ON TERNARY RING CONGRUENCES OF TERNARY SEMIRINGS

Jatuporn Sanborisoot ${ }^{1}$
Algebra and Applications Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand

e-mail: jatuporn.san@msu.ac.th

AND

Pakorn Palakawong na Ayutthaya
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
e-mail: pakorn1702@gmail.com

Abstract

In this work, we study the notions of k-ideals and h-ideals of ternary s emirings and investigate some of their algebraic properties. Furthermore, we construct a congruence relation with respect to a full k-ideal on a ternary semiring for the purpose of forming a ternary ring from the quotient ternary semiring.

Keywords: ternary ring, ternary semiring, ring congruence, k-ideal, h ideal.

2010 Mathematics Subject Classification: 16Y60, 06F25.

1. Introduction

The concept of an algebraic structure together with a ternary operation was introduced first by Lehmer [12] in 1932. Later, Sioson [16] defined the notion of a ternary semigroup and studied algebraic properties of ideals on a ternary

[^0]semigroup. Afterward, in 1990, the notion of a regularity on a ternary semigroup was investigated by Santiago [14]. The concept of an algebraic structure which contains a binary operation and a ternary operation was defined by Lister [13] as a ternary ring. As a generalization of a ternary ring, Dutta and Kar [5, 6, 7] defined the notion of a ternary semiring and investigated some of their properties such as regularity and Jacobson radical.

A semiring which is a notable generalization of rings and distributive lattices was defined first by Vandiver [17]. This algebraic structure appears in a natural manner in some applications to the theory of automata, formal languages, optimization theory and other branches of applied mathematics (for example, see $[3,4,8,9,11])$. In abstract algebra, it is not difficult to prove that the kernel of a ring homomorphism is an ideal and each ideal of a ring can be considered as the kernel of a ring homomorphism. Similarly, the kernel of a semiring homomorphism is an ideal as well. However, there is an ideal of a semiring such that it cannot be considered as the kernel of a semiring homomorphism [1, 2]. This condition can be true on a semiring by using a more restrict type of ideals (see [2]) namely a k-ideal defined by Henriksen [10]. Later, in [15], Sen and Adhikari defined the notion of a full k-ideal and used a full k-ideal to construct a congruence relation on a semiring such that the quotient semiring forms a ring. Furthermore, the notion of an h-ideal, a more special kind of k-ideals, was also defined by Henriksen [10].

It is easy to construct a ternary semiring from a given semiring; however, there is a ternary semiring such that it cannot be considered as a semiring. Consequently, we are able to study a ternary semiring as a generalization of a semiring. In this work, we study the concept of a k-ideal of a ternary semiring as a similar way of Sen and Adhikari [15] on a semiring. In other words, we define the notion of a full k-ideal of a ternary semiring and use a full k-ideal to construct a congruence relation such that the quotient ternary semiring forms a ternary ring. Moreover, we also show that every h-ideal of a ternary semiring is immediately full and the concepts of k-ideals and h-ideals are coincidence in additively inverse ternary semirings.

2. Preliminaries

A nonempty set S together with a binary operation $+: S \times S \rightarrow S$ is called a semigroup if $a+(b+c)=(a+b)+c$ for all $a, b, c \in S$. A ternary groupoid is an algebra $\langle S ; f\rangle$ such that $f: S \times S \times S \rightarrow S$ is a ternary operation on the nonempty set S. A ternary groupoid $\langle S ; f\rangle$ is called a ternary semigroup if f satisfies the associative property on S, i.e., $f(f(a, b, c), d, e)=f(a, f(b, c, d), e)=$ $f(a, b, f(c, d, e))$ for all $a, b, c, d, e \in S$. A ternary semiring is an algebra $\langle S ;+, f\rangle$
type $(2,3)$ for which $\langle S ;+\rangle$ is a semigroup, $\langle S ; f\rangle$ is a ternary semigroup and for all $a, b, x, y \in S, f(a+b, x, y)=f(a, x, y)+f(b, x, y), f(x, a+b, y)=f(x, a, y)+$ $f(x, b, y)$ and $f(x, y, a+b)=f(x, y, a)+f(x, y, b)$. A ternary semiring $\langle S ;+, f\rangle$ is said to be additively commutative if $a+b=b+a$ for all $a, b \in S$.

The set of all negative integers together with the usual addition and the usual multiplication is an example of a ternary semiring such that it cannot be considered as a semiring because every product of two negative integers is not a negative integer.

Throughout this work, we simply write S instead of an additively commutative ternary semiring $\langle S ;+, f\rangle$ and the juxtaposition $a b c$ instead of $f(a, b, c)$ for all $a, b, c \in S$.

For any nonempty subsets A, B, and C of a ternary semiring S, we denote that $A+B=\{a+b \in S \mid a \in A, b \in B\}$ and $A B C=\{a b c \in S \mid a \in A, b \in B, c \in$ $C\}$.

A nonempty subset T of a ternary semiring S is called a subalgebra of S if $T+T \subseteq T$ and $T T T \subseteq T$.

Definition 2.1. A nonempty subset A of a ternary semiring S is called a left ideal (resp. lateral ideal, right ideal) of S if $A+A \subseteq A$ and $S S A \subseteq A$ (resp. $S A S \subseteq A, A S S \subseteq A) . A$ is called an $i d e a l$ of S if A is a left ideal, a lateral ideal, and a right ideal of S.

An element a of a ternary semiring S is called additively regular if $a=a+b+a$ for some $b \in S$. If the element b is unique and satisfies $b=b+a+b$, then b is called an additively inverse of a in S and will be denoted by the notation a^{\prime}. Particularly, if every element of S is additively regular, then S is called an additively regular ternary semiring. Furthermore, if every additively regular element of S has the unique additively inverse, then S is called an additively inverse ternary semiring.

Let S be an additively inverse ternary semiring. It is obvious that $x=\left(x^{\prime}\right)^{\prime}$ and $(x+y)^{\prime}=x^{\prime}+y^{\prime}$ for all $x, y \in S$.

Lemma 2.2. Let S be an additively inverse ternary semiring. Then for any $x, y, z \in S,(x y z)^{\prime}=x^{\prime} y z=x y^{\prime} z=x y z^{\prime}$.

Proof. Let $x, y, z \in S$. Since $x y z+x^{\prime} y z+x y z=\left(x+x^{\prime}+x\right) y z=x y z$ and $x^{\prime} y z+x y z+x^{\prime} y z=\left(x^{\prime}+x+x^{\prime}\right) y z=x^{\prime} y z$, we obtain that $(x y z)^{\prime}=x^{\prime} y z$. The cases of $(x y z)^{\prime}=x y^{\prime} z$ and $(x y z)^{\prime}=x y z^{\prime}$ can be proved similarly.

An element x of a ternary semiring S is called additively idempotent if $x+x=$ x. The set of all additively idempotent elements of S is defined by

$$
E^{+}=\{x \in S \mid x+x=x\}
$$

It is not difficult to verify that E^{+}is an ideal of S.

A partially ordered set (L, \leq) is said to be a lattice if every pair of elements a and b of L has both greatest lower bound and least upper bound. If every subset A of a lattice L has both greatest lower bound and least upper bound, then L is called a complete lattice. It is not difficult to verify that a lattice L is a complete lattice if L has the greatest element and every nonempty subset of L has the greatest lower bound.

A lattice L is called modular if L satisfies the following law; for all $a, b \in L$, $a \leq b$ implies $a \vee(x \wedge b)=(a \vee x) \wedge b$ for every $x \in L$ where $x \vee y$ and $x \wedge y$ is the least upper bound and the greatest lower bound of $x, y \in L$, respectively.

Lemma 2.3. A lattice L is modular if and only if for any $a, b, c \in L, a \wedge b=a \wedge c$, $a \vee b=a \vee c$ and $b \leq c$ implies $b=c$.

3. Full k-IDEALS AND h-IDEALS OF TERNARY SEMIRINGS

The notions and some properties of full k-ideals and h-ideals of ternary semirings have been defined and studied in this section.

Definition 3.1. An ideal A of a ternary semiring S is called a k-ideal of S if for any $x \in S, x+a=b$ for some $a, b \in A$ implies $x \in A$. If A is a k-ideal of S and $E^{+} \subseteq A$, then A is said to be a full k-ideal of S.

The following example is an example of an ideal of a ternary semiring which is not a k-ideal.

Example 3.2. Define a ternary operation f on the set of all natural numbers \mathbb{N} by $f(x, y, z)=x \cdot y \cdot z$ for any $x, y, z \in \mathbb{N}$ where \cdot is the usual multiplication. Then $\langle\mathbb{N} ; \max , f\rangle$ is a ternary semiring. We have that $2 \mathbb{N}:=\{2,4,6,8, \ldots\}$, the set of all positive even numbers, is an ideal of $\langle\mathbb{N} ; \max , f\rangle$ but not a k-ideal because $\max \{1,2\}=2$ but $1 \notin 2 \mathbb{N}$.

The following example is an example of a k-ideal of a ternary semiring which is not a full k-ideal.

Example 3.3. Define a ternary operation f on the set of all natural numbers \mathbb{N} by $f(x, y, z)=\min \{x, y, z\}$ for any $x, y, z \in \mathbb{N}$. Then $\langle\mathbb{N} ; \max , f\rangle$ is a ternary semiring and $E^{+}=\mathbb{N}$ is the set of all additively idempotent elements of $\langle\mathbb{N} ; \max , f\rangle$. It is easy to obtain that the set $\mathbb{I}_{m}=\{1,2,3, \ldots, m\}$ for each $m \in \mathbb{N}$, is a k-ideal of $\langle\mathbb{N} ; \max , f\rangle$ but not a full k-ideal because $E^{+} \nsubseteq \mathbb{I}_{m}$.

We give an example of a proper full k-ideal of a ternary semiring as follows.
Example 3.4. Let \mathbb{N}_{0} be the set of all nonnegative integers. Then $\left\langle\mathbb{N}_{0} ;+, f\right\rangle$ is a ternary semiring such that + is the usual addition and $f(x, y, z)=x \cdot y \cdot z$ for
all $x, y, z \in \mathbb{N}_{0}$ where \cdot is the usual multiplication. We have that the set of all additively idempotent elements of $\left\langle\mathbb{N}_{0} ;+, f\right\rangle$ is $\{0\}$ and $2 \mathbb{N}_{0}=\{0,2,4,6, \ldots\}$ is a full k-ideal.

The proofs of the following two remarks are routine.
Remark 3.5. Let $\{A\}_{i \in I}$ be a family of full k-ideals of a ternary semiring S. Then $\bigcap_{i \in I} A_{i}$ is also a full k-ideal if it is not empty.

Remark 3.6. Every k-ideal of an additively inverse ternary semiring S is an additively inverse subalgebra of S.

The k-closure of a nonempty subset A of a ternary semiring S is defined by

$$
[A]_{k}=\{x \in S \mid x+a=b \text { for some } a, b \in A\} .
$$

It is easy to prove that for any $\emptyset \neq A \subseteq S, A \subseteq[A]_{k}$ if $A+A \subseteq A$. Furthermore, if A is closed under the addition, then $[A]_{k}$ is also closed. Now, we give some necessary properties of k-closure of nonempty subsets of a ternary semiring as follows.

Lemma 3.7. Let A, B, and C be nonempty subsets of an n-ary semiring S. Then the following statements hold.
(i) If $A+A \subseteq A$, then $[A]_{k}=\left[[A]_{k}\right]_{k}$.
(ii) If $A \subseteq B$, then $[A]_{k} \subseteq[B]_{k}$.
(iii) $[A]_{k}+[B]_{k} \subseteq[A+B]_{k}$.
(iv) If A, B, and C are closed under the addition, then $[A]_{k} B C \subseteq[A B C]_{k}$, $A[B]_{k} C \subseteq[A B C]_{k}$ and $A B[C]_{k} \subseteq[A B C]_{k}$.

Proof. (i) Let $\emptyset \neq A \subseteq S$ be such that $A+A \subseteq A$. Obviously, $[A]_{k} \subseteq\left[[A]_{k}\right]_{k}$. If $x \in\left[[A]_{k}\right]_{k}$, then $x+y=z$ for some $y, z \in[A]_{k}$ such that $y+a_{1}=b_{1}$ and $z+a_{2}=b_{2}$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in A$. Then

$$
\begin{equation*}
x+y+a_{1}+a_{2}=z+a_{1}+a_{2}=z+a_{2}+a_{1}=b_{2}+a_{1} . \tag{1}
\end{equation*}
$$

We have $y+a_{1}+a_{2}=b_{1}+a_{2} \in A+A \subseteq A$ and $b_{2}+a_{1} \in A+A \subseteq A$. Using (1), we get $x \in[A]_{k}$ and so $\left[[A]_{k}\right]_{k} \subseteq[A]_{k}$. Therefore, $[A]_{k}=\left[[A]_{k}\right]_{k}$.
(ii) - (iv) are straightforward.

Lemma 3.8. If A is an ideal of a ternary semiring S, then $[A]_{k}$ is a k-ideal of S.

Proof. Let A be an ideal of S. It is clear that $[A]_{k}$ is closed under addition. Using A being an ideal of S and Lemma $3.7(i i)$ and (iv), we obtain that $S S[A]_{k} \subseteq$ $[S S A]_{k} \subseteq[A]_{k}, S[A]_{k} S \subseteq[S A S]_{k} \subseteq[A]_{k}$ and $[A]_{k} S S \subseteq[A S S]_{k} \subseteq[A]_{k}$. If $x \in S$ such that $x+a=b$ for some $a, b \in[A]_{k}$, then by Lemma 3.7 (i), we get $x \in\left[[A]_{k}\right]_{k}=[A]_{k}$. Therefore, $[A]_{k}$ is a k-ideal of S.

The following corollary is directly obtained by Lemma 3.8.
Corollary 3.9. Let S be a ternary semiring. Them the following statements hold.
(i) An ideal A of S is a k-ideal if and only if $A=[A]_{k}$.
(ii) $\left[E^{+}\right]_{k}$ is a full k-ideal of S.

Lemma 3.10. Let A and B be two full k-ideals of an additively inverse ternary semiring S. Then $[A+B]_{k}$ is a full k-ideal of S such that $A \subseteq[A+B]_{k}$ and $B \subseteq[A+B]_{k}$.

Proof. Obviously, $A+B$ is closed under the addition. We get that $S S(A+B) \subseteq$ $S S A+S S B \subseteq A+B, S(A+B) S \subseteq S A S+S B S \subseteq A+B$, and $(A+B) S S \subseteq$ $A S S+B S S \subseteq A+B$. Now, $A+B$ is an ideal of S. Using Lemma 3.8, we immediately obtain that $[A+B]_{k}$ is a k-ideal. Since $E^{+} \subseteq A$ and $E^{+} \subseteq B$, $E^{+}=E^{+}+E^{+} \subseteq A+B \subseteq[A+B]_{k}$. Hence, $[A+B]_{k}$ is a full k-ideal of S. Let $a \in A$. Then $a=a+a^{\prime}+a=a+\left(a^{\prime}+a\right) \in A+E^{+} \subseteq A+B \subseteq[A+B]_{k}$. Hence, $A \subseteq[A+B]_{k}$. Similarly, we are able to get that $B \subseteq[A+B]_{k}$.

Theorem 3.11. Let $K(S)$ be the set of all full k-ideals of an additively inverse ternary semiring S. Then $K(S)$ is a complete lattice which is also modular.
Proof. We have that $K(S)$ is a partially ordered set with respect to usual set inclusion. Let $A, B \in K(S)$. By Remark 3.5 and Lemma 3.10, we obtain that $A \cap B \in K(S)$ and $[A+B]_{k} \in K(S)$, respectively. Define $A \wedge B=A \cap B$ and $A \vee B=[A+B]_{k}$. Obviously, $A \cap B$ is the greatest lower bound of A and B. Let $C \in K(S)$ such that $A \subseteq C$ and $B \subseteq C$. Then $A+B \subseteq C+C \subseteq C$. By Remark $3.7(i i)$ and Corollary $3.9(i)$, we get $[A+B]_{k} \subseteq[C]_{k}=C$. Hence, $[A+B]_{k}$ is the least upper bound of A and B. Now, $K(S)$ is a lattice.

Clearly, S is the greatest element of $K(S)$. Let $\left\{A_{i}\right\}_{i n \in I}$ be a family of nonempty subsets of $K(S)$. Using Remark 3.5, we obtain that $\bigcap_{i n \in I} A_{i} \in K(S)$ and immediately get that it is the greatest lower bounded of $\left\{A_{i}\right\}_{i \in I}$. These imply that $K(S)$ is a complete lattice.

Finally, let $A, B, C \in K(S)$ such that $A \wedge B=A \wedge C, A \vee B=A \vee C$, and $B \subseteq C$. Let $x \in C$. Then $x \in C \subseteq A \vee C=A \vee B=[A+B]_{k}$. It follows that there exist $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$ such that $x+a_{1}+b_{1}=a_{2}+b_{2}$. Then

$$
\begin{equation*}
x+a_{1}+a_{1}^{\prime}+b_{1}=x+a_{1}+b_{1}+a_{1}^{\prime}=a_{2}+b_{2}+a_{1}^{\prime}=a_{2}+a_{1}^{\prime}+b_{2} \tag{2}
\end{equation*}
$$

Now, $x \in C, a_{1}+a_{1}^{\prime} \in E^{+} \subseteq C$ and $b_{1}, b_{2} \in B \subseteq C$. Using (2), $a_{2}+a_{1}^{\prime} \in[C]_{k}=C$. At this point, $a_{1}+a_{1}^{\prime}, a_{2}+a_{1}^{\prime} \in A \cap C=A \wedge C=A \wedge B=A \cap B \subseteq B$. It follows that $a_{1}+a_{1}^{\prime}+b_{1} \in B$ and $a_{2}+a_{1}^{\prime}+b_{2} \in B$. Using (2) again, we obtain that $x \in[B]_{k}=B$ and so $C \subseteq B$. Hence, $B=C$. By Lemma 2.3, $K(S)$ is a modular lattice.

Now, we introduce a more restrict class of ideals of a ternary semiring as follows.

Definition 3.12. An ideal A of a ternary semiring S is called an h-ideal of S if for any $x \in S, x+a+s=b+s$ for some $a, b \in A$ and $s \in S$ implies $x \in A$.

Every h-ideal of a ternary semiring is immediately full and so the notion of a full h-ideal need not to be defined.
Remark 3.13. If A is an h-ideal of a ternary semiring S, then $E^{+} \subseteq A$.
Proof. Let A be an h-ideal of S and let $e \in E^{+}$. If $a \in A$, then $e+a+e=a+e$. Since A is an h-ideal, $e \in A$. Hence, $E^{+} \subseteq A$.

It is clear that every h-ideal of a ternary semiring is a k-ideal. In general, the converse is not true as shown by the following example.

Example 3.14. Let $S=\{a, b, c\}$. Define a ternary operation f on the power set $P(S)$ of S by $f(A, B, C)=A \cap B \cap C$ for any $A, B, C \in P(S)$. Then $\langle P(S) ; \cup, f\rangle$ is a ternary semiring. We have that $T=\{\emptyset,\{a\},\{b\},\{a, b\}\}$ is a k-ideal of $\langle P(S) ; \cup f\rangle$. However, T is not an h-ideal because $\{c\} \cup\{a, b\} \cup\{a, c\}=S=$ $\{b\} \cup\{a, c\}$ where $\{a, b\},\{b\} \in T$ but $\{c\} \notin T$.
Remark 3.15. Let $\{A\}_{i \in I}$ be a family of h-ideals of a ternary semiring S. Then $\bigcap_{i \in I} A_{i}$ is also an h-ideal if it is not empty.
Remark 3.16. Every h-ideal of an additively inverse ternary semiring S is an additively inverse subalgebra of S.
Proof. Let H be an h-ideal of S. Clearly, H is a subalgebra of S. Let $a \in H$. Then $\left(a+a^{\prime}\right)+a+s=a+s$ for all $s \in S$. So, $a+a^{\prime} \in H$. This means that $a^{\prime}+a=b$ for some $b \in H$ and thus $a^{\prime}+a+t=b+t$ for any $t \in S$. This implies that $a^{\prime} \in H$. Hence, H is additively inverse.

The h-closure of a nonempty subset A of a ternary semiring S is defined by

$$
[A]_{h}=\{x \in S \mid x+a+s=b+s \text { for some } a, b \in A, s \in S\} .
$$

It is obvious that $[A]_{k} \subseteq[A]_{h}$ for any $\emptyset \neq A \subseteq S$. Moreover, it is not difficult to verify that for any $\emptyset \neq A \subseteq S, A \subseteq[A]_{h}$ if $A+A \subseteq A$. Furthermore, if A is closed under the addition, then $[A]_{h}$ is also closed. Now, we give some necessary properties of h-closure of nonempty subsets on a ternary semiring as follows.

Lemma 3.17. Let A, B, and C be nonempty subsets of a ternary semiring S. Then the following statements hold.
(i) If $A+A \subseteq A$, then $[A]_{h}=\left[[A]_{h}\right]_{h}$.
(ii) If $A \subseteq B$, then $[A]_{h} \subseteq[B]_{h}$.
(iii) $[A]_{h}+[B]_{h} \subseteq[A+B]_{h}$.
(iv) If A, B, and C are closed under the addition, then $[A]_{h} B C \subseteq[A B C]_{h}$, $A[B]_{h} C \subseteq[A B C]_{h}$ and $A B[C]_{h} \subseteq[A B C]_{h}$.

Proof. (i) Let $\emptyset \neq A \subseteq S$ be such that $A+A \subseteq A$. Obviously, $[A]_{h} \subseteq\left[[A]_{h}\right]_{h}$. If $x \in\left[[A]_{h}\right]_{h}$, then $x+y+s=z+s$ for some $y, z \in[A]_{h}$ and $s \in S$ where $y+a_{1}+u=b_{1}+u$ and $z+a_{2}+v=b_{2}+v$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in A$ and $u, v \in S$. Then

$$
\begin{align*}
x+y+s+a_{1}+u+a_{2}+v & =x+\left(y+a_{1}+u\right)+a_{2}+s+v \\
& =x+b_{1}+u+a_{2}+s+v \\
& =x+b_{1}+a_{2}+u+s+v \tag{3}\\
x+y+s+a_{1}+u+a_{2}+v & =z+s+a_{1}+u+a_{2}+v \\
& =a_{1}+\left(z+a_{2}+v\right)+s+u \\
& =a_{1}+b_{2}+v+s+u . \tag{4}
\end{align*}
$$

Using (3) and (4), we get that $x+\left(b_{1}+a_{2}\right)+u+s+v=\left(a_{1}+b_{2}\right)+u+s+v$ where $b_{1}+a_{2}, a_{1}+b_{2} \in A+A \subseteq A$ and $u+s+v \in S$ implies $x \in[A]_{h}$ and so $\left[[A]_{h}\right]_{h} \subseteq[A]_{h}$. Therefore, $[A]_{h}=\left[[A]_{h}\right]_{h}$.
(ii) - (iv) are straightforward.

Lemma 3.18. If A is an ideal of a ternary semiring S, then $[A]_{h}$ is an h-ideal of S.

Proof. Let A be an ideal of S. Clearly, $[A]_{h}$ is closed under the addition. Using A being an ideal of S and Lemma $3.17(i i)$ and (iv), we obtain that $S S[A]_{k} \subseteq$ $[S S A]_{k} \subseteq[A]_{k}, S[A]_{k} S \subseteq[S A S]_{k} \subseteq[A]_{k}$ and $[A]_{k} S S \subseteq[A S S]_{k} \subseteq[A]_{k}$. If $x \in S$ such that $x+a+s=b+s$ for some $a, b \in[A]_{h}$ and $s \in S$, then by Lemma $3.17(i)$, we get $x \in\left[[A]_{h}\right]_{h}=[A]_{h}$. Therefore, $[A]_{h}$ is an h-ideal of S.

The following corollary is directly obtained by Lemma 3.18.
Corollary 3.19. Let S be an n-ary semiring. Then the following statements hold.
(i) An ideal A of S is an h-ideal if and only if $A=[A]_{h}$.
(ii) $\left[E^{+}\right]_{h}$ is an h-ideal of S.

Lemma 3.20. Let A and B be two h-ideals of an additively inverse ternary semiring S. Then $[A+B]_{h}$ is an h-ideal of S such that $A \subseteq[A+B]_{h}$ and $B \subseteq[A+B]_{h}$.

Proof. Since $S S(A+B) \subseteq S S A+S S B \subseteq A+B, S(A+B) S \subseteq S A S+S B S \subseteq$ $A+B,(A+B) S S \subseteq A S S+B S S \subseteq A+B$, and $A+B$ is closed under the addition, we get that $A+B$ is an ideal of S. Using Lemma 3.18, we obtain that $[A+B]_{h}$ is an h-ideal. Let $a \in A$. Then $a=a+a^{\prime}+a=a+\left(a^{\prime}+a\right) \in A+E^{+} \subseteq A+B \subseteq[A+B]_{h}$. Hence, $A \subseteq[A+B]_{h}$. Similarly, we are able to get that $B \subseteq[A+B]_{h}$.

Theorem 3.21. Let $H(S)$ be the set of all h-ideals of an additively inverse ternary semiring S. Then $H(S)$ is a complete lattice which is also modular.

Proof. We have that $H(S)$ is a partially ordered set with respect to the usual set inclusion. Let $A, B \in H(S)$. By Remark 3.15 and Lemma 3.20, we obtain that $A \cap B \in H(S)$ and $[A+B]_{h} \in H(S)$, respectively. Define $A \wedge B=A \cap B$ and $A \vee B=[A+B]_{h}$. Obviously, $A \cap B$ is the greatest lower bound of A and B. Let $C \in H(S)$ such that $A \subseteq C$ and $B \subseteq C$. Then $A+B \subseteq C+C \subseteq C$. By Remark $3.17(i i)$ and Corollary $3.19(i)$, we get $[A+B]_{h} \subseteq[C]_{h}=C$. Hence, $[A+B]_{h}$ is the least upper bound of A and B. Now, $H(S)$ is a lattice.

Clearly, S is the greatest element of $H(S)$. Let $\left\{A_{i}\right\}_{i n \in I}$ be a family of nonempty subsets of $H(S)$. Using Remark 3.15, we obtain that $\bigcap_{i n \in I} A_{i} \in H(S)$ and immediately get that it is the greatest lower bounded of $\left\{A_{i}\right\}_{i \in I}$. These imply that $H(S)$ is a complete lattice.

Finally, let $A, B, C \in H(S)$ such that $A \wedge B=A \wedge C, A \vee B=A \vee C$, and $B \subseteq C$. Let $x \in C$. Then $x \in C \subseteq A \vee C=A \vee B=[A+B]_{h}$. It follows that there exist $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ and $s \in S$ such that $x+a_{1}+b_{1}+s=a_{2}+b_{2}+s$. Then

$$
\begin{align*}
x+a_{1}+a_{1}^{\prime}+b_{1}+s & =x+a_{1}+b_{1}+s+a_{1}^{\prime} \\
& =a_{2}+b_{2}+s+a_{1}^{\prime} \\
& =a_{2}+a_{1}^{\prime}+b_{2}+s . \tag{5}
\end{align*}
$$

Since, $x \in C, a_{1}+a_{1}^{\prime} \in E^{+} \subseteq C$ and $b_{1} \in B \subseteq C$, we have $x+a_{1}+a_{1}^{\prime}+b_{1} \in$ C. Using (5) and $b_{2} \in B \subseteq C$, we get $a_{2}+a_{1}^{\prime} \in[C]_{h}=C$. At this point, $a_{1}+a_{1}^{\prime}, a_{2}+a_{1}^{\prime} \in A \cap C=A \wedge C=A \wedge B=A \cap B \subseteq B$. It follows that $a_{1}+a_{1}^{\prime}+b_{1} \in B$ and $a_{2}+a_{1}^{\prime}+b_{2} \in B$. Using (5) again, we obtain that $x \in[B]_{h}=B$ and so $C \subseteq B$. Hence, $B=C$. By Lemma $2.3, H(S)$ is a modular lattice.

4. Ternary Ring congruences

In this section, we characterize a ternary ring congruence with respect to a full k-ideal of an additively inverse ternary semirings.

Definition 4.1. A binary relation ρ on a ternary semiring $\langle S ;+, f\rangle$ is said to be a congruence if ρ is an equivalence relation on S and satisfies the following properties; for any $a, b, x, y \in S,(a, b) \in \rho$ implies $(a+x, b+x)$, $(a x y, b x y)$, $(x a y, x b y),(x y a, x y b) \in \rho$.

Definition 4.2. A ternary semiring $\langle S ;+, f\rangle$ is called a ternary ring if $\langle S ;+\rangle$ is a group. In other words, the following conditions are satisfied.
(i) There exists $0 \in S$ such that $x+0=x=0+x$ for all $x \in S$.
(ii) For each $x \in S$, there is $y \in S$ such that $x+y=0=y+x$.

If $\langle S ;+, f\rangle$ is a ternary ring, then the element y in (2) is usually denoted by $-x$.
Definition 4.3. A congruence ρ on a ternary semiring S is called a ternary ring congruence if the quotient ternary semiring $S / \rho:=\{a \rho \mid a \in S\}$ is a ternary ring.

Theorem 4.4. Let A be a full k-ideal of an additively inverse ternary semiring S. Then the relation

$$
\rho_{A}=\left\{(a, b) \in S \times S \mid a+b^{\prime} \in A\right\}
$$

is a ternary ring congruence such that $-\left(a \rho_{A}\right)=a^{\prime} \rho_{A}$.
Proof. Let A be a full k-ideal of S.
Firstly, we show that ρ is an equivalence relation on S. Let $a, b, c \in S$. Since $a+a^{\prime} \in E^{+} \subseteq A,(a, a) \in \rho_{A}$. Thus, ρ_{A} is reflexive. If $(a, b) \in \rho_{A}$, then $a+b^{\prime} \in A$. By Remark 3.6, we get $b+a^{\prime}=\left(b^{\prime}\right)^{\prime}+a^{\prime}=\left(b^{\prime}+a\right)^{\prime}=\left(a+b^{\prime}\right)^{\prime} \in A$ and so $(b, a) \in \rho_{A}$. Thus, ρ_{A} is symmetric. Assume that $(a, b),(b, c) \in \rho_{A}$ It follows that $a+b^{\prime} \in A$ and $b+c^{\prime} \in A$. Then $a+c^{\prime}+b+b^{\prime} \in A$. Since $b+b^{\prime} \in E^{+} \subseteq A$, $a+c^{\prime} \in[A]_{k}=A$. So, $(a, c) \in \rho_{A}$ and thus ρ_{A} is transitive. Now, ρ_{A} is an equivalence relation.

Secondly, let $a, b, x, y \in S$. Assume that $(a, b) \in \rho_{A}$ and so $a+b^{\prime} \in A$. Then $(a+x)+(b+x)^{\prime}=a+x+b^{\prime}+x^{\prime}=\left(a+b^{\prime}\right)+\left(x+x^{\prime}\right) \in A+E^{+} \subseteq A+A \subseteq A$.

Hence, $(a+x, b+x) \in \rho_{A}$. Using Lemma 2.2, we obtain that

$$
a x y+(b x y)^{\prime}=a x y+b^{\prime} x y=\left(a+b^{\prime}\right) x y \in A S S \subseteq A
$$

Hence, $(a x y, b x y) \in \rho_{A}$. Analogously, we are able to obtain that $(x a y, x b y),(x y a, x y b) \in$ ρ_{A}. Now, ρ_{A} is a congruence on S.

On ternary ring congruences of ternary semirings

Finally, we show that S / ρ_{A} is a ternary ring together with the operations \oplus and F on S / ρ_{A} defined by $a \rho_{A} \oplus b \rho_{A}=(a+b) \rho_{A}$ and $F\left(a \rho_{A}, b \rho_{A}, c \rho_{A}\right)=(a b c) \rho_{A}$ for any $a, b, c \in S$. It is immediately to obtain that $\left\langle S / \rho_{A} ; \oplus, F\right\rangle$ is a quotient ternary semiring of $\langle S ;+, f\rangle$. Let $e \in E^{+}$and $x \in S$. Then $(e+x)+x^{\prime}=$ $e+\left(x+x^{\prime}\right) \in E^{+}+E^{+}=E^{+} \subseteq A$ and so $(e+x, x) \in \rho_{A}$. It follows that

$$
e \rho_{A} \oplus x \rho_{A}=(e+x) \rho_{A}=x \rho_{A}
$$

Since $e+\left(x+x^{\prime}\right)^{\prime}=e+x^{\prime}+x \in A,\left(e, x+x^{\prime}\right) \in \rho_{A}$. It turns out that

$$
x \rho_{A} \oplus x^{\prime} \rho_{A}=\left(x+x^{\prime}\right) \rho_{A}=e \rho_{A} .
$$

Therefore, S / ρ_{A} is a ternary ring.
Theorem 4.5. Let ρ be a congruence on an additively inverse ternary semiring S such that S / ρ is a ternary ring. Then there exists a full k-ideal A of S such that $\rho_{A}=\rho$.
Proof. Let $A=\left\{a \in S \mid(a, e) \in \rho\right.$ for some $\left.e \in E^{+}\right\}$. Since ρ is reflexive, $E^{+} \subseteq A \neq \emptyset$. Let $a, b \in A$. Then there exist $e, f \in E^{+}$such that $(a, e) \in \rho$ and $(b, f) \in \rho$. Then $(a+b, e+f) \in \rho$ and $e+f \in E^{+}$. Hence $a+b \in A$ and thus $A+A \subseteq A$. If $x \in S S A$, then $x=s t c$ for some $s, t \in S$ and $c \in A$ such that $(c, g) \in \rho$ for some $g \in E^{+}$. It follows that $(x, s t g)=(s t c, s t g) \in \rho$. Since E^{+}is an ideal of $S, s t g \in S S E^{+} \subseteq E^{+}$. So, $x \in A$ leads to $S S A \subseteq A$. Similarly, we are able to obtain that $S A S \subseteq A$ and $A S S \subseteq A$. Now, A is an ideal of S.

Let $x \in[A]_{k}$. Then $x+a=b$ for some $a, b \in A$ where $(a, e) \in \rho$ and $(b, f) \in \rho$ for some $e, f \in E^{+}$. However, $f \rho$ and $e \rho$ are additively idempotent in the ternary ring S / ρ. This implies that $e \rho=f \rho$ is the zero element of S / ρ. It follows that $f \rho=b \rho=(x+a) \rho=x \rho \oplus a \rho=x \rho \oplus e \rho=x \rho$. Thus, $(x, f) \in \rho$ where $f \in E^{+}$. Thus, $x \in A$ and so $[A]_{k}=A$. By Corollary $3.9(i), A$ is a full k-ideal of S.

Finally, we show that $\rho=\rho_{A}$. Let $(a, b) \in \rho$. Then $\left(a+b^{\prime}, b+b^{\prime}\right) \in \rho$. Since $b+b^{\prime} \in E^{+}, a+b^{\prime} \in A$ and thus $(a, b) \in \rho_{A}$. Hence, $\rho \subseteq \rho_{A}$. If $(a, b) \in \rho_{A}$, then $a+b^{\prime} \in A$. Thus, $\left(a+b^{\prime}, e\right) \in \rho$ for some $e \in E^{+}$. We have that $b \rho=e \rho \oplus b \rho=$ $\left(a+b^{\prime}\right) \rho \oplus b \rho=a \rho \oplus b^{\prime} \rho \oplus b \rho=a \rho \oplus\left(b+b^{\prime}\right) \rho=a \rho$, since $b+b^{\prime} \in E^{+}$. This shows that $(a, b) \in \rho$ and so $\rho_{A} \subseteq \rho$. Therefore, $\rho=\rho_{A}$.

We note that the concepts of full k-ideals and h-ideals of an additively inverse ternary semiring are coincidence as the following remark.
Remark 4.6. The concepts of full k-ideals and h-ideals of an additively inverse ternary semiring are coincidence.
Proof. We immediately obtain that every h-ideal is a full k-ideal. Let A be a full k-ideal. By Theorem 4.4, we obtain that S / ρ is a ternary ring and A is its zero element. Let $x \in S$ and $x+a+s=b+s$ for some $a, b \in A, s \in S$. Then $x \rho+a \rho+s \rho=b \rho+s \rho$ and so $x \rho+0+s \rho=0+s \rho$. Hence, $x \rho=0$ implies $x \in A$. Therefore, A is an h-ideal.

5. CONCLUSION AND DISCUSSION

The notions of a k-ideal and a full k-ideal of a ternary semiring were defined in Section 3. There is a k-ideal which is not full as it is shown by Example 3.3. However, every h-ideal of a ternary semiring is immediately full. Moreover, h ideals and full k-ideals are coincidence in an additively inverse ternary semiring and the set of all of them forms a complete lattice and also a modular lattice.

A group (ring) congruence is such a congruence relation on a semigroup (semiring) that the quotient semigroup (semiring) is a group (ring). Similarly, a ternary ring congruence is such a congruence relation on a ternary semiring that the quotient ternary semiring is a ternary ring. Constructing a relation with respect to a full k-ideal of an additively inverse ternary semiring is a way to obtain a ternary ring congruence.

We claim that all results of this work are also true for an n-ary semiring for any $n \geq 3$. However, some basic properties of an additively inverse n-ary semiring have to be defined and investigated.

References

[1] M.R. Adhikari, Basic Algebraic Topology and its Applications (New Delhi, Springer Publication, 2006).https://doi.org/10.1007/978-81-322-2843-1
[2] M.R. Adhikari and A. Adhikari, Basic Modern Algebra with Applications (New Delhi, Springer Publication, 2014). https://doi.org/10.1007/978-81-322-1599-8
[3] D.B. Benson, Bialgebras: some foundations for distributed and concurrent computation (Washington DC, Computer Science Department, Washington State University, 1987).https://doi.org/10.3233/FI-1989-12402
[4] J.H. Conway, Regular Algebra and finite Machines (London. Chapman and Hall, 1971).
[5] T.K. Dutta and S. Kar, On regular ternary semirings, in: Advances in Algebra, Proceeding of ICM Satellite Conference in Algebra and Related Topics, (World Scientific, 2003) 343-355. https://doi.org/10.1142/9789812705808_0027
[6] T.K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28(1) (2004) 1-13.
[7] T.K. Dutta and S. Kar, A note on the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 29(4) (2004) 677-687.

On ternary Ring congruences of ternary semirings
[8] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography (Dodrecht, Kluwer Academic Publishers, 2002). https://doi.org/http://dx.doi.org/10.1007/978-94-015-9964-1
[9] J.S. Golan, Semirings and their Applications (Dodrecht, Kluwer Academic Publishers, 1999). https://doi.org/http://dx.doi.org/10.1007/978-94-015-9333-5
[10] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices. 6 (1958) 321.
[11] W. Kuich and W. Salomma, Semirings, Automata, Languages (Berlin, Springer Verlag, 1986).https://doi.org/10.1007/978-3-642-69959-7
[12] D.H. Lehmer, A ternary analogue of abelian groups, American J. Math. 59 (1932) 329-338.https://doi.org/10.2307/2370997
[13] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37-55. https://doi.org/10.2307/1995425
[14] M.L. Santiago, Regular ternary semigroups, Bull. Calcutta Math. Soc. 82 (1990) 67-71.
[15] M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Internat. J. Math. \& Math. Sci. 15(2) (1992) 347-350. https://doi.org/10.1155/S0161171292000437
[16] F.M. Sioson, Ideal theory in ternary semigroups, Math. Jpn. 10 (1965) 6384.
[17] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. https://doi.org/10.1090/S0002-9904-1934-06003-8

[^0]: ${ }^{1}$ Corresponding author
 This research project was financially supported by Mahasarakham University.

