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The purpose of this paper is to introduce the concept of 3-prime ideal as a14

generalization of prime ideal. Further, we generalize the concepts of 3-prime15

ideal and primary ideal, namely as quasi 3-primary ideal in a commutative16

ternary semiring with zero. The relationship among prime ideal, 3-prime17

ideal, primary ideal, quasi primary and quasi 3-primary ideal are investi-18

gated. Various results and examples concerning 3-prime ideals and quasi19

3-primary ideals are given. Analogous theorems to the primary avoidance20

theorem for quasi 3-primary ideals are also studied.21
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1. Introduction25

The concept of the ternary algebraic system was first introduced by Lehmer [8]26

in 1932 which is a generalization of abelian groups. In 1971, Lister [7] introduced27

ternary rings. To generalize the ternary rings, Dutta and Kar [3] introduced the28

notion of ternary semirings in 2003. A ternary semiring is an algebraic system29

consisting of a set S together with a binary operation ‘+’, called addition, and30
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2 M. Mandal, N. Tamang and S. Das

a ternary multiplication, denoted by juxtaposition, which forms a commutative31

semigroup relative to addition, a ternary semigroup relative to multiplication and32

the left, right, lateral distributive laws hold, i.e., for all a, b, c, d ∈ S, (a + b)cd =33

acd + bcd, a(b + c)d = abd + acd, ab(c + d) = abc + abd. If there exists an34

element e such that eea = eae = aee = a for all a ∈ S, then e is called the35

identity element of S. If there exists an element 0 ∈ S such that 0 + x = x and36

0xy = x0y = xy0 = 0 for x, y ∈ S, then 0 is called zero of the ternary semiring S.37

The notion of prime ideals and its generalization have an important place in38

commutative algebra, for their applications in many areas such as graph theory,39

coding theory, information science, algebraic geometry, topological spaces, etc.40

In 2016, Beddani and Messirdi [1] introduced the concept of 2-prime ideals as a41

generalization of prime ideals in a ring. A proper ideal P of ring R is said to be42

2-prime if for all a, b ∈ R ab ∈ P implies either a2 ∈ P or b2 ∈ P. Recall that in a43

commutative ternary semiring S, an ideal I is called primary if for all a, b, c ∈ S,44

abc ∈ I implies a ∈ I or b ∈ I or c2n+1 ∈ I for some n ∈ Z+
0 and an ideal I of45

S is said to be quasi primary if Rad(I) is a prime ideal. In [9], Koc, Tekir and46

Ulucak introduced a new class of ideals, an intermediate class between the class47

of primary ideals and the class of quasi-primary ideals in a ring and is called the48

class of strongly quasi primary ideals. A proper ideal P in a commutative ring49

R is said to be strongly quasi primary if ab ∈ P for some a, b ∈ R implies either50

a2 ∈ P or bn ∈ P for some positive integer n.51

We shortly summarize the content of the paper. In the first Section, we re-52

call some essential preliminaries. In Section 2, we introduce 3-prime ideals as a53

generalization of prime ideals on ternary semirings. Various properties and rela-54

tionships among radical ideals, maximal ideals and irreducible ideals are studied.55

We give a characterization of 3-prime ideals in ternary semirings. Then we study56

ternary semirings, where every 3-prime ideal is prime. In Section 3, we define57

a quasi 3-primary ideal, which is a generalization of 3-prime ideal and is an in-58

termediate class between 3-prime ideals and quasi-primary ideals in a ternary59

semiring. We show that in regular ternary semirings, the concept of 3-prime60

ideals, quasi 3-primary ideals and primary ideals are the same. Theorem 32 is61

a characterization for quasi 3-primary ideals on a ternary semiring. At the end,62

we focus on the study of the avoidance theorem for quasi 3-primary ideals by63

using the techniques of efficient covering (cf. Theorem 35) and give an extended64

version of the theorem (cf. Theorem 36).65

Theoretical Background for Ternary Semirings66

67

section268
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In this section, we review some definitions and results which will be used in69

later sections.70

Definition 1 [3]. A nonempty set S together with a binary operation called71

addition and a ternary multiplication, denoted by juxtaposition is said to be a72

ternary semiring if S is an additive commutative semigroup satisfying the follow-73

ing conditions:74

(1) (abc)de = a(bcd)e = ab(cde),75

(2) (a + b)cd = acd + bcd,76

(3) a(b + c)d = abd + acd,77

(4) ab(c + d) = abc + abd for all a, b, c, d, e ∈ S.78

Example 1 [2]. Let S be a set of continuous functions f : X → R−, where X79

is a topological space and R− is the set of all negative real numbers. Define a80

binary addition and a ternary multiplication on S as follows: For f, g, h ∈ S and81

x ∈ X,82

(1) (f + g)(x) = f(x) + g(x),83

(2) (fgh)(x) = f(x)g(x)h(x).84

Then with respect to the binary addition and ternary multiplication, S forms85

a ternary semiring.86

Let A,B and C be three subsets of S. By ABC, we mean the set of all finite87

sums of the form
∑

aibici with ai ∈ A, bi ∈ B and ci ∈ C.88

Definition 2 [3]. A ternary semiring S is called a commutative ternary semiring89

if abc = bac = bca for all a, b, c ∈ S.90

Definition 3 [3]. An additive subsemigroup T of S is called a ternary subsemiring91

if t1t2t3 ∈ T for all t1, t2, t3 ∈ T.92

Definition 4 [3]. An additive subsemigroup I of S is called a left (resp. right,93

lateral) ideal of S if s1s2i (resp. is1s2, s1is2) ∈ I, for all s1, s2 ∈ S and i ∈ I. If94

I is both a left and a right ideal of S, then I is called a two-sided ideal of S. If I95

is a left, a right and a lateral ideal of S, then I is called an ideal of S.96

Definition 5 [2]. An ideal I of a ternary semiring S is said to be a k-ideal if for97

x, y ∈ S, x + y ∈ I and y ∈ I implies x ∈ I.98
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Definition 6 [3]. An element a in a ternary semiring S is called regular if there99

exists an element x in S such that axa = a. A ternary semiring is called regular100

if all of its elements are regular.101

Definition 7 [4]. A proper ideal P of a ternary semiring S is called a prime ideal102

if for any three ideals A, B and C of S, ABC ⊆ P implies A ⊆ P or B ⊆ P or103

C ⊆ P .104

Corollary 8 [4]. A proper ideal P of a commutative ternary semiring S is prime105

if and only if abc ∈ P implies that a ∈ P or b ∈ P or c ∈ P for all elements106

a, b, c ∈ S.107

Definition 9 [5]. A proper ideal Q of a ternary semiring S is called a semiprime108

ideal of S if I3 ⊆ Q implies I ⊆ Q for any ideal I of S.109

Corollary 10 [5]. A proper ideal Q of a commutative ternary semiring S is110

semiprime if and only if x3 ∈ Q implies that x ∈ Q for any element x of S.111

Definition 11 [5]. Let S be a ternary semiring and A be an ideal of S. The112

radical of A, denoted by Rad(A), is defined to be the intersection of all the113

prime ideals of S each of which contains A. In a commutative ternary semiring114

S, Rad(A) = {a ∈ S : a2n+1 ∈ A for some positive integer n}.115

Definition 12 [5]. A proper ideal I of a ternary semiring S is called a strongly116

irreducible if for any two ideals H and K of S, H ∩ K ⊆ I implies H ⊆ I or117

K ⊆ I.118

Lemma 13 [12]. Let S be a commutative ternary semiring and I be an ideal of119

S. Then (I : a : b) is an ideal in S, where (I : a : b) = {c ∈ S : abc ∈ I}.120

Definition 14 [11]. A proper ideal P of a commutative ternary semiring S is121

called primary if for any a, b, c ∈ S, abc ∈ P implies a ∈ P or b ∈ P or c2n+1 ∈ P122

for some positive integer n. An ideal I of a commutative ternary semiring S is123

called quasi primary if Rad(I) is prime.124

On 3-Prime Ideals125

126

section3127

Throughout the paper, unless otherwise stated S stands for a commutative128

ternary semiring with zero. Z−0 and Z+
0 denote the set of all negative integers129

with zero and the set of all positive integers with zero respectively.130

Definition 15. An ideal I of a ternary semiring S is called a 3-prime ideal if for131

any x, y, z ∈ S; xyz ∈ I implies x3 ∈ I or y3 ∈ I or z3 ∈ I.132
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Example 2. In the ternary semiring Z−0 , the ideal 8Z−0 is a 3-prime ideal.133

It’s easy to see that in a ternary semiring, every prime ideal is 3-prime but134

the converse may not be true. In the above example, 8Z−0 is a 3-prime but not135

a prime ideal of Z−0 . If 3-prime ideal is semiprime, then the converse holds as is136

shown in the next result.137

Theorem 16. If an ideal I of a ternary semiring S is 3-prime as well as138

semiprime, then I is prime.139

Proof. Let xyz ∈ I for some x, y, z ∈ S. Since I is a 3-prime ideal of S, x3 ∈ I140

or y3 ∈ I or z3 ∈ I. As I is semiprime, we have x ∈ I or y ∈ I or z ∈ I.141

If I is 3-prime, then Rad(I) is prime.142

Proof. Let xyz ∈ Rad(I) for some x, y, z ∈ S. Then (xyz)2n+1 ∈ I for some143

n ∈ Z+
0 . Thus x2n+1y2n+1z2n+1 ∈ I, which implies x2n+1 ∈ I or y2n+1 ∈ I or144

z2n+1 ∈ I. So x ∈ Rad(I) or y ∈ Rad(I) or z ∈ Rad(I).145

The converse of the above proposition may not be true, as is shown in the146

following example.147

Example 3. Consider the ternary subsemiring Z−0 × 3Z−0 of the ternary semir-148

ing Z−0 × Z−0 . Then the ideal 32Z−0 × 81Z−0 is not 3-prime in Z−0 × 3Z−0 but149

Rad(32Z−0 × 81Z−0 ) = 2Z−0 × 3Z−0 is a prime ideal of Z−0 × 3Z−0 . This is be-150

cause (−4,−3)(−4,−3)(−2,−27) = (−32,−243) ∈ 32Z−0 ×81Z−0 but (−4,−3)3 /∈151

32Z−0 × 81Z−0 , (−4,−3)3 /∈ 32Z−0 × 81Z−0 and (−2,−27)3 /∈ 16Z−0 × 81Z−0 .152

If Rad(I) is prime and (Rad(I))3 ⊆ I. Then I is 3-prime.153

Proof. Let Rad(I) be prime and (Rad(I))3 ⊆ I. For x, y, z ∈ S, suppose154

xyz ∈ I. Then xyz ∈ Rad(I) which implies x ∈ Rad(I) or y ∈ Rad(I) or155

z ∈ Rad(I). So x3 ∈ (Rad(I))3 ⊆ I or y3 ∈ (Rad(I))3 ⊆ I or z3 ∈ (Rad(I))3 ⊆ I.156

Hence I is 3-prime.157

Theorem 17. In a regular ternary semiring, an ideal is prime if and only if it158

is 3-prime.159

Proof. Clearly if an ideal I is prime then it is 3-prime.160

Conversely, let I be a 3-prime ideal and xyz ∈ I. Then x3 ∈ I or y3 ∈ I or161

z3 ∈ I. Suppose x3 ∈ I. By regularity, there exist a, b ∈ I such that x = xaxbx,162

that is, x = abx3 ∈ I. So I is prime.163

Let S be a ternary semiring. If an ideal I is a 3-prime ideal of S, then164

(I : a3 : b3) is a 3-prime ideal of S, where a, b ∈ S \Rad(I).165
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Proof. Let xyz ∈ (I : a3 : b3) for some x, y, z ∈ S. Then xyza3b3 ∈ I. This166

implies (xab)(yab)(zab) ∈ I. Thus (xab)3 = x3a3b3 ∈ I or (yab)3 = y3a3b3 ∈ I167

or (zab)3 = z3a3b3 ∈ I. Hence x3 ∈ (I : a3 : b3) or y3 ∈ (I : a3 : b3) or168

z3 ∈ (I : a3 : b3) and so (I : a3 : b3) is a 3-prime ideal of S.169

The ternary product of 3-prime ideals may not be 3-prime, as is shown in170

the next example.171

Example 4. In the ternary semiring Z−0 , ternary product of the 3-prime ideals172

2Z−0 , 3Z−0 and 5Z−0 is 30Z−0 , which is not a 3-prime ideal of Z−0 .173

Lemma 18. Suppose P be a prime ideal and P ′, P ′′ be two ideals with P ⊆ P ′174

and P ⊆ P ′′. Then PP ′P ′′ is 3-prime. Moreover, PP ′P ′′ is prime if and only if175

PP ′P ′′ = P.176

Proof. Let abc ∈ PP ′P ′′. Then abc ∈ PP ′P ′′ ⊆ P which implies a ∈ P or b ∈ P177

or c ∈ P . So a3 ∈ P 3 ⊆ PP ′P ′′ or b3 ∈ P 3 ⊆ PP ′P ′′ or c3 ∈ P 3 ⊆ PP ′P ′′.178

Now, let PP ′P ′′ be a prime ideal of S. Clearly, PP ′P ′′ ⊆ P . Consider a ∈ P .179

It follows that a3 ∈ PP ′P ′′. As PP ′P ′′ is a prime ideal of S, we have a ∈ PP ′P ′′180

and so P ⊆ PP ′P ′′. Hence PP ′P ′′ = P .181

Corollary 19. If P is a prime ideal, then P 3 is a 3-prime ideal.182

In a ternary semiring S, every maximal ideal is 3-prime.183

Proof. If S is a ternary semiring with identity, then every maximal ideal is184

prime and hence 3-prime. Now suppose that S is a ternary semiring without185

identity and M is a maximal ideal of S. Consider xyz ∈ M and x3 /∈ M ,186

y3 /∈ M for some x, y, z ∈ S. If possible, let z3 /∈ M . Then clearly x, y, z /∈ M .187

Thus we conclude that M + 〈x〉 = S, M + 〈y〉 = S, M + 〈z〉 = S. Now x3 =188

(m1+s1s2x+n1x)(m2+s3s4y+n2y)(m3+s5s6z+n3z) for some m1,m2,m3 ∈M ,189

s1, s2, s3, s4, s5, s6 ∈ S and n1, n2, n3 ∈ Z+
0 . This implies x3 ∈ M . Similarly190

y3 ∈ M . But x3 /∈ M and y3 /∈ M , hence z3 ∈ M and so M is a 3-prime ideal.191

192

Lemma 20. Let I be a 3-prime ideal of a ternary semiring S. If abC ⊆ I and193

a3 /∈ I, b3 /∈ I for some elements a, b ∈ S and some ideal C, then {c3 : c ∈ C} ⊆ I.194

Proof. Suppose abC ⊆ I and a3 /∈ I, b3 /∈ I for some a, b ∈ S and some ideal C.195

Consider any arbitrary element c ∈ C, then abc ∈ abC ⊆ I. Since I is 3-prime,196

we conclude that c3 ∈ I. Hence {c3 : c ∈ C} ⊆ I.197

Theorem 21. Let I be a proper ideal of a ternary semiring S with identity. Then198

I is a 3-prime ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3199

of S, we have {a3 : a ∈ I1} ⊆ I or {b3 : b ∈ I2} ⊆ I or {c3 : c ∈ I3} ⊆ I.200
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Proof. Suppose that the condition holds and abc ∈ I for some a, b, c in S. Then201

(SSa)(SSb)(SSc) ⊆ I and so by the given condition {x3 : x ∈ SSa} ⊆ I or202

{y3 : y ∈ SSb} ⊆ I or {z3 : z ∈ SSc} ⊆ I. Thus a3 ∈ I or b3 ∈ I or c3 ∈ I.203

Conversely, suppose I is a 3-prime ideal of S and I1I2I3 ⊆ I for some ideals204

I1, I2, I3. Also, suppose that {a3 : a ∈ I1} * I and {b3 : b ∈ I2} * I. Then there205

exist i1 ∈ I1, and i2 ∈ I2 such that i31, i
3
2 /∈ I. By Lemma 20, {c3 : c ∈ I3} ⊆ I.206

Theorem 22. Let f : S −→ T be a ternary homomorphism of ternary semirings.207

Then the following statements hold:208

(1) If J is a 3-prime ideal of T , then f−1(J) is a 3-prime ideal of S.209

(2) Let f be a ternary epimorphism and I be a k-ideal of S with {x ∈ S : for210

some a, b ∈ S, x = a + b and f(a) = f(b)} ⊆ I, then f(I) is a 3-prime ideal of T211

if I is a 3-prime ideal of S.212

Proof. (1) Let xyz ∈ f−1(J) for some x, y, z ∈ S. Then f(xyz) = f(x)f(y)f(z) ∈213

J , which implies (f(x))3 = f(x3) ∈ J or (f(y))3 = f(y3) ∈ J or (f(z))3 = f(z3) ∈214

J . Thus x3 ∈ f−1(J) or y3 ∈ f−1(J) or z3 ∈ f−1(J). Consequently, f−1(J) is a215

3-prime ideal of S.216

(2) Let xyz ∈ f(I) for some x, y, z ∈ S. Then there exist a, b, c ∈ S such217

that x = f(a), y = f(b) and z = f(c). So xyz = f(a)f(b)f(c) = f(abc) ∈ f(I).218

Then f(abc) = f(i) for some i ∈ I. Thus abc + i ∈ I. Hence abc ∈ I, since I is a219

k-ideal of S and i ∈ I. So a3 ∈ I or b3 ∈ I or c3 ∈ I. Therefore f(a3) = (f(a))3 =220

x3 ∈ f(I) or f(b3) = (f(b))3 = x3 ∈ f(I) or f(c3) = (f(c))3 = x3 ∈ f(I).221

Consequently, f(I) is a 3-prime ideal of T .222

If an ideal I is strongly irreducible in a regular ternary semiring S, then I is223

3-prime.224

Proof. Assume that S is a regular ternary semiring and I is a strongly irreducible225

ideal of S. Suppose that abc ∈ I and a3 /∈ I, b3 /∈ I for some a, b, c ∈ S. We have226

to show that c3 ∈ I. On the contrary, assume that c3 /∈ I. Then I is properly227

contained in (I + 〈a3〉) ∩ (I + 〈b3〉) ∩ (I + 〈c3〉). So there exists an element228

x ∈ (I + 〈a3〉)∩ (I + 〈b3〉)∩ (I + 〈c3〉) such that x /∈ I. Since S is regular, we have229

x ∈ (I+〈a3〉)(I+〈b3〉)(I+〈c3〉)= (I+〈a3〉)∩(I+〈b3〉)∩(I+〈c3〉). Thus for some230

i1, i2, i3 ∈ I and r1, r2, s1, s2, t1, t2 ∈ S x = (i1+r1r2a
3)(i2+s1s2b

3)(i3+ t1t2c
3) ∈231

I, which is a contradiction. Therefore I is a 3-prime ideal of S.232

Definition 23. A ternary semiring S is called a 3-P-ternary semiring if every233

3-prime ideal of S is prime.234

Example 5. Every regular ternary semiring is a 3-P-ternary semiring.235

Definition 24. Let A be an ideal of a ternary semiring S. A 3-prime ideal I236

containing A, is called a minimal 3-prime ideal over A if for any 3-prime ideal Q,237

A ⊆ Q ⊆ I implies Q = I.238
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A ternary semiring S is a 3-P-ternary semiring if and only if every 3-prime239

ideal is semiprime.240

Proof. Follows from Theorem 16.241

Theorem 25. A ternary semiring S is a 3-P-ternary semiring if and only if242

every prime ideal is idempotent and every 3-prime ideal is of the form P 3, for243

some prime ideal P of S.244

Proof. Let S be a 3-P-ternary semiring and P ′ be a prime ideal of S. By Corol-245

lary 19, P ′3 is a 3-prime ideal. Thus P ′3 is prime and so P ′ ⊆ P ′3. Also P ′3 ⊆ P ′246

and hence P ′3 = P ′. Now, consider any 3-prime ideal P ′′ of S, then P ′′ is prime.247

So we have P ′′ is idempotent as it is needed.248

Conversely, let I be a 3-prime ideal of S. Then I is of the form I = P ′3 for249

some idempotent prime ideal P ′, it follows that I = P ′, as required.250

Theorem 26. Let S be a ternary semiring with unique maximal ideal M . Then251

for any prime ideal P of S, P 2M is a 3-prime ideal of S. Moreover, P 2M is252

prime if and only if P 2M = P .253

Proof. Since P ⊆M , the proof follows from the Lemma 18.254

Theorem 27. Let S be a ternary semiring with unique maximal ideal M , then255

S is a 3-P-ternary semiring if and only if for for every 3-prime ideal I, I2M =256

Rad(I).257

Proof. Suppose for every 3-prime ideal I, I2M = Rad(I). Thus I ⊆ Rad(I) =258

I2M ⊆ I. So I = Rad(I). Hence I is prime. The converse part follows from the259

Theorem 26.260

Theorem 28. Let S be a ternary semiring with unique maximal ideal M and P261

be a prime ideal of S. If (Rad(I))3 ⊆ I for any 3-prime ideal I of S, then the262

following are equivalent:263

(i) for every minimal 3-prime ideal I over P 3, if P is minimal prime over I,264

then I2M = P .265

(ii) for every minimal 3-prime ideal I over P 3 such that I ⊆ P, then I = P.266

Proof. (i) =⇒ (ii) Let I be a minimal 3-prime ideal over P 3 and I ⊆ P . We267

claim that P is a minimal prime ideal over I. If I ⊆ J ⊆ P , for some prime ideal268

J of S. Then for any x ∈ P , x3 ∈ P 3 ⊆ I ⊆ J . Thus x ∈ J . So J = P and hence269

P is minimal. By (i), I2M = P . Thus P = I2M ⊆ I ⊆ P and so I = P.270

(ii) =⇒ (i) Assume that I is a minimal 3-prime ideal over P 3 and P is a271

minimal prime ideal over I. Since Rad(I) is a prime ideal and P 3 ⊆ I ⊆ Rad(I),272

it follows that P = Rad(I). By hypothesis, P 3 ⊆ I ⊆ P and so I = P . Also273

P 3 ⊆ P 2M ⊆ P = I and by Theorem 26, P 2M is 3-prime. Therefore P 2M =274

P 2I = P , as required.275
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On Quasi 3-Primary Ideals276

277

section4278

Definition 29. An ideal I of a ternary semiring S is called a quasi 3-primary279

ideal if for any a, b, c ∈ S, abc ∈ I and a3 /∈ I, b3 /∈ I implies there exists an280

integer n ∈ Z+
0 such that c2n+1 ∈ I.281

It can be easily obtained by the definition that every 3-prime ideal is a quasi282

3-primary ideal. The following example shows that the converse may not be true:283

Example 6. Consider the ternary subsemiring Z−0 ×3Z−0 of the ternary semiring284

Z−0 × Z−0 . Then the ideal {0} × 81Z−0 is strongly quasi primary, but not 3-285

prime in Z−0 × 3Z−0 , since (0,−81) = (−6,−9)(−5,−3)(0,−3) ∈ {0} × 81Z−0 and286

(−6,−9)3 /∈ {0}× 81Z−0 , (−5,−3)3 /∈ {0}× 81Z−0 and (0,−3)3 /∈ {0}× 81Z−0 but287

(0,−3)5 ∈ {0} × 81Z−0 .288

Theorem 30. Let S be a regular ternary semiring, then an ideal I is quasi289

3-primary if and only if I is 3-prime.290

Proof. Let I be a quasi 3-primary ideal of S. Assume that abc ∈ I and a3 /∈ I,291

b3 /∈ I. Then there exists an integer n ∈ Z+
0 such that c2n+1 ∈ I. Since S is a292

regular ternary semiring, there exists x ∈ S such that c = xc2n+1 ∈ I. So c3 ∈ I293

and hence I is a 3-prime ideal of S.294

Theorem 31. If I is a quasi 3-primary ideal of ternary semiring S, then I is a295

quasi primary ideal.296

Proof. Let abc ∈ Rad(I) for some a, b, c ∈ S and a /∈ Rad(I), b /∈ Rad(I).297

Then there exists an integer n ∈ Z+
0 such that (abc)2n+1 = a2n+1b2n+1c2n+1 ∈ I.298

Since I is a quasi 3-primary ideal and a /∈ Rad(I), b /∈ Rad(I), so we have299

c(2m+1)(2n+1) ∈ I for some integer m ∈ Z+
0 . This implies c ∈ Rad(I) and so I is300

a quasi primary ideal of S.301

The converse may not be true as is shown in the following example:302

Example 7. Consider the ternary subsemiring 2Z−0 ×Z−0 of the ternary semiring303

Z−0 × Z−0 . Then the ideal 16Z−0 × 81Z−0 is quasi primary, since Rad(16Z−0 ×304

81Z−0 ) = 2Z−0 × 3Z−0 is prime on 2Z−0 × Z−0 . But this ideal is not quasi 3-305

primary, as306

(−2,−27)(−4,−3)(−2,−4) = (−16,−324) ∈ 16Z−0 × 81Z−0 , where (−2,−27)3 /∈307

16Z−0 × 81Z−0 , (−4,−3)3 /∈ 16Z−0 × 81Z−0 and (−2,−4)2n+1 /∈ 16Z−0 × 81Z−0 for308

any n ∈ Z+
0 .309
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In a ternary semiring S, I is a quasi 3-primary ideal if and only if Rad(I) is310

a 3-prime ideal.311

Proof. Suppose I is a quasi 3-primary ideal of S. Then Rad(I) is a prime ideal312

of S, thus Rad(I) is a 3-prime ideal.313

Conversely, assume that Rad(I) is a 3-prime ideal of S. Let abc ∈ I and314

a3 /∈ I, b3 /∈ I for some a, b, c ∈ S. Since abc ∈ I ⊆ Rad(I), we have c3 ∈ Rad(I).315

Thus there exists an integer n ∈ Z+
0 such that c2n+1 ∈ I and hence I is a quasi316

3-primary ideal of S.317

In a commutative regular ternary semiring, every non-zero proper ideal is318

semiprime. Hence it can be easily shown that in a regular ternary semiring the319

concept of prime ideal, 3-prime ideal, primary ideal, quasi 3-primary and quasi320

primary ideal are the same.321

The following example shows that the intersection of quasi 3-primary ideals322

may not be a quasi 3-primary ideal.323

Example 8. In the ternary semiring Z−0 , the intersection of quasi 3-primary324

ideals 3Z−0 , 5Z−0 and 2Z−0 is 30Z−0 , which is not a quasi 3-primary ideal.325

Theorem 32. Let S be a ternary semiring with identity and I be a proper ideal326

of S, then the following are equivalent:327

(i) I is a quasi 3-primary ideal of S.328

(ii) For any a, b ∈ S, if 〈a〉 * (I : a : a) and 〈b〉 * (I : b : b), then329

(I : a : b) ⊆ Rad(I).330

(iii) For any three ideals J,K,L of S, JKL ⊆ I, {a3 : a ∈ J} * I and331

{b3 : b ∈ K} * I implies K ⊆ Rad(I).332

Proof. (i) =⇒ (ii) Suppose I is a quasi 3-primary ideal of S and 〈a〉 * (I : a :333

a), 〈b〉 * (I : b : b). Then a3 /∈ I and b3 /∈ I. We have to show (I : a : b) ⊆ Rad(I).334

Take c ∈ (I : a : b). Then abc ∈ I. Also a3 /∈ I and b3 /∈ I. Thus there exists an335

integer n ∈ Z+
0 such that c2n+1 ∈ I and hence (I : a : b) ⊆ Rad(I).336

(ii) =⇒ (iii) Consider JKL ⊆ I, {a3 : a ∈ J} * I and {b3 : b ∈ K} * I337

for some ideals J,K,L of S. Then a ∈ J and b ∈ K such that a3, b3 /∈ I and338

so 〈a〉 * (I : a : a) and 〈b〉 * (I : b : b). Then by (ii), (I : a : b) ⊆ Rad(I). For339

any arbitrary element c ∈ K, abc ∈ JKL ⊆ I. So c ∈ (I : a : b) ⊆ Rad(I). This340

yields that K ⊆ Rad(I).341

(iii) =⇒ (i) Assume that abc ∈ I and a3 /∈ I, b3 /∈ I. Then {x3 : x ∈ 〈a〉} *342

I and {y3 : y ∈ 〈b〉} * I. Since abc ∈ 〈a〉 〈b〉 〈c〉 ⊆ I, by (iii) there exists an343

integer n ∈ Z+
0 such that c2n+1 ∈ I. So I is a quasi 3-primary ideal of S.344

Let I be a quasi 3-primary ideal of ternary semiring S with identity and345

〈a〉 = 〈a3〉 for a ∈ S. If a /∈ (I : a : a), then (I : a : a) is a quasi 3-primary ideal346

of S.347
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Proof. Suppose I is a quasi 3-primary ideal of S. Here 〈a〉 * (I : a : a), since348

a /∈ (I : a : a). So by Theorem 32, (I : a : a) ⊆ Rad(I). Thus (I : a : a) = Rad(I).349

Consider xyz ∈ (I : a : a) and z2n+1 /∈ (I : a : a) for some x, y, z ∈ S and any350

n ∈ Z+
0 . Whence (xa2)yz = xyza2 ∈ I and z2n+1 /∈ I implies (xa2)3 ∈ I or351

y3 ∈ I. That is x3 ∈ (I : a3 : a3) = (I : a : a) or y3 ∈ I ⊆ (I : a : a). Hence352

(I : a : a) is a quasi 3-primary ideal of S.353

Suppose that I1 and I2 are two ideals of ternary semiring S1 and S2 respec-354

tively. Consider the ternary semiring S = S1 × S2, then the followings hold:355

(i) I1×S2 is a quasi 3-primary ideal of S if and only if I1 is a quasi 3-primary356

ideal of S1.357

(ii) S1×I2 is a quasi 3-primary ideal of S if and only if I2 is a quasi 3-primary358

ideal of S2.359

Proof. (i) Suppose that I1×S2 is a quasi 3-primary ideal of S, abc ∈ I1 for some360

a, b, c ∈ S1 and a3 /∈ I1, b
3 /∈ I1. Then we have (abc, 0) = (a, 0)(b, 0)(c, 0) ∈ I1×S2361

and (a, 0)3 = (a3, 0) /∈ I1 × S2, (b, 0)3 = (b3, 0) /∈ I1 × S2. So we conclude that362

there exists an integer n ∈ Z+
0 such that (c, 0)2n+1 = (c2n+1, 0) ∈ I1 × S2. Thus363

there exists an integer n ∈ Z+
0 such that c2n+1 ∈ I1.364

Conversely, assume that I1 is a quasi 3-primary ideal of S1. Let (a, x)(b, y)(c, z) ∈365

I1 × S2 and (a, x)3 /∈ I1 × S2, (b, y)3 /∈ I1 × S2. This implies abc ∈ I1 and366

a3 /∈ I1, b
3 /∈ I1. So there exists an integer n ∈ Z+

0 such that c2n+1 ∈ I1. Hence367

(c, z)2n+1 = (c2n+1, z2n+1) ∈ I1×S2. Therefore I1×S2 is a quasi 3-primary ideal368

of S.369

(ii) The proof is similar to (i).370

Definition 33. Let I, I1, I2, ..., In be ideals of a ternary semiring S. The collection371

{I1, I2, ..., In} is said to be a cover of I if I ⊆ I1∪I2∪ ...∪In. We call such a cover372

of I efficient, if I is not contained in the union of any n− 1 ideals of I1, I2, ..., In.373

Lemma 34. Let {I1, I2, ....., In} be an efficient covering of the ideal I, where I1,374

I2,..., In are k-ideals of ternary semiring S and n > 1. If I∩Rad(Ii) * I∩Rad(Ij)375

for each i 6= j, then no Ij is quasi 3-primary ideal of S.376

Proof. We first show that for efficient covering I ⊆ I1 ∪ I2 ∪ .... ∪ In of I,377

(∩i 6=kIi) ∩ I = (∩ni=1Ii) ∩ I for all k. Let x ∈ (∩i 6=kIi) ∩ I. Since the cover is378

efficient, there exists xk ∈ Ik ∩ I such that xk /∈ (∪i 6=kIi) ∩ I. Now consider the379

element x+ xk in I. If x+ xk ∈ Ii for i 6= k, then xk ∈ Ii for all i 6= k, which is a380

contradiction. Then x + xk ∈ Ik and thus x ∈ Ik. So (∩i 6=kIi) ∩ I = (∩ni=1Ii) ∩ I.381

If possible, let Ij be a quasi 3-primary ideal of S for some j = 1, 2, ..., n. Since382

I ∩ Rad(Ii) * I ∩ Rad(Ij) for each i 6= j we have I = ∪ni=1(Rad(Ii) ∩ I). Since383

{Rad(Ii) ∩ I : 1 ≤ i ≤ n} is also an efficient covering of I, there exists an384

element xi ∈ I \ Rad(Ii). This yields that x3i /∈ Ii for each i = 1, 2, ..., n. Also385
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Rad(Ii) * Rad(Ij) for each i 6= j. Hence there exist yi ∈ Rad(Ii) \ Rad(Ij) for386

every i 6= j. Thus y2ni+1
i ∈ Ii but y2ni+1

i /∈ Ij for some ni ∈ N and i 6= j. Consider387

y = (y1)
n+1y2...yj−1yj+1...yn. Since Rad(Ii) is prime, we have y /∈ Rad(Ij).388

Assume that k = max{2n1 + 1, 2n2 + 1, .., 2nj−1 + 1, 2nj+1 + 1, .., 2nn + 1}, then389

yk ∈ Ii for every i 6= j but yk /∈ Ij . Now ykxjxj ∈ I ∩ Ii for every i 6= j but390

ykxjxj /∈ I ∩ Ij . Since ykxjxj ∈ Ij and x3j /∈ Ij , there exists an integer n ∈ Z+
0391

such that (yk)(2n+1) ∈ Ij , that is, y ∈ Rad(Ij), a contradiction. Thus ykxjxj ∈392

I∩(∩ni 6=jIi) but ykxjxj /∈ I∩Ij , which also contradicts (∩i 6=kIi)∩I = (∩ni=1Ii)∩I.393

Therefore Ij is not a quasi 3-primary ideal of S.394

By using Lemma 34, we obtain the following Theorem.395

Theorem 35. Let I be an arbitrary ideal in a commutative ternary semiring396

S and I1, I2,....,In be k-ideals of S such that at least n − 2 of which are quasi397

3-primary ideals. If {I1, I2, ....., In} be a cover of I and I ∩Rad(Ii) * I ∩Rad(Ij)398

for each i 6= j, then I ⊆ Ii for some i.399

Proof. We may assume that the cover is efficient since the hypothesis remains400

valid if one reduces the covering to an efficient covering. Then n 6= 2. Since401

I∩Rad(Ii) * I∩Rad(Ij) for each i 6= j, by Lemma 34, we have n < 2. Therefore402

n = 1 and hence I ⊆ Ii for some i.403

Theorem 36. Let S be a commutative ternary semiring and I1, I2,....,In be quasi404

3-primary k-ideals of S such that I ∩ Rad(Ii) * I ∩ Rad(Ij) for all i 6= j. Let I405

be an ideal of S such that aSS + I * ∪ni=1Ii for some a ∈ S. Then there exists406

an element c ∈ I such that a + c /∈ ∪ni=1Ii.407

Proof. Assume that a lies in all of I1, I2,....,Ik but none of Ik+1,....,In. If k = 0,408

then a+0 /∈ ∪ni=1Ii. So consider k ≥ 1. Now I * ∪ki=1Rad(Ii). If I ⊆ ∪ki=1Rad(Ii),409

by Theorem 35, I ⊆ Rad(Ii) for some 1 ≤ i ≤ k, which contradicts the hypothesis410

that I ∩Rad(Ii) * I ∩Rad(Ij) for all i 6= j.411

So there exists an element p ∈ I such that p /∈ ∪ki=1Rad(Ii). Also, Ik+1∩ ....∩412

In * Rad(I1) ∪Rad(I2) ∪ ... ∪Rad(Ik). If Ik+1 ∩ .... ∩ In ⊆ Rad(I1) ∪Rad(I2) ∪413

... ∪ Rad(Ik), then by Theorem 35, we get Ik+1 ∩ .... ∩ In ⊆ Rad(Ij) for some414

1 6 j 6 k. Thus (Rad(Ik+1))
n−k ∩ ... ∩ Rad(In) = Rad((Ik+1)

n−k ∩ .... ∩ In) ⊆415

Rad(Ik+1∩....∩In) ⊆ Rad(Ij) and since Rad(Ij) is a prime ideal of S, we conclude416

that Rad(I l) ⊆ Rad(Ij) for k + 1 6 l 6 n, so I ∩Rad(Ii) * I ∩Rad(Ij) for i 6= j,417

which contradicts the hypothesis. Thus there exists q ∈ Ik+1 ∩ .... ∩ In such that418

q /∈ Rad(I1) ∪Rad(I2) ∪ ... ∪Rad(Ik).419

Consider the element c = ppq ∈ I. Then c ∈ Ik+1 ∩ .... ∩ In but c /∈ I1 ∪420

I2 ∪ ... ∪ Ik. If c ∈ I1 ∪ I2 ∪ ... ∪ Ik, then c = ppq ∈ Ii for some 1 6 i 6 k.421

Also p3 /∈ Ii. Since Ii is a quasi 3-primary ideal, there exists an integer n ∈ Z+
0422

such that q2n+1 ∈ Ii, a contradiction. Hence c ∈ ∪nj=k+1Ij \ ∪ki=1Ii. Again, as423

a ∈ ∪ki=1Ii \ ∪nj=k+1Ij , it follows that a + c /∈ ∪ni=1Ii.424
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