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Abstract

The concept of o-filters is introduced in distributive lattices and studied
some properties of these classes of filters. Two sets of equivalent conditions
are derived one for every u-filter to become a o-filter and the other for every
filter to become a o-filter of a distributive lattice. A one-to-one correspon-
dence is established between the set of all prime o-filters of a distributive
lattice and the set of all prime o-filters of its quotient lattice with respect
to a congruence.
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INTRODUCTION

In 1970, the theory of relative annihilators was introduced in lattices by Mark
Mandelker [14] and he characterized distributive lattices in terms of their rel-
ative annihilators. Later many authors introduced the concept of annihilators
in the structures of rings as well as lattices and characterized several algebraic
structures in terms of annihilators. Speed [13] and Cornish [4] made an exten-
sive study of annihilators in distributive lattices. The class of annulets played a
vital role in characterizing many a algebraic structures like normal lattices [3],
quasi-complemented lattices [4]. In [7], Pawar and Thakare introduced the class
of pm-lattices and characterized the pm-latices in topological terms. In [11], the
author investigated thoroughly the properties co-annihilator filters and u-filters
of distributive lattices. An extensive investigation of co-annihilators was made in
residuated lattices by Rasouli in [8]. In [5], the authors studied certain properties
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co-annihilator filters of residuated lattice in the name of a-filters. In [10], the au-
thor studied the properties of O-filters of distributive lattices and characterized
the O-filters with the help of minimal prime filters. The main aim of this paper
is to study some further properties of co-annihilators in the form of o-filters of
distributive lattices.

In this note, the concept of o-filters is introduced in distributive lattices and
their properties are studied with the help of prime filters, co-annihilator filters,
p-filters, and O-filters. It is observed that every o-filter of a distributive lattice
is a u-filter but the converse is not true in general. However, some equivalent
conditions are derived for every p-filter of a distributive lattice to become a o-
filter. It is also observed that every O-filter of a distributive lattice is a o-filter
but not the converse in general. Some necessary and sufficient conditions are
derived for every o-filter of a distributive lattice to become an O-filter. Some
equivalent conditions are derived to prove that the class of all filters of the form
o(F) of a distributive lattice to become a sublattice to the lattice of all filters of
the distributive lattice. A set of equivalent conditions is derived for every filter of
a distributive lattice to become a o-filter. For any ideal I of a distributive lattice
L, a one-to-one correspondence is obtained between the set of all prime o-filters
of a distributive lattice L and the set of all prime o-filters of the quotient lattice
Ly, where ¢y is an ideal congruence.

1. PRELIMINARIES

The reader is referred to [1, 2, 9, 10] and [11] for the elementary notions and
notations of distributive lattices. However some of the preliminary definitions
and results are presented for the ready reference of the reader.

Definition 1 [1]. A lattice (L, A, V) is called distributive if for all z,y,z € L, it
satisfies either of the following properties:

(1) zA(yVz)=(xAy)V(zAz),
(2) zV(yAz)=(zVy A(zVz).

A non-empty subset A of a lattice L is called an ideal(filter) of L if a V b €
Alanbe A) and a ANz € A(aV z € A) whenever a,b € A and z € L. The set
(a] ={z € L |z <a} (resp. [a) ={x € L | a < z}) is called a principal ideal
(resp. principal filter) generated by a. The set Z(L) of all ideals of a distributive
lattice L with 0 forms a complete distributive lattice. The set F(L) of all filters
of a distributive lattice L with 1 forms a complete distributive lattice. A proper
ideal P of a lattice L is called prime if for any z,y € L, x Ay € P implies x € P
ory € P. A proper ideal M of a lattice is called mazximal if there exists no proper
ideal N such that M C N. Two prime filters P and @Q of a lattice L are called
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co-mazimal if PV @ = L. The annihilator [13] of a non-empty set A of a lattice
istheset A*={x € L|aNnz=0forall a € A}. The pseudo-complement [6] b*
of an element b of a lattice L is the element satisfying

aNb=0 if and only if a <"

where < is the induced order in L. A lattice in which every element has a
pseudo-complement is called a pseudo-complemented lattice. The annihilator of
the principal ideal is given by (z]* = (2*] where * is the pseudo-complementation
on the lattice L.

A bounded distributive lattice L is called a pm-lattice if every prime ideal
of L is contained in a unique maximal ideal of L. Pawar and Thakare [7] have
proved that if L is a pm-lattice then the space max(L) of all maximal ideals of
the lattice L is a Th-space (and hence it is normal). A proper filter P of L is said
to be prime if for any z,y € L, x Vy € P implies x € P or y € P. A prime filter
P of a lattice L is called minimal if it is the minimal element in the class of all
prime filters. The dual pseudo-complement [12] bt of an element b of a lattice L
is the element satisfying

aVb=1 if and only if b" <a

where < is the induced order in L. A lattice in which every element has a dual
pseudo-complement is called a dual pseudo-complemented lattice.

Theorem 2 [9]. A prime filter P of a distributive lattice L with 1 is minimal if
and only if to each x € P there exists y ¢ P such that xVy = 1.

For any non-empty subset A of a distributive lattice L with 1, the co-
annihilator of A is define as the set AT ={x € L | xVa=1for all a € A}. For
any non-empty subset A of L, AT is a filter of L with AN AT = {1}.

Lemma 3 [11]. Let L be a distributive lattice with 1. For any subsets A and B
of L,
(1) A C B implies BT C AT,
(2) AC AT,
(3) AtH+ = At
(4) AT =L if and only if A= {1}.
From the above lemma, it can be pointed out that the correspondence A —

A7t is a Galois connection between the subsets of the lattice L. In case of filters
of lattices, the following properties of co-annihilators hold.

Proposition 1.1 [11]. Let L be a distributive lattice with 1. For any filters F
and G of L, we have
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(1) FrnFT={1},

(2) FNG = {1} implies F C G,
3) (FVG)r=FtNnGT,

(4) (FNnG)*t =FttnGtt.

It is clear that ([z))" = {#}" and is simply denoted by (z)" which is called
the co-annulet. Then clearly (0)* = {1}. It is clear that [z)* = [zT) where T is
the dual pseudo-complementation on the lattice L. An element x of a lattice L
is called co-dense if (x)™ = {1}. The following corollary is a direct consequence
of the above results.

Corollary 4 [11]. Let L be a distributive lattice with 1. For any a,b,c € L,
(1) a < b implies (a)™ C (b)T,

(2) (anb)* = (a)" N (B,

(3) (aVb)™ = (a)" N (b)*T,

(4) (a)" N ()" = {1} if and only if (a)* C ()7,

(5) (

5) (a)™ = L if and only if a = 1.

A filter F' of a distributive lattice L with 1 is called a co-annihilator filter
[11] if F = F**. A filter F of a distributive lattice L with 1 is called a p-filter
[11] of L if x € F implies (x)*" C F for all x € L. Every co-annihilator filter of
a distributive lattice is a p-filter. A filter F' of a distributive lattice L is called
an O-filter [10] if F' = O(I) for some ideal I of L, where O(I) ={zx € L |xVa =
1 for some a € I}. Throughout this note, all lattices are bounded distributive
lattice unless otherwise mentioned.

2. MAIN RESULTS

In this section, the concept of o-filters is introduced in lattices. A set of equiv-
alent conditions is derived for every filter of a lattice to become a o-filter. In-
terconnections among o-filters, p-filters, O-filters, and minimal prime filters are
investigated.

Definition 5. For any filter F' of a lattice L, define the set o(F') as follows
oF)={zeX | ()T VF =L}
Clearly (L) = L. For F' = {1}, obviously we get o({1}) = {1}.

Lemma 6. For any filter F' of a lattice L, o(F) is a filter of L.
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Proof. Clearly 1 € o(F). Let 2,y € o(F). Then (z)"VF = L and (y)"VF = L.

Hence

(xAy)*

{w +}\/F
{(x)* vF}m{ TV F}
LN

L

L

which gives that z Ay € o(F). Let z € o(F) and < y. Then (z)" C (y)* and
thus L = (z)* VF C (y)™ V F. Hence y € o(F). Thus o(F) is a filter of L. m

In the following result, some elementary properties of o(F') are derived.

Lemma 7. For any two filters F,G of a lattice L, we have
(1) o(F) CF,

(2) F C G implies o(F) C 0(G),

3) o(FNG) =0o(F)Na(G).

Proof. (1) Let z € o(F). Then (x)" VF = L. Hence z € (z)* V F. Thus
z =aAb for some a € ()T and b € F. Since a € (z)*, we get a Vz = 1. Thus
r=zVzr=(aANb)Vez=(aVz)AN(bVz)=1AN(bVz)=>bVazecF. Therefore
o(F)CF.

(2) Suppose F C G. Let z € o(F). Then L = (z)*VF C ()" VG. Therefore
z € o(Q).

(3) Clearly o(FNG) C o(F)No(G). Conversely, let = € o(F)No(G). Then
(x)TVF =(x)" VG = L. Now ()" V(FNG) ={(x)"VF}n{(x)" VG} =
LNL = L. Hence z € o(FNG). Thus o(F)No(G) C o(F NG). Therefore
o(FNG)=0c(F)Nao(G). ]

Definition 8. A filter F' of a lattice L is called a o-filter if F' = o(F).

Clearly the improper filters {1} and L are trivial o-filters of L. It is obvious
that a proper o-filter of a lattice contains no co-dense elements. In [11], the class
of all p-filters of a lattice L is characterized in terms of co-annihilators of the
lattice. In the following theorem, it is proved that the class of all p-filters of a
lattice L contains properly the class of all o-filters of L.

Proposition 2.1. FEvery o-filter of a lattice is a u-filter.

Proof. Let F be a o-filter of a lattice L. Then o(F) = F. Let x € F. Then
(x)* VF = L. Now, let t € (x)™". Then (x)* C (t)T. Hence L = (z)* V F C
(t)" V F. Thus t € o(F) = F, which proves that (z)™ C F. Therefore F is a
p-filter of L. [
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The converse of the above proposition is not true. i.e. every p-filter of a
lattice need not be a o-filter. For consider the following example.

Example 9. Consider the distributive lattice L = {0,a,b,c,1} whose Hasse
diagram is given in the following figure.

N\
Y

Consider the filter F' = {b,1}. It can be easily observed that (b)™* C F.

Hence F is a p-filter of L. Observe that (b)*™ V F = {a,b,c,1} # L. Therefore F’
is not a o-filter of L.

However, in the following theorem, some equivalent conditions are given for
every p-filter of a lattice to become a o-filter.

Theorem 10. Let L be a lattice. Then the following assertions are equivalent:
(1) every u-filter is a o-filter,

(2) every co-annihilator filter is a o-filter,

(3) for each x € L, (x)™" is a o-filter,

(4) for each x € L, (x)* Vv (z)™ = L.

Proof. (1)=-(2) Since every co-annihilator filter is a p-filter, it is clear.

(2)=(3) Since each (z)** is a co-annihilator filter, it is clear.

(3)=>(4) Assume statement (3). Let € L. Since (z)*1 is a o-filter of L, we
get (z)™+ =o((2)*"). Clearly z € (z)*+ = o((2)*"). Hence (2)*V (z)** = L.

(4)=(1) Assume that (z)™ V (x)** = L for each z € L. Let F be a p-filter
of L. Clearly o(F) C F. Conversely, let € F. Since F is a u-filter, we get
(z)™t C F. Hence L = (z)* Vv (2)*" C ()T V F. Thus z € o(F). Therefore F
is a o-filter of L. ]

—~~

In [10], authors studied the properties of O-filters and proved that every O-
filter of a lattice is the intersection of all minimal prime filters containing it. In
the following result, it is proved that the class of all o-filters is properly contained
in the class of all O-filters.
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Theorem 11. Every o-filter of a lattice is an O-filter.

Proof. Let F be a o-filter of a lattice L. Then o(F) = F. Consider S = {x €
L | (z)*" Vv F = L}. We first show that S is an ideal of L. Clearly 0 € S.
Let 2,y € S. Then (zVy)™  VF = {(z)™ n(y)™} vF = {()™ vF}n
{(y " VF} =LNL=0L. Hence zVy € S. Let z € S and y < x. Then
L= (x)""VF C(y)t" VF. Hence y € S. Thus S is an ideal of L. We now
show that F'= O(S). Let x € O(S). Then z Vy =1 for some y € S. Now

rVy=1=ye (x)"
= (y)™" C (2)F
= L=() " "VFC(x)"VF sinceyeS
=zxe€o(F)=F since F' is a o-filter
which yields that O(S) C F. Conversely, let x € F = ¢(F). Then (z)*Vo(F) =

L. Therefore 0 € (x)* V o(F). Hence 0 = a A b for some a € (x)* and b € o(F).
Thus a Ve =1 and ()" V F = L. Now

aANb=0= (anb)t =(0)" = {1}
= (a)" N (b)" = {1}
= ()" S (a)""

= L=0B"VFC(a)""VF  since bc o(F)
=a€c$ and aVr=1
= x € 0(9)

which gives F' = o(F) C O(S). Hence F' = O(S). Therefore F' is an O-filter
of L. -

The converse of the above theorem is not true, i.e., every O-filter of a lattice
need not be a o-filter. For, consider the distributive lattice given in Example 9.
Consider F' = {1,b} and I = {0, a,c}. Clearly F is a filter and I is an ideal of L
such that ' = O(I). Hence F is an O-filter of L. Now, observe that o(F) = {1},
because (b)T V F = {1,a,b,c} # L. Therefore F is not a o-filter of L.

Proposition 2.2. Fach co-annulet of a lattice is an O-filter.

Proof. Let L be a lattice and a € L. Then (a)* is a co-annulet of L. It is easy
to check that (a)™ = O((a]). |

Theorem 12. Let L be a lattice. Then the following assertions are equivalent:

(1) L is a pm-lattice,
(2) every O-filter is a o-filter,
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(3) for any a,b € L, aVb=1 implies (a)™ V (b)T = L,
(4) each co-annulet is a o-filter,

(5) for any two distinct mazimal ideals M, N of L, there exists a ¢ M andb ¢ N
such that a ANb =0,

(6) any two distinct minimal prime filters are co-mazximal.

Proof. (1)=(2) Assume that L is a pm-lattice. Then every prime ideal of L
is contained in a unique maximal ideal of L. Let F' be an O-filter of L. Then
there exists an ideal I of L such that F' = O(I). Clearly o(F') C F. Conversely,
let x € F = O(I). Then there exists s € I such that x Vs = 1. Suppose
(x)T V F # L. Then there exists a prime ideal P such that {(z)* VvV F} NP = 0.
Then PV (z] is an ideal of L such that P C PV (z]. Suppose s € PV (z]. Then
s=1tVuxforsomet e P. Hence l =2 Vs=xV(tVz)=1tVaz which implies
te(x)t C(z)TVFE. Thust € {(z)TVF}NP, which is a contradiction. Therefore
s ¢ PV (x], which means that PV (z] is a proper ideal of L. Then there exists
a maximal ideal M; such that PV (z] € M;. Again, we have P V (s] is an ideal
such that P C PV (s]. Suppose z € PV (s]. Then x =tV s for some ¢t € P.
Hence 1 =zVs=(tVs)Vs=tVs. Thust e (s)7 C (z)" vV O(I) because of
s€l. Hence t € {(z)" VO(I)} NP ={(x)" VF}nN P, which is a contradiction.
Therefore = ¢ P V (s], which means that P V (s] is a proper ideal of L. Then
there exists a maximal ideal My such that PV (s] C M. Since Vs =1, we get
s ¢ My and © ¢ Ms. Therefore My # Ms. Thus the prime ideal P is contained
in two distinct maximal ideals, which is a contradiction to the hypothesis. Hence
(x)™ V F = L. Therefore x € o(F), which means o(F) = F.

(2)=(3) Let a,b € L be such that a Vb= 1. By the above proposition, (a)™
is an O-filter of L. Hence b € (a)™ = o((a)™). Therefore (a)™ Vv (b)* = L.

(3)=(4) Assume the condition (3). Let (a)™,a € L be a co-annulet in L.
Clearly o((a)™) C (a)*. Conversely, let z € (a)™. Then z Va = 1. By (3), we
get (x)* V (a)t = L. Hence x € o((a)™). Thus (a)™ = o((a)*). Therefore (a)*
is a o-filter.

(4)=-(5) Assume condition (4) holds. Let M and N be two distinct maximal
ideals of L. Choose x € M —N. Since xz ¢ N, we get NV (z| = L. Hence, aVa =1
for some a € N. Thus z € (a)". By condition (4), we get o((a)™) = (a)*. Since
z € (a)t =0((a)"), we get (£)T V (a)™ = L. Then 0 € (a)* V (z)". Then there
exist two elements s € (a)™ and ¢ € (z)T such that sAt = 0. If s € N, then
1 =sVa € N, which is a contradiction. If t € M, then 1 = ¢V x € M, which is
also a contradiction. Therefore there exist ¢t ¢ M and s ¢ M such that s At = 0.

(5)=-(6) Assume condition (5). Let P and @ be two distinct minimal prime
filters of L. Then L — P and L — @ are distinct maximal ideals of L. By (5),
there exist a ¢ L — P and b ¢ L — @ such that aAb= 0. Hence a € P and b € Q)
such that a Ab=0. Hence 0 =aAbe PV Q. Therefore PV Q = L.
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(6)=-(1) Assume the condition (6). Let P be a prime ideal of L. Let M,
and My be two maximal ideals of L such that P C M; and P C M. Suppose
My # Ms. Then L — My and L — M5 are distinct minimal prime filters of L
such that L — My € L — P and L — My C L — P. By condition (6), we get
(L— M)V (L—Msy)=L. Hence L = (L — M;)V (L — My) C L — P, which is a
contradiction. Thus P should be contained in a unique maximal ideal. Therefore
L is a pm-lattice. [ |

Definition 13. For any proper filter F' of a lattice L, define the set w(F') as
W(F) = {z € L| (x)* ¢ F}.

Proposition 2.3. Let L be a lattice and M be a mazximal filter of L. Then the
set w(M) is a filter of L such that w(M) C M.

Proof. Since M is proper, we get (1) ¢ M. Hence 1 € w(M). Suppose
z,y € w(M). Then (z)" ¢ M and (y)* ¢ M. Hence M C M V (z)* and
M C MV (y)*. Since M is maximal, we get M V (z)* = L and M V (y)* = L.
Thus, we get

MV @Ay T=MVv{@)tnyt={Mv@)"}n{MVv(y*T}=LnL=L.

If (x Ay)t € M, then M = L which is a contradiction. Hence (z A y)t ¢ M.
Thus z Ay € w(M). Again, let z € w(M) and < y. Then (z)" ¢ M and
z < y. Since z < y, we get (x)" C (y)*. Hence (y)* € M. Hence y € w(M).
Therefore w(M) is a filter of L. Now, let © € w(M). Then (z)" ¢ M. Hence,
there exists a € (z)* such that a ¢ M. Since a € (z)", we get a Vz = 1.
Suppose ¢ M. Then M V [z) = L. Since a ¢ M, we get M V [a) = L. Hence
L=Mv{z)N[a)} = MVxVa) = MV][l) = M, which is a contradiction.
Hence x € M. Therefore w(M) C M. ]

Proposition 2.4. Let M be a prime filter of a lattice L. Then we have
(1) o(M) € w(M),
(2) if M is maximal, then o(M) = w(M).

Proof. (1) Let z € o(M). Then (x)" vV M = L. Suppose (z)* C M. Then
M = L, which is a contradiction. Hence (z)* ¢ M. Thus z € w(M). Therefore
o(M) Cw(M).

(2) Since M is proper, we get (M) C w(M). Conversely, let z € w(M).
Then (z)* ¢ M. Since M is maximal, we get (x)* V M = L. Thus z € o(M).
Therefore w(M) = o(M). ]

Let us denote that p is the set of all maximal filters of a lattice L. For any
filter F of a lattice L, we also denote u(F) = {M € p | FF C M}. Since every
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maximal filter of a lattice is prime, by Proposition 2.12, we conclude that w(M)
is a filter such that w(M) C M for every M € p. Then we have the following
result.

Theorem 14. For any filter F' of a lattice L, o(F) = (e, m w(M).

Proof. Let x € o(F) and FF C M where M € p. Then L = ()" VF C (z)tV M.
Suppose (z)T C M, then M = L, which is a contradiction. Hence (z)* ¢ M.
Thus « € w(M) for all M € pu(F). Therefore o(F) C (e, pyw(M). Conversely,
let @ € pseppyw(M). Then z € w(M) for all M € p(F). Suppose (x)"VF # L.
Then there exists a maximal filter My such that (z)™VF C My. Hence (z)* C My
and F' C M. Since F C My, by hypothesis, we get z € w(Mj). Hence (z)" & My,
which is a contradiction. Therefore ()™ V F = L. Hence x € o(F). Therefore

Narepery w(M) S o(F). n

From the above theorem, it can be easily observed that o(F) C w(M) for
every M € u(F). Now, in the following, a set of equivalent conditions is derived
for the class of all filters of the form o(F') to become a sublattice to the lattice
F(L) of all filters of L.

Theorem 15. Let L be a lattice. Then the following assertions are equivalent:

1) for any M € p, w(M) is mazimal,

(

(2) for any F,G € F(L), FV G = L implies o(F)V o(G) =L,

(3) for any F,G € F(L), o(F)Vo(G) =0d(FVG),

(4) for any two distinct mazimal filters M and N, w(M)V w(N) =L,
(5) for any M € p, M is the unique member of v such that w(M) C M.

Proof. (1)=(2) Assume condition (1). Then clearly w(M) = M for all M € p.
Let F,G € F(L) be such that F'VG = L. Suppose o(F')Vo(G) # L. Then there
exists a maximal filter M such that o(F) V o(G) € M. Hence o(F) C M and
o(G) C M. Now

o(F)CM= (| wM)cM
M;eu(F)
= w(M;) C M for some M; € p(F) (since M is prime)
= M; CM by condition (1)
= FCM since F' C M.

Similarly, we can obtain that G C M. Hence L = FV G C M, which is a
contradiction to the maximality of M. Therefore o(F')V o(G) = L.

(2)=-(3) Assume condition (2). Let F,G € F(L). Clearly o(F)V o(G) C
o(F VvV Q). Conversely, let © € o(F V G). Then {(z)* vV F} VvV {(z)" vV G} =
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()T VFVG = L. Hence by condition (2), we get o((z)"VF)Vo((z)TVG) = L.
Thus z € o((z)T VF) Vo((x)" VG). Hence x =r A s for some r € o((z)* V F)
and s € o((z)" V G). Now

rco((x)"VF) = (nNtv{x)TVF}=L
= L={(n"Vv@"}VFC(rva)TVF
= (rva)tTVF=1L
=rVazeollF).

Similarly, we can get sV z € 0(G). Now, we have the following consequence

r=zVzx
= (rAs)Ve
= (rvz)A(sVz)

where r Vo € o(F) and sV x € 0(G). Hence x € o(F)Vo(G). Thus o(FVG) C
o(F)V o(Q). Therefore o(F)V o(G) =o(FVG).

(3)=(4) Assume condition (3). Let M, N be two distinct maximal filters of
L. Choose x € M — N and y € N — M. Since x ¢ N, we get N V [x) = L. Since
y & M, we get MV [y) = L. Now, we get

L =o0o(L)
=o(LVL)
=oc({NVz)}v{MVy})
=o({MV[2)}V{NVI[y})
= o(MVN) since x € M and y € N
= o(M)Vo(N) By condition (3)
C w(M)Vw(N) By Proposition 2.4(1).

Therefore w(M) V w(N) = L.

(4)=(5) Assume condition (4). Let M € u. Suppose N € p such that N # M
and w(N) C M. Since w(M) C M, by hypothesis, we get L = w(M) Vw(N) =
M, which is a contradiction. Hence M is the unique maximal filter such that
w(M) C M.

(5)=(1) Let M € u. Suppose w(M) is not maximal. Let My be a maximal
filter of L such that w(M) C My. We have always w(My) C My, which is a
contradiction. ]

Theorem 16. Following assertions are equivalent in a lattice L:

(1) every filter is a o-filter,
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(2) every prime filter is a o-filter,

(3) every prime filter is minimal.

Proof. (1)=(2) It is clear.

(2)=-(3) Assume that every prime filter is a o-filter. Let P be a prime filter
of L. Since P is proper, there exists ¢ € L such that ¢ ¢ P. In view of condition
(2), P is a o-filter of L. Hence o(P) = P. Let v € P = o(P). Then (z)TVP =1L
and thus ¢ € (z)™ V P. Then ¢ = a A b for some a € (x)* and b € P. Since
a € (x)", we get Va = 1. Suppose a € P. Since P is prime and b € P, we get
¢ =aAbe P which is a contradiction. Thus a ¢ P. This means that zVa =1
for some a ¢ P. Therefore P is minimal.

(3)=-(1) Assume that every prime filter is minimal. Let F' be a filter of L.
Clearly o(F) C F. Conversely, let x € F. Suppose ()T V F # L. Then there
exists a prime filter P such that (z)* vV F C P. Hence (z)™ C P and F C P.
By our assumption, P is minimal. Since z € F' C P, by Theorem 2, there exists
y ¢ P such that 2 Vy = 1. Hence y € ()T C P, which is a contradiction. Thus
(x)T V F = L. Therefore F is a o-filter of L. ]

Proposition 2.5. Let I be an ideal of a lattice L. For any x,y € L, define a
binary relation 11 on L by (x,y) € ¥ if and only if xtV a =1yVa for some a € 1.
Then 1 is a congruence on L with I as a congruence class modulo .

For any distributive lattice L, it can be shown that the quotient algebra Ly,
is also a distributive lattice with respect to the following operations

[x]lﬁl A [y]7/11 = [z A y]wf and [x]wf v [y]wf =[zV y]wl

where [z]y, is the congruence class of  modulo 7. It can be routinely verified
that the mapping ¥ : L — Ly, defined by ¥(z) = [z]y, is a homomorphism.
For any x,y € L, it is clear that « < y implies [z]y, C [y]y,. Hence (L/ww N, \/)
is a lattice in which [0]y, is the smallest element and [1]y, is the greatest element.

Definition 17. Let I be an ideal of a lattice L. For any filter F' of L, define
F={lly, | € F}.

By the nature of congruences of lattices, it can be easily observed that I is
a filter in L, whenever F'is a filter in L.

Definition 18. Let I be an ideal of a lattice L. For any a € L, define (a)> =
{[x]wf € Ly, | la]y, V [2ly, = [1]1111}‘

Clearly (0)® = {1} and (1)® = Ly,

Lemma 19. Let I be an ideal of a lattice L. For any a € L,
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1) for each x € L, x € (a)t implies [z]y,, € (a)?,
b1

(2) (a)? is a filter of Ly, -

Proof. Routine verification. [ |

Definition 20. Let I be an ideal of a lattice L. For any filter F of L, , define
o(F) = {[w]wz | (2)2VF = L/i/’z}'

Lemma 21. Let I be an ideal of a lattice L. For any filter F' of Ly,

(1) o(F) S F,

(2) o(F) is a filter of Ly,

Proof. Routine verification. [ |

Proposition 2.6. Let P be a prime filter and I an ideal of a lattice L such that
PnNI=0. Then the following conditions hold:

(1) x € P if and only if [x]y, € P,

(2) PAT=0,

(3) If P is a prime filter of L, then P is a prime filter of Ly,

(4) If P is a o-filter of L, then P is a o-filter of Ly, .

Proof. (1) Clearly z € P implies [z];, € P. Conversely, let [z],, € P. Then
[€]y, = [t]y, for some t € P. Hence (x,t) € ¢r. Thus  Va =tV a € P for some

a€l. Since PNI =1, we get a¢ P. Since zVa € P and a ¢ P, we must have
x € P.

(2) Suppose PNI+#10. Choose [z],, € PNI. By using (1), we get z € P
and [z]y, € I. Hence
[2]y, €T =[xy, = [Yly, for some y € I
= (2,y) € ¥1
= xVa=yVa forsomeacl
= axzVael sinceyVa €l
= xVa€ePNI sincex e P

which is a contradiction to P N I = (). Therefore PN T = ().

(3) Since P is a filter of L, it is clear that P is a filter of L;y,. Since P
is a proper filter of L, by (1), we get that P is a proper filter in Ly, Let

[]yrs Y]y, € Ly, Then
[y, V [Yly, € P = [z Vyly, € P
= aVyeP from (1)
= xzc€PoryecP
= [2]y, € P or [yly, € P.
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Therefore P is a prime filter in L Jr-

(4) Suppose that P is a o-filter of L. Clearly P is a filter of L ;- Clearly
o(P) € P. Let [z],y, € P. Then x € P = o(P). Hence (x)* vV P = L. Let
la]y, € Ly, be arbitrary. For this a € L, we get a = b A ¢ for some b € (z)* and
c € P. Since ¢ € P, we get [c]y, € P. Since b € (v)*, we get [b]y, € (v)?. Hence
[a]y, = [bAcly, = [bly, N[cly, € ()2 V P. Hence Ly, C (z)® V P. Therefore P
is a o-filter of Ly, . ]

Corollary 22. Let P and Q be two prime filters of a lattice of L such that
PNnI=0and QNI =0. Then P C Q if and only if P C Q.

Proof. From Proposition 2.6(1), it is clear. ]

Proposition 2.7. Let I be an ideal of a lattice L. For any prime filter R of
L,y,, there exists a prime filter P of L such that PN 1 = 0 and P = R.

Proof. Let R be a prime filter of L, . Consider P = {x € L | [z]y, € R}. Since
R is a filter of Ly, , we get that P is a filter of L. Let z,y € L be such that
xVy € P. Then [z]y, V [yly, = [vVyly, € R. Since R is prime, we get either
[x]y, € R or [yly, € R. Hence either x € P or y € P. Therefore P is a prime
filter of L. Clearly P = R. Suppose PN1I # ). Choose a € PNI. Then [a]y, € R
and a € I. Let [y]y, € Ly, be an arbitrary element. Now for any a € I and

y € L, we have

aVy=aVyVa= (y,yVa)€Er
= [y]wj = [y v a]wl
= [yly, = Wly, Valy, € R since R is a filter
= [y]wl €ER
Hence L,,;, C R, which is a contradiction. Therefore PN 1T = 0. [ |

Theorem 23. Let I an ideal of a lattice L. Fvery prime filter of L is a o-filter
if and only if every prime filter of Ly, is a o-filter.

Proof. Assume that every prime filter of L is a o-filter. By Theorem 16, every
prime filter of L is minimal. Let R be a prime filter of L, . By Proposition
2.7, there exists a prime filter P of L such that PNI = () and P = R. By
the assumption, P is minimal. Let [z]y, € P = R. Then x € P. Since P is
minimal, there exists y ¢ P such that z Vy = 1. Hence [y]y, ¢ P = R and
[z]y; V [Yly; = [vV yly, = [1]y;- Thus R is minimal in L, . Therefore, by
Theorem 16, R is a o-filter in L, .

Conversely, assume that every prime filter of L, is a o-filter. By Theorem
16, every prime filter of L, is minimal. Let P be a prime filter of L. Take
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I =L — P. Then clearly P is a prime filter of L such that PN I = (). Then by
Theorem 2.6, P is a prime filter of L /- By our assumption, P is minimal in
L,y,. Suppose P is not minimal in L. Then there exists a prime filter ) of L
such that Q@ C P. Since PN I =0, we get Q NI = (). Hence @ is a prime filter
of Ly,. Since  C P. By Corollary 22, we get Q) C P. This contradicts the
minimality of P in Ly, . Hence P is minimal prime filter of L. By Theorem 16,
P is a o-filter in L. n
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