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1. Introduction35

Herstein introduced the concept of reverse derivations in rings [7]. In the same36

paper, he proved that in prime rings reverse derivation is just an ordinary deriva-37

tion. This made the researchers turn their focus to semiprime rings wherein the38

concept of reverse derivation and derivation are not the one and the same as shown39

by Samman and Alyamani in [9] (Example 2.3). Hence, from thereon several re-40

searchers extended the idea of reverse derivations in many ways. In one direction41

Sugantha Meena and Chandramouleeswaran [10] introduced reverse derivations42

in semirings and presented some of its basic properties. In our paper, we prove43

that in an additively cancellative semiprime semirings, a reverse derivation is44

just an ordinary derivation if and only if it is a central derivation, analogous to45

the one in rings. In the other direction Aboubakr and González [1] introduced46

the concept of generalized reverse derivations in semiprime rings. These gener-47

alizations served as motivation for several authors and plenty of research papers48

were produced in the last decade. Recently Ahmed and Dudek [2] introduced49

generalized reverse derivations in semirings and presented conditions that lead50

to the commutativity of additively inverse semirings. For more information on51

derivation in semirings one can refer to the survey paper by Dimitrov [3] . In-52

spired by these, we present some commutativity results in additively cancellative53

semiprime semirings using the concept of generalized reverse derivation.54

2. Definitions and Examples55

In this section we define the concept of reverse derivation and generalized reverse56

derivation in semirings. We refer to Golan [6] for the basic definitions presented57

below in semiring theory and we refer to Ganesh and Selvan [4] for the definition58

of the derivation d∆ in ring of differences (R∆) of a semiring (R) corresponding59

to the derivation d in R. This serves as a platform to travel between R and R∆
60

and help immensely to use the results in rings and to be able to extend it to61

semirings.62

Definition 2.1. [6] Let R be a semiring and a, b, c ∈ R. R is called additively63

cancellative if and only if a+ b = a+ c implies b = c.64

Definition 2.2. [6] Let R be a semiring and a, b ∈ R. R is called a yoked65

semiring if there exists a r ∈ R such that either a = b+ r or b = a+ r.66

Definition 2.3. [6] Let R be an additively cancellative semiring and then the
corresponding ring of differences, denoted by R∆ is defined as follows:

R∆ = {a− b : a, b ∈ R}
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In R∆, we have a − b = c − d if and only if there exists r, r′ ∈ R such that
a + r = c + r′ and b + r = d + r′. The zero element and multiplicative identity
of R∆ are r − r and 1 − 0 respectively. For a − b, c − d ∈ R∆, addition and
multiplication is given by

(a− b) + (c− d) = (a+ c)− (b+ d)

(a− b)(c− d) = (ac+ bd)− (ad+ bc)

We also note that the embedding of R to the ring of differences R∆ is due to the67

map r 7→ r − 0, for each r ∈ R.68

Remark 2.4. In the next two sections, we refer the semiring R to be additively69

cancellative (unless stated otherwise) so that the correspondingR∆ can be defined70

as above.71

Definition 2.5. [6] A function d of R into R is called a derivation of a semiring72

R if it satisfies the following conditions.73

(i) d(r + s) = d(r) + d(s), ∀ r, s ∈ R and74

(ii) d(rs) = d(r)s + rd(s), ∀ r, s ∈ R.75

Definition 2.6. [4] Let R be a semiring with derivation d. Let R∆ be the ring of
differences of the semiring R. Then, d∆ is a function in R∆ induced by d, defined
as follows.

d∆ : R∆ → R∆

d∆(a− b) = d(a)− d(b), ∀ a, b ∈ R.

We refer the reader to [4] to see that d∆ is indeed a derivation in R∆, if d. is a76

derivation in R.77

Definition 2.7. [6] Let R be a semiring and I be an ideal of R. We call I a78

k-ideal if r ∈ I and r+ s ∈ I implies s ∈ I, for r, s ∈ R. k-ideals are also referred79

as subtractive ideals.80

Definition 2.8. Let R be a semiring and f be a mapping of R to itself. We81

call f a central map if f(r) ∈ Z(R) for all r ∈ R, where Z(R) is the centre of82

R. Further, we call f a central derivation (central reverse derivation) if f is a83

derivation of R (if f is a reverse derivation of R).84

The following definitions in semirings is analogous to the one in rings [1, 7].85

Definition 2.9. [7] Let R be a semiring and let ∂ be an additive mapping of R86

into R such that ∂(rs) = ∂(s)r+ s∂(r), for all r, s ∈ R. We call this map ∂ to be87

a reverse derivation of R.88



4 Ganesh. S. and Selvan. V.

We present some examples below to motivate the study of reverse derivations89

in semirings.90

Example 2.10. Let R be a semiring and S =











0 a b

0 0 c

0 0 0



 : a, b, c ∈ R







.91

Then, it is easy to see that S is a semiring. Let us define a map ∂ : S → S by92

∂





0 a b

0 0 c

0 0 0



 =





0 0 c

0 0 0
0 0 0



. Clearly, ∂(AB) = ∂(B)A+B∂(A) for all A,B ∈ S,93

proving that ∂ is a reverse derivation. In addition, one can easily verify that ∂ is94

also a derivation.95

Example 2.11. Let R be a semiring and S =

{(

a b

0 0

)

: a, b, c ∈ R

}

. Then, we96

can clearly see that S is a semiring. Let d be a map from S to S given by97

d

(

a b

0 0

)

=

(

0 a+ b

0 0

)

. It is easy to check that d(AB) = d(A)B + Ad(B) for98

all A,B ∈ S, but d(B)A +Bd(A) 6= d(AB). Hence, d is not a reverse derivation99

but an ordinary derivation.100

Example 2.12. Let R be a semiring and S =

{(

a b

0 c

)

: a, b, c ∈ R

}

.101

It is clear that S is a semiring. Let d be a map from S to S given by102

d

(

a b

0 c

)

=

(

0 b

0 0

)

. If we set A =

(

a b

0 c

)

and B =

(

d e

0 f

)

, then it is easy to103

verify that d(AB) =

(

0 ae+ bf

0 0

)

= d(A)B + Ad(B) for all A,B ∈ S. Thus, d104

is a derivation. On the other hand, we see that105

d(B)A+Bd(A) =

(

0 ec+ db

0 0

)

6= d(AB). Hence, d is not a reverse derivation.106

The examples presented above shows that the set of derivations and the set of107

reverse derivations are not the same. In addition, the following example illustrate108

the fact that there exists reverse derivations that are not derivations.109

Example 2.13. [10] Let R be a semiring and let S = R⊕R. If we define addition110

and multiplication componentwise, then S becomes a semiring. Let S1 and S2 be111

semirings defined in the same way as S and let ∂1 and ∂2 be the reverse derivations112

respectively. Let us define a map ∂ : S1 → S2 by ∂(r1, r2) = (∂2(r1), ∂1(r2)).113

Then ∂ is indeed a reverse derivation but not a derivation.114

Remark 2.14. Based on the above Definition 2.9, one can define the correspond-115

ing map ∂∆ in ring of differences R∆ of a semiring R, as an additive map such116

that ∂∆(a− b) = ∂(a)− ∂(b), where a, b ∈ R. We prove that this ∂∆ is indeed a117

reverse derivation in R∆ in Lemma 3.6.118
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Definition 2.15. [1] Let R be a semiring and ∂ be a reverse derivation. We define119

l-generalized reverse derivation (r-generalized reverse derivation) as an additive120

map F : R → R such that it satistifes F (rs) = F (s)r + s∂(r) for all r, s ∈ R121

(resp. F (rs) = ∂(s)r + sF (r)).122

Remark 2.16. Based on the above Definition 2.15, one can define the corre-123

sponding map F∆ in ring of differences R∆ of a semiring R, as an additive map124

such that F∆(a − b) = F (a) − F (b), where a, b ∈ R. We prove that this F∆ is125

indeed a l-generalized reverse derivation in R∆ in Lemma 4.1 (resp. r-generalized126

reverse derivation in Remark 4.2).127

Example 2.17. Let R be a semiring and S =











0 a b

0 0 c

0 0 0



 : a, b, c ∈ R







. Then,128

it is easy to see that S is a semiring. Let us define the mappings F : S → S and129

∂ : S → S as follows:130

F





0 a b

0 0 c

0 0 0



 =





0 0 a

0 0 0
0 0 0



; ∂





0 a b

0 0 c

0 0 0



 =





0 0 c

0 0 0
0 0 0



.131

From Example 2.10 we know that ∂ is a reverse derivation. For A,B ∈ S it is easy132

to verify that F (AB) = F (B)A+B∂(A) and F (AB) = ∂(B)A+BF (A). Hence,133

F is both l-generalized reverse derivation and r-generalized reverse derivation.134

3. Reverse derivations in rings and semirings135

After Herstein bid adieu to reverse derivation in prime rings, it is natural for136

the researchers to turn their attention to reverse derivations in semiprime rings.137

Samman and Alyamani [9] proved that in a semiprime rings, a reverse derivation138

is just an ordinary derivation if and only if it is a central derivation. This served139

as a motivation for the author to investigate the same in the context of semiprime140

semirings. We present two different proofs of the main result. In the first proof141

(Theorem 3.8) we prove it directly in semirings, whereas in the second proof142

(Theorem 3.11) we travel to R∆ and come back to R to prove the result. We also143

present a shorter proof of Herstein’s Theorem 2.1 in [7]. First, we shall state the144

following results from [8].145

Lemma 3.1. [8] Let R be an ring and for any r ∈ R, let T (r) = {a ∈ R :146

a(rx− xr) = 0,∀x ∈ R}. Then T (r) is an ideal of R.147

Lemma 3.2. [8] Let R be a prime ring and for r 6= 0 such that r(ax− xa) = 0,148

for all x ∈ R, then a ∈ Z(R), where Z(R) is the centre of R.149
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Now, we are ready to give a shorter proof of a weaker version of Theorem 2.1 in150

[7].151

Theorem 3.3. If R is prime ring and ∂ is a non-zero reverse derivation of R,152

then ∂ is just an ordinary derivation of R.153

Proof. Since ∂ is non-zero, there exists y ∈ R such that ∂(y) 6= 0. So, we have

∂(xy2) = ∂((xy)y), ∀x ∈ R

∂(y2)x+ y2∂(x) = ∂(y)xy + y∂(xy), ∀x ∈ R

∂(y)yx+ y∂(y)x+ y2∂(x) = ∂(y)xy + y∂(y)x+ y2∂(x), ∀x ∈ R

∂(y)yx = ∂(y)xy, ∀x ∈ R

∂(y)(yx− xy) = 0, ∀x ∈ R

Then, by Lemma 3.2, we have y ∈ Z(R) so that ∂(xy) = ∂(yx) = ∂(x)y + x∂(y).154

Thus, ∂ is just an ordinary derivation.155

Motivated by Lemma 3.1, we investigate the analogue in semiring and it156

turns out that T (r) is infact a k-ideal.157

Lemma 3.4. Let R be an additively cancellative semiring and for any r ∈ R, let158

T (r) = {a ∈ R : arx = axr,∀x ∈ R}. Then T (r) is a k-ideal of R.159

Proof. It is easy to see that T (r) is a left ideal of R. Now let us prove that it160

is also a right ideal. That is, for u ∈ T (r) and x ∈ R, then we need to prove161

ux ∈ R. Note that if x ∈ R, then xy ∈ R for y ∈ R and since u ∈ T (r) we162

get urxy = uxyr. Thus, urxy + uxry = uxyr + uxry. Since u ∈ T (r) and R is163

additively cancellative, uxry = uxyr for all x ∈ R so that ux ∈ T (r). Thus, T (r)164

is a two-sided ideal of R.165

If a ∈ T (r) and a+ b ∈ T (r) then

(a+ b)rx = (a+ b)xr

arx+ brx = axr + bxr

arx+ brx = arx+ bxr (since a ∈ T (r))

brx = bxr (since R is additivelly cancellative)

Thus b ∈ T (r) and hence T (r) is a k-ideal of R.166

Lemma 3.5. Let R be a semiring, r be an element of R and Z(R) be the center167

of R. If r(uv) = r(vu),∀u, v ∈ R, then r ∈ Z(R).168
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Proof. Let R∆ be the corresponding ring of differences of R. Let x, y ∈ R∆ and
x = a− b, y = c− d where a, b, c, d ∈ R. Then for any r ∈ R, we have

r(xy) = r((a− b)(c− d))

= r((ac+ bd)− (ad+ bc))

= rac+ rbd− rad− rbc

= rca+ rdb− rda− rcb (by hypothesis)

= r((ca+ db)− (cb+ da))

= r((c− d)(a − b))

= r(yx)

Thus, r ∈ Z(R∆) and hence we have r ∈ Z(r).169

Lemma 3.6. Let R be a semiring and ∂ be a reverse derivation of R, then the170

mapping ∂∆ (as given in Remark 2.14) corresponding to ∂ is a reverse derivation171

of R∆.172

Proof. Let x, y ∈ R∆ and let x = a − b, y = c − d for a, b, c, d ∈ R. Then, we
have

∂∆(xy) = ∂∆((a− b)(c− d))

= ∂∆((ac + bd)− (ad+ bc))

= ∂(ac+ bd)− ∂(ad+ bc)

= ∂(ac) + ∂(bd)− ∂(ad) − ∂(bc)

= ∂(c)a + c∂(a) + ∂(d)b + d∂(b)

− ∂(d)a− d∂(a) − ∂(c)b− c∂(b)

= ∂(c)a − ∂(c)b− ∂(d)a + ∂(d)b

+ c∂(a)− c∂(b) − d∂(a) + d∂(b)

= (∂(c) − ∂(d))(a − b) + (c− d)(∂(a) − ∂(b))

= (∂∆(c− d))(a − b) + (c− d)(∂∆(a− b))

= ∂∆(y)x+ y∂∆(x)

Thus, ∂∆ is a reverse derivation in R∆.173

Theorem 3.7. Let R be a prime semiring and ∂ be a non-zero reverse derivation174

of R. If R∆ is the corresponding ring of differences of R and ∂∆ the corresponding175

mapping induced by ∂, then R is a commutative semi-integral domain (a semiring176

in which product of any two non-zero element is again a non-zero element) and177

∂ is just an ordinary derivation.178
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Proof. We know that of R is prime, then R∆ is prime [by Lemma 3.1 in [4]). If179

∂ is a non-zero derivation of R, then by Lemma 3.6, the corresponding map ∂∆
180

is a non-zero reverse derivation in R∆. Now apply Theorem 2.1 in [7] to see that181

R∆ is a commutative integral domain and ∂∆ is just an ordinary derivation. The182

result follows immediately since R is embedded in R∆ and the restriction of ∂∆
183

to R is just ∂.184

The above theorem disposes of reverse derivation in prime semirings. Now,185

we turn our focus to semiprime semirings.186

Theorem 3.8. If R is an additively cancellative semiprime semiring then ∂187

is a non-zero reverse derivation of R if and only if it is a central derivation.188

Furthermore, ∂ is just an ordinary derivation of R.189

Proof. Note that if ∂ is a central derivation then it is obviously a reverse deriva-
tion. We now prove that ∂ is just a central derivation. If ∂ is a reverse derivation,
then for r, s ∈ R, we have the following.

∂(rs2) = ∂((rs)s)

∂(s2)r + s2∂(r) = ∂(s)rs+ s∂(rs)

∂(s)sr + s∂(s)r + s2∂(r) = ∂(s)rs+ s∂(s)r + s2∂(r)

∂(s)sr = ∂(s)rs

where the last equation is due to the fact that R is additively cancellative. Then,190

by Lemma 3.5, we have ∂(s) ∈ Z(R), for all s ∈ R; so that ∂ is central. Also191

note that, ∂(rs) = ∂(s)r + s∂(r) = ∂(r)s + r∂(s). Thus, ∂ is just an ordinary192

derivation.193

Lemma 3.9. Let R be a semiring and ∂ be a reverse derivation of R. Let194

R∆ be the corresponding ring of differences of R and ∂∆ be the corresponding195

reverse derivation in R∆ induced by ∂. If ∂(r) ∈ Z(R),∀r ∈ R, then ∂∆(x) ∈196

Z(R∆),∀x ∈ R∆, where Z(R) is the centre of R and Z(R∆) is the centre of R∆.197

Proof. Let x = a− b and y = c− d, where a, b, c, d ∈ R. Then,

∂∆(x)y = (∂∆(a− b))(c − d)

= (∂(a) − ∂(b))(c − d)

= ∂(a)c − ∂(a)d − ∂(b)c + ∂(b)d

= c∂(a) − d∂(a) − c∂(b) + d∂(b), (since ∂ is a central map)

= (c− d)∂(a) − (c− d)∂(b)

= (c− d)(∂(a) − ∂(b))

= (c− d)∂∆(a− b)
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= y∂∆(x)

Thus, ∂∆ is a central map in R∆.198

Remark 3.10. The converse of the above lemma is also true.199

Theorem 3.11. Let R be an additively cancellative semiprime semiring and R∆
200

be its corresponding ring of differences. Let ∂ be a reverse derivation of R, then201

∂ is just an ordinary derivation if and only if ∂(r) ∈ Z(R) for all r ∈ R, where202

Z(R) is the centre of R.203

Proof. If ∂ is a central derivation in R, then it is clearly an ordinary derivation204

of R. Now we prove that if ∂ is a reverse derivation, then it is indeed a central205

derivation.206

Note that if R is semiprime, then so is R∆ (by Lemma 3.6 in [5]). Also if ∂ is207

a reverse derivation, then the map ∂∆ corresponding to ∂ is a reverse derivation208

of R∆ by Lemma 3.6. Now if we apply Proposition 3.1 in [9], we note that ∂∆ is209

a central derivation of R∆. The result then follows if we apply Remark 3.10.210

Lemma 3.12. Let R be a semiprime semiring and a, b ∈ R. If ∂ is reverse211

derivation from R to R defined ∂(r) = ar + rb, then ∂ = 0.212

Proof. Let R∆ be the corresponding ring of differences of the semiring R. We
define the induced map ∂∆ : R∆ → R∆ defined by ∂∆(u) = au+ ub for u ∈ R∆

and a, b ∈ R. First we prove that ∂∆ is a reverse derivation in R∆.
Let u, v ∈ R∆ such that u = x− y, v = z − w for x, y, z, w ∈ R.

∂∆(uv) = ∂∆((x− y)(z − w))

= ∂∆((xz + yw)− (xw + yz))

= ∂(xz) + ∂(yw) − ∂(xw)− ∂(yz)

= ∂(z)x+ z∂(x) + ∂(w)y + w∂(y)

− ∂(w)x − w∂(x)− ∂(z)y − z∂(y)

= (az + zb)x+ z(ax+ xb) + (aw + wb)y + w(ay + yb)

− (aw +wb)x− w(ax+ xb)− (az + zb)y − z(ay + yb)

= azx+ zbx+ zax+ zxb+ awy + wby + way + wyb

− awx− wbx− wax− wxb− azy − zby − zay − zyb

= azx− azy − awx+ awy + zbx− zby − wbx+ wby

+ zax− zay + zxb− zyb− wax+ way − wxb+wyb

= (az − aw + zb− wb)(x− y) + (z − w)(ax− ay − xb− yb)

= [a(z − w) + (z −w)b](x − y) + (z − w)[a(x − y) + (x− y)b]

= ∂∆(z − w)(x− y) + (z − w)∂∆(x− y)
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= ∂∆(v)u+ v∂∆(u)

Thus, ∂∆ is a reverse derivation in R∆. Now, applying Proposition 3.4 in [9]213

yields ∂∆ = 0 which implies ∂ = 0 since ∂ is the restriction of ∂∆ to R.214

4. Generalized reverse derivations and Commutativity of215

semiprime semirings216

Aboubakr and González in [1] introduced the concept of generalized reverse217

derivations in semiprime rings. In an attempt to generalize this concept to semir-218

ings, Ahmad and Dudek [2] introduced the generalised reverse derivations in219

semirings and established some commutativity results in the class of prime MA-220

semirings. For example, whenever generalized reverse derivation vanishes on a221

commutator, then the semiring is commutative. They also established commuta-222

tivity conditions on semiprime MA-semirings.223

In this section, we generalize the results in [1] to additively cancellative224

semiprime semirings. We prove that the generalized reverse derivation is just225

an ordinary derivation if and only if it is contained in the centralizer of a non226

zero ideal. We also investigate and extend the commutativity results obtained in227

[11] to additively cancellative semiprime semirings using the concept of general-228

ized reverse derivations.229

Lemma 4.1. Let R be a semiprime semiring and F be a l-generalized reverse230

derivation associated with a reverse derivation ∂. If R∆ is the corresponding231

ring of differences of the semiring R and ∂∆ is the induced reverse derivation232

in R∆, then F∆ (as defined in Remark 2.16) is an induced l-generalized reverse233

derivation of R∆ corresponding to F , associated with ∂∆.234

Proof. Let x = a− b, y = c− d ∈ R∆, where a, b, c, d ∈ R. We need to prove the
following.

F∆(xy) = F∆(y)x+ y∂∆(x) (1)

Consider the LHS of (1). We have

F∆(xy) = F∆((a− b)(c− d))

= F∆((ac + bd)− (ad+ bc))

= F (ac+ bd)− F (ad+ bc)

= F (c)a + c∂(a) + F (d)b+ d∂(b) − F (d)a− d∂(a)

− F (c)b− c∂(b)

= F (c)a − F (c)b− F (d)a+ F (d)b+ c∂(a) − c∂(b)

− d∂(a) + d∂(b)
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= ((F (c) − F (d))(a − b) + (c− d)(∂(a) − ∂(b))

= (F∆(c− d))(a − b) + (c− d)(∂∆(a− b))

= F∆(y)x+ y∂∆(x)

Thus, equation (1) holds and hence the lemma is true.235

Remark 4.2. We can prove the above result for r-generalized reverse derivation236

in the same way.237

Theorem 4.3. Let R be a semiring, I be a nonzero ideal of R and ∂ : I → R be a238

non-zero reverse derivation. Then there exists an l-generalized reverse derivation239

F : R → R corresponding to ∂ if and only if ∂(I), F (I) ⊆ CR(I). Furthermore,240

if ∂(I) ⊆ CR(I) then, ∂ is a derivation on I and if F (I) ⊆ CR(I), then F is an241

r-generalized derivation corresponding to ∂ on I.242

Proof. Let R be a semiring and ∂ be a reverse derivation in I. Let R∆ be the243

corresponding ring of differences of R and ∂∆ be the reverse derivation in R∆
244

induced by ∂. Let F be a l-generalized reverse derivation of I, then by Lemma245

4.1 we have F∆ be the corresponding l-generalized reverse derivation of R∆. Let246

I∆ be the corresponding ideal of I in R∆. Hence by Theorem 3.1 in [1] we have247

∂∆(I∆), F∆(I∆) ⊆ CR∆(I∆). Now we prove that CR∆(I∆) ∩R = CR(I).248

249

CR∆(I∆)∩R ⊆ CR(I) is clear. On the other hand, let x ∈ CR(I) and y ∈ I∆ and250

let y = a − b for a, b ∈ I. Then we have, xy = x(a − b) = xa− xb = ax − bx =251

(a − b)x = yx which implies that x ∈ CR∆(I∆) proving CR∆(I∆) ∩ R ⊇ CR(I).252

Now we note that since R is embedded in R∆ the restriction of ∂∆ and F∆ to R253

is just ∂ and F respectively and hence we are done.254

Theorem 4.4. Let R be a semiring, I be a nonzero ideal of R and ∂ : I → R be a255

non-zero reverse derivation. Then there exists an r-generalized reverse derivation256

F : R → R corresponding to ∂ if and only if ∂(I), F (I) ⊆ CR(I). Furthermore,257

if ∂(I) ⊆ CR(I) then, ∂ is a derivation on I and if F (I) ⊆ CR(I), then F is an258

l-generalized derivation corresponding to ∂ on I.259

Proof. Similar to Theorem 4.3.260

Motivated by the commutativity results obtained in [11], we study the fol-261

lowing situations in the context of semirings. One should note that the results in262

[11] holds true for a multiplicative (generalized) reverse derivation in semiprime263

rings. For a ring R, it is defined as a map F from R to R associated with any264

map g (not necessarily a reverse derivation) such that F (rs) = F (s)r + sg(r).265

We define F to be a multiplicative (generalized) reverse derivation in semirings266

analogously. In the remainder of this section the notation a◦b denotes the Jordan267

product given by ab+ ba for a, b ∈ R and similarly x ◦ y = xy+ yx for x, y ∈ R∆.268
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Lemma 4.5. Let R be a semiprime semiring and F be a multiplicative (gen-269

eralized) reverse derivation and g be any map from R to R. Let R∆ be the270

corresponding ring of differences of R and F∆ be the multiplicative (generalized)271

reverse derivation corresponding to F and g∆ be the map corresponding to g.272

Let I be an ideal of R and I∆ be the corresponding ideal in R∆. For r, s ∈ I, we273

have the following.274

(i) If F (r)F (s) + rs = 0, then F∆(x)F∆(y) + xy = 0 for all x, y ∈ I∆;275

(ii) If F (r)F (s) = rs, then F∆(x)F∆(y) = xy for all x, y ∈ I∆;276

(iii) If F (r)F (s) + sr = 0, then F∆(x)F∆(y) + yx = 0 for all x, y ∈ I∆;277

(iv) If F (r)F (s) = sr, then F∆(x)F∆(y) = yx for all x, y ∈ I∆;278

(v) If F (r)F (s) + g(s)F (r) = 0, then F∆(x)F∆(y) + g∆(y)F∆(x) = 0 for all279

x, y ∈ I∆;280

(vi) If F (r)F (s) = g(s)F (r), then F∆(x)F∆(y) = g∆(y)F∆(x) for all x, y ∈ I∆;281

(vii) If F (rs) + r ◦ s = 0, then F∆(xy) + x ◦ y = 0 for all x, y ∈ I∆;282

(viii) If F (rs) = r ◦ s, then F∆(xy) = x ◦ y for all x, y ∈ I∆;283

(ix) If F (rs) + rs = sr, then F∆(xy) + xy = yx for all x, y ∈ I∆;284

(x) If F (rs) + sr = rs, then F∆(xy) + yx = xy for all x, y ∈ I∆;285

(xi) If F (r)g(s) + sr = g(s)F (r), then F∆(x)g∆(y) + yx = g∆(y)F∆(x) for all286

x, y ∈ I∆;287

(xii) If F (r)g(s) = sr + g(s)F (r), then F∆(x)g∆(y) = yx + g∆(y)F∆(x) for all288

x, y ∈ I∆;289

(xiii) If F (r)g(s) + rs = g(s)F (r), then F∆(x)g∆(y) + xy = g∆(y)F∆(x) for all290

x, y ∈ I∆;291

(xiv) If F (r)g(s) = rs + g(s)F (r), then F∆(x)g∆(y) = xy + g∆(y)F∆(x) for all292

x, y ∈ I∆;293

(xv) If F (r)g(s)+rs = g(s)F (r)+sr, then F∆(x)g∆(y)+xy = g∆(y)F∆(x)+yx294

for all x, y ∈ I∆;295

(xvi) If F (r)g(s)+sr = g(s)F (r)+rs, then F∆(x)g∆(y)+yx = g∆(y)F∆(x)+xy296

for all x, y ∈ I∆;297

(xvii) If F (rs) = F (r)F (s), then F∆(xy) = F∆(x)F∆(y) for all x, y ∈ I∆;298
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(xviii) If F (rs) = F (s)F (r), then F∆(xy) = F∆(y)F∆(x) for all x, y ∈ I∆;299

Proof. (i) Let x, y ∈ I∆ where x = a − b, y = c − d for a, b, c, d ∈ I. Then, we
have

F∆(x)F∆(y) + xy = F∆(a− b)F∆(c− d) + (a− b)(c− d)

= (F (a) − F (b))(F (c) − F (d)) + ac+ bd− ad− bc

= F (a)F (c) − F (a)F (d) − F (b)F (c) + F (b)F (d)

+ ac+ bd− ad− bc

= (F (a)F (c) + ac)− (F (a)F (d) + ad)

− (F (b)F (c) + bc) + (F (b)F (d) + bd)

= 0

since each term in the penultimate step is zero by hypothesis.300

Proof of the results (ii) to (xviii) are fairly straightforward if we follow along the301

lines of proof of result (i).302

In the following theorems we denote R be a semiprime semiring and R∆ be303

the corresponding ring of differences (semirpime ring); and F be a multiplicative304

(generalized) reverse derivation of R associated with reverse derivation ∂ and F∆
305

be the corresponding multiplicative (generalized) reverse derivation associated306

with reverse derivation ∂∆; g be any map in R and g∆ be the corresponding map307

in R∆; and I be an ideal of R and I∆ be the corresponding ideal of R∆. We use308

these corresponding mappings and ideals in R∆ to prove the results in a ring and309

then we use the fact that F∆ and g∆ restricted to R is just F and g respectively.310

Theorem 4.6. For r, s ∈ I, if F (r)F (s) + rs = 0, then R is commutative.311

Proof. Apply above Lemma 4.5(i) and Theorem 2.1 in [11], then the result is312

immediate.313

Theorem 4.7. For r, s ∈ I, if F (r)F (s) = rs, then R is commutative.314

Proof. Apply above Lemma 4.5(ii) and Theorem 2.1 in [11], then the result315

follows.316

Theorem 4.8. For r, s ∈ I, if F (r)F (s) + sr = 0, then R is commutative.317

Proof. Apply above Lemma 4.5(iii) and Theorem 2.2 in [11], then the result is318

immediate.319

Theorem 4.9. For r, s ∈ I, if F (r)F (s) = sr, then R is commutative.320

Proof. Apply above Lemma 4.5(iv) and Theorem 2.2 in [11], then the result321

follows.322
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Theorem 4.10. For r, s ∈ I, if F (r)F (s)+g(s)F (r) = 0, then R is commutative.323

Proof. Apply above Lemma 4.5(v) and Theorem 2.3 in [11] and Corollary 2.4 in324

[11], then the result holds.325

Theorem 4.11. For r, s ∈ I, if F (r)F (s) = g(s)F (r), then R is commutative.326

Proof. Apply above Lemma 4.5(vi) and Theorem 2.3 in [11] and Corollary 2.4327

in [11], then the result holds.328

Theorem 4.12. For r, s ∈ I, if F (rs) + r ◦ s = 0, then R is commutative.329

Proof. Apply above Lemma 4.5(vii) and Theorem 2.8 in [11], then the result330

follows.331

Theorem 4.13. For r, s ∈ I, if F (rs) = r ◦ s, then R is commutative.332

Proof. Apply above Lemma 4.5(viii) and Theorem 2.8 in [11], then the result333

follows.334

Theorem 4.14. For r, s ∈ I, if F (rs) + rs = sr, then R is commutative.335

Proof. Apply above Lemma 4.5(ix) and Theorem 2.9 in [11], then the result is336

immediate.337

Theorem 4.15. For r, s ∈ I, if F (rs) + sr = rs, then R is commutative.338

Proof. Apply above Lemma 4.5(x) and Theorem 2.9 in [11], then the result is339

immediate.340

Theorem 4.16. For r, s ∈ I, if F (r)g(s) + sr = g(s)F (r), then g is commuting.341

Proof. Apply above Lemma 4.5(xi) and Theorem 2.10 in [11], then the result342

holds true.343

Theorem 4.17. For r, s ∈ I, if F (r)g(s) = sr + g(s)F (r), then g is commuting.344

Proof. Apply above Lemma 4.5(xii) and Theorem 2.10 in [11], then the result345

holds true.346

Theorem 4.18. For r, s ∈ I, if F (r)g(s) + rs = g(s)F (r), then g is commuting.347

Proof. Apply above Lemma 4.5(xiii) and Theorem 2.11 in [11], then the result348

follows.349

Theorem 4.19. For r, s ∈ I, if F (r)g(s) = rs+ g(s)F (r), then g is commuting.350

Proof. Apply above Lemma 4.5(xiv) and Theorem 2.11 in [11], then the result351

follows.352
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Theorem 4.20. For r, s ∈ I, if F (r)g(s) + rs = g(s)F (r) + sr, then g is com-353

muting.354

Proof. Apply above Lemma 4.5(xv) and Theorem 2.12 in [11], then the result355

is immediate.356

Theorem 4.21. For r, s ∈ I, if F (r)g(s) + sr = g(s)F (r) + rs, then g is com-357

muting.358

Proof. Apply above Lemma 4.5(xvi) and Theorem 2.12 in [11], then the result359

is immediate.360

Theorem 4.22. For r, s ∈ I, if one of the following condition holds, then g is361

commuting.362

(i) F (rs) = F (r)F (s);363

(ii) F (rs) = F (s)F (r)364

Proof. Apply above Lemma 4.5(xvii),(xviii) and Theorem 2.13 in [11], then the365

result is true.366
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