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Abstract10

In this article, we look at the ideas of f -prime ideals and f -semi-prime11

ideals of posets, as well as the many features of f -primeness and f -semi-12

primeness in posets. Classifications of f semi-prime ideals in posets are13

derived, as well as representations of a f -semi-prime ideal to be f -prime.14

Furthermore, the f -prime ideal separation theorem is addressed.15
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1. Introduction19

The concept of prime ideal, which arises in the theory of rings as a generalization20

of the concept of prime number in the ring of integers, plays a crucial role in that21

theory, as one might assume given the primes’ fundamental place in arithmetic.22

Radicals play an important role in algebraic structures. The Jacobson radical is23

the intersection of all maximum ideals with unity in a commutative ring, whereas24

the ring’s prime radical is the intersection of all prime ideals. The radical concept25

was utilized to launch the primary ideal, which was established on prime ideal26

principles.27

Van der Walt [18] defined s-prime ideals in non-commutative rings and de-28

duced McCoy’s [12] s-prime ideals discoveries. Several authors corroborated Van29

der Walt’s earlier near-ring results. Murata et.al [14] proposed the concepts of30

f -prime ideals and f -prime radicals in ring theory in 1969, which generalized the31
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concepts of prime ideals and prime radicals. Sardar and Goswami[17] expanded32

the principles and results of ring theory to semi-rings. N. J. Groenewald and33

P. C. Potgieter[7] developed f -prime near-rings. Many authors studied f -prime34

ideals in various algebraic structures [1, 8]. The prime radical was described35

by Sambasiva Rao and Satyanarayana [16] in terms of highly nilpotent compo-36

nents of near-rings, and certain results of Hsu [10] were extended to f -prime and37

f -semiprime ideals in near-rings.38

Several mathematical areas come across algebraic systems with partial or39

complete order. Many authors investigated various prime ideals of posets because40

the theory of partially ordered algebraic systems is critical.41

Y. Rav [15] proposed and investigated semi-prime ideals in lattices. If a∧w ∈42

H and a∧v ∈ H jointly imply a∧(w∨v) ∈ H, an ideal H of a lattice L is defined43

as semi-prime.44

Following [15], V. S. Kharat and K. A. Mokbel [11] presented the concept45

of a semi-prime ideal in posets and explored various semi-primeness aspects, as46

well as defined the relationship between primeness and semi-primeness in posets.47

Because prime ideals and semi-prime ideals are used to describe specific classes48

of lattices, it is necessary to generalise and investigate these ideas for posets.49

J. Catherine and B. Elavarasan [4] studied the notion of primal ideals in a50

poset and the relationship among the primal ideals and strongly prime ideals is51

considered. J.Catherine [6] discussed about strongly prime radicals and primary52

ideals of posets.53

As a result, in this article, we have enlarged the fundamentals of prime ideals54

and semi-prime ideals to f -prime ideals and f - semi-prime ideals in posets. In55

addition, we obtained the condition for an ideal to be f -prime ideals in a poset.56

Also, f -prime ideals in a poset are characterized.57

2. Preliminaries58

Throughout this paper (Q,6) denotes a poset with smallest element 0. We59

refer to [9] and [11] for basic concepts and notations of posets. For S ⊆ Q,60

(S)` = {q ∈ Q : q 6 s for all s ∈ S} indicates the lower cone of S in Q and61

(S)u = {q ∈ Q : s 6 q for all s ∈ S} indicates the upper cone of S in Q. For all62

subsets S, T of Q, we represent (S, T )` rather than (S ∪ T )` and (S, T )u instead63

of (S ∪ T )u. For a finite subset S = {s1, s2, ..., sn} of Q, we write (s1, s2, ..., sn)l64

instead of ({s1, s2, ..., sn})l and dually. Clearly for a subset S of Q, S ⊆ (S)u`65

and S ⊆ (S)`u. If S ⊆ T , then (T )` ⊆ (S)` and (T )u ⊆ (S)u. Also, (S)u`u = (S)u66

and (S)`u` = (S)`.67

Following [19] and [20], a subset B(6= ∅) of Q is termed as semi-ideal if68

q ∈ B and s 6 q, then s ∈ B. Also B is referred as ideal if s, d ∈ B implies69
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(s, d)u` ⊆ B[9]. For ideals Bi of Q,
⋂
i

Bi is an ideal of Q. However,
⋃
i

Bi is70

not needed to be an ideal of Q in general. A semi-ideal (resp., ideal) B of Q is71

referred as prime if (s, d)` ⊆ B implies either s ∈ B or d ∈ B [9].72

An ideal B of Q is termed as semi-prime if (r, s)` ⊆ B and (r, t)` ⊆ B73

together imply (r, (s, t)u)` ⊆ B for all r, s, t ∈ Q[11]. For s ∈ Q, the principal74

ideal (resp., filter) of Q generated by s is (s] = (s)` = {q ∈ Q : q 6 s} (resp.,[s)=75

(s)u = {q ∈ Q : q ≥ s}). A subset S(6= ∅) of Q is known as an up directed set if76

S ∩ (r, s)u 6= ∅ for all r, s ∈ Q.77

Considering [4], an ideal J of Q is termed as strongly prime if (I∗1 , I
∗
2 )` ⊆ J78

implies either I1 ⊆ J or I2 ⊆ J for different proper ideals I1, I2 of Q, where79

I∗1 = I1\{0}. An ideal I of Q is called strongly semi-prime if (A∗, B∗)` ⊆ I and80

(A∗, C∗)` ⊆ I together imply (A∗, (B∗, C∗)u)` ⊆ I for different proper ideals A,B81

and C of Q.82

A subset N( 6= ∅) of Q is referred as a m-system if for t1, t2 ∈ N , there exists83

t ∈ (t1, t2)
` such that t ∈ N . A subset N( 6= ∅) of Q is termed as strongly m-84

system if for different proper ideals I1, I2 of Q, whenever I1∩N 6= ∅ and I2∩N 6= ∅85

imply (I∗1 , I
∗
2 )`∩N 6= ∅. It is obvious that for any ideal I1 of Q, Q\I1 is a strongly86

m- system of Q if and only if I1 is strongly prime. Every strongly m-system of Q87

is also a m-system of Q. However, the converse is not always true in many cases;88

see Example 4.89

Example 1. Consider Q = {0, r, s, t, u, v} and a relation 6 defined on Q as90

follows.91

b

b

b

b

b

b

0

r s

tu

v

Figure 1. Example of prime ideal which is not strongly prime.

Then (Q,≤) is a poset and I = {0, r, u} is a prime ideal of Q, but not strongly92

prime, since for ideals A = {0, s} and B = {0, r, s, t} of Q, we have (A∗, B∗)` ⊆ I,93

but neither A nor B contained in I.94

Example 2. Let Q = {0, a, b, c, d} and define a relation ≤ on Q as follows.95
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b

b b

b
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0

a b
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Figure 2. Example of semi prime ideal which is not strongly semi prime

Then (Q,≤) is a poset and I = {0} is a semi prime ideal, but not strongly
semi prime, since for ideals A = {0, a};B = {0, b};C = {0, a, b, c} of Q, we have
(A∗, B∗)` ⊆ I and (A∗, C∗)` ⊆ I, but (A∗, (B∗, C∗)u)` = (a, c)` = {0, a} * I.

Every strongly prime ideal of Q is strongly semi prime ideal. But converse96

not true in general.97

Example 3. Let Q = {0, a, b, c, d} and define a relation ≤ on Q as follows.

b

b

b

b

b

0

a

b

c

d

Figure 3. Example of strongly semi prime ideal which is not strongly prime

Then (Q,≤) is a poset and I = {0} is a strongly semi prime ideal of Q, but not
strongly prime, for ideals A = {0, a, c}, B = {0, b} of Q, (A∗, B∗)` ⊆ I, but A * I
and B * I.

98

Example 4. Consider Q = {0, a, b, c, d, e} and define a relation ≤ on Q as follows.99
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b
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Figure 4. Example of m-system which is not strongly m-system.

Then (Q,≤) is a poset. Here M = {a, c, d} is a m-system of Q which is not
strongly m-system for A = {0, e, a} and B = {0, e, a, b, c}, we have A ∩M 6= ∅
and B ∩M 6= ∅, but (A∗, B∗)` ∩M = ∅.

3. f-prime ideals in posets100

For all element q ∈ Q, we associate a unique ideal f(q), which satisfies the101

following conditions:102

(i) q ∈ f(q) and103

(ii) x ∈ f(q) implies that f(x) ⊆ f(q), for x ∈ Q.104

The collection of all such mappings from Q into set of all ideals of Q is105

indicated by F(Q).106

Example 5. In a poset Q, for each element q of Q, if f(q) = (q)`, the principal107

ideal generated by q, then it is obvious that f meets the preceding requirements.108

Definition. For f ∈ F(Q), a subset S of Q is called an f -system if and only if it109

has a strongly m-system S1 such that S1 ∩ f(q) 6= ∅ for each q ∈ S.110

Definition. An ideal H of Q is called f -prime if and only if its complement Hc
111

is a f -system of Q.112

It is clear that every strongly m-system is a f -system and every strongly113

prime ideal of Q is a f -prime ideal of Q. But generally, the converse is not114

correct as shown in the below example.115

Example 6. In the Example 1, consider a mapping f from Q into set of ideals116

of Q such that f(0) = {0}, f(r) = {0, r, u},f(s) = {0, s}, f(u) = {0, r, u}, f(t) =117

{0, r, s, t, u, v} and f(v) = {0, r, s, t, u, v}. Then f ∈ F(Q). Here M1 = {u, v, t, r}118
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is a f -system and contains the strongly m-system M2 = {u, v}, but M1 is not119

a strongly m-system as for the ideals D = {0, r, u}, H = {0, r, s, t}, we have120

D ∩M1 6= ∅ and H ∩M1 6= ∅ with (H∗, D∗)` ∩M1 = ∅.121

Remark 7. In Example 1, if we define a mapping f from Q into set of ideals of122

Q such that f(0) = {0}, f(r) = {0, r, s, t, u, v}, f(s) = {0, s}, f(u) = {0, r, u},123

f(t) = {0, r, s, t, u, v} and f(v) = {0, r, s, t, u, v}. Then f /∈ F(Q).124

Theorem 8. For any f -prime ideal H of Q, (f(η1)
∗, f(η2)

∗)` ⊆ H implies that125

either η1 ∈ H or η2 ∈ H for different proper ideals f(η1), f(η2) of Q, where126

f(η1)
∗ = f(η1)\{0}.127

Proof. Suppose not, ηi ∈ Q\H for i = 1, 2. AsH is a f -prime ideal, we have Q\H128

is a f -system. Then there exists a strongly m-system M ⊆ Q\H such that M ∩129

f(ηi) 6= ∅ for i = 1, 2. As M is a strongly m-system of Q, we get (f(η1)
∗, f(η2)

∗)`∩130

M 6= ∅ which implies (f(η1)
∗, f(η2)

∗)` ∩Q\H 6= ∅, a contradiction.131

Definition. An ideal H of Q is termed as f -semi-prime if (f(η1)
∗, f(η2)

∗)` ⊆ H132

and (f(η1)
∗, f(η3)

∗)` ⊆ H together imply (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ H for133

different proper ideals f(η1), f(η2) and f(η3) of Q and f ∈ F(Q).134

Lemma 9. The intersection of f -semi-prime ideals of Q is again a f -semi-prime135

ideal of Q for f ∈ F(Q).136

Proof. Let H = ∩Gj , where Gj ’s are f -semi-prime ideals of Q and for different137

proper ideals f(η1), f(η2), f(η3) of Q, (f(η1)
∗, f(η2)

∗)` ⊆ H and (f(η1)
∗, f(η3)

∗)`138

⊆ H. Then (f(η1)
∗, f(η2)

∗)` ⊆ Gj and (f(η1)
∗, f(η3)

∗)` ⊆ Gj for all j. Since139

each Gj is f -semi-prime ideal, we have (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ Gj for all j.140

So (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ ∩Gj = H.141

Theorem 10. Let H be an ideal of Q. If H is f -prime, then H is f -semi-prime.142

Proof. Let f(η1), f(η2) and f(η3) be different proper ideals of Q under the143

mapping f : Q → Id(Q) with f ∈ F(Q) such that (f(η1)
∗, f(η2)

∗)` ⊆ H and144

(f(η1)
∗, f(η3)

∗)` ⊆ H.145

Case (i) : If η1 ∈ H, then (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ (f(η1)

∗)` ⊆ H.146

Case (ii): If η1 /∈ H, then by the f -primeness of H, we have η2 ∈ H147

and η3 ∈ H which imply ((η2, η3)
u)` ⊆ H for η2 ∈ f(η2)

∗; η3 ∈ f(η3)
∗, so148

((f(η2)
∗, f(η3)

∗)u)` ⊆ H and (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ ((f(η2)

∗, f(η3)
∗)u)` ⊆149

H.150

The example below shows that the contrary of Theorem 10 is not consistent151

with the prediction. That is, not every f -semi prime ideal of Q is a f -prime ideal152

of Q.153
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Example 11. Consider Q = {0, a, b, c, d} and a relation 6 defined on Q as154

follows.155

Figure 5. Example of f -semi prime but not a f -prime

156
Then (Q,≤) is a poset. Consider a mapping f from Q into set of ideals of Q157

such that f(0) = {0}, f(a) = {0, a},f(b) = {0, b}, f(c) = {0, a, c} and f(d) =158

{0, a, b, c, d}. Then f ∈ F(Q). Here H = {0} is a f -semi prime ideal of Q, not a159

f - prime as (f(a)∗, f(b)∗)` ⊆ H with a /∈ H and b /∈ H.160

Theorem 12. The intersection of any non-empty family of f -prime ideals of Q161

is a f semi-prime ideal of Q for f ∈ F(Q).162

Proof. LetH = ∩Ki, whereKi ’s are f -prime ideals of Q with (f(η1)
∗, f(η2)

∗)` ⊆163

H and (f(η1)
∗, f(η3)

∗)` ⊆ H for different proper ideals f(η1), f(η2), f(η3) of Q.164

Then (f(η1)
∗, f(η2)

∗)` ⊆ Ki and (f(η1)
∗, f(η3)

∗)` ⊆ Ki for all i. Since each Ki is165

a f semi-prime ideal of Q, we get (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ Ki for all i which166

implies (f(η1)
∗, (f(η2)

∗, f(η3)
∗)u)` ⊆ ∩Ki = H. As the intersection of ideals is167

again an ideal of Q, we have H is an ideal of Q. So H is a f -semi-prime ideal of168

Q.169

Definition. An ideal H(6= Q) is called irreducible if for any ideals H1 and H2 of170

Q, H = H1 ∩H2 implies H1 = H or H2 = H.171

The following theorem gives the relation between the irreducible ideals and172

f -prime ideals of Q.173

Theorem 13. Every f -prime ideal of Q is an irreducible ideal of Q.174

Proof. Let H be a f prime ideal of Q and H1, H2 be ideals of Q with H =175

H1 ∩ H2. If there exists q1 ∈ H1\H and q2 ∈ H2\H, then (f(q1)
∗, f(q2)

∗)` ⊆176

(q1, q2)
` ⊆ H1 ∩H2 ⊆ H. Since H is a f -prime ideal of Q, we have either q1 ∈ H177

or q2 ∈ H, a contradiction.178
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Remark 14. In common parlance, the converse of the preceding statement is not179

correct. In Example 11, let H = {0, a} is a irreducible ideal of Q, but it is not a180

f -prime ideal of Q as for the ideals f(c) and f(b), we have (f(c)∗, f(b)∗)` ⊆ H,181

but c /∈ H and b /∈ H.182

4. f-semiprimeness in posets183

In this section, we prove some properties and characterizations of f -prime ideals184

and f -semi-prime ideals in posets.185

Reviewing [3], for a subset K and a semi-ideal J of Q, we initiated186

〈K,J〉 = {t ∈ Q : (a, t)` ⊆ J for all a ∈ K} =
⋂
a∈K
〈a, J〉.187

We write 〈s, J〉 instead of 〈{s}, J〉 while K = {s}. It is evident K ⊆ 〈〈K,J〉 , J〉188

and t ∈ 〈〈t, J〉 , J〉 for a semi-ideal J of Q for all t ∈ Q. Furthermore, if K ⊆ C,189

then 〈C, J〉 ⊆ 〈K,J〉[2]. For all subset Q1 of Q and a semi-ideal I1 of Q, it is190

easy to verify that 〈〈〈Q1, I1〉 , I1〉 , I1〉 = 〈Q1, I1〉.191

Definition. Let I be a semi-ideal of Q. Then I satisfies (∗) condition if whenever192

(A,B)` ⊆ I, then A ⊆ 〈B, I〉 for any subsets A and B of Q.193

Remark 15. In Example 1, let A = {0, r, s, t}, B = {0, s} and I = {0, r, u}.194

Then (A,B)` ⊆ I, but A * 〈B, I〉 = {0, r, u}. So there exists a semi-ideal I of Q195

which is not satisfies (∗) condition.196

Theorem 16. Let f ∈ F(Q) and H be a f -semi-prime ideal of Q with (∗) con-197

dition. Then the following statement hold for η1, η2, η3 ∈ Q.198

(i) (f(η1)
∗, f(η2)

∗)` ⊆ 〈f(η3)
∗, H〉 if and only if (f(η3)

∗, f(η1)
∗, f(η2)

∗)` ⊆ H.199

(ii) (f(η3)
∗, (f(η1)

∗, f(η2)
∗)u)` ⊆ H if and only if ((f(η1)

∗, f(η2)
∗)u)` ⊆200

〈f(η3)
∗, H〉.201

(iii) 〈f(η1), H〉 = Q if and only if f(η1) ⊆ H.202

Proof. (i) Let (f(η1)
∗, f(η2)

∗)` ⊆ 〈f(η3)
∗, H〉 and z ∈ (f(η3)

∗, f(η1)
∗, f(η2)

∗)`.203

Then z ∈ (f(η1)
∗, f(η2)

∗)` ⊆ 〈f(η3)
∗, H〉 and z ≤ η3 as η3 ∈ f(η3)

∗ which imply204

z ∈ (z, f(η3)
∗)` ⊆ H. So (f(η3)

∗, f(η1)
∗, f(η2)

∗)` ⊆ H.205

Conversely, let (f(η3)
∗, f(η1)

∗, f(η2)
∗)` ⊆ H and z ∈ (f(η1)

∗, f(η2)
∗)`. Then206

z ∈ 〈f(η3)
∗, H〉 as (f(η1)

∗, f(η2)
∗)` ⊆ 〈f(η3)

∗, H〉.207

(ii) Suppose (f(η3)
∗, (f(η1)

∗, f(η2)
∗)u)` ⊆ H and let z ∈ ((f(η1)

∗, f(η2)
∗)u)`.208

Then (f(η3)
∗, z)` ⊆ (f(η3)

∗, (f(η1)
∗, f(η2)

∗)u)` ⊆ H which implies z ∈ 〈f(η3)
∗, H〉.209

Conversely, if ((f(η1)
∗, f(η2)

∗)u)` ⊆ 〈f(η3)
∗, H〉, then f(η1)

∗ ⊆ 〈f(η3)
∗, H〉210

and f(η2)
∗ ⊆ 〈f(η3)

∗, H〉 which imply (f(η1)
∗, f(η3)

∗)` ⊆ H and (f(η2)
∗, f(η3)

∗)`211

⊆ H. Since H is f - semi-prime ideal, we have (f(η3)
∗, (f(η1)

∗, f(η2)
∗)u)` ⊆ H.212



CHARACTERIZATIONS OF f-PRIME IDEALS IN POSETS 9

(iii) Let f(η1) ⊆ H. Then for all q1 ∈ f(η1), we have 〈q1, H〉 = Q, so213

〈f(η1)
∗, H〉 =

⋂
q1∈f(η1)

〈q1, H〉 = Q.214

Conversely, if q1 ∈ f(η1), then (r, q1)
` ⊆ H for all r ∈ Q as 〈f(η1), H〉 = Q215

which gives q1 ∈ (q1)
` ⊆ H. So, f(η1) ⊆ H.216

As immediate consequence of Theorem 16 is the below corollary.217

Corollary 17. For a, η1 ∈ Q and f ∈ F(Q), we have 〈a, f(η1)〉 = Q if and only218

if a ∈ f(η1) .219

Remark 18. For a ∈ Q and an ideal H of Q, we have 〈a,H〉 is a semi ideal of Q,220

but not necessary to be an ideal of Q. In the Example 11, for an ideal H = {0, a},221

we have 〈c,H〉 is not ideal as ((a, b)u)` = (d)` = {0, a, b, c, d} * 〈c,H〉 .222

Theorem 19. Let H and f(η1) be ideals of Q for η1 ∈ Q and f ∈ F(Q). If H is223

f -semi-prime with (∗) condition, then 〈f(η1), H〉 is an ideal of Q.224

Proof. Let t1, t2 ∈ 〈f(η1)
∗, H〉. Then (f(t1)

∗, f(η1)
∗)` ⊆ (t1, f(η1)

∗)` ⊆ H and225

(f(t2)
∗, f(η1)

∗)` ⊆ (t2, f(η1)
∗)` ⊆ H. Since H is a f -semi-prime ideal of Q, we226

have (f(η1)
∗, (f(t1)

∗, f(t2)
∗)u)` ⊆ H. By Theorem 16(ii), we have ((t1, t2)

u)` ⊆227

((f(t1)
∗, f(t2)

∗)u)` ⊆ 〈f(η1)
∗, H〉. So 〈f(η1)

∗, H〉 is an ideal of Q.228

The following theorem is the characterization of f -semi-primeness in terms229

of 〈f(η1), H〉 for an ideal H of Q and η1 ∈ Q.230

Theorem 20. Let H be an ideal of Q with (∗) condition. Then H is a f -231

semiprime ideal of Q if and only if 〈f(η1)
∗, H〉 is a f -semi-prime ideal of Q for232

η1 ∈ Q.233

Proof. Let I be a f -semi-prime ideal of Q .234

Case (i) : If f(η1)
∗ ⊆ H, then by Theorem 16(iii), we have 〈f(η1)

∗, H〉 = Q,235

so 〈f(η1)
∗, H〉 is a f -semi-prime ideal of Q.236

Case (ii): Let f(η1)
∗ * H and f(η2), f(η3) and f(η4) be different proper237

ideals of Q for η2, η3, η4 ∈ Q such that (f(η3)
∗, f(η2)

∗)` ⊆ 〈f(η1)
∗, H〉 and238

(f(η3)
∗, f(η4)

∗)` ⊆ 〈f(η1)
∗, H〉. Then (f(η1)

∗, f(η3)
∗, f(η4)

∗)` ⊆ H and by The-239

orem 16(i), (f(η1)
∗, f(η3)

∗)` ⊆ 〈f(η2)
∗, H〉 and (f(η1)

∗, f(η3)
∗)` ⊆ 〈f(η4)

∗, H〉.240

Let z ∈ (f(η1)
∗, f(η3)

∗, (f(η2)
∗, f(η4)

∗)u)`. Then z ∈ (f(η1)
∗, f(η3)

∗)` and241

z ∈ ((f(η2)
∗, f(η4)

∗)u)` which imply (f(η2)
∗, f(z)∗)` ⊆ (f(η2)

∗, z)` ⊆242

(f(η1)
∗, f(η2)

∗, f(η3)
∗)` ⊆ H and (f(η4)

∗, f(z)∗)` ⊆ (f(η4)
∗, z)`243

⊆ (f(η1)
∗, f(η2)

∗, f(η3)
∗)` ⊆ H. Hence f(η2)

∗, f(η4)
∗ ⊆ 〈f(z)∗, H〉. By Theo-244

rem 19, 〈f(z)∗, H〉 is an ideal of Q and z ∈ ((f(η2)
∗, f(η4)

∗)u)` ⊆ 〈f(z)∗, H〉 =245
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⋂
t∈((z)`)∗

〈t,H〉. So z ∈ H. Thus (f(η1)
∗, f(η3)

∗, (f(η2)
∗, f(η4)

∗)u)` ⊆ H and246

(f(η3)
∗, (f(η2)

∗, f(η4)
∗)u)` ⊆ 〈f(η1)

∗, H〉.247

Conversely, let 〈f(η1)
∗, H〉 be a f -semi-prime ideal of Q for any ideal f(η1)248

of Q. Suppose f(η2), f(η3) and f(η4) are different proper ideals of Q such that249

(f(η2)
∗, f(η3)

∗)` ⊆ H and (f(η2)
∗, f(η4)

∗)` ⊆ H. Then (f(η2)
∗, f(η3)

∗)` ⊆250

〈f(η2)
∗, H〉 and (f(η2)

∗, f(η4)
∗)` ⊆ 〈f(η2)

∗, H〉. Since 〈f(η2)
∗, H〉 is f -semi-251

prime, we have (f(η2)
∗, (f(η3)

∗, f(η4)
∗)u)` ⊆ 〈f(η2)

∗, H〉.252

Let t ∈ (f(η2)
∗, (f(η3)

∗, f(η4)
∗)u)`. Then (f(η2)

∗, t)` ⊆ H. Since t ≤ s for253

all s ∈ f(η2)
∗, we have t ∈ H. Hence (f(η2)

∗, (f(η3)
∗, f(η4)

∗)u)` ⊆ H.254

As immediate consequence of Theorem 20, we have the following corollaries.255

Corollary 21. ([11], Theorem 15) Let H be an ideal of Q. Then H is semi-prime256

if and only if 〈q,H〉 is a semi-prime ideal of Q for all q ∈ Q.257

Corollary 22. Let H be an ideal of Q. Then H is a semi-prime ideal of Q if258

and only if 〈R,H〉 is a semi-prime ideal of Q for all R ⊆ Q259

Proof. Let H be a semi-prime ideal of Q and R ⊆ H. Then by Corollary 21,260

we have 〈a,H〉 is a semi-prime ideal of Q and 〈R,H〉 =
⋂
a∈R
〈a,H〉. Again by261

intersection of semi-prime ideals is a semi-prime ideal, we have 〈R,H〉 is a semi-262

prime ideal of Q.263

.264

Theorem 23. Let H be a maximal ideal of Q with (∗) condition. Then H is265

f -prime if and only if H is f -semi-prime.266

Proof. Let H be a maximal and f -semi-prime ideal of Q. Suppose that f(η1)267

and f(η2) are different proper ideals of Q such that (f(η1)
∗, f(η2)

∗)` ⊆ H. Then268

f(η1)
∗ ⊆ 〈f(η2)

∗, H〉 and by Theorem 20, 〈f(η2)
∗, H〉 is a f -semi-prime ideal of269

Q. Since H ⊆ 〈f(η2)
∗, H〉 and by maximality of H, 〈f(η2)

∗, H〉 = Q. By Theorem270

16(iii), we have f(η2) ⊆ H.271

Remark 24. ([11], Theorem 16 and Corollary 17) For a maximal ideal H of Q,272

we have H is semi prime if and only if H is prime.273

Theorem 25. Let f(r) be a f -prime ideal of Q for some r ∈ Q. Then 〈f(η1)
∗, f(r)〉274

= f(r) for all ideal f(η1) of Q not contained in f(r).275

Proof. Suppose f(r) is a f -prime and f(η1) is an ideal of Q for some r, η1 ∈ Q276

such that f(η1) * f(r). Clearly f(r) ⊆ 〈f(η1)
∗, f(r)〉 is always true. Let z ∈277

〈f(η1)
∗, f(r)〉. Then (f(z)∗, f(η1)

∗)` ⊆ (z, f(η1)
∗)` ⊆ f(r). Since f(r) is f -prime278

and f(η1) * f(r), we have z ∈ f(r).279
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The next Theorem gives some equivalent conditions for f -prime ideals.280

Theorem 26. Let f(r) be an ideal of Q with (∗) condition. Then the following281

are equivalent.282

(i) f(r) is a f -prime ideal of Q,283

(ii) 〈f(η1)
∗, f(r)〉 = f(r) for any ideal f(η1) of Q not contained in f(r),284

(iii) f(r) is a prime ideal of Q,285

(iv) 〈x, f(r)〉 is a f -prime ideal of Q for all x ∈ Q\f(r).286

Proof. (i)⇒ (ii) If f(r) is f -prime, then by Theorem 25, we have 〈f(η1)
∗, f(r)〉 =287

f(r) for all ideal f(η1) of Q not contained in f(r).288

(ii)⇒ (iii) Let 〈f(η1)
∗, f(r)〉 = f(r) for all ideals f(η1) of Q not contained in289

f(r) and (x, y)` ⊆ f(r) for x, y ∈ Q. If y /∈ f(r), then (x, f(y)∗)` ⊆ (x, y)` ⊆ f(r)290

which implies x ∈ 〈f(y)∗, f(r)〉 = f(r).291

(iii) ⇒ (iv) Let f(r) be a prime ideal of Q and z ∈ 〈x, f(r)〉 for x ∈ Q\f(r).292

Then (x, z)` ⊆ f(r). Since f(r) is prime and x /∈ f(r), we have z ∈ f(r).293

So 〈x, f(r)〉 ⊆ f(r) and clearly f(r) ⊆ 〈x, f(r)〉. Hence 〈x, f(r)〉 = f(r) for all294

x ∈ Q\f(r).295

(iv) ⇒ (i) Let (f(η1)
∗, f(η2)

∗)` ⊆ f(r) for different proper ideals f(η1) and296

f(η2) of Q. If f(η1) * f(r), then there exists t ∈ f(η1)\f(r). Since f(r) has (∗)297

condition, we have f(η2)
∗ ⊆ 〈f(η1)

∗, f(r)〉 =
⋂

a∈f(η1)∗
〈a, f(r)〉 ⊆ 〈t, f(r)〉 = f(r)298

and hence f(r) is a f -prime ideal of Q.299

Corollary 27. Let f(r) be a semi-ideal of Q. Then f(r) is prime if and only if300

〈x, f(r)〉 = f(r) for all x ∈ Q\f(r).301

Corollary 28. Let f(r) be an ideal of Q. Then f(r) is prime if and only if302

〈x, f(r)〉 = f(r) for all x ∈ Q\f(r).303

Corollary 29. Let f(r) be an ideal of Q with (∗) condition. Then f(r) is f -prime304

if and only if f(r) is prime.305

Corollary 30. Let f(r) be an ideal of Q. If f(r) is prime, then 〈x, f(r)〉 is a306

prime ideal of Q for all x ∈ Q\f(r)307

The classification of f -primeness is obtained from the preceding theorem in308

terms of 〈f(η1)
∗, f(r)〉 for ideals f(η1), f(r) of Q.309

Theorem 31. Let f(r) be an ideal of Q with (∗) condition for r ∈ Q. If f(r) is f -310

prime, then 〈f(η1)
∗, I〉 is a f -prime ideal of Q for ideal f(η1) of Q not contained311

in f(r).312

Proof. Let f(r) be a f -prime ideal of Q. Then by Theorem 26, we have313

〈f(η1)
∗, f(r)〉 = f(r) for ideal f(η1) of Q not contained in f(r) and hence314

〈f(η1)
∗, f(r)〉 is a f -prime ideal of Q.315
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Corollary 32. Let f(r) be an ideal of Q with (∗) condition for r ∈ Q. If f(r) is316

f -prime, then 〈x, f(r)〉 is a f -prime ideal of Q for all x ∈ Q\f(r)317

The following example shows that the converse of the Theorem 31 is not true318

in general.319

Example 33. In Example 11, if we take I = {0} and f(a) = {0, a}, then320

〈f(a)∗, I〉 = {0, b} is a f -prime ideal of Q, but I is not a f -prime ideal of Q for321

the ideals f(b) = {0, b}, f(c) = {0, a, c} of Q, (f(b)∗, f(c)∗)` ⊆ I with b * I and322

c * I.323

5. Properties of the set CH324

Definition. For an ideal H of Q, we indicate the set CH = {w ∈ Q : 〈w,H〉 = H}325

We developed the several characteristics of CH and its correlation with H in326

the following results.327

Lemma 34. Let I be a f -semiprime ideal of Q. Then 〈f(η1)
∗, I〉 ∩ CI = ∅ for328

all ideals f(η1) of Q not contained in I.329

Following [19], a subset B(6= ∅) of Q is termed as semi-filter if s ∈ B and330

s 6 q, then q ∈ B. Also B is referred as filter if s, d ∈ B implies (s, d)`u ⊆ B[9].331

Theorem 35. Let I be an ideal of Q. Then CI is a filter of Q.332

Lemma 36. Let I be a proper ideal of Q. Then I ∩ CI = ∅.333

The following theorem characterizes f -prime ideals in a poset.334

Theorem 37. Let H be a proper ideal of Q with (∗) condition. Then H is335

f -prime if and only if H ∪ CH = Q.336

Proof. Suppose H is a f -prime ideal of Q and let x /∈ CH for x ∈ Q. Then337

〈x,H〉 6= H which implies y ∈ 〈x,H〉 with y /∈ H and (f(x)∗, f(y)∗)` ⊆ (x, y)` ∈338

H. Since H is f -prime ideal and y /∈ H which imply x ∈ H.339

Conversely, let H ∪ CH = Q and f(η1), f(η2) be different proper ideals of Q340

with (f(η1)
∗, f(η2)

∗)` ⊆ H for η1, η2 ∈ Q. If η1 /∈ H, then f(η2)
∗ ⊆ 〈f(η1)

∗, H〉341

and there exists a ∈ f(η1)\H with 〈a,H〉 = H which imply η2 ∈ f(η2)
∗ ⊆342 ⋂

t∈f(η1)∗
〈t,H〉 ⊆ 〈a,H〉 = H.343

Corollary 38. Let H be a proper ideal of Q. Then H is prime if and only if344

H ∪ CH = Q.345
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6. Conclusion346

We investigated the ideas of f -prime ideals and f -semi-prime ideals of posets in347

this work, as well as the different features of f -primeness and f -semi primeness348

in posets. Characterizations of f -semi-prime ideals in posets are derived, in349

furthermore categorizations of a f -semi-prime ideal as f -prime. We established350

some fundamental theorems in f -primeness and obtained equivalent criteria for351

a semi-ideal of Q to be a f -prime semi-ideals of Q. In addition, we discussed352

the requirements for an ideal to be a f -prime ideal of Q. These findings may353

be extended to 0-distributive posets, lattices, near lattices, semilattices, and 0-354

distributive near lattices using the technique presented in this paper.355

Acknowledgments356

The authors would like to thank the anonymous referee for their insightful357

remarks and suggestions, which greatly improved the paper, and they would also358

want to convey their sincere gratitude to the journal’s editor.359

References360

[1] S. Bhavanari and R. Wiegandtt, On the f-prime radical of near-rings, Near-361

rings and Nearfields. Springer (2005) 293–299.362

[2] J. Catherine Grace John, and B. Elavarasan, Primeness of extension of semi-363

ideals in posets, Appl. Math. Sci. 164(8) (2014) 8227–8232.364

http://dx.doi.org/10.12988/ams.2014.410840365

[3] J. Catherine Grace John and B. Elavarasan, Strongly prime and strongly366

semiprime ideals in Posets, Glob. J. Pure Appl. Math. 11(5) (2015) 2965–367

2970.368

[4] J. Catherine Grace John and B. Elavarasan, Strongly Prime Ideals and Pri-369

mal Ideals in Posets, Kyungpook Math. J 56(3) (2016) 727–735.370

http://dx.doi.org/10.5666/KMJ.2016.56.3.727371

[5] J. Catherine Grace John and B. Elavarasan, zJ -Ideals and Strongly Prime372

Ideals in Posets, Kyungpook Math. J 57(3) (2017) 385–391.373

https://doi.org/10.5666/KMJ.2017.57.3.385374

[6] J. Catherine Grace John, Strongly Prime Radicals and S-Primary Ideals in375

Posets, Mathematical Modeling, Computational Intelligence Techniques and376

Renewable Energy, Springer (2022) 3–11.377

https : //link.springer.com/chapter/10.1007/978− 981− 16− 5952− 21378



14 J. Catherine Grace John, J.Veninstine Vivik , P.S.Divya

[7] N. J. Groenewald and P. C. Potgieter, A of prime ideals in near rings,379

Comm. in Algebra 12 (1984) 1835-1853.380

[8] Z. Gu, On f-prime radical in ordered semigroups, Open Math 16(1) (2018)381

574–580.382

http://dx.doi.org/10.1515/math-2018-0053383
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