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1. Introduction32

Non-classical logic has become a formal and useful tool for computer science33

to deal with uncertain information and fuzzy information. The algebraic coun-34

terparts of some non-classical logics satisfy residuation and those logics can be35

considered in a frame of residuated lattices. Hoops are naturally ordered com-36

mutative residuated integral monoids were originally introduced by Bosbach in37

[11, 12] under the name of complementary semigroups. Hoops have been studied38

by Blok and Ferreirim [5]. The algebraic structures corresponding to Hájek’s39

propositional (fuzzy) basic logic, BL-algebras, are particular cases of hoops. In40

recent years, many mathematicians have studied various concepts on hoop, for41

example filters theory plays an important role in studying logical algebras. From42

logical point of view, filters correspond to sets of provable formula. The concept43

of filter, quotient algebra and homomorphism are all closely related to each other.44

In [4], Alavi and et al. introduced different kinds of filters on pseudo-hoop and45

investigate the relation between them and the quotient structure that is made by46

them. In [2], Aaly Kologani and et al. introduced the notion of co-annihilators47

on hoop and investigated some properties of it and in [8] studied the relation48

between hoops and other logical algebras. To read more about hoops, we suggest49

to reader the articles [1, 2, 3, 4, 7, 8, 9, 10, 16, 17, 22].50

In mathematics, the adjective Noetherian is used to describe objects that sat-51

isfy an ascending or descending chain condition on certain kinds of subobjects,52

meaning that certain ascending or descending sequences of subobjects must have53

finite length. Noetherian objects are named after Emmy Noether, who was the54

first to study the ascending and descending chain conditions for rings. The as-55

cending chain condition (ACC) and descending chain condition (DCC) are finite-56

ness properties satisfied by some algebraic structures, most importantly ideals in57

certain commutative rings [11, 12]. These conditions played an important role58

in the development of the structure theory of commutative rings in the works59

of Hilbert, Noether, and Artin. The conditions themselves can be stated in an60

abstract form, so that they make sense for any partially ordered set.61

The aim of this paper is defining the concepts of Noetherian and Artinian62

hoops by using the filter of hoop in the partial order set of all the filters of hoops63

and inclusion relation and find some equivalent definitions for this notion. We64

translate some important results from theory of rings to the case of hoop and their65

characterizations are established. The relation between short exact sequence on66

Noetherian and Artinian hoop studied and by using short exact sequence we prove67

that the Cartesian product of two hoops is Noetherian (Artinian) if and only if68

each one is a Noetherian (Artinian). By using the notion of filter in hoops, we69

define the notion of composition series and prove any ∨-hoop is Noetherian and70

Artinian if and only if it has composition series. Finally, Chinese Remainder the-71
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orem in hoop and the relation between maximal filter and Noetherian (Artinian)72

hoop are investigated.73

2. Preliminaries74

In this section, we recollect some definitions and results which will be used in this75

paper.76

By a hoop we mean an algebraic structure (H,→,⊙, 1) of type (2, 2, 0) in77

which (H,⊙, 1) is a commutative monoid and, for any x, y, z ∈ H, the following78

assertions are valid.79

(H1) x→ x = 1,80

(H2) x⊙ (x→ y) = y ⊙ (y → x),81

(H3) x→ (y → z) = (x⊙ y) → z.82

On hoop H we define x ≤ y if and only if x → y = 1. Obviously (H,≤) is83

a poset. A bounded hoop is a hoop with the least element, it means that there84

exists 0 ∈ H such that 0 ≤ x, for any x ∈ H. Let x0 = 1, xn = xn−1 ⊙ x, for85

any n ∈ N. If H is a bounded hoop, then we define a negation ” ′ ” on H by,86

x′ = x→ 0, for all x ∈ H. By a sub-hoop of a hoop H we mean a subset S of H87

which, for any x, y ∈ S, x→ y ∈ S and x⊙ y ∈ S (see [8]).88

Note. From now on, we let (H,⊙,→, 1) be a hoop and denote it by H, for short.89

Proposition 1 [8]. The following conditions hold for all x, y, z ∈ H.90

(i) (H,≤) is a ∧ −semilattice with x ∧ y = x⊙ (x→ y),91

(ii) x⊙ y ≤ x, y and x ≤ y → x,92

(iii) x→ y ≤ (y → z) → (x→ z),93

(iv) x ≤ y implies z → x ≤ z → y, y → z ≤ x→ z and x⊙ z ≤ y ⊙ z,94

(v) x⊙ y ≤ z if and only if x ≤ y → z,95

(vi) x→ (
∧

i∈I

yi) =
∧

i∈I

(x→ yi).96

Proposition 2 [8]. Define the operation ∨ on H as follows,

x ∨ y = ((x→ y) → y) ∧ ((y → x) → x).

Then for any x, y ∈ H the following conditions are equivalent:97

(i) ∨is associative,98

(ii) x ≤ y implies x ∨ z ≤ y ∨ z for any z ∈ H,99

(iii) ∨is the join operation on H.100
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Definition [8]. A hoopH is called a ∨-hoop, if it satisfies in the one of equivalent101

conditions of Proposition 2.102

Proposition 3 [8]. Let H be a ∨-hoop. Then the following conditions hold for103

any x, y, z ∈ H and n ∈ N:104

(i) (x ∨ y) → z = (x→ z) ∧ (y → z).105

(ii) (x ∨ y)n → z =
∧

{(x1 ⊙ x2 ⊙ · · · ⊙ xn) → z|xi ∈ {x, y}}.106

(iii) x⊙ (
∨

i∈I

yi) =
∨

i∈I

(x⊙ yi).107

Definition [7]. A non-empty subset F of H is called a filter of H if for any108

x, y ∈ F , x⊙ y ∈ F and, for any y ∈ H and x ∈ F , we have x ≤ y implies y ∈ F .109

The set of all filters of H is denoted by F(H).110

Proposition 4 [7]. Consider ∅ 6= F ⊆ H. Then F ∈ F(H) if and only if 1 ∈ F111

and if x ∈ F and x→ y ∈ F , then y ∈ F.112

Definition [2]. (i) F ∈ F(H) is called proper if F 6= H.113

(ii) A proper filter P of H is called a prime filter of H if for all x, y ∈ H,114

x→ y ∈ P or y → x ∈ P . The set of all prime filters of H is denoted by Spec(H).115

(iii) A proper filterM ofH is called a maximal filter of H if it is not contained116

in any other proper filter. The set of all maximal filters of H is denoted by117

Max(H).118

Definition [7]. Let ∅ 6= X ⊆ H. The intersection of all filters of H containing
X is denoted by 〈X〉 and characterized by

〈X〉 = {a ∈ H | x1 ⊙ x2 ⊙ · · · ⊙ xn ≤ a for some n ∈ N and x1, ..., xn ∈ X}.

Let F ∈ F(H) and x ∈ H \F . Then the generated filter of F ∪{x} is denoted
by F 〈x〉 and we define it as follows:

F 〈x〉 = {a ∈ H | ∃ n ∈ N such that xn → a ∈ F}.

Lemma 5 [2]. (i) Let (H,→,⊙, 1) be a ∨-hoop. Then for any x, y ∈ H we have119

〈x ∨ y〉 = 〈x〉 ∩ 〈y〉.120

(ii) Let (H,→,⊙, 1) be a ∨-hoop and F ∈ F(H). Then

〈F ∪ {x}〉 ∩ 〈F ∪ {y}〉 = 〈F ∪ {x ∨ y}〉.

Proposition 6 [3]. The algebraic structure (F(H),∧,∨) is a lattice, where for121

any F,G ∈ F(H), F ∧G = F ∩G and F ∨G = 〈F ∪G〉.122

Proposition 7 [10]. Let F ∈ F(H). Then for any x, y ∈ H the relation x ∼F y123

if and only if x → y, y → x ∈ F is a congruence relation on H. The set of all124

congruence relations on H is denoted by Con(H).125
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Proposition 8 [10]. Let H
F

= {[x]|x ∈ H}, where [x] = {y ∈ H | x ∼F y}.
Define the operation ⊗ and  on H

F
as follows:

[x]⊗ [y] = [x⊙ y] and [x] [y] = [x→ y].

Then (H
F
,⊗, , F, H

F
) is a bounded hoop.126

Definition [10]. Let H1 and H2 be two hoops. Then a map φ : H1 → H2 is
called a hoop homomorphism if, for any x, y ∈ H1

φ(x→ y) = φ(x) → φ(y) and φ(x⊙ y) = φ(x)⊙ φ(y).

3. Noetherian (Artinian) hoops127

In this section, we define the notion of Noetherian and Artinian hoop and give128

some equivalent conditions for these notions. Then we define a short exact se-129

quence of hoop and by using it we identify Noetherian and Artinian hoops. Fi-130

nally, we define composition series in hoop and investigate the relation between131

them and Noetherian and Artinian hoops.132

Definition. A hoop H is called Noetherian (Artinian) if for every increasing133

(decreasing) chain of its filters like F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · (F1 ⊇ F2 ⊇ · · · ⊇134

Fn ⊇ · · · ), there exists n ∈ N such that Fi = Fn, for all i ≥ n135

Example 9. (i) Every finite hoop is Noetherian (Artinian).136

(ii) Let H = [0, 1] such that for any x, y ∈ H, x ⊙ y = min{x, y} and137

x → y = 1 if x ≤ y and x → y = y if x > y. Then (H,⊙,→, 0, 1) is a138

bounded hoop. Let Fn = [ 1
n
, 1] with n ≥ 1. Then Fn are filters of H and139

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · does not stop. Then H is not a Noetherian hoop.140

(iii) Define the operations ⊙, → and negation on [0, 1] as follows:

x⊙ y = min{x, y}, x′ = 1− x, x→ y = min{1, 1 − x+ y},

then H = ([0, 1],⊙,→, 0, 1) is a hoop. Now, we prove ([0, 1],⊙,→, 0, 1) has only141

trivial filters. If I ⊆ [0, 1] is a filter of H and I \ {1} 6= ∅, then we prove142

I = [0, 1]. Let I = [u, 1] for some u ≤ 1. Suppose x ∈ [u, 1). If x + u ≥ 1, then143

u → (x + u − 1) = 1 − u + (x + u − 1) = x ∈ I. Thus u + (x − 1) ∈ I and144

this is a contradiction. Hence, for any x ∈ [u, 1), x + u<1 and so u = 0. Hence145

([0, 1],⊙,→, 0, 1) is an Artinian and Noetherian hoop.146

(iv) Let H = [0, 1]. Define the operations ⊙ and → on H as follows:

x→ y =

{

1 if x ≤ y
y
x

o.w

Then ([0, 1],⊙,→, 0, 1) is an Artinian and Noetherian hoop.147
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Theorem 10. Let A be a non-empty set of filters of H. Then H is a Noetherian148

(Artinian) hoop if and only if A has a maximal (minimal) element.149

Proof. Let H be a Noetherian hoop and S = {Fi : Fi ∈ F(H)} be a non-empty150

set of filters of H which does not have a maximal element. Since S is a non-151

empty set, there exists F1 ∈ S. In addition, from S does not have a maximal152

element, there exists F2 ∈ S such that F1 ⊆ F2. Continuing this method, we153

have F1 ⊆ F2 · · · ⊂ Fn ⊆ · · · is an increasing chain of filters of H that there does154

not exist n ∈ N such that Fi = Fn, for all i ≥ n, which is a contradiction. Hence,155

S has a maximal element.156

Conversely, let F1 ⊆ F2 · · · ⊂ Fn ⊆ · · · be an increasing chain of filters of H.157

Then define S = {Fi : Fi ∈ F(H)}. Since S is a non-empty set, by assumption,158

S has a maximal element such as Fn. Then for all i ≥ n, Fi = Fn. Therefore, H159

is a Noetherian hoop. The proof of other case is similar.160

Theorem 11. Any hoop H is Noetherian if and only if every filter of H is finitely161

generated.162

Proof. Let H be a Noetherian hoop and F ∈ F(H) which is not finitely gener-
ated. Suppose

S = {G ∈ F(H)|G is a finitely generated filter of H and G ⊆ F} .

Since 〈1〉 = {1} ∈ S, we get S 6= ∅. Then by Theorem 10, S has a maximal163

element such as F1. Thus F1 ⊆ F and F1 = 〈x1, ..., xn〉, for some x1, ..., xn ∈ H.164

Since F is not finitely generated, we have F1 $ F , and there exists x ∈ F \ F1165

such that F1 $ 〈x1, ..., xn, x〉 ⊂ F . Since 〈x1, ..., xn, x〉 is finitely generated and166

F1 $ 〈x1, ..., xn, x〉, we get 〈x1, ..., xn, x〉 ∈ S, which is a contradiction. Therefore,167

F is a finitely generated filter of H.168

Conversely, suppose every filter of H is finitely generated and F1 ⊆ F2 · · · ⊂169

Fn ⊆ · · · is an increasing chain of filters of H. Let F = F1 ∪ F2 ∪ F3 ∪ ....170

Obviously, F ∈ F(H) and by assumption, F is a finitely generated filter of171

H. Suppose F = 〈x1, ..., xn〉, for some x1, ..., xn ∈ H. Since F =
⋃

i∈I
Fi and172

x1, ..., xn ∈ F , we get that there exist i1, ..., in ∈ N such that xj ∈ Fij . Now,173

by property of chain, there exists m ∈ N, 1 ≤ m ≤ n such that x1, ..., xn ∈ Fim .174

Thus F = 〈x1, ..., xn〉 ⊆ Fim ⊆ F . Hence, Fim = F for all t ≥ im. Therefore, H175

is a Noetherian hoop.176

Theorem 12. Suppose every increasing chain of finitely generated filters of H177

stops. Then H is a Noetherian hoop.178

Proof. Assume H is not a Noetherian hoop. Then by Theorem 11, there exists179

F ∈ F(H) which is not finitely generated. Thus F 6= 〈1〉 = {1} and there exists180
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x1 ∈ F \ {1} such that 〈x1〉 $ F and since F is not finitely generated F 6= 〈x1〉.181

Thus there exists x2 ∈ F \ 〈x1〉 where 〈x1, x2〉 ( F . By continuing this method,182

we have 〈x1〉 $ 〈x1, x2〉 $ · · · which is a proper increasing chain of finitely183

generated filters of H that does not stop, which is a contradiction. Therefore, H184

is a Noetherian hoop.185

Lemma 13. Let F,G ∈ F(H) such that F ⊆ G. Then x
F

∈ G
F

if and only if186

x ∈ G. In addition, G
F
∈ F(H

F
).187

Proof. Let x
F
∈ G

F
. Then there exists a ∈ G such that x

F
= a

F
and so x→ a, a→188

x ∈ F ⊆ G. Since a ∈ G and G ∈ F(H), we get x ∈ G. By the similar way, the189

proof of other side is clear. Since F ⊆ G, we have 1
F
∈ G

F
. Let x, y ∈ H such that190

x
F
, x
F

→ y
F

∈ G
F
. Then x, x → y ∈ G. Since G ∈ F(H), we get y ∈ G. Hence,191

y
F
∈ G.192

Theorem 14. Let F ∈ F(H). Then H
F

is a Noetherian (Artinian) hoop if and193

only if H is a Noetherian (Artinian) hoop.194

Proof. Let H be a Noetherian (Artinian) hoop and F1

F
⊆ F2

F
⊆ · · · Fn

F
⊆ · · · be195

an increasing chain of filters of H
F
. Then F ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · is an196

increasing chain of filters of H. Since H is a Noetherian hoop, there exists n ∈ N197

such that for all i ≥ n, Fi = Fn. Then for all i ≥ n, Fi

F
= Fn

F
. Therefore, H

F
is a198

Noetherian hoop.199

Conversely, let F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · be an increasing chain of filters200

of H. If F1 = {1}, since Fi

{1}
∼= Fi then the proof is clear. Let F1 6= {1}. Since201

F1 ⊆ Fi for any 2 ≤ i ≤ n, by Lemma 13, F1

F1
⊆ F2

F1
⊆ · · · ⊆ Fn

F1
· · · is an increasing202

chain of filters of H
F1
. Since H

F1
is a Noetherian hoop, there exists n ∈ N such that203

for i ≥ n, Fi

F1
= Fn

F1
. Hence for any x ∈ Fi,

x
F1

∈ Fi

F1
= Fn

Fi
we have x ∈ Fn

Fi
by204

Lemma 13, x ∈ Fn so Fi ⊆ Fn by the similar way Fn ⊆ Fi thus for all i ≥ n,205

Fi = Fn. Therefore, H is a Noetherian hoop.206

The proof of other case is similar.207

Proposition 15. Let S be a sub-hoop of H. Then the set of all filters of S is208

F(S) = {F ∩ S|F ∈ F(H)}.209

Proof. Let S be a sub-hoop of H and K be a filter of S. Clearly K ⊆ 〈K〉 ∩ S.210

Let x ∈ 〈K〉 ∩ S. Since x ∈ 〈K〉, by Definition 2, there exist x1, x2, · · · , xn ∈ K211

and n ∈ N such that x1 ⊙ x2 ⊙ · · · ⊙ xn ≤ x. Since K is a filter of S, we get212

x1⊙x2⊙· · ·⊙xn ∈ K and so x ∈ K. Thus x ∈ K ∩S = K. Hence K = 〈K〉∩S.213

Therefore, F(S) = {F ∩ S|F ∈ F(H)}.214

Corollary 16. Any sub-hoop of Noetherian (Artinian) hoop H is Noetherian215

(Artinian).216
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Definition. Let H1,H2 and H3 be hoops. A sequence 1 −→ H1
φ

−→ H2
ψ

−→217

H3 −→ 1 is called a short exact sequence of hoops if φ is one-to-one, ψ is onto218

and ker(ψ) = Im(φ).219

Example 17. Let H1 = {0, a, b, c, d, 1} and H2 = {0, 1} be two sets such that
0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ d ≤ 1 and 0 ≤ b ≤ c ≤ 1. Then the Cayley tables are as
follows:

→H1
0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 d 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

⊙H1
0 a b c d 1

0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1

→H2
0 1

0 1 1
1 0 1

⊙H2
0 1

0 0 0
1 0 1

Then (H1,→H1
,⊙H1

, 1H1
) and (H2,→H2

,⊙H2
, 1H2

) are hoops. By routine cal-220

culations, we get F = {a, c, 1} is a filter of H1. Define a map ψ : H1 → H2 by221

ψ(0) = ψ(b) = ψ(d) = 0 and ψ(1) = ψ(c) = ψ(a) = 1. Easily we can check ψ is a222

hoop homomorphism. Thus a sequence 1 −→ F
φ

−→ H1
ψ

−→ H2 −→ 1 is a short223

exact sequence of hoops, where φ is an identity map.224

Proposition 18. Let φ : H1 → H2 be a hoop homomorphism such that F ∈225

F(H1) and G ∈ F(H2). Then the following statements hold:226

(i) If φ is a surjective hoop homomorphism such that ker(φ) ⊆ F , then227

φ(F ) ∈ F(H2).228

(ii) φ−1(G) ∈ F(H1).229

(iii) ker(φ) = {x ∈ H1|φ(x) = 1} ∈ F(H1).230

Proof. (i) Obviously, 1 = φ(1) ∈ φ(F ). Let x, y ∈ φ(F ). Then there exist231

a, b ∈ F such that φ(a) = x and φ(b) = y. Since F ∈ F(H1), clearly a⊙ b ∈ F ,232

and so x ⊙ y = φ(a) ⊙ φ(b) = φ(a ⊙ b) ∈ φ(F ). Let x, y ∈ H2 such that x ≤ y233

and x ∈ φ(F ). Thus there is a ∈ F such that φ(a) = x and since φ is surjective,234

there exists b ∈ H1 such that φ(b) = y. Since x ≤ y, we have φ(a) ≤ φ(b) and so235

φ(a → b) = φ(a) → φ(b) = 1. Thus a → b ∈ kerφ ⊆ F . From F ∈ F(H1) and236

a ∈ F , we get b ∈ F and so y = φ(b) ∈ φ(F ). Therefore, φ(F ) ∈ F(H2).237

(ii) Obviously, 1 ∈ φ−1(G). Let x, x → y ∈ φ−1(G). Then φ(x), φ(x) →238

φ(y) ∈ G. Since G ∈ F(H2) and φ(x) ∈ G, we have φ(y) ∈ G, and so y ∈ φ−1(G).239

Therefore, φ−1(G) ∈ F(H1).240
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(iii) Clearly φ(1) = 1, thus 1 ∈ ker(φ). Let x, x → y ∈ ker(φ). Then241

φ(x) = 1 and φ(x → y) = φ(x) → φ(y) = 1. Thus φ(x) ≤ φ(y) and φ(x) = 1.242

Hence φ(y) = 1 and y ∈ ker(φ). Therefore, ker(φ) ∈ F(H1).243

Theorem 19. Let 1 −→ H1
φ

−→ H2
ψ

−→ H3 −→ 1 be a short exact sequence of244

hoops. Then H1 and H3 are Noetherian hoops if and only if H2 is a Noetherian245

hoop.246

Proof. (⇒) Let F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · be an increasing chain of filters247

of H2. Since ψ is a surjective hoop homomorphism and ker φ ⊆ Imψ, we have248

ψ(F1) ⊆ ψ(F2) ⊆ · · · ⊆ ψ(Fn) ⊆ · · · is an increasing chain of filters of H3 and249

φ−1(F1) ⊆ φ−1(F2) ⊆ · · · ⊆ φ−1(Fn) ⊆ · · · is an increasing chain of filters of H1.250

Since H1 and H3 are Noetherian hoops, there exist m,k ∈ N such that ψ(Fi) =251

ψ(Fm) and φ−1(Fj) = φ−1(Fk) for all i ≥ m and j ≥ k. Let l = max{m,k}.252

Clearly, for all i ≥ l, we have Fl ⊆ Fi. It is enough to prove Fi ⊆ Fl for all i ≥ l.253

Let x ∈ Fi for i ≥ l. Then ψ(x) ∈ ψ(Fi) = ψ(Fl), thus there exists a ∈ Fl such254

that ψ(x) = ψ(a). It follows that ψ(a→ x) = ψ(a) → ψ(x) = 1, that is a→ x ∈255

ker(ψ) = Im(φ). Hence there exists b ∈ H1 such that a → x = φ(b). Moreover,256

since Fi is a filter of H2, x ∈ Fi and x ≤ a → x, we get a → x ∈ Fi. Then257

φ(b) ∈ Fi implies b ∈ φ−1(Fi) = φ−1(Fl) and so φ(b) ∈ Fl. Hence, a → x ∈ Fl.258

Now, since a ∈ Fl and Fl is a filter of H2, we get x ∈ Fl. Then Fi ⊆ Fl, and so259

Fi = Fl for all i ≥ l. Therefore, H2 is Noetherian.260

(⇐) Let H2 be a Noetherian hoop. Then by first isomorphism theorem, we261

have H2

ker(ψ)
∼= H3. Thus by Theorem 14, H3 is a Noetherian hoop. Since φ is a262

hoop homomorphism, H1
∼= φ(H1) and φ(H1) is a subalgebra of H2, by Corollary263

16, we get H1 is a Noetherian hoop.264

Corollary 20. Let F ∈ F(H) and S be a sub-hoop of H such that F ⊆ S. Then265

F and S
F

are Noetherian (Artinian) if and only if S is Noetherian (Artinian)266

hoop.267

Proof. Since 1 −→ F
i

−→ S
ψ

−→ S
F
−→ 1 is a short exact sequence of sub-hoops268

where i is identity and ψ is a natural homomorphism, by Theorem 19 the proof269

is clear.270

Proposition 21. Let H be a Noetherian hoop and π : H → H be an onto271

homomorphism. Then π is one-to-one homomorphism.272

Proof. Let x ∈ ker(π). Since ker(π) ∈ F(H), and the composition of homomor-273

phism is a homomorphism we can see that ker(πn) is filter. Let x ∈ ker(πi) for274

any 1 ≤ i ≤ n. Then πi(x) = 1 and so π(πi(x)) = 1. Thus x ∈ ker(πi+1). Hence,275

ker(πi) ⊆ ker(πi+1). Suppose ker(π) ⊆ ker(π2) ⊆ · · · ⊆ ker(πn) · · · be an in-276

creasing chain of filters of H. Since H is Noetherian and ker(πi) ∈ F(H), there277
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exists n ∈ N such that ker(πi) = ker(πn), for all i ≥ n. Let x ∈ ker(π). Since278

πn is onto, there exists y ∈ H such that x = πn(y). Then π(x) = πn+1(y) = 1279

and so y ∈ ker(πn+1) = ker(πn). Hence x = πn(y) = 1. Therefore, ker(π) = {1}280

and π is a one-to-one hoop homomorphism.281

Proposition 22. Let φ : H1 → H2 be a surjective homomorphism. If H1 is282

Noetherian (Artinian), then H2 is, too.283

Proof. Let G ∈ F(H2). Then by Theorem 11, it is enough to show that G
is a finitely generated filter of H2. By Proposition 18, F = φ−1(G) ∈ F(H1).
Since H1 is a Noetherian hoop, we get F is finitely generated. Suppose that
there exist x1, x2, · · · xn ∈ H1 such that F = 〈x1, x2, · · · , xn〉. Now, we prove
G = 〈φ(x1), φ(x2), · · · , φ(xn)〉. For this, let

B = {y ∈ H2| There exist x1, · · · , xn ∈ F such that φ(x1)⊙φ(x2), · · ·⊙φ(xn) ≤ y},

and y ∈ B. Then φ(x1) ⊙ φ(x2), · · · ⊙ φ(xn) ≤ y. Since x1, x2, · · · , xn ∈ F and
F ∈ F(H1), we get x1 ⊙ x2, · · · ⊙ xn ∈ F . Then φ(x1 ⊙ x2, · · · ⊙ xn) ∈ G. Since
φ is a hoop homomorphism, we have

φ(x1 ⊙ x2 ⊙ · · · ⊙ xn) = φ(x1)⊙ φ(x2)⊙ · · · ⊙ φ(xn) ≤ y.

Moreover, from G ∈ F(H2), we get y ∈ G and so B ⊆ G.284

Conversely, let a ∈ G. Since preimage of any filter of H2 is a filter of H1, we
have φ−1(a) ∈ F . Moreover, since F ∈ F(H1) and F is finitely generated, there
exist x1, x2, · · · , xn ∈ F such that x1 ⊙ x2, · · · ⊙ xn ≤ φ−1(a). Thus

φ(x1 ⊙ x2 ⊙ · · · ⊙ xn) ≤ a , φ(x1)⊙ φ(x2)⊙ · · · ⊙ φ(xn) ≤ a

Hence a ∈ B, and so

G = {y ∈ H2|φ(x1)⊙ φ(x2)⊙ · · · ⊙ φ(xn) ≤ y}.

Therefore, G is finitely generated.285

Theorem 23. Let F,G ∈ F(H1) and φ : H1 → H2 be a hoop homomorphism286

such that ker(φ) ⊆ G. If 〈φ(F )〉 = 〈φ(G)〉, then F = G.287

Proof. Suppose F,G ∈ F(H1) and 〈φ(F )〉 = 〈φ(G)〉. If x ∈ F , then φ(x) ∈
〈φ(F )〉 = 〈φ(G)〉. By Definition 2, there exist n ∈ N and x1, · · · xn ∈ G such that
φ(x1)⊙φ(x2)⊙· · ·⊙φ(xn) ≤ φ(x). Then (φ(x1)⊙φ(x2)⊙· · ·⊙φ(xn)) → φ(x) = 1.
Since φ is a hoop homomorphism, we have φ((x1 ⊙ x2 ⊙ · · · ⊙ xn) → x) = 1, and
so

(x1 ⊙ x2 ⊙ · · · ⊙ xn) → x ∈ ker(φ)

Since ker(φ) ⊆ G, we get (x1 ⊙ x2 ⊙ · · · ⊙ xn) → x ∈ G. In addition, since for288

n ∈ N, we have x1, · · · xn ∈ G and G ∈ F(H1), then x ∈ G and so F ⊆ G. By289

the similar way, we can prove G ⊆ F . Therefore, F = G290
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Definition. If (H1,⊙H1
,→H1

, 1) and (H2,⊙H2
,→H2

, 1) are hoops, then (H1 ×
H2,⊗, , 1H1×H2

) is called a Cartesian product of hoops, where;

(x, z)⊗ (y,w) = (x⊙H1
y, z ⊙H2

w) and (x, z) (y,w) = (x→H1
y, z →H2

w).

for any (x, z), (y,w) ∈ H1 ×H2.291

Proposition 24. Let H2 and H1 be two hoops. Then K ∈ F(H1 ×H2) if and292

only if there exist F ∈ F(H1) and G ∈ F(H2) such that K = F ×G.293

Proof. Let K ∈ F(H1 ×H2) such that K = F ×G, where F = {x ∈ H1|(x, z) ∈294

K, for some z ∈ H2} and G = {w ∈ H2|(y,w) ∈ K, for some y ∈ H1}. Suppose295

x, y ∈ F . Then there exist z, w ∈ H2 such that (x, z), (y,w) ∈ K. Since K ∈296

F(H1×H2), we have (x⊙ y, z⊙w) = (x, z)⊙ (z, w) ∈ K, and so x⊙ y ∈ F . Now297

suppose x ≤ y and x ∈ F . Then there exists z ∈ H2 such that (x, z) ∈ K. Since298

(x, z) ≤ (y, z) and K ∈ F(H1 × H2), we get (y, z) ∈ K, and so y ∈ F . Hence,299

F ∈ F(H1). By a similar way, we can prove that G ∈ F(H2).300

Theorem 25. The hoops H1 and H2 are Noetherian (Artinian) if and only if301

H1 ×H2 is a Noetherian (Artinian) hoop.302

Proof. Let 1 −→ H1
φ

−→ H1 ×H2
ψ

−→ H2 −→ 1 be a short sequence of hoops.303

It is clear that φ is one-to-one and ψ is surjective. Then this sequence is a short304

exact sequence of hoops and by Theorem 19, the proof is clear.305

Lemma 26. If H is a ∨-hoop such that for any x, y ∈ H, (x→ y)∨(y → x) = 1,306

then P ∈ Spec(H) if and only if x ∈ P or y ∈ P .307

Proof. Consider P is a prime filter of H and x ∨ y ∈ P such that x /∈ P and308

y /∈ P . Since P is prime, we have x → y ∈ P or y → x ∈ P . Suppose309

x → y ∈ P . By Proposition 2, x ∨ y = ((x → y) → y) ∧ ((y → x) → x) and310

so ((x → y) → y) ∧ ((y → x) → x) ≤ (x → y) → y. From P ∈ F(H) and311

x ∨ y ≤ (x → y) → y, we get (x → y) → y ∈ P . As P ∈ F(H) and x → y ∈ P ,312

we obtain y ∈ P , which is a contradiction.313

Conversely, since (x → y) ∨ (y → x) = 1 ∈ P for any x, y ∈ H, by (i) the proof314

is clear.315

Note. Let H be a ∨-hoop. Then a subset S ⊆ H is a ∨-closed subset if x∨y ∈ S316

for any x, y ∈ S.317

Proposition 27. Let H be a ∨-hoop. If F is a proper filter of H and S is a318

∨-closed subset of H such that S ∩ F = ∅, then F is contained in a prime filter319

P of H such that S ∩ P = ∅, and F ⊆ P .320
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Proof. Let Γ = {G ∈ F(H)|F ⊆ G,G ∩ S = ∅}. Since F ∈ Γ, we get Γ 6= ∅.321

Consider {Gi}i∈I is a family of filters of H such that Gi ∈ Γ for any i ∈ I. By322

Zorn’s Lemma (Γ,⊆) has a maximal element such as P =
⋃

i∈I

Gi. Now, we prove323

P is a prime filter of H. Clearly P is a proper filter of H. Suppose x ∨ y ∈ P324

such that x /∈ P and y /∈ P . Since F ⊆ 〈P ∪ {x}〉, F ⊆ 〈P ∪ {y}〉, and P325

is a maximal element of Γ, we get 〈P ∪ {x}〉 /∈ Γ and 〈P ∪ {y}〉 /∈ Γ. Thus326

〈P ∪ {x}〉 ∩ S 6= ∅ and 〈P ∪ {y}〉 ∩ S 6= ∅. So there exist a ∈ 〈P ∪ {x}〉 ∩ S and327

b ∈ 〈P ∪{y}〉∩S. Since S is ∨-close, we have a∨ b ∈ S. Also, by Lemma 5(ii) we328

have a∨ b ∈ 〈P ∪{x}〉∩ 〈P ∪{y}〉 = 〈P ∪{x∨ y}〉 = P . Hence, P ∩S 6= ∅, which329

is a contradiction. Thus x ∈ P or y ∈ P . If x ∈ P , then since for any y ∈ H, we330

have x ≤ y → x, we obtain y → x ∈ P . Hence by Lemma 26, P is a prime filter331

of H.332

Corollary 28. Let H be a ∨-hoop. Then333

(i) If F is a filter of a ∨-hoop H and x ∈ H \ F , then there exists a prime334

filter P of H such that F ⊆ P and x /∈ P .335

(ii) Every proper filter of hoop H can be extend to a maximal filter of hoop336

H.337

Proof. (i) Clearly S = {x} is a ∨-closed subset of H. Thus by Proposition 27,338

the proof is completed.339

(ii) Let F be a proper filter of H. Then there exists x ∈ H \F and by (i), F
contained in a prime filter P such that x /∈ P . Suppose

X = {G|P ⊆ G,G is a proper filter of H}.

By Zorn’s Lemma (Γ,⊆) has a maximal element such as M =
⋃

{G|G ∈ X}.340

Obviously, by (i), M is a maximal filter of H.341

Proposition 29. Let H be a ∨-hoop. Every proper filter F of H is intersection342

of all prime filters including F .343

Proof. Let F be a proper filter of H and {Pi}i∈I be the set of all prime filters344

of H such that for any i ∈ I, F ⊆ Pi. So F ⊆
⋂

i∈I

Pi. Suppose x ∈
⋂

i∈I

Pi and345

x /∈ F . Then by Corollary 28, there exists a prime filter of H such as Pj such346

that F ⊆ Pj and x /∈ Pj . Moreover, since x ∈
⋂

i∈I

Pi ⊆ Pj , we get x ∈ Pj which347

is a contradiction. Hence, every proper filter F of H is intersection of all prime348

filters including F .349

Proposition 30. Let H be a ∨-hoop. Then Max(H) ⊆ Spec(H).350
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Proof. Let M ∈ Max(H). Then M is a proper filter of H. By Proposition351

29, there exists a prime filter P of H such that M ⊆ P . Since M is a maximal352

filter and P ∈ Spec(H), we get M = P . Hence M ∈ Spec(H). Therefore,353

Max(H) ⊆ Spec(H).354

Lemma 31. Let H be a ∨-hoop and I, J ∈ F(H) such that I ∩ J ⊆ P , where355

P ∈ Spec(H). Then I ⊆ P or J ⊆ J .356

Proof. Let P ∈ Spec(H) such that for I, J ∈ F(H), we have I∩J ⊆ P . If I * P357

and J * P , then there exist x ∈ I \P and y ∈ J \P . Since I, J ∈ F(H), we have358

x ∨ y ∈ I ∩ J ⊆ P . In addition, P ∈ Spec(H), and so x ∈ P or y ∈ P , which is a359

contradiction. Hence, I ⊆ P or J ⊆ J .360

Theorem 32. Let H be an Artinian ∨-hoop. Then Max(H) is a finite set.361

Proof. Let

S = {F ∈ F(H) | F is an intersection of finitely many maximal filters of H}.

If Max(H) is an empty set, then Max(H) is finite and the proof is clear. If362

Max(H) is a non-empty set, then there exists a maximal filter of H such as M363

such that M ∈ S, and so S is a non-empty set. Thus, by Theorem 10, we get364

S has a minimal element. Suppose G is a minimal element of S. Then there365

exist M1,M2 · · ·Mn ∈ Max(H) such that G = M1 ∩M2 ∩ · · · ∩Mn. Now, let366

M ∈ Max(H). Then M ∩G ⊆ G and so M ∩G =M ∩M1 ∩M1 ∩ · · · ∩Mn ∈ S.367

Since G is a minimal element of S and M ∩ G ⊆ G, we get M ∩ G = G. Thus368

G = M1 ∩M2 ∩ · · · ∩Mn ⊆ M . Since M ∈ Max(H), by Proposition 30, we get369

M ∈ Spec(H) and by Lemma 31, there exists i ∈ N, such that Mi ⊆ M . Since370

M,Mi ∈ Max(H), we obtain M =Mi. Hence Max(H) = {M1,M2 · · ·Mn} and371

it is a finite set.372

In the following example, we show that every filter of Noetherian hoop H is373

not an intersection of finitely number of prime filters of H.374

Example 33. Let H = {0, a, b, c, 1} be a set. Define the operations → and ⊙ on
H as follow:

→ 0 a b c 1

0 1 1 1 1 1
a b 1 0 0 1
b c 0 1 0 1
c c 0 0 1 1
1 0 a b c 1

⊙ 0 a b c 1

0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1

Then (H,⊙,→, 1) is a hoop. By a routine calculate the set of all filters and
primes filters of H are:

F(H) = {{1}, {a, 1}, {b, 1}, {0, a, b, c, 1}} and Spec(H) = ∅.
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Theorem 34. Let H be a Noetherian ∨-hoop such that for any x, y ∈ H, (x →375

y) ∨ (y → x) = 1. Then every filter of H is an intersection of finitely number of376

prime filters of H.377

Proof. Let

S = {G ∈ F(H) | G is not an intersection of finitely number of prime filters ofH}.

If S is a non-empty set, since H is a Noetherian ∨-hoop, then by Theorem 10,
S has a maximal element G. According to definition of set S, clearly G is not
a prime filter of H. Thus there exist x, y ∈ H such that x → y /∈ G and
y → x /∈ G. So G $ 〈G ∪ {x → y}〉 and G $ 〈G ∪ {y → x}〉. Since G is a
maximal element of S, 〈G ∪ {x → y}〉 /∈ S and 〈G ∪ {y → x}〉 /∈ S. Now, there
exist P1, P2, · · · , Pn, P

′
1, P

′
2, · · · , P

′
m ∈ Spec(H) such that

〈G ∪ {x→ y}〉 = P1 ∩ P2 ∩ · · · ∩ Pn , 〈G ∪ {y → x}〉 = P ′
1 ∩ P

′
2 ∩ · · · ∩ P ′

n

By Remark 5,

G = 〈G ∪ {x→ y}〉 ∩ 〈G ∪ {y → x}〉 = P1 ∩ P2 ∩ · · · ∩ Pn ∩ P
′
1 ∩ P

′
2 ∩ · · · ∩ P ′

m

which is a contradiction. Hence S is an empty set. Therefore, every filter of H378

is an intersection of finitely number of prime filters of H.379

Definition. Let (A,≤) be an order set and B,C ∈ P(A) where P(A) is the380

power set of A. Then B is covered by C if B ⊆ C and there is no D ⊆ A such381

that B ⊆ D ⊆ C.382

Similarly we can define covered elements if sets are singletone.383

Example 35. Let H = {0, a, b, 1} be a set such that 0 ≤ a, b ≤ 1 with the
following Hasse diagram.

r

0

rbra

r

1

�
�

�
�

@
@

@
@

→ 0 a b c

0 1 1 1 1
a b 1 b 1
b a a 1 1
c 0 a b 1

⊙ 0 a b c

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b 1

384

385

According to Definition 3 clearly, 0 covered by a and b.386

Definition. Let F ∈ F(H). Then an increasing sequence of filters {Fi|i =387

1, 2, · · · , n} of H such that {1} = F1 ⊆ F2 ⊆ · · ·Fn−1 ⊆ Fn = F is called an388

F -chain of H.389
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Example 36. Let H be the hoop as in Example 35. Consider F1 = {1} and390

F2 = {a, 1}. Then it is clear that the sequence {Fi|i = 1, 2} is an F -chain of H.391

Theorem 37. Let F,G ∈ F(H) such that F ⊆ G. Then the followings state-392

ments are equivalent:393

(i) F is covered by G,394

(ii) 〈F ∪ {x}〉 = G for all x ∈ G \ F ,395

(iii) 〈 x
F
〉 = G

F
for all x ∈ G \ F .396

Proof. (i) ⇒ (ii) Let x ∈ G \ F and F covered by G. Since F ⊆ 〈F ∪ {x}〉 ⊆ G397

by Definition 3, we get 〈F ∪ {x}〉 = G.398

(ii) ⇒ (iii) Let a
F

∈ G
F
. Then by Lemma 13, we have a ∈ G. Since by399

(ii), 〈F ∪ {x}〉 = G, by Definition 2, there exist u ∈ F and n ∈ N such that400

(u ⊙ xn) → a ∈ F . Since u ∈ F , we get xn → a ∈ F , and so G
F

⊆ 〈 x
F
〉. By the401

similar way, 〈 x
F
〉 ⊆ G

F
. Hence, 〈 x

F
〉 = G

F
.402

(iii) ⇒ (i) Let F ⊆ K ⊆ G, for K ∈ F(H). If F 6= K, then there exists403

x ∈ K \ F . Since K ⊆ G and x ∈ K \ F , we get x ∈ G \ F . Then by assumption404

〈 x
F
〉 = G

F
. Let a ∈ G. By Definition 2, x

n

F
→ a

F
= 1

F
, for some n ∈ N. It follows405

that xn → a ∈ F ⊆ K. Thus from x ∈ K, we conclude a ∈ K. Therefore, K = G406

and so F is covered by G.407

Definition. An F -chain {Fi|i = 1, 2, · · · , n} is called a composition series for F408

if for any 0 ≤ i ≤ n − 1, Fi is covered by Fi+1 in ordered set (F(H),⊆). The409

smallest length of a composition series for F is denoted by le(F ). We denoted410

le(F ) = ∞ if F has no composition series.411

Example 38. Let H be the hoop as in Example 35. Suppose an F -chain F =412

{Fi|1 ≤ i ≤ 3} such that F1 = {1}, F2 = {a, 1} and F3 = {0, a, b, 1}. Clearly F is413

a composition series for F3.414

Theorem 39. Let F,G ∈ F(H) such that F ⊂ G and G has a composition415

series. Then le(F ) < le(G).416

Proof. Let le(G) = n. Then there is a composition series {1} = G0 ⊂ G1 ⊂
· · · ⊂ Gn = G for G. Thus {1} = G0∩F ⊆ G1∩F ⊆ · · · ⊆ Gn∩F = F . Consider
x ∈ (Gi+1 ∩ F ) \ (Gi ∩ F ) for 0 ≤ i ≤ n. If x ∈ Gi, then since x ∈ Gi+1 ∩ F ,
we have x ∈ Gi ∩ F , which is a contradiction. Hence, x /∈ Gi. Then by Theorem
37, 〈Gi ∪ {x}〉 = Gi+1. Let z ∈ Gi ∩ F . Then z ∈ 〈Gi ∪ {x}〉 and by Definition
2, there exist n ∈ N such that xn → z ∈ Gi. Since z ∈ F , by Proposition 1(vi),
xn → z ∈ F ∩Gi. Hence, z ∈ 〈(Gi ∩ F ) ∪ {x}〉 and 〈(Gi ∩ F )∪ {x}〉 = Gi+1 ∩ F .
Now, by Theorem 37, Gi ∩ F is covered by Gi+1 ∩ F . By repeating this method,
the sequence {1} = G0 ∩ F ⊆ G1 ∩ F ⊆ · · · ⊆ Gn ∩ F = F , is a composition
series for F . Hence le(F ) ≤ le(G). Now, suppose le(F ) = le(G). A chain
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{1} = G0 ∩ F ⊆ G1 ∩ F ⊆ · · · ⊆ Gn ∩ F = F is a composition series by length n
for F . By assumption, F ⊂ G, and so

{1} = G0 ∩ F ⊆ G1 ∩ F ⊆ · · · ⊆ Gn ∩ F = F ⊂ G

is a composition series for G, where le(G) = n+ 1, which is a contradiction.417

Theorem 40. Let F ∈ F(H) such that le(F ) = n, for some n ∈ N. Then the418

length of any composition series for F is n.419

Proof. Let {1} = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = F be a composition series420

for F . Since le(F ) = n, by Definition 3, we get n ≤ m. Thus by Theorem 39,421

0 = le(F0) < le(F1) < · · · < le(Fm−1) < le(F ) = n. By adding only one unit to422

each le(Fi), 1 ≤ i ≤ n, we get le(F ) at least is m. Hence m ≤ n and the length423

of every composition series for F is n.424

Theorem 41. Let H be a ∨-hoop. Then H is a Noetherian and Artinian ∨-hoop425

if and only if le(H) is finite.426

Proof. Let H be a ∨-hoop. If H is a finite hoop, then the proof is clear. Suppose427

H is an infinite Noetherian and Artinian ∨-hoop. If {1} is a maximal filter of428

H, then {1} ⊆ H is a composition series for H and le(H) is finite. Suppose429

{1} is not a maximal filter of H. By Theorem 25, Max(H) is a finite set. Let430

Max(H) = {M1,M2, · · · ,Mn}. AssumeMi ∈ Max(H) has a composition series.431

Let {1} = F0 ⊂ F1 ⊂ · · · ⊂ Fj =Mi be a composition series forMi. SinceMi is a432

maximal filter of H, we get {1} = F0 ⊂ F1 ⊂ · · · ⊂ Fj =Mi ⊂ H is a composition433

series for H. Thus le(H) is finite. In the other case, suppose for any 1 ≤ i ≤ n,434

le(Mi) = ∞. Consider the set V = {F ∈ F(H)|le(F ) = ∞}. Clearly, since435

Mi ∈ V, we get V is a non-empty set. Since H is an Artinean hoop, by Theorem436

10, every non-empty set of filter of H has minimal element, thus V has a minimal437

elementK. Let U = {F ∈ F(H)|F ⊂ K}. Since {1} ∈ U , we get U is a non-empty438

set and since H is a Noetherian hoop, by Theorem 10, U has a maximal element439

such as K ′. Since K ′ ⊂ K and K is a minimal element in V, we have K ′ /∈ V.440

Suppose le(K ′) = m for some m ∈ N and {1} = K ′
0 ⊂ K ′

1 ⊂ · · · ⊂ K ′
m = K ′

441

is a composition series for K ′. Hence, {1} = K ′
0 ⊂ K ′

1 ⊂ · · · ⊂ K ′
m ⊂ K is a442

composition series for K, which is a contradiction. Therefore, le(H) is finite.443

Conversely, by Theorem 39, the length of every chain of filters of H is finite444

and H is a Noetherian and Artinian hoop.445

Theorem 42. Let F ∈ F(H). If le(H) is finite, then le(H
F
) is finite. Moreover446

le(H) = le(F ) + le(H
F
).447

Proof. Suppose le(H) is finite. Then by Theorems 14 and 41, we have le(H
F
)

is finite. Moreover, by Theorem 39, we get le(F ) is finite. Let m,n ∈ N such
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that le(F ) = n and le(H
F
) = m. Consider {1} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = F

as a composition series for F . By Lemma 13, for any 1 ≤ i ≤ m, there exists
Ki ∈ F(H) such that F ⊆ Ki and

Ki

F
∈ F(H

F
). Suppose

{
1

F
} =

K0

F
⊂
K1

F
⊂
K2

F
⊂ · · · ⊂

Km

F
=
H

F

is a composition series for H
F
. Now, we get

{1} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km = H

is a composition series for H. Hence, by Theorem 40, le(H) = le(F ) + le(H
F
).448

Definition. The intersection of all maximal filters of hoop H is called a radical
of H and is denoted by Rad(H). It means that

Rad(H) =
⋂

M∈Max(H)

M.

Example 43. Let H be a hoop as in Example 35. Clearly Max = {{a, 1}, {b, 1}}449

and so Rad(H) = {1}.450

Lemma 44. Let H be bounded and F,G ∈ F(H) such that 〈F ∪G〉 = H. Then451

there exists x ∈ H such that x ∼F 1 and x ∼G 0, where ∼ is a congruence relation452

on H by F and G, respectively.453

Proof. Since 0 ∈ H = 〈F ∪G〉 there exist x ∈ F and y ∈ G such that x⊙ y = 0.454

Since x ∈ F , clearly, x ∼F 1. By Proposition 1(viii), since x ⊙ y ≤ 0, we455

get y ≤ x′. Moreover, y ∈ G, G ∈ F(H) and y ≤ x′, then x′ ∈ G. Hence,456

(0 → x)⊙ (x→ 0) = x′ ∈ G, and so x ∼G 0.457

Example 45. Let H be a hoop as in Example 35. Obviously, H = 〈{a, 1} ∪458

{b, 1}〉. So there exist F,G ∈ F(H) such that 〈F ∪G〉 = H.459

Theorem 46. Let H be bounded and Max(H) = {M1,M2, · · · ,Mn}. Then a460

mapping CR : H →
n
∏

i=1

H

Mi

define by CR(x) = ( x
M1
, x
M2
, · · · , x

Mn
) is a surjective461

hoop homomorphism.462

Proof. Since CR is a product of the natural homomorphismsCRi : H → H
Mi

such
that CRi(x) =

x
Mi

where 1 ≤ i ≤ n, clearly we have CR is a hoop homomorphism.
Now, we prove CR is a surjective homomorphism. Let

y = (
x1
M1

,
x2
M2

, · · · ,
xn
Mn

) ∈
n
∏

i=1

H

Mi



18 M. Sabet Kish, R.A. Borzooei, S. Haj Jabbari and M. Aaly Kologani

such that xi
Mi

∈ H
Mi

for all 1 ≤ i ≤ n. Clearly, xi ∈ H \Mi. If xi ∈ Mi, then
xi
Mi

= 1
Mi

in other word xi ∼Mi
1, 1 ≤ i ≤ n. Now, we try to find an element

z ∈ H such that CR(z) = y. Since for every 1 ≤ i ≤ n, Mi are maximal filters
of H, we get 〈Mi ∪Mj〉 = H for any 1 ≤ i 6= j ≤ n. By Lemma 44, for any
1 ≤ i 6= j ≤ n, there is an element ai,j ∈ H such that ai,j ∼Mi

1 and ai,j ∼MJ
0.

Thus ai,j ∈Mi and a
′
i,j ∈Mj . Consider

r1 = a1,2 ⊙ a1,3 ⊙ a1,n,

r2 = a2,1 ⊙ a2,3 ⊙ a2,n,

...

rn = an,1 ⊙ an,2 ⊙ an,n−1.

Then for any 1 ≤ i 6= j ≤ n, since Mi is a maximal filter of H and ai,j ∈ Mi,
we get ri ∈ Mi. By Proposition 1(iii), ri ≤ ai,j and so a′i,j ≤ r′i. Moreover,
from Mj is a maximal filter of H and a′i,j ∈ Mj , we have r′j ∈ Mj . Since
Mj ∈ F(H) and r′i ∈Mj we obtain ri ∼Mi

1 and ri ∼Mj
0. Let z = ((x1 ⊙ r1)

′ ⊙
(x2 ⊙ r2)

′ ⊙ · · · ⊙ (xn ⊙ rn)
′)′. According to Lemma 44, it is enough to prove

(xi → z)⊙ (z → xi) ∈Mi for any 1 ≤ i ≤ n. By using (H3), we have

(xi ⊙ ri)⊙ (xi ⊙ [(x1 ⊙ r1)
′ ⊙ · · · ⊙ (xn ⊙ rn)

′]) = 0

⇔ xi ⊙ ri ≤ (xi ⊙ [(x1 ⊙ r1)
′ ⊙ · · · ⊙ (xn ⊙ rn)

′])′

⇔ xi ⊙ ri ≤ xi → ([(x1 ⊙ r1)
′ ⊙ · · · ⊙ (xi ⊙ ri)

′] → 0)

⇔ xi ⊙ ri ≤ xi → z.

Since xi, ri ∈ Mi and Mi ∈ F(H), we have xi → z ∈ Mi. Moreover, by Proposi-463

tion 1(vi), xi ≤ z → xi. Since Mi ∈ F(H) and xi ∈ Mi, we obtain z → xi ∈ Mi.464

Hence, by Definition 4, (xi → z) ⊙ (z → xi) ∈ Mi, and so z
Mi

= xi
Mi

. Therefore,465

CR(z) = ( z
M1
, z
M2
, · · · , z

Mn
) = ( x1

M1
, x2
M2
, · · · , xn

Mn
), and so CR is a surjective hoop466

homomorphism.467

Corollary 47. If H is bounded, then H
Rad(H)

∼=

n
∏

i=1

H

Mi

, where Max(H) =468

{M1,M2, · · · ,Mn}.469

Proof. Let x ∈ H and for every 1 ≤ i ≤ n, Mi ∈ Max(H) such that CR(x) =470

( 1
M1
, 1
M2
, · · · , 1

Mn
) = 1 n

∏

i=1

H

Mi

. By definition of CR we have ( x
M1
, x
M2
, · · · , x

Mn
) =471

( 1
M1
, 1
M2
, · · · , 1

Mn
), and so x ∼Mi

1 for any 1 ≤ i ≤ n. Thus for any 1 ≤ i ≤ n, we472

get x ∈ Mi and so x ∈
n
⋂

i=1

Mi = Rad(H). By Theorem 46 and Proposition 21,473
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since CR is surjective, we get CR is one-to-one and ker(CR) = Rad(H). Hence,474

by using the first isomorphism theorem, we obtain H
Rad(H)

∼=

n
∏

i=1

H

Mi

.475

Definition. A hoop H is called a simple hoop if F(H) = {H, {1}}.476

Example 48. Let H2 be a hoop as in Example 17. Clearly H is a simple hoop.477

Note. Let F,G ∈ F(H). An interval of [F,G] is denoted by K ∈ F(H) where478

F ⊆ K ⊆ G.479

Theorem 49. Let M ∈ F(H). Then H
M

is a simple hoops if and only if M ∈480

Max(H).481

Proof. Suppose H
M

is not simple. Then there exists K
M

∈ F(H
M
) such that 1

M
6=482

K
M

6= H
M
, and so 1 ⊂ K ⊂ H. Hence, M /∈ Max(H), which is a contradiction.483

The proof of converse is similar.484

Theorem 50. Let H be bounded such that Rad(H) = {1}. Then the following485

statements hold:486

(i) H is up to isomorphism a finite product of some simple hoop if and only487

if H is an Artinian hoop.488

(ii) If Max(H) is finite, then H is an Artinian hoop.489

(iii) If H is an Artinian hoop, then H is Noetherian.490

Proof. (i) Let H be an Artinian hoop and Rad(H) = {1}. By Theorem 32, we491

get Max(H) is finite. Moreover, by Corollary 47, we have H ∼=

n
∏

i=1

H

Mi

. Since492

Mi is a maximal filter of H, for every 1 ≤ i ≤ n, we have H
Mi

is a simple hoop.493

Hence, H is a finite direct product of simple hoops.494

Conversely, suppose H ∼=

n
∏

i=1

Hi such that for every 1 ≤ i ≤ n, Hi is a simple495

hoop. Then for every 1 ≤ i ≤ n, F(Hi) = {{1},Hi} and by Proposition 24, we496

get F(

n
∏

i=1

Hi) is finite. Hence, H is an Artinian hoop.497

(ii) By (i) the proof is clear.498

(iii) Let H be an Artinian hoop. By (i), H is a finite direct product of simple499

hoops and by Proposition 24, we get F(H) is finite. Therefore, H is a Noetherian500

hoop.501

Theorem 51. Let H be a ∨-hoop. Then Max(H) is finite if and only if every502

properly increasing chain of filters of H
Rad(H) is finite.503
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Proof. SupposeMax(H) if finite. Assume Max(H) = {M1,M2, · · · ,Mn}, then504

by Theorem 14, every properly increasing chain of filters of H
Rad(H) is finite. For505

the converse by Theorem 32 and Proposition 24, the proof is clear.506

4. Conclusions and future works507

In this paper, the notion of Noetherian and Artinian hoops are defined and char-508

acterized by using the filters of hoops. Then the relation between Noetherian509

and Artinian hoops are investigated. Also, the notion of a short exact sequence510

is introduced and the relation between a short exact sequence and Noetherian511

and Artinian hoops are investigated. The concept of composition series is de-512

fined and proved every ∨-hoop is Noetherian and Artinian hoop if it has a finite513

composition series. Finally, we investigate the condition that proved H is up to514

isomorphism a finite product of some simple hoop if and only if H is an Artinian515

hoop.516
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