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Abstract10

This article deals with the generalization of π-inverse semigroups with-11

out order to ordered semigroups. Here we characterize π-inverse ordered12

semigroups by their ordered idempotents and bi-ideals.13
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1. Introduction16

A semigroup (S, ·) with an order relation ≤ is called an ordered semigroup([2],[7])17

if for all a, b, x ∈ S, a ≤ b implies xa ≤ xb and ax ≤ bx. It is denoted by (S, ·,≤).18

Let (S, ·,≤) be an ordered semigroup. For a subset A of S, let (A] = {x ∈ S :19

x ≤ a, for some a ∈ A}.20

An element a of S is said to be regular (completely regular) [9] if there exists21

x ∈ S such that a ≤ axa (a ≤ a2xa2). S is called a regular (completely regular)22

ordered semigroup if every element of S is regular (completely regular). Note23

that S is regular (completely regular) if and only if a ∈ (aSa] (a ∈ (a2Sa2]) for24

all a ∈ S.25

An element b ∈ S is called an inverse [5] of a if a ≤ aba and b ≤ bab. The set26

of all inverses of an element a ∈ S is denoted by V≤(a). a′, a′′ are the inverse of27

a unless otherwise stated.28

An element e ∈ S is said to be an ordered idempotent if e ≤ e2. The set of29

all ordered idempotents of S is denoted by E≤(S).30

Bhuniya and Hansda [1] studied the ordered semigroups in which any two31

inverses of an element are H-related. Class of these ordered semigroups are natu-32

ral generalization of the class of all inverse semigroups. Hansda and Jamadar [5]33
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named these ordered semigroups as inverse ordered semigroups and studied their34

different aspects. In this paper, we further extend inverse ordered semigroups to35

π-inverse ordered semigroups.36

A nonempty subset A of S is called a left (right) ideal [8] of S, if SA ⊆ A37

(AS ⊆ A) and (A] = A. A nonempty subset A is called a (two-sided)ideal of S if it38

is both a left and a right ideal of S. Following Kehayopulu [9], a nonempty subset39

B of an ordered semigroup S is called a bi-ideal of S if BSB ⊆ B and (B] = B.40

Hansda [4] studied algebraic properties of bi-ideals in completely regular and41

Clifford ordered semigroups.42

The principal [8] left ideal, right ideal, ideal and bi-ideal [9] generated by
a ∈ S are denoted by L(a), R(a), I(a)and B(a) respectively. It is easy to show
that

L(a) = (a∪Sa], R(a) = (a∪aS], I(a) = (a∪Sa∪aS∪SaS] and B(a) = (a∪aSa].

Kehayopulu [8] defined Green’s relations L, R, J and H on an ordered
semigroup S as follows:

aLb if L(a) = L(b), aRb if R(a) = R(b), aJ b if I(a) = I(b) and H = L ∩ R.

These four relations are equivalence relations on S.43

An ordered semigroup S is called π-regular (resp. completely π-regular) [3] if44

for every a ∈ S there is m ∈ N such that am ∈ (amSam] (resp. am ∈ (a2mSa2m]).45

The set of all regular, completely regular, inverse and π-regular elements in an46

ordered semigroup S is denoted by Reg≤(S), Gr≤(S),47

V≤(S) and πReg≤(S) respectively.48

Let S be an ordered semigroup and ρ be an equivalence relation on S. Follow-49

ing Hansda and Jamadar [5], an element a ∈ S of type τ is said to be a ρ-unique50

element in S if for every other element b ∈ S of type τ we have aρb.51

Theorem 1 [5]. The following conditions are equivalent on an ordered semigroup52

S.53

1. S is an inverse ordered semigroup;54

2. S is regular and its idempotents are H-commutative;55

3. For every e, f ∈ E≤(S), eLf(eRf) implies eHf .56

2. π-inverse ordered semigroup57

This section deals with the characterization of the class of π-inverse ordered58

semigroups.59
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Let S be a π-regular ordered semigroup. Then for every a ∈ S there is m ∈ N60

such that am ≤ amxam ≤ am(xamx)am and xamx ≤ xamx(am)xamx. Thus for61

every a ∈ S there is m ∈ N such that V≤(a
m) 6= φ.62

Definition. A π-regular ordered semigroup S is called π-inverse if for every63

a ∈ S, there is m ∈ N such that any two inverses of am are H-related.64

For a ∈ S, there is m ∈ N such that every principal left ideal and every65

principal right ideal generated by am in a π-inverse ordered semigroup have H-66

unique ordered idempotent generator. This has been shown in the following67

theorem.68

Theorem 2. A π-regular ordered semigroup S is π-inverse if and only if for69

every a ∈ S there is m ∈ N such that (Sam] and (amS] are generated by an70

H-unique ordered idempotent.71

Proof. Suppose that S is π-inverse. Let a ∈ S. Since S is π-regular, there is72

m ∈ N such that am ≤ amzam for some z ∈ S. Let I = (Sam]. Then clearly73

I = (Samzam] = (Se], where e = zam ∈ E≤(S). If possible let I = (Sf ] for74

some f ∈ E≤(S). Then eLf and so e ≤ xf and f ≤ ye for some x, y ∈ S. Now75

e ≤ ee ≤ eee ≤ exfe. Therefore exf ≤ exfexf so that exf ∈ E≤(S). Also76

exf ≤ exfexf ≤ exf(fe)exf and fe ≤ feee ≤ fexfe ≤ fe(exf)fe. Therefore77

fe ∈ V≤(exf). Also exf ∈ V≤(exf). Since S is π-inverse for fe, exf ∈ V≤(exf)78

we have feHexf . Then e ≤ ee ≤ eee ≤ exfe ≤ exffe ≤ fett1exf for some79

t, t1 ∈ S and so e ≤ fz1, where z1 = ett1exf . Similarly f ≤ ez2 for some80

z2 ∈ S. So eRf . Hence eHf . Likewise (amS] is generated by an H-unique81

ordered idempotent.82

Conversely assume that given condition holds in S. Then S is π-regular. Let83

a ∈ S and a′, a′′ ∈ V≤(a
m) for some m ∈ N. Clearly (Sam] = (Sa′am] = (Sa′′am].84

Since a′am, a′′am ∈ E≤(S) we have that a′amHa′′am, by given condition. Then85

there are s, v ∈ S such that a′ ≤ a′ama′ ≤ a′′amsa′ and a′′ ≤ a′amva′′. Thus86

a′Ra′′. Likewise a′La′′, that is a′Ha′′. Hence S is a π-inverse ordered semigroup.87

88

The following theorem shows some equivalent conditions for an ordered semi-89

group S to be π-inverse.90

Theorem 3. The following conditions are equivalent on an ordered semigroup91

S.92

1. S is a π-inverse ordered semigroup;93

2. S is π-regular and for every e, f ∈ E≤(S), there is m ∈ N such that (ef)m ∈94

(fSe];95
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3. S is π-regular and for every e, f ∈ E≤(S), eLf(eRf) implies eHf .96

Proof. (1) ⇒ (2): First suppose S is π-inverse. Then S is π-regular. Let e, f ∈97

E≤(S). Since S is π-regular, for ef ∈ S there is x ∈ S such that x ∈ V≤(ef)
m

98

for some m ∈ N. We consider the following cases.99

Case 1: If m = 1 then ef ∈ (fSe] holds, by Theorem 1.100

Case 2: If m > 1 then x ≤ x(ef)mx implies that fxe ≤ fxe(ef)mfxe. Also101

(ef)m ≤ (ef)mx(ef)m implies that (ef)m ≤ (ef)m(fxe)(ef)m. Thus (ef)m ∈102

V≤(fxe). Now x ≤ x(ef)mx = xe(fe)m−1fx so that fxe ≤ fxe(fe)m−1fxe ≤103

fxe(fe)m−1fxe(fe)m−1fxe and (fe)m−1fxe(fe)m−1 ≤ (fe)m−1fxe(fe)m−1fxe104

(fe)m−1 ≤ (fe)m−1fxe(fe)m−1fxe(fe)m−1fxe105

(fe)m−1. This gives (fe)m−1fxe(fe)m−1 ∈ V≤(fxe). Thus (ef)
m, (fe)m−1fxe(fe)m−1 ∈106

V≤(fxe). Since S is π-inverse, we have that (fe)m−1fxe(fe)m−1H(ef)m. Then107

there are s1, s2 ∈ S such that (ef)m ≤ (fe)m−1fxe(fe)m−1s1 and (ef)m ≤108

s2(fe)
m−1fxe(fe)m−1. Thus from the inequality (ef)m ≤ (ef)mx(ef)m we have109

that (ef)m ≤ (fe)m−1fxe(fe)m−1
110

s1xs2(fe)
m−1fxe(fe)m−1 ≤ f(fe)m−1fxe(fe)m−1s1xs2(fe)

m−1fxe(fe)m−1e. There-111

fore (ef)m ≤ fye, where y = (fe)m−1fxe(fe)m−1 s1xs2(fe)
m−1fxe(fe)m−1 ∈ S.112

Hence (ef)m ∈ (fSe].113

(2) ⇒ (3): Let e, f ∈ E≤(S) be such that eLf . Then e ≤ xf and f ≤ ye for114

some x, y ∈ S. Now e ≤ xf implies e ≤ exf and so e ≤ ee ≤ exfe, which implies115

that exf ≤ exfexf . So exf ∈ E≤(S). Similarlyf ≤ fye and fye ∈ E≤(S). Now116

e ≤ exf ≤ exff ≤ (exf)(fye).(1)

Since exf, fye ∈ E≤(S), there existsm ∈ N such that (exffye)m ∈ ((fye)S(exf)],117

by condition (2). Then there exists z ∈ S such that (exffye)m ≤ (fye)z(exf).118

Thus e ≤ em together with (1) implies that e ≤ (exffye)m and therefore119

e ∈ ((fye)S(exf)] ⊆ (fS]. Likewise f ∈ (eS], that is, eRf . Hence eHf .120

For eRf , eHf follows dually.121

(3) ⇒ (1): Let a ∈ S and a′, a′′ ∈ V≤(a
m) for some m ∈ N. Now ama′ ≤122

ama′′ama′ and ama′′ ≤ ama′ama′′ which gives ama′Rama′′ so that ama′Hama′′,123

by the condition (3). Likewise a′amHa′′am. Then a′ ≤ a′ama′ gives that a′ ≤124

a′′amxam for some x ∈ S. Therefore a′ ≤ a′′t where t = amxam. In a similar125

manner it is possible to get u, v, w ∈ S such that a′ ≤ ua′′, a′′ ≤ a′v and a′′ ≤ wa′.126

So a′Ha′′. Hence S is a π-inverse ordered semigroup.127

Let S be a π-regular ordered semigroup. Then for every a ∈ S there is m ∈ N128

such that am ≤ amxam for some x ∈ S which gives that am ≤ amx(am)xam. Here129

amx, xam ∈ E≤(S) so that am ∈ (eSf ], for e = amx and f = xam.130

Following this idea we find a condition for a π-regular ordered semigroup to131

be π-inverse.132
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Theorem 4. A π-regular ordered semigroup S is π-inverse if and only if for133

every e, f ∈ E≤(S) and x ∈ S whenever xm ∈ (eSf ] for some m ∈ N, then134

x′ ∈ (fSe] for every x′ ∈ V≤(x
m).135

Proof. First suppose that S is a π-inverse ordered semigroup. Then there is136

m ∈ N such that V≤(x
m) 6= φ. Let x′ ∈ V≤(x

m). Suppose xm ∈ (eSf ] for137

e, f ∈ E≤(S). Then xm ≤ es1f for some s1 ∈ S. Now x′ ≤ x′xmx′ ≤ x′es1fx
′

138

and so es1fx
′ ≤ es1fx

′es1fx
′, that is es1fx

′ ∈ E≤(S). Similarly x′es1f ∈139

E≤(S). Therefore x′ ≤ x′(es1fx
′)r and x′ ≤ (x′es1f)

rx′ for all r ∈ N. Now140

since S is π-inverse, for f, x′es1f ∈ E≤(S) there are s2 ∈ S and n ∈ N such that141

(x′es1ff)
n ≤ fs2x

′es1f , by Theorem 3(2). Similarly for e, es1fx
′ ∈ E≤(S) we142

have (ees1fx
′)k ≤ es1fx

′s3e, for some s3 ∈ S and k ∈ N. Then x′ ≤ x′xmx′143

implies that x′ ≤ (x′es1ff)
nx′(ees1fx

′)k ≤ fs2x
′es1x

′fes1fx
′s3e. Hence x′ ∈144

(fSe].145

Conversely, assume that the given condition holds in S. Let e, f ∈ E≤(S)146

be such that eLf , this yields that e ≤ ee ≤ ezf for some z ∈ S. Therefore147

em ∈ (eSf ]. Since e ∈ V≤(e
m) we have e ∈ (fSe], by given condition. Likewise148

f ∈ (eSf ]. This implies that eRf and so eHf . Thus by Theorem 3, S is a149

π-inverse ordered semigroup.150

Corollary 5. The following conditions are equivalent on a π-regular ordered151

semigroup S.152

1. S is a π-inverse ordered semigroup;153

2. Let a ∈ S. Then there are m,n ∈ N such that (ama′a′am)n ∈ (a′Sa′], for154

every a′ ∈ V≤(a
m);155

3. Any two inverses of an ordered idempotent in S are H-related;156

4. All inverses of e are H-commutative, for every e ∈ E≤(S);157

5. For any e ∈ E≤(S) and e′ ∈ V≤(e), ee
′e′e ∈ (e′Se′].158

Proof. (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4): These are obvious.159

(4) ⇒ (5): Let e ∈ E≤(S) and e′ ∈ V≤(e). Then ee′e′e ≤ e′s1ees2e
′ for some160

s1, s2 ∈ S. Hence ee′e′e ∈ (e′Se′].161

(5) ⇒ (1): Let a ∈ S and a′, a′′ ∈ V≤(a
m) for some m ∈ N. Then a′ ≤162

a′ama′ ≤ a′ama′′ama′ ≤ a′′ams4a
′ama′, for some s4 ∈ S. Therefore a′ ≤ a′′t1163

where t1 = ams4a
′ama′. Similarly there exists t2 ∈ S such that a′ ≤ t2a

′′. Also164

there are t3, t4 ∈ S such that a′′ ≤ t3a
′ and a′′ ≤ a′t4. Thus a

′Ha′′. Hence S is a165

π-inverse ordered semigroup.166

Corollary 6. Let S be a π-inverse ordered semigroup and a, b ∈ S. If m,n ∈ N167

are such that V≤(a
m), V≤(b

n) 6= φ, then the following statements hold in S.168
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1. amLbn if and only if a′amHb′bn for every a′ ∈ V≤(a
m) and b′ ∈ V≤(b

n);169

2. amRbn if and only if ama′Hbnb′ for every a′ ∈ V≤(a
m) and b′ ∈ V≤(b

n);170

3. amHbn if and only if a′amHb′bn and ama′Hbnb′ for every a′ ∈ V≤(a
m) and171

b′ ∈ V≤(b
n).172

Proof. (1): Let a, b ∈ S. Since S is π-inverse, there are m,n ∈ N such that173

V≤(a
m), V≤(b

n) 6= φ. Let a′ ∈ V≤(a
m), b′ ∈ V≤(b

n). Let amLbn. Since am ≤174

ama′am and a′am ≤ a′ama′am, we have amLa′am, which implies that bnLa′am.175

Also bnLb′bn. Hence a′amLb′bn. Since a′am, b′bn ∈ E≤(S) and S is π-inverse we176

have a′amHb′bn, by Theorem 3(3).177

Conversely suppose that given condition holds in S. Let a, b ∈ S with a′ ∈178

V≤(a
m) and b′ ∈ V≤(b

n) for some m,n ∈ N. Then by given condition a′amHb′bn.179

Also we have amLa′am and bnLb′bn so that amLbn.180

(2) and (3): These follow dually.181

3. Bi-ideals in π-inverse ordered semigroups182

In this section we characterize a π-inverse ordered semigroup S by the principal183

bi-ideals of S.184

Theorem 7. Let S be a π-regular ordered semigroup. Then the following condi-185

tions are equivalent.186

1. S is a π-inverse ordered semigroup;187

2. For any a ∈ S, there is m ∈ N such that B(a′) = B(a′′) for every a′, a′′ ∈188

V≤(a
m);189

3. For any e, f ∈ E≤(S), B((ef)m) ⊆ B(e) ∩B(f) for some m ∈ N;190

4. For any e ∈ E≤(S) and x ∈ V≤(e), B(ex) = B(xe).191

Proof. (1) ⇒ (2): First suppose that S is a π-inverse ordered semigroup. Let192

a ∈ S. Then there is m ∈ N such that a′, a′′ ∈ V≤(a
m). Suppose x ∈ B(a′).193

Therefore x ≤ a′ or x ≤ a′ya′ for some y ∈ S. Since S is π-inverse, a′Ha′′. If194

x ≤ a′ then x ≤ a′ama′ ≤ a′′s1a
ms2a

′′ for some s1, s2 ∈ S. Therefore x ≤ a′′sa′′195

where s = s1a
ms2. If x ≤ a′ya′ then there is s3 ∈ S such that x ≤ a′′s3a

′′. Thus196

in either case x ∈ B(a′′). Also a′ ∈ B(a′′) implies that B(a′) ⊆ B(a′′). Similarly197

B(a′′) ⊆ B(a′). Hence B(a′) = B(a′′).198

(2) ⇒ (3): Let e, f ∈ E≤(S) and x ∈ V≤(ef)
m for some m ∈ N. Clearly199

(ef)m, (fe)m−1fxe(fe)m−1 ∈ V≤(fxe) and so by the condition (2) it follows that200



π-inverse ordered semigroups 7

B((ef)m) = B((fe)m−1fxe(fe)m−1). Now (ef)m ∈ B((fe)m−1fxe(fe)m−1) im-201

plies (ef)m ≤ (fe)m−1fxe(fe)m−1 or (ef)m ≤ (fe)m−1fxe(fe)m−1h(fe)m−1fxe(fe)m−1
202

for some h ∈ S. So in either case (ef)m ≤ h1(fe)
m−1fxe(fe)m−1 and (ef)m ≤203

(fe)m−1fxe(fe)m−1h2 for some h1, h2 ∈ S. Likewise there are h3, h4 ∈ S such204

that (fe)m−1fxe(fe)m−1 ≤ h3(ef)
m and (fe)m−1fxe(fe)m−1 ≤ (ef)mh4. Hence205

(ef)mH(fe)m−1
206

fxe(fe)m−1.207

Let w ∈ B(ef)m. Then either w ≤ (ef)m or w ≤ (ef)ms1(ef)
m for some s1 ∈208

S. If w ≤ (ef)m then w ≤ (ef)m ≤ (ef)mx(ef)m ≤ (ef)mxs2(fe)
m−1fxe(fe)m−1

209

for some s2 ∈ S.210

Also w ≤ (ef)ms1(ef)
m gives w ≤ efs1s3(fe)

m−1fxe(fe)m−1 for some s3 ∈211

S. So in either case w ∈ B(e). Likewise w ∈ B(f). Therefore w ∈ B(e) ∩ B(f)212

and hence B(ef)m ⊆ B(e) ∩B(f).213

(3) ⇒ (4): Let e ∈ E≤(S) and x ∈ V≤(e). Then e, xe, ex ∈ E≤(S). Now214

by condition (3) B((exe)m) ⊆ B(e) ∩ B(xe) for some m ∈ N. Let y ∈ B(e).215

Then either y ≤ e or y ≤ es3e for some s3 ∈ S. If y ≤ e then y ≤ exe ≤216

eexe ≤ exeexe ≤ .... ≤ (exe)m. So y ∈ B((exe)m). Likewise y ∈ B((exe)m)217

for the case y ≤ es3e. Therefore B(e) = B((exe)m) and so B(e) ⊆ B(xe).218

Also B((xee)n) ⊆ B(e) ∩ B(xe) for some n ∈ N, then by a similar argument219

B(xe) ⊆ B(e). Therefore B(e) = B(xe). Likewise B(e) = B(ex). Therefore220

B(xe) = B(ex).221

(4) ⇒ (1): By condition (4) we have exHxe. Also ex ∈ B(e) and ex ∈ B(x).222

Then ex ≤ e or ex ≤ eb1e and ex ≤ x or ex ≤ xb2x for some b1, b2 ∈ S. Here223

following cases arise.224

Case(1): If ex ≤ e and ex ≤ x then ex ≤ exex ≤ xe ≤ xexe = xae where225

a = ex.226

Case(2): If ex ≤ e and ex ≤ xb2x then ex ≤ exex ≤ xb2xe = xbe where227

b = b2x.228

Case(3): If ex ≤ eb1e and ex ≤ x then ex ≤ exex ≤ xeb1e = xce where229

c = eb1.230

Case(4): If ex ≤ eb1e and ex ≤ xb2x then ex ≤ exex ≤ xb2xeb1e = xde231

where d = b2xeb1. Therefore in either case ex ≤ xse for some s ∈ S. Similarly232

xe ≤ etx for some t ∈ S. Thus e, x are H-commutative. Hence by Corollary 5, S233

is a π-inverse ordered semigroup.234

Corollary 8. A π-regular ordered semigroup S is π-inverse if and only if for any235

e ∈ E≤(S) and x ∈ V≤(e), B(ex) = B(e) ∩B(x) = B(xe) = B(e) = B(x).236

Proof. This follows from Theorem 7.237

Corollary 9. A π-regular ordered semigroup S is π-inverse if and only if for any238

e, f ∈ E≤(S), eLf(eRf) implies B(e) = B(f).239
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Proof. Let S be a π-inverse ordered semigroup. Since S is π-inverse eLf(eRf)240

implies eHf by Theorem 3. So it is easy to check that B(e) = B(f).241

Conversely suppose that the condition holds in S. Now B(e) = B(f) gives242

that e ∈ B(f) and f ∈ B(e). Therefore e ≤ f or e ≤ fxf and f ≤ e or f ≤ eye243

for some x, y ∈ S. In either case eRf . So eLf implies eHf . Hence S is a244

π-inverse ordered semigroup, by Theorem 3.245

Corollary 10. Let S be a π-inverse ordered semigroup and a, b ∈ S. If a′ ∈246

V≤(a
m), b′ ∈ V≤(b

n), for some m,n ∈ N, then the following conditions hold on247

S.248

1. amLbn if and only if B(a′am) = B(b′bn).249

2. amRbn if and only if B(ama′) = B(bnb′).250

Proof. (1): Let S be a π-inverse ordered semigroup and a, b ∈ S. Also let251

a′ ∈ V≤(a
m), b′ ∈ V≤(b

n) for some m,n ∈ N, such that amLbn. So by Corollary252

6 a′amHb′bn. Let x ∈ B(a′am). Therefore x ≤ a′am or x ≤ a′ams1a
′am for253

some s1 ∈ S. So it is easy to verify that x ∈ B(b′bn). Also a′am ∈ B(b′bn). So254

B(a′am) ⊆ B(b′bn). Similarly B(b′bn) ⊆ B(a′am). So B(a′am) = B(b′bn).255

Converse follows easily.256

(2): This is similar to (1).257
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