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Abstract

In this article, we look at the ideas of f -prime ideals and f -semi-prime
ideals of posets, as well as the many features of f -primeness and f -semi-
primeness in posets. Classifications of f semi-prime ideals in posets are
derived, as well as representations of a f -semi-prime ideal to be f -prime.
Furthermore, the f -prime ideal separation theorem is addressed.
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1. Introduction

The concept of prime ideal, which arises in the theory of rings as a generalization
of the concept of prime number in the ring of integers, plays a crucial role in that
theory, as one might assume given the primes’ fundamental place in arithmetic.
Radicals play an important role in algebraic structures. The Jacobson radical is
the intersection of all maximum ideals with unity in a commutative ring, whereas
the ring’s prime radical is the intersection of all prime ideals. The radical concept
was utilized to launch the primary ideal, which was established on prime ideal
principles.

1Corresponding author.
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Van der Walt [18] defined s-prime ideals in non-commutative rings and de-
duced McCoy’s [12] s-prime ideals discoveries. Several authors corroborated Van
der Walt’s earlier near-ring results. Murata et al. [14] proposed the concepts of
f -prime ideals and f -prime radicals in ring theory in 1969, which generalized the
concepts of prime ideals and prime radicals. Sardar and Goswami [17] expanded
the principles and results of ring theory to semi-rings. Groenewald and Potgieter
[7] developed f -prime in near-rings. Many authors studied f -prime ideals in var-
ious algebraic structures [1, 8]. The prime radical was described by Sambasiva
Rao and Satyanarayana [16] in terms of highly nilpotent components of near-
rings, and certain results of Hsu [10] were extended to f -prime and f -semiprime
ideals in near-rings.

Several mathematical areas come across algebraic systems with partial or
complete order. Many authors investigated various prime ideals of posets because
the theory of partially ordered algebraic systems is critical.

Rav [15] proposed and investigated semi-prime ideals in lattices. If a∧w ∈ H
and a ∧ v ∈ H jointly imply a ∧ (w ∨ v) ∈ H, an ideal H of a lattice L is defined
as semi-prime.

Following [15], Kharat and Mokbel [11] presented the concept of a semi-prime
ideal in posets and explored various semi-primeness aspects, as well as defined
the relationship between primeness and semi-primeness in posets. Because prime
ideals and semi-prime ideals are used to describe specific classes of lattices, it is
necessary to generalise and investigate these ideas for posets.

Catherine and Elavarasan [4] studied the notion of primal ideals in a poset
and the relationship among the primal ideals and strongly prime ideals is consid-
ered. Catherine [6] discussed about strongly prime radicals and primary ideals of
posets.

As a result, in this article, we have enlarged the fundamentals of prime ideals
and semi-prime ideals to f -prime ideals and f - semi-prime ideals in posets. In
addition, we obtained the condition for an ideal to be f -prime ideals in a poset.
Also, f -prime ideals in a poset are characterized.

2. Preliminaries

Throughout this paper (Q,6) denotes a poset with smallest element 0. We
refer to [9] and [11] for basic concepts and notations of posets. For S ⊆ Q,
(S)ℓ = {q ∈ Q : q 6 s for all s ∈ S} indicates the lower cone of S in Q and
(S)u = {q ∈ Q : s 6 q for all s ∈ S} indicates the upper cone of S in Q. For all
subsets S, T of Q, we represent (S, T )ℓ rather than (S ∪ T )ℓ and (S, T )u instead
of (S∪T )u. For a finite subset S = {s1, s2, . . . , sn} of Q, we write (s1, s2, . . . , sn)

l

instead of ({s1, s2, . . . , sn})
l and dually. Clearly for a subset S of Q, S ⊆ (S)uℓ



Characterizations of f -prime ideals in posets 415

and S ⊆ (S)ℓu. If S ⊆ T , then (T )ℓ ⊆ (S)ℓ and (T )u ⊆ (S)u. Also, (S)uℓu = (S)u

and (S)ℓuℓ = (S)ℓ.
Following [19] and [20], a subset B(6= ∅) of Q is termed as semi-ideal if

q ∈ B and s 6 q, then s ∈ B. Also B is referred as ideal if s, d ∈ B implies
(s, d)uℓ ⊆ B[9]. For ideals Bi of Q,

⋂

iBi is an ideal of Q. However,
⋃

iBi is not
needed to be an ideal of Q in general. A semi-ideal (respectively, ideal) B of Q
is referred as prime if (s, d)ℓ ⊆ B implies either s ∈ B or d ∈ B [9].

An ideal B of Q is termed as semi-prime if (r, s)ℓ ⊆ B and (r, t)ℓ ⊆ B
together imply (r, (s, t)u)ℓ ⊆ B for all r, s, t ∈ Q[11]. For s ∈ Q, the principal
ideal (respectively, filter) of Q generated by s is (s] = (s)ℓ = {q ∈ Q : q 6 s}
(respectively, [s)= (s)u = {q ∈ Q : q ≥ s}). A subset S(6= ∅) of Q is known as an
up directed set if S ∩ (r, s)u 6= ∅ for all r, s ∈ Q.

Considering [4], an ideal J of Q is termed as strongly prime if (I∗1 , I
∗

2 )
ℓ ⊆ J

implies either I1 ⊆ J or I2 ⊆ J for different proper ideals I1, I2 of Q, where
I∗1 = I1\{0}. An ideal I of Q is called strongly semi-prime if (A∗, B∗)ℓ ⊆ I and
(A∗, C∗)ℓ ⊆ I together imply (A∗, (B∗, C∗)u)ℓ ⊆ I for different proper ideals A,B
and C of Q.

A subset N(6= ∅) of Q is referred as a m-system if for t1, t2 ∈ N , there exists
t ∈ (t1, t2)

ℓ such that t ∈ N . A subset N(6= ∅) of Q is termed as strongly m-
system if for different proper ideals I1, I2 of Q, whenever I1∩N 6= ∅ and I2∩N 6= ∅
imply (I∗1 , I

∗

2 )
ℓ∩N 6= ∅. It is obvious that for any ideal I1 of Q, Q\I1 is a strongly

m- system of Q if and only if I1 is strongly prime. Every strongly m-system of Q
is also a m-system of Q. However, the converse is not always true in many cases;
see Example 4.

Example 1. Consider Q = {0, r, s, t, u, v} and a relation 6 defined on Q as
follows.

b

b

b

b

b

b

0

r s

tu

v

Figure 1. Example of prime ideal which is not strongly prime.

Then (Q,≤) is a poset and I = {0, r, u} is a prime ideal of Q, but not strongly
prime, since for ideals A = {0, s} and B = {0, r, s, t} of Q, we have (A∗, B∗)ℓ ⊆ I,
but neither A nor B contained in I.
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Example 2. Let Q = {0, a, b, c, d} and define a relation ≤ on Q as follows.

b

b b

b

b

0

a b

c
d

Figure 2. Example of semi prime ideal which is not strongly semi prime.

Then (Q,≤) is a poset and I = {0} is a semi prime ideal, but not strongly
semi prime, since for ideals A = {0, a};B = {0, b};C = {0, a, b, c} of Q, we have
(A∗, B∗)ℓ ⊆ I and (A∗, C∗)ℓ ⊆ I, but (A∗, (B∗, C∗)u)ℓ = (a, c)ℓ = {0, a} * I.

Every strongly prime ideal of Q is strongly semi prime ideal. But converse
not true in general.

Example 3. Let Q = {0, a, b, c, d} and define a relation ≤ on Q as follows.

b

b

b

b

b

0

a

b

c

d

Figure 3. Example of strongly semi prime ideal which is not strongly prime.

Then (Q,≤) is a poset and I = {0} is a strongly semi prime ideal of Q, but not
strongly prime, for ideals A = {0, a, c}, B = {0, b} of Q, (A∗, B∗)ℓ ⊆ I, but A * I
and B * I.

Example 4. Consider Q = {0, a, b, c, d, e} and define a relation ≤ on Q as follows.

Then (Q,≤) is a poset. Here M = {a, c, d} is a m-system of Q which is not
strongly m-system for A = {0, e, a} and B = {0, e, a, b, c}, we have A ∩M 6= ∅
and B ∩M 6= ∅, but (A∗, B∗)ℓ ∩M = ∅.
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b

b b

b

b

b
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e

a b

c

d

Figure 4. Example of m-system which is not strongly m-system.

3. f -prime ideals in posets

For all element q ∈ Q, we associate a unique ideal f(q), which satisfies the
following conditions:

(i) q ∈ f(q) and

(ii) x ∈ f(q) implies that f(x) ⊆ f(q), for x ∈ Q.

The collection of all such mappings from Q into set of all ideals of Q is
indicated by F(Q).

Example 5. In a poset Q, for each element q of Q, if f(q) = (q)ℓ, the principal
ideal generated by q, then it is obvious that f meets the preceding requirements.

Definition. For f ∈ F(Q), a subset S of Q is called an f -system if and only if it
has a strongly m-system S1 such that S1 ∩ f(q) 6= ∅ for each q ∈ S.

Definition. An ideal H of Q is called f -prime if and only if its complement Hc

is a f -system of Q.

It is clear that every strongly m-system is a f -system and every strongly
prime ideal of Q is a f -prime ideal of Q. But generally, the converse is not
correct as shown in the below example.

Example 6. In the Example 1, consider a mapping f from Q into set of ideals
of Q such that f(0) = {0}, f(r) = {0, r, u},f(s) = {0, s}, f(u) = {0, r, u}, f(t) =
{0, r, s, t, u, v} and f(v) = {0, r, s, t, u, v}. Then f ∈ F(Q). Here M1 = {u, v, t, r}
is a f -system and contains the strongly m-system M2 = {u, v}, but M1 is not
a strongly m-system as for the ideals D = {0, r, u}, H = {0, r, s, t}, we have
D ∩M1 6= ∅ and H ∩M1 6= ∅ with (H∗,D∗)ℓ ∩M1 = ∅.
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Remark 7. In Example 1, if we define a mapping f from Q into set of ideals of
Q such that f(0) = {0}, f(r) = {0, r, s, t, u, v}, f(s) = {0, s}, f(u) = {0, r, u},
f(t) = {0, r, s, t, u, v} and f(v) = {0, r, s, t, u, v}. Then f /∈ F(Q).

Theorem 8. For any f -prime ideal H of Q, (f(η1)
∗, f(η2)

∗)ℓ ⊆ H implies that
either η1 ∈ H or η2 ∈ H for different proper ideals f(η1), f(η2) of Q, where
f(η1)

∗ = f(η1)\{0}.

Proof. Suppose not, ηi ∈ Q\H for i = 1, 2. AsH is a f -prime ideal, we have Q\H
is a f -system. Then there exists a strongly m-system M ⊆ Q\H such that M ∩
f(ηi) 6= ∅ for i = 1, 2. AsM is a strongly m-system of Q, we get (f(η1)

∗, f(η2)
∗)ℓ∩

M 6= ∅ which implies (f(η1)
∗, f(η2)

∗)ℓ ∩Q\H 6= ∅, a contradiction.

Definition. An ideal H of Q is termed as f -semi-prime if (f(η1)
∗, f(η2)

∗)ℓ ⊆ H

and (f(η1)
∗, f(η3)

∗)ℓ ⊆ H together imply (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)ℓ ⊆ H for

different proper ideals f(η1), f(η2) and f(η3) of Q and f ∈ F(Q).

Lemma 9. The intersection of f -semi-prime ideals of Q is again a f -semi-prime
ideal of Q for f ∈ F(Q).

Proof. Let H = ∩Gj , where Gj ’s are f -semi-prime ideals of Q and for different

proper ideals f(η1), f(η2), f(η3) of Q, (f(η1)
∗, f(η2)

∗)ℓ ⊆ H and (f(η1)
∗, f(η3)

∗)ℓ

⊆ H. Then (f(η1)
∗, f(η2)

∗)ℓ ⊆ Gj and (f(η1)
∗, f(η3)

∗)ℓ ⊆ Gj for all j. Since

each Gj is f -semi-prime ideal, we have (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)ℓ ⊆ Gj for all j.

So (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)ℓ ⊆ ∩Gj = H.

Theorem 10. Let H be an ideal of Q. If H is f -prime, then H is f -semi-prime.

Proof. Let f(η1), f(η2) and f(η3) be different proper ideals of Q under the
mapping f : Q → Id(Q) with f ∈ F(Q) such that (f(η1)

∗, f(η2)
∗)ℓ ⊆ H and

(f(η1)
∗, f(η3)

∗)ℓ ⊆ H.

Case (i). If η1 ∈ H, then (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)ℓ ⊆ (f(η1)

∗)ℓ ⊆ H.

Case (ii). If η1 /∈ H, then by the f -primeness of H, we have η2 ∈ H and
η3 ∈ H which imply ((η2, η3)

u)ℓ ⊆ H for η2 ∈ f(η2)
∗; η3 ∈ f(η3)

∗, so ((f(η2)
∗,

f(η3)
∗)u)ℓ ⊆ H and (f(η1)

∗, (f(η2)
∗, f(η3)

∗)u)ℓ ⊆ ((f(η2)
∗, f(η3)

∗)u)ℓ ⊆ H.

The example below shows that the contrary of Theorem 10 is not consistent
with the prediction. That is, not every f -semi prime ideal of Q is a f -prime ideal
of Q.

Example 11. Consider Q = {0, a, b, c, d} and a relation 6 defined on Q as
follows.
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Figure 5. Example of f -semi prime but not a f -prime.

Then (Q,≤) is a poset. Consider a mapping f from Q into set of ideals of
Q such that f(0) = {0}, f(a) = {0, a}, f(b) = {0, b}, f(c) = {0, a, c} and
f(d) = {0, a, b, c, d}. Then f ∈ F(Q). Here H = {0} is a f -semi prime ideal of Q,
not a f -prime as (f(a)∗, f(b)∗)ℓ ⊆ H with a /∈ H and b /∈ H.

Theorem 12. The intersection of any non-empty family of f -prime ideals of Q
is a f semi-prime ideal of Q for f ∈ F(Q).

Proof. LetH = ∩Ki, whereKi ’s are f -prime ideals ofQ with (f(η1)
∗, f(η2)

∗)ℓ ⊆
H and (f(η1)

∗, f(η3)
∗)ℓ ⊆ H for different proper ideals f(η1), f(η2), f(η3) of Q.

Then (f(η1)
∗, f(η2)

∗)ℓ ⊆ Ki and (f(η1)
∗, f(η3)

∗)ℓ ⊆ Ki for all i. Since each Ki is

a f semi-prime ideal of Q, we get (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)ℓ ⊆ Ki for all i which

implies (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)ℓ ⊆ ∩Ki = H. As the intersection of ideals is

again an ideal of Q, we have H is an ideal of Q. So H is a f -semi-prime ideal
of Q.

Definition. An ideal H(6= Q) is called irreducible if for any ideals H1 and H2 of
Q, H = H1 ∩H2 implies H1 = H or H2 = H.

The following theorem gives the relation between the irreducible ideals and
f -prime ideals of Q.

Theorem 13. Every f -prime ideal of Q is an irreducible ideal of Q.

Proof. Let H be a f prime ideal of Q and H1,H2 be ideals of Q with H =
H1 ∩ H2. If there exists q1 ∈ H1\H and q2 ∈ H2\H, then (f(q1)

∗, f(q2)
∗)ℓ ⊆

(q1, q2)
ℓ ⊆ H1 ∩H2 ⊆ H. Since H is a f -prime ideal of Q, we have either q1 ∈ H

or q2 ∈ H, a contradiction.

Remark 14. In common parlance, the converse of the preceding statement is
not correct. In Example 11, let H = {0, a} is a irreducible ideal of Q, but it is not
a f -prime ideal of Q as for the ideals f(c) and f(b), we have (f(c)∗, f(b)∗)ℓ ⊆ H,
but c /∈ H and b /∈ H.
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4. f -semiprimeness in posets

In this section, we prove some properties and characterizations of f -prime ideals
and f -semi-prime ideals in posets.

Reviewing [3], for a subset K and a semi-ideal J of Q, we initiated

〈K,J〉 =
{

t ∈ Q : (a, t)ℓ ⊆ J for all a ∈ K
}

=
⋂

a∈K

〈a, J〉.

We write 〈s, J〉 instead of 〈{s}, J〉 while K = {s}. It is evident K ⊆ 〈〈K,J〉 , J〉
and t ∈ 〈〈t, J〉 , J〉 for a semi-ideal J of Q for all t ∈ Q. Furthermore, if K ⊆ C,
then 〈C, J〉 ⊆ 〈K,J〉 [2]. For all subset Q1 of Q and a semi-ideal I1 of Q, it is
easy to verify that 〈〈〈Q1, I1〉 , I1〉 , I1〉 = 〈Q1, I1〉.

Definition. Let I be a semi-ideal of Q. Then I satisfies (∗) condition if whenever
(A,B)ℓ ⊆ I, then A ⊆ 〈B, I〉 for any subsets A and B of Q.

Remark 15. In Example 1, let A = {0, r, s, t}, B = {0, s} and I = {0, r, u}.
Then (A,B)ℓ ⊆ I, but A * 〈B, I〉 = {0, r, u}. So there exists a semi-ideal I of Q
which is not satisfies (∗) condition.

Theorem 16. Let f ∈ F(Q) and H be a f -semi-prime ideal of Q with (∗) con-
dition. Then the following statement hold for η1, η2, η3 ∈ Q.

(i) (f(η1)
∗, f(η2)

∗)ℓ ⊆ 〈f(η3)
∗,H〉 if and only if (f(η3)

∗, f(η1)
∗, f(η2)

∗)ℓ ⊆ H.

(ii) (f(η3)
∗, (f(η1)

∗, f(η2)
∗)u)ℓ ⊆ H if and only if ((f(η1)

∗, f(η2)
∗)u)ℓ ⊆

〈f(η3)
∗,H〉.

(iii) 〈f(η1),H〉 = Q if and only if f(η1) ⊆ H.

Proof. (i) Let (f(η1)
∗, f(η2)

∗)ℓ ⊆ 〈f(η3)
∗,H〉 and z ∈ (f(η3)

∗, f(η1)
∗, f(η2)

∗)ℓ.
Then z ∈ (f(η1)

∗, f(η2)
∗)ℓ ⊆ 〈f(η3)

∗,H〉 and z ≤ η3 as η3 ∈ f(η3)
∗ which imply

z ∈ (z, f(η3)
∗)ℓ ⊆ H. So (f(η3)

∗, f(η1)
∗, f(η2)

∗)ℓ ⊆ H.

Conversely, let (f(η3)
∗, f(η1)

∗, f(η2)
∗)ℓ ⊆ H and z ∈ (f(η1)

∗, f(η2)
∗)ℓ. Then

z ∈ 〈f(η3)
∗,H〉 as (f(η1)

∗, f(η2)
∗)ℓ ⊆ 〈f(η3)

∗,H〉.

(ii) Suppose (f(η3)
∗, (f(η1)

∗, f(η2)
∗)u)ℓ ⊆ H and let z ∈ ((f(η1)

∗, f(η2)
∗)u)ℓ.

Then (f(η3)
∗, z)ℓ⊆(f(η3)

∗, (f(η1)
∗, f(η2)

∗)u)ℓ⊆H which implies z ∈ 〈f(η3)
∗,H〉.

Conversely, if ((f(η1)
∗, f(η2)

∗)u)ℓ ⊆ 〈f(η3)
∗,H〉, then f(η1)

∗ ⊆ 〈f(η3)
∗,H〉

and f(η2)
∗ ⊆ 〈f(η3)

∗,H〉 which imply (f(η1)
∗, f(η3)

∗)ℓ ⊆ H and (f(η2)
∗, f(η3)

∗)ℓ

⊆ H. Since H is f -semi-prime ideal, we have (f(η3)
∗, (f(η1)

∗, f(η2)
∗)u)ℓ ⊆ H.

(iii) Let f(η1) ⊆ H. Then for all q1 ∈ f(η1), we have 〈q1,H〉 = Q, so
〈f(η1)

∗,H〉 =
⋂

q1∈f(η1)
〈q1,H〉 = Q.

Conversely, if q1 ∈ f(η1), then (r, q1)
ℓ ⊆ H for all r ∈ Q as 〈f(η1),H〉 = Q

which gives q1 ∈ (q1)
ℓ ⊆ H. So, f(η1) ⊆ H.
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As immediate consequence of Theorem 16 is the below corollary.

Corollary 17. For a, η1 ∈ Q and f ∈ F(Q), we have 〈a, f(η1)〉 = Q if and only
if a ∈ f(η1).

Remark 18. For a ∈ Q and an ideal H of Q, we have 〈a,H〉 is a semi ideal of Q,
but not necessary to be an ideal of Q. In the Example 11, for an ideal H = {0, a},
we have 〈c,H〉 is not ideal as ((a, b)u)ℓ = (d)ℓ = {0, a, b, c, d} * 〈c,H〉 .

Theorem 19. Let H and f(η1) be ideals of Q for η1 ∈ Q and f ∈ F(Q). If H is
f -semi-prime with (∗) condition, then 〈f(η1),H〉 is an ideal of Q.

Proof. Let t1, t2 ∈ 〈f(η1)
∗,H〉. Then (f(t1)

∗, f(η1)
∗)ℓ ⊆ (t1, f(η1)

∗)ℓ ⊆ H and
(f(t2)

∗, f(η1)
∗)ℓ ⊆ (t2, f(η1)

∗)ℓ ⊆ H. Since H is a f -semi-prime ideal of Q, we

have (f(η1)
∗, (f(t1)

∗, f(t2)
∗)u)ℓ ⊆ H. By Theorem 16(ii), we have ((t1, t2)

u)ℓ ⊆

((f(t1)
∗, f(t2)

∗)u)ℓ ⊆ 〈f(η1)
∗,H〉. So 〈f(η1)

∗,H〉 is an ideal of Q.

The following theorem is the characterization of f -semi-primeness in terms
of 〈f(η1),H〉 for an ideal H of Q and η1 ∈ Q.

Theorem 20. Let H be an ideal of Q with (∗) condition. Then H is a f -
semiprime ideal of Q if and only if 〈f(η1)

∗,H〉 is a f -semi-prime ideal of Q for
η1 ∈ Q.

Proof. Let I be a f -semi-prime ideal of Q .

Case (i). If f(η1)
∗ ⊆ H, then by Theorem 16(iii), we have 〈f(η1)

∗,H〉 = Q,
so 〈f(η1)

∗,H〉 is a f -semi-prime ideal of Q.

Case (ii). Let f(η1)
∗ * H and f(η2), f(η3) and f(η4) be different proper

ideals of Q for η2, η3, η4 ∈ Q such that (f(η3)
∗, f(η2)

∗)ℓ ⊆ 〈f(η1)
∗,H〉 and

(f(η3)
∗, f(η4)

∗)ℓ ⊆ 〈f(η1)
∗,H〉. Then (f(η1)

∗, f(η3)
∗, f(η4)

∗)ℓ ⊆ H and by The-
orem 16(i), (f(η1)

∗, f(η3)
∗)ℓ ⊆ 〈f(η2)

∗,H〉 and (f(η1)
∗, f(η3)

∗)ℓ ⊆ 〈f(η4)
∗,H〉.

Let z ∈ (f(η1)
∗, f(η3)

∗, (f(η2)
∗, f(η4)

∗)u)ℓ. Then z ∈ (f(η1)
∗, f(η3)

∗)ℓ and

z ∈ ((f(η2)
∗, f(η4)

∗)u)ℓ which imply (f(η2)
∗, f(z)∗)ℓ ⊆ (f(η2)

∗, z)ℓ ⊆ (f(η1)
∗,

f(η2)
∗, f(η3)

∗)ℓ ⊆ H and (f(η4)
∗, f(z)∗)ℓ ⊆ (f(η4)

∗, z)ℓ ⊆ (f(η1)
∗, f(η2)

∗,
f(η3)

∗)ℓ ⊆ H. Hence f(η2)
∗, f(η4)

∗ ⊆ 〈f(z)∗,H〉. By Theorem 19, 〈f(z)∗,H〉 is

an ideal of Q and z ∈ ((f(η2)
∗, f(η4)

∗)u)ℓ ⊆ 〈f(z)∗,H〉 =
⋂

t∈((z)ℓ)∗〈t,H〉. So z ∈

H. Thus (f(η1)
∗, f(η3)

∗, (f(η2)
∗, f(η4)

∗)u)ℓ ⊆ H and (f(η3)
∗, (f(η2)

∗, f(η4)
∗)u)ℓ ⊆

〈f(η1)
∗,H〉.

Conversely, let 〈f(η1)
∗,H〉 be a f -semi-prime ideal of Q for any ideal f(η1)

of Q. Suppose f(η2), f(η3) and f(η4) are different proper ideals of Q such that
(f(η2)

∗, f(η3)
∗)ℓ ⊆ H and (f(η2)

∗, f(η4)
∗)ℓ ⊆ H. Then (f(η2)

∗, f(η3)
∗)ℓ ⊆

〈f(η2)
∗,H〉 and (f(η2)

∗, f(η4)
∗)ℓ ⊆ 〈f(η2)

∗,H〉. Since 〈f(η2)
∗,H〉 is f -semi-

prime, we have (f(η2)
∗, (f(η3)

∗, f(η4)
∗)u)ℓ ⊆ 〈f(η2)

∗,H〉.
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Let t ∈ (f(η2)
∗, (f(η3)

∗, f(η4)
∗)u)ℓ. Then (f(η2)

∗, t)ℓ ⊆ H. Since t ≤ s for

all s ∈ f(η2)
∗, we have t ∈ H. Hence (f(η2)

∗, (f(η3)
∗, f(η4)

∗)u)ℓ ⊆ H.

As immediate consequence of Theorem 20, we have the following corollaries.

Corollary 21 ([11], Theorem 15). Let H be an ideal of Q. Then H is semi-prime
if and only if 〈q,H〉 is a semi-prime ideal of Q for all q ∈ Q.

Corollary 22. Let H be an ideal of Q. Then H is a semi-prime ideal of Q if
and only if 〈R,H〉 is a semi-prime ideal of Q for all R ⊆ Q.

Proof. Let H be a semi-prime ideal of Q and R ⊆ H. Then by Corollary 21,
we have 〈a,H〉 is a semi-prime ideal of Q and 〈R,H〉 =

⋂

a∈R〈a,H〉. Again
by intersection of semi-prime ideals is a semi-prime ideal, we have 〈R,H〉 is a
semi-prime ideal of Q.

Theorem 23. Let H be a maximal ideal of Q with (∗) condition. Then H is
f -prime if and only if H is f -semi-prime.

Proof. Let H be a maximal and f -semi-prime ideal of Q. Suppose that f(η1)
and f(η2) are different proper ideals of Q such that (f(η1)

∗, f(η2)
∗)ℓ ⊆ H. Then

f(η1)
∗ ⊆ 〈f(η2)

∗,H〉 and by Theorem 20, 〈f(η2)
∗,H〉 is a f -semi-prime ideal of

Q. SinceH ⊆ 〈f(η2)
∗,H〉 and by maximality of H, 〈f(η2)

∗,H〉 = Q. By Theorem
16(iii), we have f(η2) ⊆ H.

Remark 24 ([11], Theorem 16 and Corollary 17). For a maximal ideal H of Q,
we have H is semi prime if and only if H is prime.

Theorem 25. Let f(r) be a f -prime ideal of Q for some r ∈ Q. Then 〈f(η1)
∗,

f(r)〉 = f(r) for all ideal f(η1) of Q not contained in f(r).

Proof. Suppose f(r) is a f -prime and f(η1) is an ideal of Q for some r, η1 ∈ Q
such that f(η1) * f(r). Clearly f(r) ⊆ 〈f(η1)

∗, f(r)〉 is always true. Let z ∈

〈f(η1)
∗, f(r)〉. Then (f(z)∗, f(η1)

∗)ℓ ⊆ (z, f(η1)
∗)ℓ ⊆ f(r). Since f(r) is f -prime

and f(η1) * f(r), we have z ∈ f(r).

The next Theorem gives some equivalent conditions for f -prime ideals.

Theorem 26. Let f(r) be an ideal of Q with (∗) condition. Then the following
are equivalent.

(i) f(r) is a f -prime ideal of Q,

(ii) 〈f(η1)
∗, f(r)〉 = f(r) for any ideal f(η1) of Q not contained in f(r),

(iii) f(r) is a prime ideal of Q,

(iv) 〈x, f(r)〉 is a f -prime ideal of Q for all x ∈ Q\f(r).
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Proof. (i)⇒ (ii) If f(r) is f -prime, then by Theorem 25, we have 〈f(η1)
∗, f(r)〉 =

f(r) for all ideal f(η1) of Q not contained in f(r).

(ii) ⇒ (iii) Let 〈f(η1)
∗, f(r)〉 = f(r) for all ideals f(η1) of Q not contained in

f(r) and (x, y)ℓ ⊆ f(r) for x, y ∈ Q. If y /∈ f(r), then (x, f(y)∗)ℓ ⊆ (x, y)ℓ ⊆ f(r)
which implies x ∈ 〈f(y)∗, f(r)〉 = f(r).

(iii) ⇒ (iv) Let f(r) be a prime ideal of Q and z ∈ 〈x, f(r)〉 for x ∈ Q\f(r).
Then (x, z)ℓ ⊆ f(r). Since f(r) is prime and x /∈ f(r), we have z ∈ f(r).
So 〈x, f(r)〉 ⊆ f(r) and clearly f(r) ⊆ 〈x, f(r)〉. Hence 〈x, f(r)〉 = f(r) for all
x ∈ Q\f(r).

(iv) ⇒ (i) Let (f(η1)
∗, f(η2)

∗)ℓ ⊆ f(r) for different proper ideals f(η1) and
f(η2) of Q. If f(η1) * f(r), then there exists t ∈ f(η1)\f(r). Since f(r) has (∗)
condition, we have f(η2)

∗ ⊆ 〈f(η1)
∗, f(r)〉 =

⋂

a∈f(η1)∗
〈a, f(r)〉 ⊆ 〈t, f(r)〉 = f(r)

and hence f(r) is a f -prime ideal of Q.

Corollary 27. Let f(r) be a semi-ideal of Q. Then f(r) is prime if and only if
〈x, f(r)〉 = f(r) for all x ∈ Q\f(r).

Corollary 28. Let f(r) be an ideal of Q. Then f(r) is prime if and only if
〈x, f(r)〉 = f(r) for all x ∈ Q\f(r).

Corollary 29. Let f(r) be an ideal of Q with (∗) condition. Then f(r) is f -prime
if and only if f(r) is prime.

Corollary 30. Let f(r) be an ideal of Q. If f(r) is prime, then 〈x, f(r)〉 is a
prime ideal of Q for all x ∈ Q\f(r)

The classification of f -primeness is obtained from the preceding theorem in
terms of 〈f(η1)

∗, f(r)〉 for ideals f(η1), f(r) of Q.

Theorem 31. Let f(r) be an ideal of Q with (∗) condition for r ∈ Q. If f(r) is f -
prime, then 〈f(η1)

∗, I〉 is a f -prime ideal of Q for ideal f(η1) of Q not contained
in f(r).

Proof. Let f(r) be a f -prime ideal of Q. Then by Theorem 26, we have 〈f(η1)
∗,

f(r)〉 = f(r) for ideal f(η1) of Q not contained in f(r) and hence 〈f(η1)
∗, f(r)〉

is a f -prime ideal of Q.

Corollary 32. Let f(r) be an ideal of Q with (∗) condition for r ∈ Q. If f(r) is
f -prime, then 〈x, f(r)〉 is a f -prime ideal of Q for all x ∈ Q\f(r).

The following example shows that the converse of the Theorem 31 is not true
in general.

Example 33. In Example 11, if we take I = {0} and f(a) = {0, a}, then
〈f(a)∗, I〉 = {0, b} is a f -prime ideal of Q, but I is not a f -prime ideal of Q for
the ideals f(b) = {0, b}, f(c) = {0, a, c} of Q, (f(b)∗, f(c)∗)ℓ ⊆ I with b * I and
c * I.
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5. Properties of the set CH

Definition. For an ideal H of Q, we indicate the set CH = {w ∈ Q : 〈w,H〉 =
H}.

We developed the several characteristics of CH and its correlation with H in
the following results.

Lemma 34. Let I be a f -semiprime ideal of Q. Then 〈f(η1)
∗, I〉 ∩ CI = ∅ for

all ideals f(η1) of Q not contained in I.

Following [19], a subset B(6= ∅) of Q is termed as semi-filter if s ∈ B and
s 6 q, then q ∈ B. Also B is referred as filter if s, d ∈ B implies (s, d)ℓu ⊆ B [9].

Theorem 35. Let I be an ideal of Q. Then CI is a filter of Q.

Lemma 36. Let I be a proper ideal of Q. Then I ∩CI = ∅.

The following theorem characterizes f -prime ideals in a poset.

Theorem 37. Let H be a proper ideal of Q with (∗) condition. Then H is f -
prime if and only if H ∪CH = Q.

Proof. Suppose H is a f -prime ideal of Q and let x /∈ CH for x ∈ Q. Then
〈x,H〉 6= H which implies y ∈ 〈x,H〉 with y /∈ H and (f(x)∗, f(y)∗)ℓ ⊆ (x, y)ℓ ∈
H. Since H is f -prime ideal and y /∈ H which imply x ∈ H.

Conversely, let H ∪ CH = Q and f(η1), f(η2) be different proper ideals of Q
with (f(η1)

∗, f(η2)
∗)ℓ ⊆ H for η1, η2 ∈ Q. If η1 /∈ H, then f(η2)

∗ ⊆ 〈f(η1)
∗,H〉

and there exists a ∈ f(η1)\H with 〈a,H〉 = H which imply η2 ∈ f(η2)
∗ ⊆

⋂

t∈f(η1)∗
〈t,H〉 ⊆ 〈a,H〉 = H.

Corollary 38. Let H be a proper ideal of Q. Then H is prime if and only if
H ∪CH = Q.

6. Conclusion

We investigated the ideas of f -prime ideals and f -semi-prime ideals of posets in
this work, as well as the different features of f -primeness and f -semi primeness
in posets. Characterizations of f -semi-prime ideals in posets are derived, in
furthermore categorizations of a f -semi-prime ideal as f -prime. We established
some fundamental theorems in f -primeness and obtained equivalent criteria for
a semi-ideal of Q to be a f -prime semi-ideals of Q. In addition, we discussed
the requirements for an ideal to be a f -prime ideal of Q. These findings may
be extended to 0-distributive posets, lattices, near lattices, semilattices, and 0-
distributive near lattices using the technique presented in this paper.
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