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Abstract

Given a non-empty set X and let P (X) be the partial transformation
semigroup on X . For a fixed non-empty subset Y of X , let

PFix(X,Y ) = {α ∈ P (X) : yα = y for all y ∈ dom(α) ∩ Y }.

Then PFix(X,Y ) is a subsemigroup of P (X). In this paper, we show that
PFix(X,Y ) is always abundant, even though it is not regular. Moreover,
unit regular and coregular elements of such semigroup are all completely
characterized.
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1. Introduction and preliminaries

Let X be a non-empty set and P (X) the partial transformation semigroup on X.
Fix a non-empty subset Y of X and consider the subsemigroup PFix(X,Y ) of
P (X) defined by

PFix(X,Y ) = {α ∈ P (X) : yα = y for all y ∈ dom(α) ∩ Y },

which was first introduced and named partial transformation semigroup with a

fixed point set Y in [3]. The authors showed that PFix(X,Y ) need not be regular

https://doi.org/10.7151/dmgaa.1438


242 R. Wijarajak and Y. Chaiya

and proved that an element α ∈ PFix(X,Y ) is regular if and only if dom(α)∩Y =
ran(α)∩Y , where dom(α) and ran(α) mean the domain of α and the range of α,
respectively. Later in [10], the authors provided a complete description of Green’s
relations on PFix(X,Y ) and applied the results to obtain characterizations of
left regular, right regular, intra-regular, and complete regular elements in such a
semigroup.

Although PFix(X,Y ) is not regular, it contains a regular subsemigroup

Fix(X,Y ) = {α ∈ PFix(X,Y ) : dom(α) = X}

which has been discovered before in [5] and its significant properties were de-
scribed in [1, 2, 8, 9].

In this paper, we describe more regular properties of PFix(X,Y ) and show
that PFix(X,Y ) is always abundant.

Throughout this paper, we write the functions on the right; in particular,
this means that for a composition αβ, the transformation α is applied first. To
simplify the notation, we often write the singleton set {a} as a. For element
α ∈ PFix(X,Y ), we write

α =

(

Ai

ai

)

and take as understood that the script i belongs to some (unmentioned) index
set I, the abbreviation {ai} denotes {ai : i ∈ I}, and that ran(α) = {ai} and
aiα

−1 = Ai ⊆ dom(α).

2. Abundance of PFix(X,Y )

On a semigroup S, a, b ∈ S are L∗-related in S if and only if a and b are related by
Green’s relation L in some oversemigroup of S. The relation R∗ is defined in the
dual way. The semigroup S is said to be left abundant if each L∗-class contains
an idempotent. Right abundant semigroup is defined dually. A semigroup which
is both left and right abundant will be called an abundant semigroup.

Of course, regular semigroups are abundant and in this case we have L = L∗,
R = R∗. The aim of this section is to show that PFix(X,Y ) is an abundant
semigroup which is not regular. Note that we write idA to mean the identity map
on the set A.

Recall the well-known characterizations of the relations L and R on P (X);
and L∗ and R∗ on any semigroup S in Lemmas 1 and 2, respectively.

Lemma 1 [6]. Let α, β ∈ P (X). Then

1. (α, β) ∈ L if and only if ran(α) = ran(β);
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2. (α, β) ∈ R if and only if ker(α) = ker(β),
where ker(γ) = {(x1, x2) ∈ dom(γ)×dom(γ) : x1γ = x2γ} for any γ ∈ P (X).

Lemma 2 [7]. Let S be a semigroup. Then

L∗ =
{

(a, b) ∈ S × S : (∀s, t ∈ S1) as = at ⇔ bs = bt
}

,

R∗ =
{

(a, b) ∈ S × S : (∀s, t ∈ S1) sa = ta ⇔ sb = tb
}

.

For the semigroup PFix(X,Y ), we have the characterization of the relation
L∗ as shown in the following lemma.

Lemma 3. Let α, β ∈ PFix(X,Y ). Then (α, β) ∈ L∗ if and only if ran(α) =
ran(β).

Proof. Assume ran(α) = ran(β). Then α and β are known to be L-related in
P (X). Hence α and β are L∗-related in PFix(X,Y ).

Conversely, assume that (α, β) ∈ L∗ and define γ = idran(α). Clearly,
ran(γ) = ran(α) and αγ = α. Applying the characterization of the relation
L∗ from Lemma 2 (with α, β in the roles of a, b and γ and the identity in the
roles of s and t, respectively), we conclude that βγ = β and ran(β) = ran(βγ) =
(ran(β) ∩ dom(γ))γ ⊆ ran(γ) = ran(α). Similary, ran(α) ⊆ ran(β) whence
ran(α) = ran(β).

Lemma 4. The semigroup PFix(X,Y ) is left abundant.

Proof. For each α ∈ PFix(X,Y ), we have idran(α) is an idempotent in the L∗-
class of α. Hence, an arbitrary L∗-class of PFix(X,Y ) contains an idempotent.
Therefore, PFix(X,Y ) is left abundant.

Next, we give the characterization of the relation R∗ on PFix(X,Y ) as in
the following lemma.

Lemma 5. Let α, β ∈ PFix(X,Y ). Then (α, β) ∈ R∗ if and only if ker(α) =
ker(β).

Proof. Assume ker(α) = ker(β). Then α and β are known to be R-related in
P (X). Hence α and β are R∗-related in PFix(X,Y ).

Conversely, assume that (α, β) ∈ R∗. To prove that ker(α) = ker(β), we
first establish that dom(α) = dom(β). Since iddom(α)α = α, using Lemma 2,
we deduce that iddom(α)β = β. Consequently, dom(β) = dom(iddom(α)β) ⊆
dom(iddom(α)) = dom(α). Similarly, we have dom(α) ⊆ dom(β), and thus
dom(α) = dom(β). Now, let (a, b) ∈ ker(α). This implies that aα = bα, and
two cases arise.
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Case 1. a ∈ Y and b ∈ X \Y . Let Y \ {a} = {yi}, X \ (Y ∪{b}) = {xj}, and
define γ ∈ PFix(X,Y ) as follows:

γ =

(

{a, b} yi xj
a yi xj

)

.

We can observe that γα = α, and then, by Lemma 2, γβ = β. Hence, bβ =
bγβ = aβ, which implies (a, b) ∈ ker(β).

Case 2. a, b ∈ X \ Y . Let Y = {yi}, X \ (Y ∪ {a, b}) = {xj}, and define
γ as described in Case 1. Using the same proof as presented in Case 1, we can
conclude that (a, b) ∈ ker(β).

Similarly, we have ker(β) ⊆ ker(α), which implies that ker(α) = ker(β), as
required.

Lemma 6. The semigroup PFix(X,Y ) is right abundant.

Proof. For any α ∈ PFix(X,Y ), write

α =

(

Ai Cj

yi cj

)

,

where yi ∈ Ai ∩ Y for all i and Cj ⊆ X \ Y . For each j, choose c′j ∈ Cj and let

γ =

(

Ai Cj

yi c′j

)

.

Then γ is an idempotent in PFix(X,Y ) with ker(α) = ker(γ), that is, γ is in
R∗-class of α. Therefore, PFix(X,Y ) is right abundant.

Using Lemmas 4 and 6, we obtain

Theorem 7. The semigroup PFix(X,Y ) is an abundant semigroup.

3. Unit regular and coregular elements of PFix(X,Y )

Let S be a monoid with identity 1. An element u ∈ S is a unit if there exists
u′ ∈ S such that uu′ = 1 = u′u. Moreover, an element a ∈ S is said to be
unit regular if there exists a unit u ∈ S such that a = aua. In particular, if all
elements of S are unit regular, then S is called a unit regular semigroup.

Notice that PFix(X,Y ) is a monoid having idX as an identity. It is clear
that α ∈ PFix(X,Y ) is a unit if and only if α is bijective with dom(α) = X,
that is, α|Y = idY and α|X\Y : X \ Y → X \ Y is a bijection.

For each α ∈ PFix(X,Y ), let
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πα =
{

xα−1 : x ∈ ran(α)
}

and πα(X\Y ) =
{

xα−1 : x ∈ ran(α)\Y
}

.

A subset P ofX is said to be a cross section of πα if P ⊆ dom(α) and |P∩xα−1| =
1 for all xα−1 ∈ πα. In particular, P is said to be a cross section of πα(X \ Y ) if
P ⊆ dom(α) such that Pα ⊆ ran(α)\Y and |P∩xα−1| = 1 for all xα ∈ πα(X\Y ).

We now characterize all unit regular elements of PFix(X,Y ).

Theorem 8. Let α ∈ PFix(X,Y ). Then α is unit regular if and only if the

following conditions hold:

1. dom(α) ∩ Y = ran(α) ∩ Y ;

2. if ran(α)\Y 6= ∅, then there exists a cross section P of πα(X\Y ) such that

|X\(Y ∪C)| = |X\(Y ∪ P )|, where C = ran(α)\Y .

Proof. Assume that α is unit regular. Then α = αβα for some a unit β in
PFix(X,Y ), that is, α is regular. So dom(α) ∩ Y = ran(α) ∩ Y and (1) holds.
Let C = ran(α)\Y = {cj} and choose P = {cjβ}. In order to show that P
is a cross section of πα(X \ Y ) = {cjα

−1}, for each j, we let xj ∈ dom(α) in
which xjα = cj . If there is cj0β ∈ P \ dom(α), then cj0 = xj0α = xj0(αβα) =
(cj0β)α /∈ ran(α)\Y , a contradiction. This implies P ⊆ dom(α). In addition,
if there exists (cj0β)α ∈ Pα ∩ Y , then we choose x ∈ cj0α

−1. Consequently,
xα ∈ ran(α) \ Y . However, xα = xαβα = (cj0β)α ∈ Y , which leads to a
contradiction. Thus, Pα ⊆ ran(α) \Y . To show |P ∩ cjα

−1| = 1 for all j, we first
assume to contrary that there is j0 such that P ∩ cj0α

−1 = ∅. Then cj0 = xj0α =
xj0(αβα) = (cj0β)α 6= cj0 since cj0β ∈ P , a contradiction. Thus P ∩ cjα

−1 6= ∅
for all j. Now, assume that (cj1β)α = (cj2β)α for some cj1β, cj2β ∈ P . Then
cj1 = xj1α = xj1(αβα) = (cj1β)α = (cj2β)α = xj2(αβα) = xj2α = cj2 . We
can conclude that |P ∩ cjα

−1| = 1 for all j. Therefore, P is a cross section
of πα(X \ Y ). Since dom(β) = X = (Y ∪ {cj}) ∪ (X\(Y ∪ {cj})); ran(β) =
X = (Y ∪ {cjβ}) ∪ (X\(Y ∪ {cjβ})) and β is bijective, we get β|X\(Y ∪{cj}) :
X\(Y ∪{cj}) → X\(Y ∪{cjβ}) is also bijective. Hence |X\(Y ∪C)| = |X\(Y ∪P )|.

Conversely, assume the conditions hold. By (1), we can write α as

α =

(

Ai Cj

yi cj

)

,

where yi ∈ Ai ∩ Y for all i; Cj ⊆ X\Y and cj ∈ X\Y for all j. If ran(α)\Y = ∅,
then J = ∅ and α = αidXα, that is, α is unit regular. If ran(α)\Y 6= ∅, then we
let P be a cross section of πα(X\Y ) satisfying (2). So |P ∩Cj| = 1 for all j. Let
c′j ∈ P ∩Cj. Hence |X\(Y ∪ {cj})| = |X\(Y ∪ {c′j})|. So, there exists a bijection
σ : X\(Y ∪ {cj}) → X\(Y ∪ {c′j}). Let Y = {yk}, X \ (Y ∪ {cj}) = {zt} and
define β : X → X by

β =

(

yk cj zt
yk c′j ztσ

)

.
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So β is a unit of PFix(X,Y ) and α = αβα. Therefore, α is unit regular.

Corollary 9. PFix(X,Y ) is a unit regular semigroup if and only if Y = X.

Proof. Assume Y 6= X. Let y ∈ Y and x ∈ X\Y . Define α : {x} → X by
xα = y. Then α ∈ PFix(X,Y ) and dom(α) ∩ Y 6= ran(α) ∩ Y . Thus α is not
regular which is absolutely not unit regular.

Conversely, if Y = X, then each element of PFix(X,Y ) is of the form idA,
where A ⊆ Y which is unit regular by Theorem 8. Therefore, PFix(X,Y ) is a
unit regular semigroup.

We finish that note with the characterization of the coregular semigroups
PFix(X,Y ). The first study of coregular semigroups of (full) transformations,
one can find in [4].

An element a in a semigroup S is said to be coregular, if a = aba = bab for
some b ∈ S and S is a coregular semigroup if all of its elements are coregular.

The following theorem is the characterization of the coregular elements of
PFix(X,Y ).

Theorem 10. Let α ∈ PFix(X,Y ). Then α is coregular if and only if the

following conditions hold:

1. ran(α) ⊆ dom(α);

2. α2|ran(α) = idran(α).

Proof. Assume α is coregular. Then there exists β ∈ PFix(X,Y ) such that α =
αβα = βαβ. Hence α = βαβ = β(αβα)β = (βαβ)(αβα)β = (βαβ)α(βαβ) = α3.
Since dom(α) = dom(α3) ⊆ dom(α2) ⊆ dom(α), we obtain dom(α) = dom(α2).
Hence ran(α) = dom(α)α = dom(α2)α = [(ran(α) ∩ dom(α))α−1]α ⊆ ran(α) ∩
dom(α) ⊆ dom(α). Let x ∈ ran(α). Then x ∈ dom(α) = dom(α2) and x = zα
for some z ∈ dom(α). So, xα2 = (zα)α2 = zα3 = zα = x = xidran(α). Hence
α2|ran(α) = idran(α).

Conversely, assume that the conditions hold. Since ran(α) ⊆ dom(α), we
obtain dom(α3) = dom(α). For each x ∈ dom(α3), we get xα3 = (xα)α2 = xα
since α2|ran(α) = idran(α). Thus α

3 = α whence α is coregular.

Corollary 11. PFix(X,Y ) is a coregular semigroup if and only if Y = X.

Proof. Since coregularity implies regularity, we immediately get Y = X.

Conversely, if Y = X, then each element of PFix(X,Y ) is of the form idA,
where A ⊆ Y which obviously satisfies all sufficient conditions in Theorem 10.
So, it is coregular and PFix(X,Y ) is a coregular semigroup, as required.
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