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1. Introduction26

The concept of an algebraic structure together with a ternary operation was27

introduced first by Lehmer [12] in 1932. Later, Sioson [16] defined the notion28

of a ternary semigroup and studied algebraic properties of ideals on a ternary29

1Corresponding author

This research project was financially supported by Mahasarakham University.



2 J. Sanborisoot and P. Palakawong na Ayutthaya

semigroup. Afterward, in 1990, the notion of a regularity on a ternary semigroup30

was investigated by Santiago [14]. The concept of an algebraic structure which31

contains a binary operation and a ternary operation was defined by Lister [13]32

as a ternary ring. As a generalization of a ternary ring, Dutta and Kar [5, 6, 7]33

defined the notion of a ternary semiring and investigated some of their properties34

such as regularity and Jacobson radical.35

A semiring which is a notable generalization of rings and distributive lattices36

was defined first by Vandiver [17]. This algebraic structure appears in a natural37

manner in some applications to the theory of automata, formal languages, op-38

timization theory and other branches of applied mathematics (for example, see39

[3, 4, 8, 9, 11]). In abstract algebra, it is not difficult to prove that the kernel40

of a ring homomorphism is an ideal and each ideal of a ring can be considered41

as the kernel of a ring homomorphism. Similarly, the kernel of a semiring ho-42

momorphism is an ideal as well. However, there is an ideal of a semiring such43

that it cannot be considered as the kernel of a semiring homomorphism [1, 2].44

This condition can be true on a semiring by using a more restrict type of ideals45

(see [2]) namely a k-ideal defined by Henriksen [10]. Later, in [15], Sen and Ad-46

hikari defined the notion of a full k-ideal and used a full k-ideal to construct a47

congruence relation on a semiring such that the quotient semiring forms a ring.48

Furthermore, the notion of an h-ideal, a more special kind of k-ideals, was also49

defined by Henriksen [10].50

It is easy to construct a ternary semiring from a given semiring; however,51

there is a ternary semiring such that it cannot be considered as a semiring.52

Consequently, we are able to study a ternary semiring as a generalization of53

a semiring. In this work, we study the concept of a k-ideal of a ternary semiring54

as a similar way of Sen and Adhikari [15] on a semiring. In other words, we55

define the notion of a full k-ideal of a ternary semiring and use a full k-ideal to56

construct a congruence relation such that the quotient ternary semiring forms a57

ternary ring. Moreover, we also show that every h-ideal of a ternary semiring58

is immediately full and the concepts of k-ideals and h-ideals are coincidence in59

additively inverse ternary semirings.60

2. Preliminaries61

A nonempty set S together with a binary operation + : S × S → S is called a62

semigroup if a + (b + c) = (a + b) + c for all a, b, c ∈ S. A ternary groupoid is63

an algebra 〈S; f〉 such that f : S × S × S → S is a ternary operation on the64

nonempty set S. A ternary groupoid 〈S; f〉 is called a ternary semigroup if f65

satisfies the associative property on S, i.e., f(f(a, b, c), d, e) = f(a, f(b, c, d), e) =66

f(a, b, f(c, d, e)) for all a, b, c, d, e ∈ S. A ternary semiring is an algebra 〈S; +, f〉67
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type (2, 3) for which 〈S; +〉 is a semigroup, 〈S; f〉 is a ternary semigroup and for68

all a, b, x, y ∈ S, f(a+ b, x, y) = f(a, x, y) + f(b, x, y), f(x, a+ b, y) = f(x, a, y) +69

f(x, b, y) and f(x, y, a + b) = f(x, y, a) + f(x, y, b). A ternary semiring 〈S; +, f〉70

is said to be additively commutative if a+ b = b+ a for all a, b ∈ S.71

The set of all negative integers together with the usual addition and the72

usual multiplication is an example of a ternary semiring such that it cannot be73

considered as a semiring because every product of two negative integers is not a74

negative integer.75

Throughout this work, we simply write S instead of an additively commuta-76

tive ternary semiring 〈S; +, f〉 and the juxtaposition abc instead of f(a, b, c) for77

all a, b, c ∈ S.78

For any nonempty subsets A, B, and C of a ternary semiring S, we denote79

that A+B = {a+ b ∈ S | a ∈ A, b ∈ B} and ABC = {abc ∈ S | a ∈ A, b ∈ B, c ∈80

C}.81

A nonempty subset T of a ternary semiring S is called a subalgebra of S if82

T + T ⊆ T and TTT ⊆ T .83

Definition 2.1. A nonempty subset A of a ternary semiring S is called a left84

ideal (resp. lateral ideal, right ideal) of S if A + A ⊆ A and SSA ⊆ A (resp.85

SAS ⊆ A, ASS ⊆ A). A is called an ideal of S if A is a left ideal, a lateral ideal,86

and a right ideal of S.87

An element a of a ternary semiring S is called additively regular if a = a+b+a88

for some b ∈ S. If the element b is unique and satisfies b = b+a+b, then b is called89

an additively inverse of a in S and will be denoted by the notation a′. Particularly,90

if every element of S is additively regular, then S is called an additively regular91

ternary semiring. Furthermore, if every additively regular element of S has the92

unique additively inverse, then S is called an additively inverse ternary semiring.93

Let S be an additively inverse ternary semiring. It is obvious that x = (x′)′94

and (x+ y)′ = x′ + y′ for all x, y ∈ S.95

Lemma 2.2. Let S be an additively inverse ternary semiring. Then for any96

x, y, z ∈ S, (xyz)′ = x′yz = xy′z = xyz′.97

Proof. Let x, y, z ∈ S. Since xyz + x′yz + xyz = (x + x′ + x)yz = xyz and98

x′yz + xyz + x′yz = (x′ + x + x′)yz = x′yz, we obtain that (xyz)′ = x′yz. The99

cases of (xyz)′ = xy′z and (xyz)′ = xyz′ can be proved similarly.100

An element x of a ternary semiring S is called additively idempotent if x+x =
x. The set of all additively idempotent elements of S is defined by

E+ = {x ∈ S | x+ x = x}.

It is not difficult to verify that E+ is an ideal of S.101
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A partially ordered set (L,≤) is said to be a lattice if every pair of elements102

a and b of L has both greatest lower bound and least upper bound. If every103

subset A of a lattice L has both greatest lower bound and least upper bound,104

then L is called a complete lattice. It is not difficult to verify that a lattice L is105

a complete lattice if L has the greatest element and every nonempty subset of L106

has the greatest lower bound.107

A lattice L is called modular if L satisfies the following law; for all a, b ∈ L,108

a ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b for every x ∈ L where x ∨ y and x ∧ y is109

the least upper bound and the greatest lower bound of x, y ∈ L, respectively.110

Lemma 2.3. A lattice L is modular if and only if for any a, b, c ∈ L, a∧b = a∧c,111

a ∨ b = a ∨ c and b ≤ c implies b = c.112

3. Full k-ideals and h-ideals of ternary semirings113

The notions and some properties of full k-ideals and h-ideals of ternary semirings114

have been defined and studied in this section.115

Definition 3.1. An ideal A of a ternary semiring S is called a k-ideal of S if for116

any x ∈ S, x+ a = b for some a, b ∈ A implies x ∈ A. If A is a k-ideal of S and117

E+ ⊆ A, then A is said to be a full k-ideal of S.118

The following example is an example of an ideal of a ternary semiring which119

is not a k-ideal.120

Example 3.2. Define a ternary operation f on the set of all natural numbers N121

by f(x, y, z) = x ·y ·z for any x, y, z ∈ N where · is the usual multiplication. Then122

〈N;max, f〉 is a ternary semiring. We have that 2N := {2, 4, 6, 8, . . .}, the set of123

all positive even numbers, is an ideal of 〈N;max, f〉 but not a k-ideal because124

max{1, 2} = 2 but 1 /∈ 2N.125

The following example is an example of a k-ideal of a ternary semiring which126

is not a full k-ideal.127

Example 3.3. Define a ternary operation f on the set of all natural numbersN by128

f(x, y, z) = min{x, y, z} for any x, y, z ∈ N. Then 〈N;max, f〉 is a ternary semir-129

ing and E+ = N is the set of all additively idempotent elements of 〈N;max, f〉.130

It is easy to obtain that the set Im = {1, 2, 3, . . . ,m} for each m ∈ N, is a k-ideal131

of 〈N;max, f〉 but not a full k-ideal because E+ 6⊆ Im.132

We give an example of a proper full k-ideal of a ternary semiring as follows.133

Example 3.4. Let N0 be the set of all nonnegative integers. Then 〈N0; +, f〉 is134

a ternary semiring such that + is the usual addition and f(x, y, z) = x · y · z for135
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all x, y, z ∈ N0 where · is the usual multiplication. We have that the set of all136

additively idempotent elements of 〈N0; +, f〉 is {0} and 2N0 = {0, 2, 4, 6, . . .} is a137

full k-ideal.138

The proofs of the following two remarks are routine.139

Remark 3.5. Let {A}i∈I be a family of full k-ideals of a ternary semiring S.140

Then
⋂

i∈I
Ai is also a full k-ideal if it is not empty.141

Remark 3.6. Every k-ideal of an additively inverse ternary semiring S is an142

additively inverse subalgebra of S.143

The k-closure of a nonempty subset A of a ternary semiring S is defined by144

[A]k = {x ∈ S | x+ a = b for some a, b ∈ A}.

It is easy to prove that for any ∅ 6= A ⊆ S, A ⊆ [A]k if A+A ⊆ A. Furthermore,145

if A is closed under the addition, then [A]k is also closed. Now, we give some146

necessary properties of k-closure of nonempty subsets of a ternary semiring as147

follows.148

Lemma 3.7. Let A,B, and C be nonempty subsets of an n-ary semiring S. Then149

the following statements hold.150

(i) If A+A ⊆ A, then [A]k = [[A]k]k.151

(ii) If A ⊆ B, then [A]k ⊆ [B]k.152

(iii) [A]k + [B]k ⊆ [A+B]k.153

(iv) If A,B, and C are closed under the addition, then [A]kBC ⊆ [ABC]k,154

A[B]kC ⊆ [ABC]k and AB[C]k ⊆ [ABC]k.155

Proof. (i) Let ∅ 6= A ⊆ S be such that A + A ⊆ A. Obviously, [A]k ⊆ [[A]k]k.156

If x ∈ [[A]k]k, then x + y = z for some y, z ∈ [A]k such that y + a1 = b1 and157

z + a2 = b2 for some a1, a2, b1, b2 ∈ A. Then158

x+ y + a1 + a2 = z + a1 + a2 = z + a2 + a1 = b2 + a1.(1)

We have y+ a1 + a2 = b1 + a2 ∈ A+A ⊆ A and b2 + a1 ∈ A+A ⊆ A. Using (1),159

we get x ∈ [A]k and so [[A]k]k ⊆ [A]k. Therefore, [A]k = [[A]k]k.160

(ii) – (iv) are straightforward.161

Lemma 3.8. If A is an ideal of a ternary semiring S, then [A]k is a k-ideal of162

S.163
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Proof. Let A be an ideal of S. It is clear that [A]k is closed under addition. Using164

A being an ideal of S and Lemma 3.7(ii) and (iv), we obtain that SS[A]k ⊆165

[SSA]k ⊆ [A]k, S[A]kS ⊆ [SAS]k ⊆ [A]k and [A]kSS ⊆ [ASS]k ⊆ [A]k. If166

x ∈ S such that x + a = b for some a, b ∈ [A]k, then by Lemma 3.7(i), we get167

x ∈ [[A]k]k = [A]k. Therefore, [A]k is a k-ideal of S.168

The following corollary is directly obtained by Lemma 3.8.169

Corollary 3.9. Let S be a ternary semiring. Them the following statements170

hold.171

(i) An ideal A of S is a k-ideal if and only if A = [A]k.172

(ii) [E+]k is a full k-ideal of S.173

Lemma 3.10. Let A and B be two full k-ideals of an additively inverse ternary174

semiring S. Then [A + B]k is a full k-ideal of S such that A ⊆ [A + B]k and175

B ⊆ [A+B]k.176

Proof. Obviously, A+B is closed under the addition. We get that SS(A+B) ⊆177

SSA + SSB ⊆ A + B, S(A + B)S ⊆ SAS + SBS ⊆ A + B, and (A + B)SS ⊆178

ASS + BSS ⊆ A + B. Now, A + B is an ideal of S. Using Lemma 3.8, we179

immediately obtain that [A + B]k is a k-ideal. Since E+ ⊆ A and E+ ⊆ B,180

E+ = E+ + E+ ⊆ A+B ⊆ [A+B]k. Hence, [A+B]k is a full k-ideal of S. Let181

a ∈ A. Then a = a+ a′+ a = a+(a′ + a) ∈ A+E+ ⊆ A+B ⊆ [A+B]k. Hence,182

A ⊆ [A+B]k. Similarly, we are able to get that B ⊆ [A+B]k.183

Theorem 3.11. Let K(S) be the set of all full k-ideals of an additively inverse184

ternary semiring S. Then K(S) is a complete lattice which is also modular.185

Proof. We have that K(S) is a partially ordered set with respect to usual set186

inclusion. Let A,B ∈ K(S). By Remark 3.5 and Lemma 3.10, we obtain that187

A ∩ B ∈ K(S) and [A + B]k ∈ K(S), respectively. Define A ∧ B = A ∩ B and188

A∨B = [A+B]k. Obviously, A∩B is the greatest lower bound of A and B. Let189

C ∈ K(S) such that A ⊆ C and B ⊆ C. Then A+B ⊆ C +C ⊆ C. By Remark190

3.7(ii) and Corollary 3.9(i), we get [A+B]k ⊆ [C]k = C. Hence, [A+B]k is the191

least upper bound of A and B. Now, K(S) is a lattice.192

Clearly, S is the greatest element of K(S). Let {Ai}in∈I be a family of193

nonempty subsets of K(S). Using Remark 3.5, we obtain that
⋂

in∈I
Ai ∈ K(S)194

and immediately get that it is the greatest lower bounded of {Ai}i∈I . These195

imply that K(S) is a complete lattice.196

Finally, let A,B,C ∈ K(S) such that A ∧ B = A ∧ C, A ∨ B = A ∨ C, and197

B ⊆ C. Let x ∈ C. Then x ∈ C ⊆ A ∨ C = A ∨ B = [A + B]k. It follows that198

there exist a1, a2 ∈ A and b1, b2 ∈ B such that x+ a1 + b1 = a2 + b2. Then199

x+ a1 + a′1 + b1 = x+ a1 + b1 + a′1 = a2 + b2 + a′1 = a2 + a′1 + b2.(2)
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Now, x ∈ C, a1+a′1 ∈ E+ ⊆ C and b1, b2 ∈ B ⊆ C. Using (2), a2+a′1 ∈ [C]k = C.200

At this point, a1 + a′1, a2 + a′1 ∈ A∩C = A∧C = A∧B = A∩B ⊆ B. It follows201

that a1 + a′1 + b1 ∈ B and a2 + a′1 + b2 ∈ B. Using (2) again, we obtain that202

x ∈ [B]k = B and so C ⊆ B. Hence, B = C. By Lemma 2.3, K(S) is a modular203

lattice.204

Now, we introduce a more restrict class of ideals of a ternary semiring as205

follows.206

Definition 3.12. An ideal A of a ternary semiring S is called an h-ideal of S if207

for any x ∈ S, x+ a+ s = b+ s for some a, b ∈ A and s ∈ S implies x ∈ A.208

Every h-ideal of a ternary semiring is immediately full and so the notion of209

a full h-ideal need not to be defined.210

Remark 3.13. If A is an h-ideal of a ternary semiring S, then E+ ⊆ A.211

Proof. Let A be an h-ideal of S and let e ∈ E+. If a ∈ A, then e+a+ e = a+ e.212

Since A is an h-ideal, e ∈ A. Hence, E+ ⊆ A.213

It is clear that every h-ideal of a ternary semiring is a k-ideal. In general,214

the converse is not true as shown by the following example.215

Example 3.14. Let S = {a, b, c}. Define a ternary operation f on the power set216

P (S) of S by f(A,B,C) = A∩B ∩C for any A,B,C ∈ P (S). Then 〈P (S);∪, f〉217

is a ternary semiring. We have that T = {∅, {a}, {b}, {a, b}} is a k-ideal of218

〈P (S);∪, f〉. However, T is not an h-ideal because {c} ∪ {a, b} ∪ {a, c} = S =219

{b} ∪ {a, c} where {a, b}, {b} ∈ T but {c} /∈ T .220

Remark 3.15. Let {A}i∈I be a family of h-ideals of a ternary semiring S. Then221 ⋂
i∈I

Ai is also an h-ideal if it is not empty.222

Remark 3.16. Every h-ideal of an additively inverse ternary semiring S is an223

additively inverse subalgebra of S.224

Proof. Let H be an h-ideal of S. Clearly, H is a subalgebra of S. Let a ∈ H.225

Then (a + a′) + a + s = a + s for all s ∈ S. So, a + a′ ∈ H. This means that226

a′ + a = b for some b ∈ H and thus a′ + a+ t = b+ t for any t ∈ S. This implies227

that a′ ∈ H. Hence, H is additively inverse.228

The h-closure of a nonempty subset A of a ternary semiring S is defined by229

[A]h = {x ∈ S | x+ a+ s = b+ s for some a, b ∈ A, s ∈ S}.

It is obvious that [A]k ⊆ [A]h for any ∅ 6= A ⊆ S. Moreover, it is not difficult230

to verify that for any ∅ 6= A ⊆ S, A ⊆ [A]h if A + A ⊆ A. Furthermore, if A is231

closed under the addition, then [A]h is also closed. Now, we give some necessary232

properties of h-closure of nonempty subsets on a ternary semiring as follows.233
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Lemma 3.17. Let A,B, and C be nonempty subsets of a ternary semiring S.234

Then the following statements hold.235

(i) If A+A ⊆ A, then [A]h = [[A]h]h.236

(ii) If A ⊆ B, then [A]h ⊆ [B]h.237

(iii) [A]h + [B]h ⊆ [A+B]h.238

(iv) If A,B, and C are closed under the addition, then [A]hBC ⊆ [ABC]h,239

A[B]hC ⊆ [ABC]h and AB[C]h ⊆ [ABC]h.240

Proof. (i) Let ∅ 6= A ⊆ S be such that A + A ⊆ A. Obviously, [A]h ⊆ [[A]h]h.241

If x ∈ [[A]h]h, then x + y + s = z + s for some y, z ∈ [A]h and s ∈ S where242

y+a1+u = b1+u and z+a2+v = b2+v for some a1, a2, b1, b2 ∈ A and u, v ∈ S.243

Then244

x+ y + s+ a1 + u+ a2 + v = x+ (y + a1 + u) + a2 + s+ v

= x+ b1 + u+ a2 + s+ v

= x+ b1 + a2 + u+ s+ v(3)

x+ y + s+ a1 + u+ a2 + v = z + s+ a1 + u+ a2 + v

= a1 + (z + a2 + v) + s+ u

= a1 + b2 + v + s+ u.(4)

Using (3) and (4), we get that x+ (b1 + a2) + u+ s+ v = (a1 + b2) + u+ s+ v245

where b1 + a2, a1 + b2 ∈ A + A ⊆ A and u + s + v ∈ S implies x ∈ [A]h and so246

[[A]h]h ⊆ [A]h. Therefore, [A]h = [[A]h]h.247

(ii) – (iv) are straightforward.248

Lemma 3.18. If A is an ideal of a ternary semiring S, then [A]h is an h-ideal249

of S.250

Proof. Let A be an ideal of S. Clearly, [A]h is closed under the addition. Using251

A being an ideal of S and Lemma 3.17(ii) and (iv), we obtain that SS[A]k ⊆252

[SSA]k ⊆ [A]k, S[A]kS ⊆ [SAS]k ⊆ [A]k and [A]kSS ⊆ [ASS]k ⊆ [A]k. If x ∈ S253

such that x+a+s = b+s for some a, b ∈ [A]h and s ∈ S, then by Lemma 3.17(i),254

we get x ∈ [[A]h]h = [A]h. Therefore, [A]h is an h-ideal of S.255

The following corollary is directly obtained by Lemma 3.18.256

Corollary 3.19. Let S be an n-ary semiring. Then the following statements257

hold.258

(i) An ideal A of S is an h-ideal if and only if A = [A]h.259
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(ii) [E+]h is an h-ideal of S.260

Lemma 3.20. Let A and B be two h-ideals of an additively inverse ternary261

semiring S. Then [A + B]h is an h-ideal of S such that A ⊆ [A + B]h and262

B ⊆ [A+B]h.263

Proof. Since SS(A+B) ⊆ SSA+ SSB ⊆ A+B, S(A+B)S ⊆ SAS + SBS ⊆264

A+B, (A+B)SS ⊆ ASS+BSS ⊆ A+B, and A+B is closed under the addition,265

we get that A+B is an ideal of S. Using Lemma 3.18, we obtain that [A+B]h is an266

h-ideal. Let a ∈ A. Then a = a+a′+a = a+(a′+a) ∈ A+E+ ⊆ A+B ⊆ [A+B]h.267

Hence, A ⊆ [A+B]h. Similarly, we are able to get that B ⊆ [A+B]h.268

Theorem 3.21. Let H(S) be the set of all h-ideals of an additively inverse269

ternary semiring S. Then H(S) is a complete lattice which is also modular.270

Proof. We have that H(S) is a partially ordered set with respect to the usual271

set inclusion. Let A,B ∈ H(S). By Remark 3.15 and Lemma 3.20, we obtain272

that A ∩ B ∈ H(S) and [A + B]h ∈ H(S), respectively. Define A ∧ B = A ∩ B273

and A ∨ B = [A + B]h. Obviously, A ∩ B is the greatest lower bound of A and274

B. Let C ∈ H(S) such that A ⊆ C and B ⊆ C. Then A + B ⊆ C + C ⊆ C.275

By Remark 3.17(ii) and Corollary 3.19(i), we get [A + B]h ⊆ [C]h = C. Hence,276

[A+B]h is the least upper bound of A and B. Now, H(S) is a lattice.277

Clearly, S is the greatest element of H(S). Let {Ai}in∈I be a family of278

nonempty subsets of H(S). Using Remark 3.15, we obtain that
⋂

in∈I
Ai ∈ H(S)279

and immediately get that it is the greatest lower bounded of {Ai}i∈I . These280

imply that H(S) is a complete lattice.281

Finally, let A,B,C ∈ H(S) such that A ∧ B = A ∧ C, A ∨ B = A ∨ C, and282

B ⊆ C. Let x ∈ C. Then x ∈ C ⊆ A ∨ C = A ∨ B = [A + B]h. It follows that283

there exist a1, a2 ∈ A, b1, b2 ∈ B and s ∈ S such that x+a1+ b1+s = a2+ b2+s.284

Then285

x+ a1 + a′1 + b1 + s = x+ a1 + b1 + s+ a′1

= a2 + b2 + s+ a′1

= a2 + a′1 + b2 + s.(5)

Since, x ∈ C, a1 + a′1 ∈ E+ ⊆ C and b1 ∈ B ⊆ C, we have x + a1 + a′1 + b1 ∈286

C. Using (5) and b2 ∈ B ⊆ C, we get a2 + a′1 ∈ [C]h = C. At this point,287

a1 + a′1, a2 + a′1 ∈ A ∩ C = A ∧ C = A ∧ B = A ∩ B ⊆ B. It follows that288

a1+a′1+b1 ∈ B and a2+a′1+b2 ∈ B. Using (5) again, we obtain that x ∈ [B]h = B289

and so C ⊆ B. Hence, B = C. By Lemma 2.3, H(S) is a modular lattice.290
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4. Ternary ring congruences291

In this section, we characterize a ternary ring congruence with respect to a full292

k-ideal of an additively inverse ternary semirings.293

Definition 4.1. A binary relation ρ on a ternary semiring 〈S; +, f〉 is said to294

be a congruence if ρ is an equivalence relation on S and satisfies the following295

properties; for any a, b, x, y ∈ S, (a, b) ∈ ρ implies (a + x, b + x), (axy, bxy),296

(xay, xby), (xya, xyb) ∈ ρ.297

Definition 4.2. A ternary semiring 〈S; +, f〉 is called a ternary ring if 〈S; +〉 is298

a group. In other words, the following conditions are satisfied.299

(i) There exists 0 ∈ S such that x+ 0 = x = 0 + x for all x ∈ S.300

(ii) For each x ∈ S, there is y ∈ S such that x+ y = 0 = y + x.301

If 〈S; +, f〉 is a ternary ring, then the element y in (2) is usually denoted by −x.302

Definition 4.3. A congruence ρ on a ternary semiring S is called a ternary ring303

congruence if the quotient ternary semiring S/ρ := {aρ | a ∈ S} is a ternary ring.304

Theorem 4.4. Let A be a full k-ideal of an additively inverse ternary semiring305

S. Then the relation306

ρA = {(a, b) ∈ S × S | a+ b′ ∈ A}

is a ternary ring congruence such that −(aρA) = a′ρA.307

Proof. Let A be a full k-ideal of S.308

Firstly, we show that ρ is an equivalence relation on S. Let a, b, c ∈ S.309

Since a + a′ ∈ E+ ⊆ A, (a, a) ∈ ρA. Thus, ρA is reflexive. If (a, b) ∈ ρA, then310

a+b′ ∈ A. By Remark 3.6, we get b+a′ = (b′)′+a′ = (b′+a)′ = (a+b′)′ ∈ A and311

so (b, a) ∈ ρA. Thus, ρA is symmetric. Assume that (a, b), (b, c) ∈ ρA It follows312

that a+ b′ ∈ A and b+ c′ ∈ A. Then a+ c′ + b+ b′ ∈ A. Since b+ b′ ∈ E+ ⊆ A,313

a + c′ ∈ [A]k = A. So, (a, c) ∈ ρA and thus ρA is transitive. Now, ρA is an314

equivalence relation.315

Secondly, let a, b, x, y ∈ S. Assume that (a, b) ∈ ρA and so a+ b′ ∈ A. Then316

(a+ x) + (b+ x)′ = a+ x+ b′ + x′ = (a+ b′) + (x+ x′) ∈ A+ E+ ⊆ A+A ⊆ A.

Hence, (a+ x, b+ x) ∈ ρA. Using Lemma 2.2, we obtain that317

axy + (bxy)′ = axy + b′xy = (a+ b′)xy ∈ ASS ⊆ A

Hence, (axy, bxy) ∈ ρA. Analogously, we are able to obtain that (xay, xby), (xya, xyb) ∈318

ρA. Now, ρA is a congruence on S.319
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Finally, we show that S/ρA is a ternary ring together with the operations ⊕320

and F on S/ρA defined by aρA⊕bρA = (a+b)ρA and F (aρA, bρA, cρA) = (abc)ρA321

for any a, b, c ∈ S. It is immediately to obtain that 〈S/ρA;⊕, F 〉 is a quotient322

ternary semiring of 〈S; +, f〉. Let e ∈ E+ and x ∈ S. Then (e + x) + x′ =323

e+ (x+ x′) ∈ E+ + E+ = E+ ⊆ A and so (e+ x, x) ∈ ρA. It follows that324

eρA ⊕ xρA = (e+ x)ρA = xρA.

Since e+ (x+ x′)′ = e+ x′ + x ∈ A, (e, x + x′) ∈ ρA. It turns out that325

xρA ⊕ x′ρA = (x+ x′)ρA = eρA.

Therefore, S/ρA is a ternary ring.326

Theorem 4.5. Let ρ be a congruence on an additively inverse ternary semiring327

S such that S/ρ is a ternary ring. Then there exists a full k-ideal A of S such328

that ρA = ρ.329

Proof. Let A = {a ∈ S | (a, e) ∈ ρ for some e ∈ E+}. Since ρ is reflexive,330

E+ ⊆ A 6= ∅. Let a, b ∈ A. Then there exist e, f ∈ E+ such that (a, e) ∈ ρ and331

(b, f) ∈ ρ. Then (a + b, e + f) ∈ ρ and e + f ∈ E+. Hence a + b ∈ A and thus332

A + A ⊆ A. If x ∈ SSA, then x = stc for some s, t ∈ S and c ∈ A such that333

(c, g) ∈ ρ for some g ∈ E+. It follows that (x, stg) = (stc, stg) ∈ ρ. Since E+ is334

an ideal of S, stg ∈ SSE+ ⊆ E+. So, x ∈ A leads to SSA ⊆ A. Similarly, we335

are able to obtain that SAS ⊆ A and ASS ⊆ A. Now, A is an ideal of S.336

Let x ∈ [A]k. Then x+a = b for some a, b ∈ A where (a, e) ∈ ρ and (b, f) ∈ ρ337

for some e, f ∈ E+. However, fρ and eρ are additively idempotent in the ternary338

ring S/ρ. This implies that eρ = fρ is the zero element of S/ρ. It follows that339

fρ = bρ = (x + a)ρ = xρ⊕ aρ = xρ⊕ eρ = xρ. Thus, (x, f) ∈ ρ where f ∈ E+.340

Thus, x ∈ A and so [A]k = A. By Corollary 3.9(i), A is a full k-ideal of S.341

Finally, we show that ρ = ρA. Let (a, b) ∈ ρ. Then (a+ b′, b+ b′) ∈ ρ. Since342

b+ b′ ∈ E+, a+ b′ ∈ A and thus (a, b) ∈ ρA. Hence, ρ ⊆ ρA. If (a, b) ∈ ρA, then343

a+ b′ ∈ A. Thus, (a+ b′, e) ∈ ρ for some e ∈ E+. We have that bρ = eρ⊕ bρ =344

(a+ b′)ρ⊕ bρ = aρ⊕ b′ρ⊕ bρ = aρ⊕ (b+ b′)ρ = aρ, since b+ b′ ∈ E+. This shows345

that (a, b) ∈ ρ and so ρA ⊆ ρ. Therefore, ρ = ρA.346

We note that the concepts of full k-ideals and h-ideals of an additively inverse347

ternary semiring are coincidence as the following remark.348

Remark 4.6. The concepts of full k-ideals and h-ideals of an additively inverse349

ternary semiring are coincidence.350

Proof. We immediately obtain that every h-ideal is a full k-ideal. Let A be a351

full k-ideal. By Theorem 4.4, we obtain that S/ρ is a ternary ring and A is its352

zero element. Let x ∈ S and x + a + s = b + s for some a, b ∈ A, s ∈ S. Then353

xρ+aρ+ sρ = bρ+ sρ and so xρ+0+ sρ = 0+ sρ. Hence, xρ = 0 implies x ∈ A.354

Therefore, A is an h-ideal.355
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5. Conclusion and discussion356

The notions of a k-ideal and a full k-ideal of a ternary semiring were defined in357

Section 3. There is a k-ideal which is not full as it is shown by Example 3.3.358

However, every h-ideal of a ternary semiring is immediately full. Moreover, h-359

ideals and full k-ideals are coincidence in an additively inverse ternary semiring360

and the set of all of them forms a complete lattice and also a modular lattice.361

A group (ring) congruence is such a congruence relation on a semigroup362

(semiring) that the quotient semigroup (semiring) is a group (ring). Similarly,363

a ternary ring congruence is such a congruence relation on a ternary semiring364

that the quotient ternary semiring is a ternary ring. Constructing a relation with365

respect to a full k-ideal of an additively inverse ternary semiring is a way to366

obtain a ternary ring congruence.367

We claim that all results of this work are also true for an n-ary semiring368

for any n ≥ 3. However, some basic properties of an additively inverse n-ary369

semiring have to be defined and investigated.370
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