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Abstract

This article deals with the generalization of w-inverse semigroups with-
out order to ordered semigroups. Here we characterize m-inverse ordered
semigroups by their ordered idempotents and bi-ideals.
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1. INTRODUCTION

A semigroup (.5, -) with an order relation < is called an ordered semigroup([2],[7])
if for all a,b, x € S, a < b implies za < b and ax < bz. It is denoted by (5, -, <).
Let (S,-,<) be an ordered semigroup. For a subset A of S, let (A] = {z € S:
x < a, for some a € A}.

An element a of S is said to be regular (completely regular) [9] if there exists
x € S such that a < aza (a < a®za?). S is called a regular (completely regular)
ordered semigroup if every element of S is regular (completely regular). Note
that S is regular (completely regular) if and only if a € (aSa] (a € (a%2Sa?]) for
alla e S.

An element b € S is called an inverse [5] of a if a < aba and b < bab. The set
of all inverses of an element a € S is denoted by V<(a). a’,a” are the inverse of
a unless otherwise stated.

An element e € S is said to be an ordered idempotent if e < e?. The set of
all ordered idempotents of S is denoted by E<(.S).

Bhuniya and Hansda [1] studied the ordered semigroups in which any two
inverses of an element are H-related. Class of these ordered semigroups are natu-
ral generalization of the class of all inverse semigroups. Hansda and Jamadar [5]
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2 A. JAMADAR

named these ordered semigroups as inverse ordered semigroups and studied their
different aspects. In this paper, we further extend inverse ordered semigroups to
m-inverse ordered semigroups.

A nonempty subset A of S is called a left (right) ideal [8] of S, if SA C A
(AS C A) and (A] = A. A nonempty subset A is called a (two-sided)ideal of S if it
is both a left and a right ideal of S. Following Kehayopulu [9], a nonempty subset
B of an ordered semigroup S is called a bi-ideal of S if BSB C B and (B] = B.
Hansda [4] studied algebraic properties of bi-ideals in completely regular and
Clifford ordered semigroups.

The principal [8] left ideal, right ideal, ideal and bi-ideal [9] generated by
a € S are denoted by L(a), R(a), I(a)and B(a) respectively. It is easy to show
that

L(a) = (aUSal], R(a) = (aUaS], I(a) = (aUSaUaSUSaS] and B(a) = (aUaSal).

Kehayopulu [8] defined Green’s relations £, R, J and H on an ordered
semigroup S as follows:

albif L(a) = L(b), aRbif R(a) = R(b),aJbif I(a) =1(b)and H= LN R.

These four relations are equivalence relations on S.

An ordered semigroup S is called m-regular (resp. completely m-regular) [3] if
for every a € S there is m € N such that a™ € (a™Sa™] (resp. a™ € (a®*"Sa*™]).
The set of all regular, completely regular, inverse and w-regular elements in an
ordered semigroup S is denoted by Reg<(S), Gr<(S),

V<(S) and mReg<(S) respectively.

Let S be an ordered semigroup and p be an equivalence relation on .S. Follow-
ing Hansda and Jamadar [5], an element a € S of type 7 is said to be a p-unique
element in S if for every other element b € S of type 7 we have apb.

Theorem 1 [5]. The following conditions are equivalent on an ordered semigroup

S.

1. S is an inverse ordered semigroup;
2. S is regular and its idempotents are H-commutative;

3. For every e, f € E<(S), eLf(eRf) implies eH f.

2. m-INVERSE ORDERED SEMIGROUP

This section deals with the characterization of the class of w-inverse ordered
semigroups.
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T-INVERSE ORDERED SEMIGROUPS 3

Let S be a w-regular ordered semigroup. Then for every a € S thereism € N
such that ™ < a™za™ < a™(xa™z)a™ and xa™z < za™z(a™)zra™x. Thus for
every a € S there is m € N such that V<(a™) # ¢.

Definition. A w-regular ordered semigroup S is called w-inverse if for every
a € S, there is m € N such that any two inverses of a" are H-related.

For a € S, there is m € N such that every principal left ideal and every
principal right ideal generated by a™ in a m-inverse ordered semigroup have H-
unique ordered idempotent generator. This has been shown in the following
theorem.

Theorem 2. A w-regular ordered semigroup S is w-inverse if and only if for
every a € S there is m € N such that (Sa™] and (a™S] are generated by an
‘H-unique ordered idempotent.

Proof. Suppose that S is m-inverse. Let a € S. Since S is m-regular, there is
m € N such that ™ < a™za™ for some z € S. Let I = (Sa™]. Then clearly
I = (Sa™za™] = (Se], where e = za™ € E<(S). If possible let I = (Sf] for
some f € E<(S). Then eLf and so e < zf and f < ye for some z,y € S. Now
e < ee < eee < exfe. Therefore exf < exfexf so that exf € E<(S). Also
exf < exferf < exf(felexf and fe < feee < fexfe < fe(exf)fe. Therefore
fee Ve(exf). Also exf € V<(exf). Since S is m-inverse for fe,exf € V<(exf)
we have feHexf. Then e < ee < eee < exfe < exffe < fettiexf for some
t,t1 € S and so e < fz;, where z1 = ettiexf. Similarly f < ezy for some
z9 € S. So eRf. Hence eHf. Likewise (a™S] is generated by an H-unique
ordered idempotent.

Conversely assume that given condition holds in S. Then S is m-regular. Let
a € Sandd,ad" € V<(a™) for some m € N. Clearly (Sa™| = (Sa’a™] = (Sa”a™].
Since a’a™,a”a™ € E<(S) we have that a’a™Ha"a™, by given condition. Then
there are s,v € S such that ' < d’a™d’ < a”a™sa’ and o” < ad’a™va”. Thus
a'Ra”. Likewise a’La”, that is a’Ha”. Hence S is a w-inverse ordered semigroup.
|

The following theorem shows some equivalent conditions for an ordered semi-
group S to be m-inverse.

Theorem 3. The following conditions are equivalent on an ordered semigroup

S.

1. S is a w-inverse ordered semigroup;

2. S is w-regular and for every e, f € E<(S), there ism € N such that (ef)™ €
(fSel;
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% 3. S is m-reqular and for every e, f € E<(S), eLf(eRf) implies eH f.

o7 Proof. (1) = (2): First suppose S is m-inverse. Then S is m-regular. Let e, f €

¢ F<(S). Since S is m-regular, for ef € S there is € S such that z € V<(ef)™

90 for some m € N. We consider the following cases.

100 Case 1: If m = 1 then ef € (fSe| holds, by Theorem 1.

101 Case 2: If m > 1 then x < z(ef)™x implies that fre < fze(ef)™ fre. Also

1w (ef)™ < (ef)™x(ef)™ implies that (ef)™ < (ef)™(fze)(ef)™. Thus (ef)™ €

w03 V<(fze). Now z < z(ef)™z = we(fe)™ L fx so that fre < fre(fe)™ !fze <

w fre(fe)™ L fze(feym L fre and (fe)m! fae(feymt < (fe) L fze(fe)m ! fae

w (fe)™ 1 < (fe)yn fue(feyn fae(feym fae

s (fe)™ L. This gives (fe)™ ! fre(fe)™ 1 € V<(fze). Thus (ef)™, (fe)™ L fxe(fe)™ ! e
w7 V<(fwe). Since S is m-inverse, we have that (fe)™ ! fxe(fe)™ 1H(ef)™. Then

108 there are si,so € S such that (ef)™ < (fe)™ !frxe(fe)™ 's; and (ef)™ <

0o s2(fe)™ L fre(fe)™ L. Thus from the inequality (ef)™ < (ef)™x(ef)™ we have

o that (ef)™ < (fe)™ ! fwe(fe)™ !

m o syzsa(fe)™ L fre(fe)™ L < f(fe)™ L fze(fe) tsiasa(fe)™ L fre(fe)™ te. There-
12 fore (ef)™ < fye, where y = (fe)™ L fxe(fe)™ ! siwso(fe)™ L fwe(fe)™ e S.

us  Hence (ef)™ € (fSe].

114 (2) = (3): Let e, f € E<(S) be such that eLf. Then e < zf and f < ye for

us some z,y € .S. Now e < xf implies e < exf and so e < ee < ex fe, which implies

us that exf < exfexf. Soexf € E<(S). Similarlyf < fye and fye € E<(S). Now

(1) e<exf <exff < (exf)(fye).

ur  Sinceexf, fye € E<(S), there exists m € N such that (exf fye)™ € ((fye)S(exf)],
us by condition (2). Then there exists z € S such that (exf fye)™ < (fye)z(exf).
1o Thus e < €™ together with (1) implies that e < (exffye)™ and therefore
10 e € ((fye)S(exf)] C (f5]. Likewise f € (eS], that is, eRf. Hence eH f.

121 For eRf, eH f follows dually.

122 (3) = (1): Let a € S and d’,a” € V<(a™) for some m € N. Now a"a’ <
123 a™a”a™a’ and a™a” < a™a'a™a” which gives a™a’Ra™a” so that a™a'Ha™a",
12+ by the condition (3). Likewise a’a™Ha"a™. Then a' < a’a™d’ gives that o/ <
s a’a™xa™ for some x € S. Therefore @’ < a”’t where t = a™za™. In a similar
126 manner it is possible to get u, v, w € S such that a’ < ua”, a” < a’v and a” < wd'.
127 So a’Ha”. Hence S is a w-inverse ordered semigroup. [ |

128 Let S be a w-regular ordered semigroup. Then for every a € S thereis m € N
120 such that a” < a™za™ for some x € S which gives that a” < a™xz(a™)xa™. Here
o aMx,xa™ € E<(S) so that a™ € (eSf], for e = a™z and f = za™.

131 Following this idea we find a condition for a m-regular ordered semigroup to
132 be m-inverse.
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Theorem 4. A w-regular ordered semigroup S is w-inverse if and only if for
every e, f € E<(S) and x € S whenever ™ € (eSf] for some m € N, then
x' € (fSe] for every 2’ € V< (z™).

Proof. First suppose that S is a m-inverse ordered semigroup. Then there is
m € N such that V<(2™) # ¢. Let 2/ € V<(2™). Suppose 2™ € (eSf] for
e,f € E<(S). Then 2™ < esy f for some s; € S. Now 2’ < 2/z™z’ < 2'es; fo'
and so esyfa’ < esyfaes;fa, that is es;fa’ € E<(S). Similarly 2'es;f €
E(S). Therefore 2’ < 2'(es;fz')" and ' < (2’esif)"2’ for all » € N. Now
since S is m-inverse, for f,2’es; f € E<(S) there are s, € S and n € N such that
(@'es1ff)" < fsoa'esif, by Theorem 3(2). Similarly for e, es; fz’ € E<(S) we
have (eesy fa')¥ < esyfx'sze, for some s3 € S and k € N. Then 2/ < z'z™a’
implies that z/ < (2'esy ff) ' (eesi fo')¥ < fsoa'esia’ fesi fa'sze. Hence 2/ €
(f5e].

Conversely, assume that the given condition holds in S. Let e, f € E<(S)
be such that eLf, this yields that e < ee < ezf for some z € S. Therefore
e™ € (eSf]. Since e € V<(e™) we have e € (fSe|, by given condition. Likewise
f € (eSf]. This implies that eRf and so eHf. Thus by Theorem 3, S is a
m-inverse ordered semigroup. [ |

Corollary 5. The following conditions are equivalent on a w-reqular ordered
semigroup S.

1. S is a w-inverse ordered semigroup;

2. Let a € S. Then there are m,n € N such that (a™d'a’'a™)™ € (a'Sd'], for
every a’ € V< (a™);

3. Any two inverses of an ordered idempotent in S are H-related;
4. All inverses of e are H-commutative, for every e € E<(S);
5. For any e € E<(S) and €' € V<(e), ee’e’e € (¢/S¢'].

Proof. (1) = (2), (2) = (3), (3) = (4): These are obvious.

(4) = (5): Let e € E<(S) and €’ € V<(e). Then ee’e’e < €'sjeesqye’ for some
1,82 € S. Hence ec’c’e € (¢/Se'].

(5) = (1): Let @ € S and d’,a” € V<(a™) for some m € N. Then o’ <
da™d < dama"a™ad < a’a™sya’a™a’, for some s, € S. Therefore a’ < a’t;
where t; = as4a’a™a’. Similarly there exists t9 € S such that @’ < tea”. Also
there are t3,t4 € S such that a” < t3a’ and a” < a’t4. Thus a’Ha”. Hence S is a

m-inverse ordered semigroup. [ |

Corollary 6. Let S be a m-inverse ordered semigroup and a,b € S. If myn € N
are such that V<(a™), V<(b") # ¢, then the following statements hold in S.
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6 A. JAMADAR

1. a™Lb" if and only if ’'a™HV' V™ for every a’ € V<(a™) and b’ € V<(b");
2. ™R if and only if a™a'HO"Y for every a’ € V<(a™) and b’ € V<(b");

3. a™H" if and only if a'a™HY'V" and a™aHO"Y for every a’ € V<(a™) and
Ve Ve(bh).

Proof. (1): Let a,b € S. Since S is m-inverse, there are m,n € N such that
V<(a™), V<(b™) # ¢. Let a’ € V<(a™), V/ € V<(b"). Let a™Lb™. Since a™ <
a™a'a™ and d'a™ < d'a™a’a™, we have a™La'a™, which implies that 0" La’a™.
Also b"Lb'b". Hence a’a™L'b". Since a'a™,V'b™ € E<(S) and S is m-inverse we
have a’a™HV'b™, by Theorem 3(3).

Conversely suppose that given condition holds in S. Let a,b € S with d’ €
V<(a™) and V' € V<(b") for some m,n € N. Then by given condition a’a™Hb'b".
Also we have a™La’a™ and b"Lb'b"™ so that a™Lb".

(2) and (3): These follow dually. |

3. BI-IDEALS IN m-INVERSE ORDERED SEMIGROUPS

In this section we characterize a m-inverse ordered semigroup S by the principal

bi-ideals of S.

Theorem 7. Let S be a w-reqular ordered semigroup. Then the following condi-
tions are equivalent.

1. S is a w-inverse ordered semigroup;

2. For any a € S, there is m € N such that B(a') = B(a") for every a’,a" €
V< (am);

3. For any e, f € E<(S), B((ef)™) C B(e) N B(f) for some m € N;

4. For any e € E<(S) and x € V<(e), B(ex) = B(xe).

Proof. (1) = (2): First suppose that S is a w-inverse ordered semigroup. Let
a € S. Then there is m € N such that a’,a” € V<(a™). Suppose z € B(d').
Therefore z < a’ or # < a’ya’ for some y € S. Since S is w-inverse, a’Ha". If
x < a then x < d’'a™d’ < a”s1a™sqa” for some sq,s9 € S. Therefore x < a”’sa’”
where s = s1a™sy. If 2 < a’ya’ then there is s3 € S such that z < a”s3a”. Thus
in either case z € B(a”). Also o’ € B(a”) implies that B(a") C B(a”). Similarly
B(a") C B(d’). Hence B(a') = B(a").

(2) = (3): Let e, f € E<(S) and = € V<(ef)™ for some m € N. Clearly
(ef)™, (fe)™ L fze(fe)™ 1 € V<(fxe) and so by the condition (2) it follows that
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B((ef)™) = B((fe)" " fre(fe)" ). Now (ef)™ € B((fe)™ ' fxe(fe)™ ") im-

plies (ef)™ < (fe) ! fxe(fe)™ o (ef)™ < (fe)™ ' fae(fe)™ h(fe)™ ' fre(fe)™

for some h € S. So in either case (ef)™ < hy(fe)™ ! fwe(fe)™ ! and (ef)™ <
(fe)y™ ! fxe(fe)™ 'hy for some hy,hy € S. Likewise there are hz, hy € S such
that (fe)™ ! fze(fe)™ ! < hg(ef)™ and (fe)™ ! fxe(fe)™ ! < (ef)™hy. Hence
(ef)"H(fe)m !

Jre(feynt.

Let w € B(ef)™. Then either w < (ef)™ or w < (ef)™si(ef)™ for some s; €
S. Ifw < (ef)™ then w < (ef)™ < (ef)™z(ef)™ < (ef)™wso(fe)™ ! fre(fe)™ !
for some s9 € S.

Also w < (ef)™s1(ef)™ gives w < efsiss(fe)™ ! fre(fe)™ ! for some s3 €
S. So in either case w € B(e). Likewise w € B(f). Therefore w € B(e) N B(f)
and hence B(ef)™ C B(e) N B(f).

(3) = (4): Let e € E<(S) and = € V<(e). Then e,ze,ex € E<(S). Now
by condition (3) B((exe)™) C B(e) N B(we) for some m € N. Let y € Bfe).
Then either y < e or y < esge for some s3 € S. If y < e then y < exe <
eexe < exeexe < ... < (exe)™. So y € B((exe)™). Likewise y € B((exe)™)
for the case y < esze. Therefore B(e) = B((exe)™) and so B(e) C B(xe).
Also B((zee)™) C B(e) N B(xe) for some n € N, then by a similar argument
B(xze) C B(e). Therefore B(e) = B(xe). Likewise B(e) = B(ex). Therefore
B(xze) = B(ex).

(4) = (1): By condition (4) we have exHze. Also ex € B(e) and ex € B(z).
Then ex < e or ex < ebje and ex < x or ex < zbox for some by,by € S. Here
following cases arise.

Case(1): If ex < e and ex < z then ex < exex < zre < rexe = wae where
a = ex.

Case(2): If ex < e and ex < xbox then ex < exex < xbyre = xbe where
b= bgw.

Case(3): If ex < ebje and ex < x then ex < exex < webje = wce where
c = eby.

Case(4): If ex < ebje and ex < zbox then ex < exexr < xbyxebie = zde
where d = boxeb;. Therefore in either case ex < zse for some s € S. Similarly
ze < etz for some ¢t € S. Thus e, x are H-commutative. Hence by Corollary 5, S
is a m-inverse ordered semigroup. [ |

Corollary 8. A w-reqular ordered semigroup S is w-inverse if and only if for any
e € E<(S) and x € V<(e), B(ex) = B(e) N B(z) = B(ze) = B(e) = B(x).

Proof. This follows from Theorem 7. [ |

Corollary 9. A w-regular ordered semigroup S is w-inverse if and only if for any

e, [ € E<(S), eLf(eRf) implies B(e) = B(f).
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Proof. Let S be a m-inverse ordered semigroup. Since S is m-inverse eLf(eR f)
implies eH f by Theorem 3. So it is easy to check that B(e) = B(f).

Conversely suppose that the condition holds in S. Now B(e) = B(f) gives
that e € B(f) and f € B(e). Therefore e < fore < frfand f <eor f <eye
for some x,y € S. In either case eRf. So eLf implies eHf. Hence S is a
m-inverse ordered semigroup, by Theorem 3. [ |

Corollary 10. Let S be a w-inverse ordered semigroup and a,b € S. If a' €
V<(a™), t/ € V<(b"), for some m,n € N, then the following conditions hold on
S.

1. a™Lb" if and only if B(a'a™) = B(V/'b™).
2. a™RY" if and only if B(a™a") = B(b"V').

Proof. (1): Let S be a m-inverse ordered semigroup and a,b € S. Also let
a e Ve(a™), t € V<(b") for some m,n € N, such that a™Lb". So by Corollary
6 'a™HYb". Let x € B(a’a™). Therefore x < a’a™ or x < d'a™s1d’a™ for
some s1 € S. So it is easy to verify that z € B(V'b™). Also a’'a™ € B(b'b"). So
B(a’a™) C B(b'b"). Similarly B(b'b") C B(a'a™). So B(d'a™) = B(b'b"™).
Converse follows easily.
(2): This is similar to (1). |
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