardinality of I. Furthermore, the
symbol (xji)i∈I , we refer to the |I|-tuple (xja, . . . , xjb) where j is a positive in-
teger, a and b is the minimum element and the maximum element in I, re-
spectively. Usually, we mention that a number i that appears in (xji)i∈I is
indicated by ith-sorted set. Let us consider, for instance, if I = {2, 3}, then
(xji)i∈I = (xji)i∈{2,3} = (xj2, xj3), consequently, xj2 ∈ G2, xj3 ∈ G3.

As mentioned in [21], a Menger system G of rank I is called unitary if it
contains a complete collection of selectors of all arities, i.e., for every n,m ∈ I
there are elements e1m, . . . , enm ∈ Gm and ein ∈ Gn, called selectors, such that

◦nm(x, e1m, . . . , enm) = x,

◦nm(ein, y1, . . . , yn) = yi,

for all i = 1, . . . , n, and xn ∈ Gn, y1, . . . , yn ∈ Gm.

Let A be a nonempty set, I a nonempty set of positive intergers. By Fn(A)
we denote the set of all n-ary partial functions on A. On the family of sets
(Fn(A))n∈I , an (n+1)-ary operation (also called composition of partial functions)
On

m, where n,m ∈ I, can be defined by setting.

If f ∈ Fn(A), g1, . . . , gn ∈ Fm(A) and (a1, . . . , am) ∈ Am, then by the symbol
On

m(f, g1, . . . , gn) we denote the partial function

On
m : Fn(A)× (Fm(A))n ⊸→ Fm(A)

defined by

dom (On
m) =

{

(a1, . . . , am) ∈ Am|(a1, . . . , am) ∈
⋂n

i=1 dom(gi)
}

and (g1(a1, . . . , am), . . . , gn(a1, . . . , am)) ∈ dom(f)

and On
m(f, g1, . . . , gn)(a1, . . . , am) = f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)).
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It is not hard to verify that this composition satisfies the superasscociativity,
i.e., for any n,m, p ∈ I, f ∈ Fp(A), g1, . . . , gp ∈ Fn(A) and h1, . . . , hn ∈ Fm(A),
we have

On
m(Op

n(f, g1, . . . , gp), h1, . . . , hn)

= Op
m(f,On

m(g1, h1, . . . , hn), . . . ,O
n
m(gp, h1, . . . , hn)).

The many-sorted algebra ((Fn(A))n∈I , (O
n
m)n,m∈I) is called the Menger sys-

tem of rank I of partial multiplace functions. Obviously, this algebra can be
considered as a natural generalization of a semigroup of partial transformations
and a Menger algebra of partial n-ary functions if I = {1} and I = {n}, respec-
tively.

In the following, we prove the main result.

Theorem 12. The many-sorted partial algebra Formclonefvc(τ, τ ′) is isomorphic

to some unitary Menger system of the same rank of partial multiplace functions

such that its selectors correspond to the projection operations of this set.

Proof. For convenience, the symbol WFfvc(Xn) stands for the union of W fvc
τ

(Xn) and Ffvc

(τ,τ ′)(W
fvc
τ (Xn)). Let ((WFfvc(Xn))n∈N, (R

n

m)n,m∈N, (xi)i≤n,n∈N) be
the many-sorted partial algebra, which can be regarded as a Menger system of
rank I = N. Then for each n ∈ N and each element Q ∈ WFfvc(Xn), the partial
multiplace function

λQ :

(

∏

i∈N

(

WFfvc(Xi)
)

)n

→
∏

i∈N

(

WFfvc(Xi)
)

can be defined by

λQ((a1i)i∈N, . . . , (ani)i∈N) :=















(R
n

i (Q, a1i, . . . , ani))i∈N, if (aji)i∈N∈
∏

i∈N

(W fvc
τ (Xi))

for all 1 ≤ j ≤ n;

not defined, otherwise

for all (a1i)i∈N, . . . , (ani)i∈N ∈
∏

i∈N(WFfvc(Xi)).

Now let Fn(
∏

i∈N

(WFfvc(Xi))) = {λQ | Q ∈ WFfvc(Xn)}. It is not difficult to

show that the system

((

Fn

(

∏

i∈N

(WFfvc(Xi))

))

n∈N

, (On
m)n,m∈N, (pr

n
i )i≤n,n∈N

)

forms a unitary Menger system of rank N of partial multiplace functions.
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Since ((WFfvc(Xn))n∈N, (R
n

m)n,m∈N, (xi)i≤n,n∈N) is a many-sorted algebra,
we actually have to consider the mapping

(φn)n∈N :
(

WFfvc(Xn)
)

n∈N
→

(

Fn

(

∏

i∈N

(WFfvc(Xi))

))

n∈N

,

defined by
φn(Q) = λQ

for all n ∈ N where φn is a mapping from WFfvc(Xn) to Fn(
∏

i∈N(WFfvc(Xi))).
We first show that for every n,m ∈ N the equation

φm(R
n

m(Q, s1, . . . , sn)) = On
m(φn(Q), φm(s1), . . . , φm(sn))

for all Q ∈ WFfvc(Xn) and s1, . . . , sn ∈ W fvc(Xm) are satisfied as weak identi-
ties. In fact, we let (Q, s1, . . . , sn) ∈ dom(R

n

m). This means that vb(sj) = vb(sk)
for 1 ≤ j < k ≤ n. Applying the definition of φn, we obtain (φn(Q), φm(s1), . . . ,
φm(sn)) ∈ dom(On

m) which means vb(φm(sj)) = vb(φm(sk)) for 1 ≤ j < k ≤ n.
As a result these equalities are equivalent to

λR
n

m(Q,s1,...,sn)
= On

m(λQ, λs1 , . . . , λsn).

In order to prove that these equalities are satisfied, we suppose that (a1i)i∈N,
. . . , (ami)i∈N are arbitrary elements in

∏

i∈N(WFfvc(Xi)). The existence of λQ is
defined if we only consider the case of (a1i)i∈N, . . . , (ami)i∈N ∈

∏

i∈N(W
fvc(Xi)).

By the superassociativity of (R
n

m)n,m∈N, we have

λR
n

m(Q,s1,...,sn)
((a1i)i∈N, . . . , (ami)i∈N)

= (R
m

i (R
n

m(Q, s1, . . . , sn), a1i, . . . , ami))i∈N

= (R
n

m(Q,R
m

i (s1, a1i, . . . , ami), . . . , R
m

i (sn, a1i, . . . , ami)))i∈N

= λQ((R
m

i (s1, a1i, . . . , ami))i∈N, . . . , (R
m

i (sn, a1i, . . . , ami))i∈N)

= λQ(λs1((a1i)i∈N, . . . , (ami)i∈N), . . . , λsn((a1i)i∈N, . . . , (ami)i∈N))

= On
m(λQ, λs1 , . . . , λsn)((a1i)i∈N, . . . , (ami)i∈N).

Furthermore, it is also an isomorphism. In fact, assume that λQ1
= λQ2

for
some Q1, Q2 ∈ WFfvc(Xn), n ∈ N. Then

λQ1
((a1i)i∈N, . . . , (ani)i∈N) = λQ2

((a1i)i∈N, . . . , (ani)i∈N).

Thus, in particular, we have

(R
n

i (Q1, a1i, . . . , ani))i∈N = (R
n

i (Q2, a1i, . . . , ani))i∈N.
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For each i ∈ N, replacing each element aji in this equation by variables xji of
W fvc(Xn) for all j = 1, . . . , n, we obtain

(R
n

i (Q1, x1i, . . . , xni))i∈N = (R
n

i (Q2, x1i, . . . , xni))i∈N.

Due to the satisfaction of (C3) of the partial operation R
n

m which was proved in
Theorem 11, we conclude Q1 = Q2. This shows that (φn)n∈N is an isomorphism.

Finally, for each 1 ≤ k ≤ n, n ∈ N, and xk ∈ W fvc
τ (Xn), we have

λxk
((a1i)i∈N, . . . , (ani)i∈N) = (Rn

i (xk, a1i, . . . , ani))i∈N = (aki)i∈N

for all (a1i)i∈N, . . . , (ani)i∈N∈
∏

i∈N(W
fvc(Xi)). Thus (λxk

)k≤n,n∈N=(prnk)k≤n,n∈N.
This means that selectors are transformed into projection operations. The proof
is completely finished.

4. Concluding remarks and future perspectives

In this paper, we defined a class of terms over algebras and generalize its to a
class of formulas in algebraic systems. To achieve these concepts, we applied the
so-called variable count in the complexity theory which describes and determines
many useful properties in algebras. The idea of counting the total number of
occurrences of variables in a formula was proposed. In terms of algebraic struc-
tures, a condition under which the many-sorted superpositions of terms can be
applied to our new terms was given. However, we may mention here that these
conditions are not necessary in some situations. For example, consider terms
with fixed variables count t = f(x1, x3), s1 = f(x1, x2), s2 = x3, s3 = f(x3, x4).

We note that the result after substituting these terms under S
3
4, i.e.,

S
3
4(t, s1, s2, s3) = S3

4(t, s1, s2, s3) = f(f(x1, x2), f(x3, x4))

is again a term with fixed variables count, although (t, s1, s2, s3) /∈ dom(S
3
4).

Consequently, there are two possible ways of continuation of this paper. Firstly,
it is possible to modify the partial many-sorted superpositions of terms with
fixed variables count to which each variable in the first position of such opera-
tions are considered, for example, in S3

4(f(x1, x3), s1, s2, s3) we may only consider
variables occuring in f(x1, x3) and set some conditions with respect to x1 and
x3. Secondly, power sets of terms and formulas with fixed variables count can
be extended and their many-sorted operations can be determined. For instance,
{x1, f(x2, x4)}, {f(x1, x1) ≈ f(f(x2, x1), f(x3, x3)), γ(x1, x1),¬(γ(x1, x1))}.

Acknowledgment

This research was supported by Chiang Mai University, Chiang Mai 50200, Thai-
land. The authors are deeply grateful to the referee for the valuable suggestions.



360 T. Kumduang and S. Leeratanavalee

References

[1] E. Aichinger, N. Mudrinski and J. Oprsal, Complexity of term representations of

finitary functions, Int. J. Algebra Comput. 28 (2018) 1101–1118.
https://doi.org/10.1142/S0218196718500480

[2] S. Bozapalidis, Z. Flap and G. Rahonis, Equational tree transformations, Theoret.
Comput. Sci. 412 (99) (2011) 3676–3692.
https://doi.org/10.1016/j.tcs.2011.03.028

[3] P. Burmeister, A model theoretic oriented approach to partial algebras, in: Intro-
duction to Theory and Application of Partial Algebras, Mathematical Research 32

(Akademie Verlag, 1986).

[4] S. Busaman, Unitary Menger algebra of C-quantifier free formulas of type (τn, 2),
Asian-Eur. J. Math. 14 (4) (2021) 2150050.
https://doi.org/10.1142/S1793557121500509

[5] N. Chansuriya, All maximal idempotent submonoids of generalized cohypersubstitu-

tions of type τ = (2), Discuss. Math. Gen. Algebra Appl. 41 (1) (2021) 45–46.
https://doi.org/10.7151/dmgaa.1351

[6] J. Crulis, Multi-algebras from the viewpoint of algebraic logic, Algebra Discrete
Math. 1 (2003) 20–31.

[7] K. Denecke, Partial clones, Asian-Eur. J. Math. 13 (8) (2020) 2050161.
https://doi.org/10.1142/S1793557120501612

[8] K. Denecke, The partial clone of linear formulas, Sib. Math J. 60 (2019) 572–584.
https://doi.org/10.1134/S0037446619040037

[9] K. Denecke, The partial clone of linear terms, Sib. Math J. 57 (4) (2016) 589–598.
https://doi.org/10.1134/S0037446616040030

[10] K. Denecke and H. Hounnon, Partial Menger algebras of terms, Asian-Eur. J. Math.
14 (6) (2021) 2150092.
https://doi.org/10.1142/S1793557121500923

[11] K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia
Logica 9 (2008) 263–286.
https://doi.org/10.1007/s11225-008-9152-3

[12] K. Denecke and S.L. Wismath, Complexity of terms, composition and hypersubsti-

tution, Int. J. Math. Math. Sci. 15 (2003) 959–969.
https://doi.org/10.1155/S0161171203202118

[13] W.A. Dudek and V.S. Trokhimenko, Menger algebras of k commutative n-place
functions, Georgian Math. J. 28 (3) (2021) 355–361.
https://doi.org/10.1515/gmj-2019-2072

[14] Y. Guellouma and H. Cherroun, From tree automata to rational tree expressions,
Int. J. Found. Comput. Sci. 29 (6) (2018) 1045–1062.
https://doi.org/10.1142/S012905411850020X

https://doi.org/10.1142/S0218196718500480
https://doi.org/10.1016/j.tcs.2011.03.028
https://doi.org/10.1142/S1793557121500509
https://doi.org/10.7151/dmgaa.1351
https://doi.org/10.1142/S1793557120501612
https://doi.org/10.1134/S0037446619040037
https://doi.org/10.1134/S0037446616040030
https://doi.org/10.1142/S1793557121500923
https://doi.org/10.1007/s11225-008-9152-3
https://doi.org/10.1155/S0161171203202118
https://doi.org/10.1515/gmj-2019-2072
https://doi.org/10.1142/S012905411850020X


partial many-sorted algebras of terms and formulas with fixed 361

[15] H.J. Hoehnke and J. Schreckenberger, Partial Algebras and Their Theories (Shaker-
Verlag, Aachen, 2007).
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