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Abstract

In this work, we study the notions of k-ideals and h-ideals of ternary s
emirings and investigate some of their algebraic properties. Furthermore, we
construct a congruence relation with respect to a full k-ideal on a ternary
semiring for the purpose of forming a ternary ring from the quotient ternary
semiring.

Keywords: ternary ring, ternary semiring, ring congruence, k-ideal, h-
ideal.
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1. INTRODUCTION

The concept of an algebraic structure together with a ternary operation was
introduced first by Lehmer [12] in 1932. Later, Sioson [16] defined the notion
of a ternary semigroup and studied algebraic properties of ideals on a ternary
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semigroup. Afterward, in 1990, the notion of a regularity on a ternary semigroup
was investigated by Santiago [14]. The concept of an algebraic structure which
contains a binary operation and a ternary operation was defined by Lister [13]
as a ternary ring. As a generalization of a ternary ring, Dutta and Kar [5, 6, 7]
defined the notion of a ternary semiring and investigated some of their properties
such as regularity and Jacobson radical.

A semiring which is a notable generalization of rings and distributive lattices
was defined first by Vandiver [17]. This algebraic structure appears in a natural
manner in some applications to the theory of automata, formal languages, op-
timization theory and other branches of applied mathematics (for example, see
[3, 4, 8,9, 11]). In abstract algebra, it is not difficult to prove that the kernel
of a ring homomorphism is an ideal and each ideal of a ring can be considered
as the kernel of a ring homomorphism. Similarly, the kernel of a semiring ho-
momorphism is an ideal as well. However, there is an ideal of a semiring such
that it cannot be considered as the kernel of a semiring homomorphism [1, 2].
This condition can be true on a semiring by using a more restrict type of ideals
(see [2]) namely a k-ideal defined by Henriksen [10]. Later, in [15], Sen and Ad-
hikari defined the notion of a full k-ideal and used a full k-ideal to construct a
congruence relation on a semiring such that the quotient semiring forms a ring.
Furthermore, the notion of an h-ideal, a more special kind of k-ideals, was also
defined by Henriksen [10].

It is easy to construct a ternary semiring from a given semiring; however,
there is a ternary semiring such that it cannot be considered as a semiring.
Consequently, we are able to study a ternary semiring as a generalization of
a semiring. In this work, we study the concept of a k-ideal of a ternary semiring
as a similar way of Sen and Adhikari [15] on a semiring. In other words, we
define the notion of a full k-ideal of a ternary semiring and use a full k-ideal to
construct a congruence relation such that the quotient ternary semiring forms a
ternary ring. Moreover, we also show that every h-ideal of a ternary semiring
is immediately full and the concepts of k-ideals and h-ideals are coincidence in
additively inverse ternary semirings.

2. PRELIMINARIES

A nonempty set S together with a binary operation 4+ : S x § — S is called a
semigroup if a + (b+¢) = (a+b) + ¢ for all a,b,c € S. A ternary groupoid is
an algebra (S; f) such that f : S xS xS — S is a ternary operation on the
nonempty set S. A ternary groupoid (S; f) is called a ternary semigroup if f
satisfies the associative property on S, i.e., f(f(a,b,c),d,e) = f(a, f(b,c,d),e) =
f(a,b, f(c,d,e)) for all a,b,c,d,e € S. A ternary semiring is an algebra (S;+, f)



68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

04

95

96

97

98

99

100

101

ON TERNARY RING CONGRUENCES OF TERNARY SEMIRINGS 3

type (2,3) for which (S;+) is a semigroup, (S; f) is a ternary semigroup and for
all a,b,z,y € S, f(a+b,z,y) = fla,z,y) + f(b,z,y), f(z,a+by) = f(z,a,y) +
f(z,b,y) and f(x,y,a +b) = f(z,y,a) + f(x,y,b). A ternary semiring (S;+, f)
is said to be additively commutative if a +b = b+ a for all a,b € S.

The set of all negative integers together with the usual addition and the
usual multiplication is an example of a ternary semiring such that it cannot be
considered as a semiring because every product of two negative integers is not a
negative integer.

Throughout this work, we simply write .S instead of an additively commuta-
tive ternary semiring (S;+, f) and the juxtaposition abe instead of f(a,b,c) for
all a,b,ce S.

For any nonempty subsets A, B, and C of a ternary semiring S, we denote
that A+ B={a+beS|ac Abe B} and ABC ={abce S|a€ A,be B,ce
C}.

A nonempty subset T of a ternary semiring S is called a subalgebra of S if
T+TCTandTTT CT.

Definition 2.1. A nonempty subset A of a ternary semiring S is called a left
ideal (resp. lateral ideal, right ideal) of S if A+ A C A and SSA C A (resp.
SAS C A, ASS C A). Ais called an ideal of S if A is a left ideal, a lateral ideal,
and a right ideal of S.

An element ¢ of a ternary semiring S is called additively reqular if a = a+b+a
for some b € S. If the element b is unique and satisfies b = b+a+b, then b is called
an additively inverse of a in S and will be denoted by the notation a’. Particularly,
if every element of S is additively regular, then S is called an additively reqular
ternary semiring. Furthermore, if every additively regular element of S has the
unique additively inverse, then S is called an additively inverse ternary semiring.

Let S be an additively inverse ternary semiring. It is obvious that = = (a’)’
and (x +y) =2’ + ¢ forall z,y € S.

Lemma 2.2. Let S be an additively inverse ternary semiring. Then for any
x,y,z2 €8, (xyz) = 2'yz = zy'z = zy2’.

Proof. Let x,y,z € S. Since xyz + z'yz + xyz = (x + 2/ + x)yz = xyz and
P'yz + zyz + 2'yz = (2 + x + 2')yz = 2'yz, we obtain that (xyz) = 2’yz. The
cases of (zyz) = xy'z and (zyz)’ = xyz’ can be proved similarly. [ ]

An element x of a ternary semiring S is called additively idempotent if x+x =
x. The set of all additively idempotent elements of S is defined by

Eft={reS|z+x=z}.

It is not difficult to verify that E* is an ideal of S.
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A partially ordered set (L, <) is said to be a lattice if every pair of elements
a and b of L has both greatest lower bound and least upper bound. If every
subset A of a lattice L has both greatest lower bound and least upper bound,
then L is called a complete lattice. 1t is not difficult to verify that a lattice L is
a complete lattice if L has the greatest element and every nonempty subset of L
has the greatest lower bound.

A lattice L is called modular if L satisfies the following law; for all a,b € L,
a < bimplies a V (x Ab) = (aV x) Ab for every x € L where x Vy and x Ay is
the least upper bound and the greatest lower bound of =,y € L, respectively.

Lemma 2.3. A lattice L is modular if and only if for any a,b,c € L, aAb = aAc,
aVb=aVcandb < c impliesb=c.

3. FULL k-IDEALS AND h-IDEALS OF TERNARY SEMIRINGS

The notions and some properties of full k-ideals and h-ideals of ternary semirings
have been defined and studied in this section.

Definition 3.1. An ideal A of a ternary semiring S is called a k-ideal of S if for
any x € S, x +a = b for some a,b € A implies x € A. If A is a k-ideal of S and
ET C A, then A is said to be a full k-ideal of S.

The following example is an example of an ideal of a ternary semiring which
is not a k-ideal.

Example 3.2. Define a ternary operation f on the set of all natural numbers N
by f(z,y,z) = x-y-z for any z,y,z € N where - is the usual multiplication. Then
(N;max, f) is a ternary semiring. We have that 2N := {2,4,6,8,...}, the set of
all positive even numbers, is an ideal of (N;max, f) but not a k-ideal because
max{1,2} =2 but 1 ¢ 2N.

The following example is an example of a k-ideal of a ternary semiring which
is not a full k-ideal.

Example 3.3. Define a ternary operation f on the set of all natural numbers N by
f(z,y,z) = min{z,y, 2z} for any x,y,z € N. Then (N;max, f) is a ternary semir-
ing and E* = N is the set of all additively idempotent elements of (N;max, f).
It is easy to obtain that the set I, = {1,2,3,...,m} for each m € N, is a k-ideal
of (N;max, f) but not a full k-ideal because ET & I,,,.

We give an example of a proper full k-ideal of a ternary semiring as follows.

Example 3.4. Let Ny be the set of all nonnegative integers. Then (Ng;+, f) is
a ternary semiring such that + is the usual addition and f(z,y,2) =z -y -z for
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all x,y,z € Ny where - is the usual multiplication. We have that the set of all
additively idempotent elements of (Ng;+, f) is {0} and 2Ny = {0,2,4,6,...} is a
full k-ideal.

The proofs of the following two remarks are routine.

Remark 3.5. Let {A};cr be a family of full k-ideals of a ternary semiring S.
Then ();c; Ai is also a full k-ideal if it is not empty.

Remark 3.6. Every k-ideal of an additively inverse ternary semiring S is an
additively inverse subalgebra of S.

The k-closure of a nonempty subset A of a ternary semiring S is defined by
[Alx ={z € S| x+a=>b for some a,b € A}.

It is easy to prove that for any 0 # A C S, A C [A]; if A+ A C A. Furthermore,
if A is closed under the addition, then [A]; is also closed. Now, we give some
necessary properties of k-closure of nonempty subsets of a ternary semiring as
follows.

Lemma 3.7. Let A, B, and C be nonempty subsets of an n-ary semiring S. Then
the following statements hold.

(i) If A+AC A, then [A]y = [[Alx]k.
(ii) If A C B, then [Al C [Blx.
(iii) [Ali + [Blk € [A+ Bl

(iv) If A,B, and C are closed under the addition, then [A]yBC C [ABC|g,
A[B|C C [ABC]) and AB|C] C [ABC].

Proof. (i) Let ) # A C S be such that A+ A C A. Obviously, [A]x C [[A]x]k-
If z € [[A]x]k, then z 4+ y = z for some y,z € [A]x such that y + a; = b; and
z 4+ ag = by for some ay,as,b1,bs € A. Then

(1) r+yt+artar=z+a+ar=z+ax+a; =by+aj.

We have y+a; +as=b1+as € A+ AC Aand by+a; € A+ A C A. Using (1),
we get x € [A] and so [[A]x]x C [A]x. Therefore, [A]x = [[Alx]k-
(73) — (iv) are straightforward. ]

Lemma 3.8. If A is an ideal of a ternary semiring S, then [A]y is a k-ideal of
S.
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Proof. Let Abeanideal of S. It is clear that [A]y is closed under addition. Using
A being an ideal of S and Lemma 3.7(i7) and (iv), we obtain that SS[A]; C
x € S such that x + a = b for some a,b € [A]j, then by Lemma 3.7(i), we get
x € [[A]g)k = [A]x. Therefore, [A]y is a k-ideal of S. |

The following corollary is directly obtained by Lemma 3.8.

Corollary 3.9. Let S be a ternary semiring. Them the following statements
hold.

(1) An ideal A of S is a k-ideal if and only if A = [Al.
(i1) [ET]k is a full k-ideal of S.

Lemma 3.10. Let A and B be two full k-ideals of an additively inverse ternary
semiring S. Then [A + Bl is a full k-ideal of S such that A C [A + B] and
B C [A+ Bli.

Proof. Obviously, A+ B is closed under the addition. We get that SS(A+ B) C
SSA+SSBC A+ B, S(A+ B)S C SAS+SBS C A+ B, and (A+ B)SS C
ASS + BSS C A+ B. Now, A+ B is an ideal of S. Using Lemma 3.8, we
immediately obtain that [A + B]y is a k-ideal. Since E* C A and Et C B,
Et =FEt+Et C A+ B C [A+ B]i. Hence, [A + Bl is a full k-ideal of S. Let
a€A Thena=a+d +a=a+(d +a) € A+ ET C A+ B C [A+ BJ;. Hence,
A C [A + B]g. Similarly, we are able to get that B C [A + BJi. ]

Theorem 3.11. Let K(S) be the set of all full k-ideals of an additively inverse
ternary semiring S. Then K(S) is a complete lattice which is also modular.

Proof. We have that K(S) is a partially ordered set with respect to usual set
inclusion. Let A, B € K(S). By Remark 3.5 and Lemma 3.10, we obtain that
ANB e K(S) and [A+ Bl € K(S), respectively. Define AANB = AN B and
AV B = [A+ B]j. Obviously, AN B is the greatest lower bound of A and B. Let
C € K(S) such that AC C and B C C. Then A+ B C C+C C C. By Remark
3.7(ii) and Corollary 3.9(7), we get [A + B]; C [C]r = C. Hence, [A + B} is the
least upper bound of A and B. Now, K (S) is a lattice.

Clearly, S is the greatest element of K(S). Let {4;}iner be a family of
nonempty subsets of K(S5). Using Remark 3.5, we obtain that (1,,c; A; € K(S5)
and immediately get that it is the greatest lower bounded of {A;};c;. These
imply that K(S) is a complete lattice.

Finally, let A, B,C € K(S) such that ANB=AANC, AV B=AVC, and
BCC. Letz € C. Thenz € C C AVC = AV B = [A+ BJj. It follows that
there exist ay,a0 € A and b1,by € B such that  + a1 + by = as + by. Then

(2) z4+a+ay+b=x+a+b +a) =ay+by+a) =az+a)+bs.
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Now, z € C,a;+a} € EY C C and by,bs € B C C. Using (2), as+a} € [Clx = C.
At this point, a; +a},as+a} € ANC=ANC =AANB=ANB C B. It follows
that a1 +a} + b1 € B and ag + a) + be € B. Using (2) again, we obtain that
x € [B]y = B and so C' C B. Hence, B =C. By Lemma 2.3, K(5) is a modular
lattice. [ ]

Now, we introduce a more restrict class of ideals of a ternary semiring as
follows.

Definition 3.12. An ideal A of a ternary semiring S is called an h-ideal of S if
forany x € S, x4+ a+ s=>b+ s for some a,b € A and s € S implies = € A.

Every h-ideal of a ternary semiring is immediately full and so the notion of
a full h-ideal need not to be defined.

Remark 3.13. If A is an h-ideal of a ternary semiring S, then E+ C A.

Proof. Let A be an h-ideal of S and let e € ET. If a € A, thene+a+e =a+e.
Since A is an h-ideal, e € A. Hence, ET C A. [

It is clear that every h-ideal of a ternary semiring is a k-ideal. In general,
the converse is not true as shown by the following example.

Example 3.14. Let S = {a, b, c}. Define a ternary operation f on the power set
P(S) of Sby f(A,B,C)=ANBNC for any A, B,C € P(S). Then (P(S);U, f)
is a ternary semiring. We have that T = {0, {a}, {b},{a,b}} is a k-ideal of
(P(S);U, f). However, T is not an h-ideal because {c} U {a,b} U {a,c} = S =
{b} U{a, c} where {a,b},{b} € T but {c} ¢ T.

Remark 3.15. Let {A};c; be a family of h-ideals of a ternary semiring S. Then
Nicr Ai is also an h-ideal if it is not empty.

Remark 3.16. Every h-ideal of an additively inverse ternary semiring S is an
additively inverse subalgebra of S.

Proof. Let H be an h-ideal of S. Clearly, H is a subalgebra of S. Let a € H.
Then (a+d)4+a+s=a+sforalseS. So, a+ada € H. This means that
a' +a =" for some b € H and thus @’ +a+t=0b+t for any t € S. This implies
that o’ € H. Hence, H is additively inverse. [ ]

The h-closure of a nonempty subset A of a ternary semiring S is defined by
[Alp ={z € S|z+a+s=0b+s for some a,bec A,s € S}.

It is obvious that [A], C [A], for any () # A C S. Moreover, it is not difficult
to verify that for any ) # A C S, A C [A], if A+ A C A. Furthermore, if A is
closed under the addition, then [A], is also closed. Now, we give some necessary
properties of h-closure of nonempty subsets on a ternary semiring as follows.



234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

257

258

259

8 J. SANBORISOOT AND P. PALAKAWONG NA AYUTTHAYA

Lemma 3.17. Let A, B, and C be nonempty subsets of a ternary semiring S.
Then the following statements hold.

(1
(7

(vi1

IFA+ACA, then [Aln = [Alu]s.
If A C B, then [A], C [B]p.
[A]p, + [B]n € [A + Blp.

If A,B, and C are closed under the addition, then [A],BC C [ABC],
A[B]hC C [ABCYy, and AB|C];, C [ABCl,.

)
)
)
(iv)

Proof. (i) Let ) # A C S be such that A+ A C A. Obviously, [A]x C [[A]n]n-
If x € [[Alp]p, then z+y+ s = z + s for some y,z € [A], and s € S where
y+ai+u=>b;+uand z+as +v = by +v for some ay,as,b1,b0 € A and u,v € S.
Then

r+y+st+atutat+v = z+@y+a+u)+a+s+o
r+bi+utas+s+v

(3) = x+b+atut+s+v
r+y+s+artutart+v = z+s+ar+utas+v
= m+(z+ax+v)+s+u
(4) = a1 +by+v+s+u.

Using (3) and (4), we get that x + (b1 + a2) +u+s+v= (a1 +b2) +u+s+v
where by + ag,a; + by € A+ AC Aand u+ s+ v € S implies z € [A];, and so
[Als]n € [Al. Therefore, [4], = [Als]s.

(73) — (iv) are straightforward. ]

Lemma 3.18. If A is an ideal of a ternary semiring S, then [A]y is an h-ideal
of S.

Proof. Let A be an ideal of S. Clearly, [A]y, is closed under the addition. Using
A being an ideal of S and Lemma 3.17(ii) and (iv), we obtain that SS[A]; C
(SSAJL C [Alg, S[ALS C [SAS] C [Aly and [A]SS C [ASS C [Aly. T 2 € §
such that z+a+s = b+s for some a,b € [A], and s € S, then by Lemma 3.17(7),
we get x € [[A]n]n = [A]n. Therefore, [A], is an h-ideal of S. |

The following corollary is directly obtained by Lemma 3.18.

Corollary 3.19. Let S be an n-ary semiring. Then the following statements
hold.

(1) An ideal A of S is an h-ideal if and only if A = [A],.
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(i7) [ET]p is an h-ideal of S.

Lemma 3.20. Let A and B be two h-ideals of an additively inverse ternary
semiring S. Then [A + B]p, is an h-ideal of S such that A C [A + B], and
B C [A+ Bjp.

Proof. Since SS(A+ B) C SSA+SSBC A+ B, S(A+ B)S C SAS+SBS C
A+ B, (A+B)SS C ASS+BSS C A+ B, and A+ B is closed under the addition,
we get that A+ B is an ideal of S. Using Lemma 3.18, we obtain that [A+ B], is an
h-ideal. Let a € A. Thena = a+d'+a = a+(a’+a) € A+ET C A+B C [A+B];.
Hence, A C [A + B],. Similarly, we are able to get that B C [A + B];,. ]

Theorem 3.21. Let H(S) be the set of all h-ideals of an additively inverse
ternary semiring S. Then H(S) is a complete lattice which is also modular.

Proof. We have that H(S) is a partially ordered set with respect to the usual
set inclusion. Let A, B € H(S). By Remark 3.15 and Lemma 3.20, we obtain
that AN B € H(S) and [A + B], € H(S), respectively. Define ANB = AN B
and AV B = [A 4 B]y. Obviously, AN B is the greatest lower bound of A and
B. Let C € H(S) such that A C C and B C C. Then A+ BC C+C C C.
By Remark 3.17(i7) and Corollary 3.19(7), we get [A + B], C [C], = C. Hence,
[A + BJp, is the least upper bound of A and B. Now, H(S) is a lattice.

Clearly, S is the greatest element of H(S). Let {A;}iner be a family of
nonempty subsets of H(S). Using Remark 3.15, we obtain that (;,.; A; € H(S)
and immediately get that it is the greatest lower bounded of {4;};c;. These
imply that H(S) is a complete lattice.

Finally, let A, B,C € H(S) such that ANB=AANC, AV B=AVC, and
BCC. Letz € C. Thenz € CC AVvC = AV B = [A+ B]),. It follows that
there exist aj, a0 € A, by,bs € B and s € S such that z+a1+b1+5 = ag+by+s.
Then

r+ar+ay+bi+s = x+a+b+s+a)
= ay+by+s+a)
(5) = a2+a'1+b2+s.

Since, z € C, a1 +a} € EY CC and by € B C C, we have z + a1 +d} + b €
C. Using (5) and by € B C C, we get as + a} € [C], = C. At this point,
a; +aj,as+ay € AnNC =ANC =AANB =ANB C B. It follows that
a1+a}+b1 € B and as+a+be € B. Using (5) again, we obtain that 2 € [B], = B
and so C' C B. Hence, B = C. By Lemma 2.3, H(S) is a modular lattice. ]
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4. TERNARY RING CONGRUENCES

In this section, we characterize a ternary ring congruence with respect to a full
k-ideal of an additively inverse ternary semirings.

Definition 4.1. A binary relation p on a ternary semiring (S;+, f) is said to
be a congruence if p is an equivalence relation on S and satisfies the following
properties; for any a,b,z,y € S, (a,b) € p implies (a + z,b + x), (azxy,bzry),
(zay, xby), (zya,zyb) € p.

Definition 4.2. A ternary semiring (S;+, f) is called a ternary ring if (S;+) is
a group. In other words, the following conditions are satisfied.

(i) There exists 0 € S such that x +0 =2 =04z for all x € S.
(1) For each x € S, thereis y € S such that t +y=0=y + z.
If (S;+, f) is a ternary ring, then the element y in (2) is usually denoted by —z.

Definition 4.3. A congruence p on a ternary semiring S is called a ternary ring
congruence if the quotient ternary semiring S/p := {ap | a € S} is a ternary ring.

Theorem 4.4. Let A be a full k-ideal of an additively inverse ternary semiring
S. Then the relation

pa={(a,b) e SxS|a+b €A}
is a ternary ring congruence such that —(apa) = a'pa.

Proof. Let A be a full k-ideal of S.

Firstly, we show that p is an equivalence relation on S. Let a,b,c € S.
Since a +a € EY C A, (a,a) € pa. Thus, py is reflexive. If (a,b) € pa, then
a+b € A. By Remark 3.6, we get b+da' = (V) +d' = (V/+a) = (a+V') € A and
so (b,a) € pa. Thus, pa is symmetric. Assume that (a,b), (b,c) € pa It follows
that a +b € Aandb+c € A. Thena+c +b+b € A. Sinceb+b € ET C A,
a+cd € [Aly = A. So, (a,¢) € pa and thus p, is transitive. Now, py is an
equivalence relation.

Secondly, let a,b,z,y € S. Assume that (a,b) € ps and so a + V' € A. Then

(a+z)+(b+2) =at+z+b+2'=(a+b)+(xz+2)e A+ EY CA+ACA.
Hence, (a 4+ z,b+ x) € p4. Using Lemma 2.2, we obtain that

ary + (bry) = avy +bry = (a + b )ay € ASSC A

Hence, (axy, bry) € pa. Analogously, we are able to obtain that (zay, zby), (xya, xyb) €

pa. Now, pa is a congruence on S.
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Finally, we show that S/p4 is a ternary ring together with the operations @®
and F on S/py defined by aps ®bpa = (a+b)pa and F(apa,bpa,cpa) = (abe)pa
for any a,b,c € S. It is immediately to obtain that (S/pa;®, F) is a quotient
ternary semiring of (S;+,f). Let e € ET and z € S. Then (e + x) + 2’ =
e+ (x+2')eET+ET=ET C Aandso (e +x,7) € pa. It follows that

epa @ xpa = (e +x)pa = xpa.

Since e+ (z +2') =e+a' +x € A, (e,x +12') € pa. It turns out that
zpa®x'pa = (z+a")pa=epa.

Therefore, S/p4 is a ternary ring. [ |

Theorem 4.5. Let p be a congruence on an additively inverse ternary semiring
S such that S/p is a ternary ring. Then there exists a full k-ideal A of S such
that pa = p.

Proof. Let A = {a € S| (a,e) € p for some e € E*}. Since p is reflexive,
Et C A#(. Let a,b € A. Then there exist e, f € ET such that (a,e) € p and
(b, f) € p. Then (a+b,e+ f) € pand e+ f € ET. Hence a +b € A and thus
A4+ AC A If x € SSA, then x = stc for some s,t € S and ¢ € A such that
(c,g) € p for some g € ET. Tt follows that (z, stg) = (stc, stg) € p. Since ET is
an ideal of S, stg € SSET C ET. So, x € A leads to SSA C A. Similarly, we
are able to obtain that SAS C A and ASS C A. Now, A is an ideal of S.

Let « € [A]g. Then 2+a = b for some a,b € A where (a,e) € pand (b, f) € p
for some e, f € ET. However, fp and ep are additively idempotent in the ternary
ring S/p. This implies that ep = fp is the zero element of S/p. It follows that
fp=bp=(x+a)p=xp®ap=2xp®ep=xp. Thus, (z,f) € p where f € ET.
Thus, € A and so [A]y = A. By Corollary 3.9(7), A is a full k-ideal of S.

Finally, we show that p = pa. Let (a,b) € p. Then (a +¥,b+b') € p. Since
b+b € Et a+b € A and thus (a,b) € pa. Hence, p C pa. If (a,b) € pa, then
a+b € A. Thus, (a+¥,e) € p for some e € ET. We have that bp = ep ® bp =
(a+V)p®dbp=ap®bp®bp=ap® (b+b)p = ap, since b+ € ET. This shows
that (a,b) € p and so pg C p. Therefore, p = pa. [ |

We note that the concepts of full k-ideals and h-ideals of an additively inverse
ternary semiring are coincidence as the following remark.

Remark 4.6. The concepts of full k-ideals and h-ideals of an additively inverse
ternary semiring are coincidence.

Proof. We immediately obtain that every h-ideal is a full k-ideal. Let A be a
full k-ideal. By Theorem 4.4, we obtain that S/p is a ternary ring and A is its
zero element. Let x € S and x +a+ s = b+ s for some a,b € A, s € S. Then
xp+ap+sp =bp+spand so xp+0+sp =0+ sp. Hence, zp = 0 implies z € A.
Therefore, A is an h-ideal. [ |
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5. CONCLUSION AND DISCUSSION

The notions of a k-ideal and a full k-ideal of a ternary semiring were defined in
Section 3. There is a k-ideal which is not full as it is shown by Example 3.3.
However, every h-ideal of a ternary semiring is immediately full. Moreover, h-
ideals and full k-ideals are coincidence in an additively inverse ternary semiring
and the set of all of them forms a complete lattice and also a modular lattice.

A group (ring) congruence is such a congruence relation on a semigroup
(semiring) that the quotient semigroup (semiring) is a group (ring). Similarly,
a ternary ring congruence is such a congruence relation on a ternary semiring
that the quotient ternary semiring is a ternary ring. Constructing a relation with
respect to a full k-ideal of an additively inverse ternary semiring is a way to
obtain a ternary ring congruence.

We claim that all results of this work are also true for an n-ary semiring
for any n > 3. However, some basic properties of an additively inverse n-ary
semiring have to be defined and investigated.
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