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Abstract

FE-inversive semigroups have been the topic of research for many years.
Properties of E-inversive semigroups were studied by Edward [1], Mitsch [9]
and many others. In [2], Ghosh defined E-inversive semiring and studied
its properties. According to him, an additively commutative semiring is
called F-inversive semiring if and only if its additive reduct is an E-inversive
semigroup. In this paper, we define strongly E-inversive semiring and study
its properties.
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1. INTRODUCTION

A semigroup S is said to be E-inversive if for every a € S there is an element x € S
such that ax € E(S), where E(S) is the set of all idempotents of the semigroup S.
The notion of E-inversive semigroup was first introduced by Thierrin [13]. Later
on, properties of E-inversive semigroups were studied by Mitsch [9], Lallement
and Petrich [6], Hall and Munn [4], Margolis and Pin [8]. Subdirect products of E-
inversive semigroups were first studied by Mitsch [9]. In 1999, the author defined
E-inversive semiring [2]. According to him, an additively commutative semiring
is said to be F-inversive if its additive reduct is an F-inversive semigroup. Some
properties of E-inversive semirings were studied by Ghosh in that same paper
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[2]. In this paper, we define strongly E-inversive semiring and study some of its
interesting properties.

The preliminaries and prerequisites, we need for this paper, are discussed in
Section 2. In Section 3, we define strongly F-inversive semiring and study its
basic properties. Finally, Section 4 is devoted to the study of E-unitary covers
of strongly E-inversive semirings.

2. PRELIMINARIES

A semiring (S, +,) is a type (2,2)-algebra such that both the additive reduct
(S, +) and the multiplicative reduct (S, -) are semigroups and multiplication dis-
tributes over addition from either side, that is, a(b+ ¢) = ab+ ac and (b+ c)a =
ba + ca for all a,b,c € S. We do not assume that the additive reduct (S,+) is
commutative. Following [3], we denote a semiring (S, +,+) as a skew-ring if its
additive reduct (S,+) is a group, not necessarily an abelian group. A semiring
(S,+,-) is said to be a hemiring if the additive reduct (S,+) is a monoid.
Let (S,+,-) be a semiring. An element a € S is called:

— additively regular if there exists an element x € S such that a + x + a = a;

— additively completely reqular if there exists an element z € S such that a +
z+a=aand z4+a=a+ z

— completely reqular [12] if there exists € S such that a =a+x+a, a+x =
x+aand ala+x) =a+ .

If a € S is additively regular, we denote the set of all inverses of a in the semigroup
(S,4) by V*(a). A semiring S is said to be completely regular if every element
a of S is completely regular. A semiring S is called idempotent semiring if both
the reducts (S, +) and (S, -) are bands. A subsemiring I of a semiring S is called
an ideal of S'if IS C [ and SI C I. An ideal I of a semiring S is called a k-ideal
of S'if a € I and either a +x € I or x + a € I for some x € S implies = € I.
Throughout this paper, we always let ET(S) be the set of all additive idempotents
of the semiring S. Let S and T be two semirings. A mapping ¢ : S — T is
called a semiring homomorphism if (a+b)p = ap+by and (ab)e = (ayp)(by) hold
forall a,b € S. If ¢ : S — T is a semiring homomorphism, then the kernel of ¢,
denoted by ker ¢, is defined by ker ¢ = {s € S|s¢ € E*(T)}. A subsemiring T of
the direct product S7 x S of two semirings S and S5 is called subdirect product
of S1 and Sy if the two projection mappings 71 : T' — S7 and mg : T — Sy
respectively given by 7 (s1, s2) = s1 and ma(s1, s2) = s2 (where s; € Sp, s2 € S2)
are surjective.

In a semiring S, we denote Green’s relations on the semigroup (S, +) by £,
RT, I, Dt and H'. In fact, the relations £, RT, J, DT and H™T are all
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congruences on the multiplicative reduct (S, -). Thus, if any one of these happens
to be a congruence on the additive reduct (S, +), it will be a semiring congruence
on the semiring (5, +, ). A completely regular semiring S is said to be completely
simple [12] if 7t =8 x S.

Before closing this section, we recall an important result which will be helpful
in our further discussion.

Theorem 1 [12]. The following conditions on a semiring are equivalent:
(i) S is completely reqular;

(ii) every H*-class is a skew-ring;

(i) S is union (disjoint) of skew-rings;

)

(iv) S is a b-lattice of completely simple semirings.

3. BASIC PROPERTIES OF STRONGLY FE-INVERSIVE SEMIRINGS

In this section, we define strongly FE-inversive semiring and study some of its
properties.

Definition. A semiring S is said to be a strongly F-inversive semiring if for each
a € S, there exists an element z € S such that (i) a +x € ET(9), (i) ar = xa,
(iii) a(a + x) =a+z and (iv) a(x + a) = x + a.

There are plenty of examples of strongly F-inversive semirings; for instance,
every ring is a strongly FE-inversive semiring, every skew-ring is a strongly FE-
inversive semiring, every completely regular semiring is a strongly E-inversive
semiring (as every completely regular semiring is union of skew-rings), every
idempotent semiring is a strongly E-inversive semiring. However, the converse of
the above statement is not true in general as the following example shows.

Example 2. Define on the set N, the following operations @ and ©:
a®b=min{a+ b, M}
a ® b = min{ab, M },

where M € N is a fixed natural number. It is easy to verify that M is an additive
idempotent element as well as a multiplicative idempotent. Now, for any a € N
choose an element x € N such that a +x > M. Thena®x = x P a = M,
a®r =10a,a0(a®z) =a0OM =M =a®z,a®(xda)=a0OM =M =zDa.
Hence (N, @, ®) is a strongly E-inversive semiring. Since any element b(> M) € N
is not additively regular, it follows that this semiring is not a quasi completely
regular semiring [7] and hence not a completely regular semiring. Moreover, it is
interesting to point out that this semiring is not even an idempotent semiring.
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Example 3. Any semiring S with (S,-) a band is strongly E-inversive. In fact
foranya € S,a+a€ EY(S),a-a=a-a,ala+a)=a+a.

Theorem 4. A semiring S is a strongly E-inversive semiring if and only if for all
a € S there exists y € S such that a+y,y+a € ET(S); ay = ya; (a+y)a = a+y;
(y+a)a=y+a.

Proof. First suppose that the semiring S is a strongly FE-inversive semiring.
Then for any a € S, there exists an element x € S such that a + x € E*(S),
ax = za, a(a+x) = a+x and a(x +a) = z+ a. Now, if we choose y = z+a+z,
then it can be easily verified that y +a +y = y and hence a +y,y +a € E*(S).
Since ar = xa, we must have ay = ya. Again, (a + y)a =a? + ya = a’ + ay =
ala+y)=ala+zx+a+zx)=ala+x)+ala+2z)=a+x+a+z=a+y. Hence
(a +y)a = a+y. Similarly, we can show that (y + a)a =y + a.

Converse part follows easily. [ |

Theorem 5. A semiring S is a strongly E-inversive semiring if and only if for
all a € S there exists y € S such that y+a+y =y, ay =ya, ala+y) =a+y,
aly+a)=y+a.

Proof. First suppose that the semiring S is a strongly FE-inversive semiring.
Then for any a € S, there exists an element x € S such that a + x € E*(9),
ar = za, a(a+x) = a+x and a(x +a) = z+ a. Now, if we choose y = z+a+ =,
then it can be easily verified that y + a + vy =y, ay = ya, a(a +y) = a+ y and
aly +a) =y +a.

Converse part is obvious. [ ]

Remark 6. The definition of strongly E-inversive semiring is not one-sided.
Moreover, a semiring S is strongly E-inversive if and only if W(a) = {x esS:
T+a+z=x0a=zaala+z)=a+za(z+a)=x+a}#0 for every a € S.
Now following [9], we get that if (S,+,-) is a strongly E-inversive semiring then
(S,4) is an E-inversive semigroup as I(a) = {z € S:a+z,x+a € ET(S)} #0
for every a € S and it is obvious that W(a) C I(a) for all a € S.

Though the additive reduct of a strongly E-inversive semiring is always an
FE-inversive semigroup, but the converse may not be true as the following example
shows.

Example 7. Consider the semiring (N, +, ), where addition ‘+’ of two elements
is maximum of two elements in N and multiplication ‘-’ is the usual multiplication
of natural numbers. Then (N, +) is an E-inversive semigroup and (N, +,-) is an
FE-inversive semiring but not a strongly E-inversive semiring.

Proposition 8. Every left (right, both sided) k-ideal of a strongly E-inversive
semiring s strongly E-inversive.
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Proof. Let I be a left k-ideal of a strongly E-inversive semiring S and a € [I.
Since S is strongly E-inversive, it follows that W(a) # (). Let x € W (a). As I is
a left ideal of S and a € I, we must have a?,za € I. This implies a® + za € I,
ie., a+x € I. Again, [ is a left k-ideal of S and a,a + z € I imply that x € I.
Consequently, I is a strongly E-inversive semiring. [ |

The following well known result can be found, for instance, in [10].

Lemma 9. The following conditions on a semigroup (S,-) are equivalent.

(1) S is a rectangular band;
(2) S is reqular and satisfies the identity ab = axb;
(3) S is a completely simple band.

Proposition 10. Let S be a strongly E-inversive semiring such that the mul-
tiplicative reduct (S,-) is a completely simple semigroup and e € W (e), for all
e € ET(S). Then (S,-) is a rectangular band. Conversely, if S is a semiring such
that (S,-) is a rectangular band, then S is a strongly E-inversive semiring such
that e € W (e), for all e € ET(S).

Proof. Since ET(S) is an ideal of (S,-) and (.5, -) is simple, it follows that S =
E*(S). Let a € S. Then a € E*(S) and hence by the given condition, it follows
that a € W(a). This implies a(a + a) = a + a, a®> = a. Thus (S, -) is a band and
hence by Lemma 9, it follows that (S, -) is a rectangular band.

Conversely, if S is a semiring whose multiplicative reduct (.S, ) is a rectangu-
lar band, then by Example 3, it at once follows that S is a strongly E-inversive
semiring such that e € W (e), for all e € E*(S). |

Proposition 11. If for every element a in a semiring S there is exactly one
z € S such that a+ x € E*(S), then S is a skew-ring.

Proof. From [9, Proposition 2|, it follows that (S,+) is a group and hence S is
a skew-ring. [ |

Proposition 12. Let S be a strongly E-inversive semiring without zero. Then
the following conditions are equivalent:

(i) S is weakly additive cancellative (i.e., a +x =b+x and v +a = z + b
imply that a = b) and for each a € S there exists some x € W(a) satisfying
zla+zx)=a+z,x(x+a)=x+a;

(ii) S is a completely simple semiring.

Proof. (i)=>(ii) Let a € S. Then there exists an element x € W(a) such that

r+a+zx=uzar=zxaa(a+z)=a+x=x(a+x),a(r+a)=z+a=z(x+a).
Now, clearly (a+z+a)+ 2z =a+z and x + (a + 2+ a) =z + a. Since S is
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weakly additive cancellative, we must have a + x + a = a and thus S is additively
regular. Now (a+z)(x+a) =a(z+a)+z(x+a) =r+a+x+a=z+a. Again,
(a+z)(x+a)=(a+z)r+(a+z)a=z(a+z)+ala+z)=a+zr+a+z=a+x.
Hence a + © = x + a. Therefore, S is a completely regular semiring. By [5,
Theorem 3.3.3], it follows that (S,+) is completely simple, so J* = S x S.
Hence S is a completely simple semiring.

(il)==(i) Since S is a completely simple semiring, so (S, +) is a completely
simple semigroup. Then by [5, Theorem 3.3.3], we must have S is weakly additive
cancellative. Again, since S is completely simple, it follows that S is a completely
regular semiring and hence by Theorem 1, it follows that S is union of skew-rings.
Let a € S. Then H,, the H"-class containing the element a is a skew-ring. Let
y € H, be the inverse of a in the group (Hg,+). Then clearly y € W(a) such
that y(a+y) =a+y,y(y +a) =y +a. [

Proposition 13. Let S be a strongly E-inversive semiring. Then the following
are equivalent:

(i) S is left additive cancellative;
(ii) S is a right skew-ring.

Proof. Since S is strongly E-inversive semiring, so its additive reduct is an FE-
inversive semigroup. Again, a semiring is called right skew-ring if its additive
reduct is a right group. Hence the result holds from [9, Proposition 4]. [ |

Definition. A nonempty subset I of a semiring S is said to be a bi-ideal of S if
a € I and z € S imply that a + =,z + a,ax,za € I. A semiring S is said to be
an ideal extension of a semiring 7" if T" is a bi-ideal of S.

Theorem 14. Let S be an ideal extension of a semiring T. If S is strongly
FE-inversive, then T is also strongly E-inversive.

Proof. Let t € T. Thent € S. Since S is strongly E-inversive, there exists an
element € S such that z+t+x = z,at = to, t(t+x) = t+z and t(z+t) = x+1.
Since T' is a bi-ideal of S and t € T, x € S, it follows that t = x +t+ 2z € T.
Hence T is strongly E-inversive. [ |

The converse of Theorem 14 can be proved by taking additional condition as
follows.

Theorem 15. Let S be an ideal extension of a strongly E-inversive semiring T
such that se; = e;s = e; for all s € S\ T,e; € ET(T) and S is weakly additive
cancellative. Then S is also strongly E-inversive.
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Proof. Let s € S. If s € T then obviously s is a strongly E-inversive element.
Let s¢ T,sos € S\T. Then s+t € T for all t € T as T is a bi-ideal of S. Since T’
is strongly E-inversive, there exists an element x € T such that x+ (s+t)+z = x.
Then t+x+s+t+x = t+x which implies that s+t+xz,t+z+s € ET(T). Hence
s(s+t+x), (s+t+a)s,s(t+x+s),(t+x+s)s € ET(T). By given condition, we
have s(s+t+x) = (s+t+z)s =s+t+xand s(t+x+s) = (t+z+s)s=t+x+s
which imply that s2 + s(t +z) = s2 + (t + 2)s and s(t + x) + 5% = (t + x)s + s%.
Hence s(t+z) = (t + x)s as S is weakly additive cancellative. Now if we choose
t+x =z, then x5+ s+ x5 = x5, STs = 58, 8(s+25) = s+ x5, 8(xs+8) = x5+ 5.
Hence S is strongly E-inversive. [ |

Corollary 16. Let S be an ideal extension of a strongly E-inversive semiring T
such that |[ET(T)| = 1 and S is weakly additive cancellative. Then S is strongly
E-inversive semiring such that for all s € S there exists © € S satisfying (i)
s+x=x+s€ET(S), (ii) sx =xs and () s(s+ ) =s+x = z(s + z).

4. FE-UNITARY COVERS OF STRONGLY F-INVERSIVE SEMIRINGS

It is easy to verify that the direct product of strongly E-inversive semirings is
again a strongly E-inversive semiring. But the subdirect product of even two
strongly E-inversive semirings may not be strongly E-inversive. In this section,
we characterize all those subdirect products of two strongly E-inversive semirings
which are again strongly E-inversive. Also, we study E-unitary covers of strongly
FE-inversive semirings.

Proposition 17. Homomorphic image of a strongly E-inversive semiring is
strongly E-inversive.

Proof. Let ¢ : S — T be a semiring epimorphism between two semirings .S and
T such that S is strongly E-inversive. Let b € T' be arbitrary. Then there exists
an element a € S such that b = ap. Now, for the element a € S, there exists an
element x € S such that z € W(a). Let y = zp. Then one can easily verify that
y € W(b). Since b € T is arbitrary, it follows that T is strongly E-inversive. ®

Corollary 18. If S is a strongly E-inversive semiring such that it is a subdirect
product of two semirings A and B, then both A and B are strongly E-inversive.

Remark 19. Subdirect product of two strongly F-inversive semirings may not
be strongly FE-inversive. This follows from the following example.

Example 20. Let A= B = (Z,+,-) and S be the subsemiring of A x B gener-
ated by {(1,1),(—1,—3)}. Then S is a subdirect product of strongly E-inversive
semirings A and B, but S is not strongly E-inversive, since E*(S) = {(0,0)} and
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for the element (1,1) € S, there is no element (z,y) € S such that (1,1)+(z,y) =
(0,0) € ET(S).

In [9], Mitsch established necessary and sufficient condition for subdirect
products of two E-inversive semigroups to be again F-inversive. Now, we estab-
lish a necessary and sufficient condition for subdirect products of two strongly
FE-inversive semirings to be again strongly E-inversive. For this purpose, let us
first define the following definition.

Definition (surjective subhomomorphism). Suppose S,T be two strongly E-
inversive semirings and ¢ : S — P(T") (the power set of T') is a mapping. Then
1 is called surjective subhomomorphism of S onto 7' if the following conditions
are satisfied:

(1) sy A0 for all s € S,
(2) 519 + s92¢ C (81 + s2)¢ and (s19)(s2¢0) C (s182)¢ for all s1,s9 € S,

(3) UseS Sw = Ta
(4) for every t € si, there exist © € W(s) and y € W(t) such that y € x1.

Theorem 21. Let S, T be two strongly E-inversive semirings and ¢ be a surjec-
tive subhomomorphism of S onto T. Then 7(S,T,v) ={(s,t) € S xT :t € spp}
is a strongly E-inversive semiring which is a subdirect product of S and T. Con-
versely, every strongly E-inversive semiring which is a subdirect product of two
strongly E-inversive semirings can be obtained in this way.

Proof. Let A= n(S,T,). Then by condition (2) of the definition of surjective
subhomomorphism, it follows that A is a semiring. Again, following [9, Theorem
7], it follows that (A, +) is an E-inversive semigroup which is a subdirect product
of S and T. To show A is strongly E-inversive, let (s,t) € A. Then ¢t € st and
hence by condition (4), there exist x € W (s) and y € W (t) such that y € x.
This implies (x,y) € A. Moreover, it is easy to verify that (z,y) € W((s,t)).
Hence A is a strongly FE-inversive semiring.

Conversely, let B be a strongly E-inversive semiring which is a subdirect
product of two strongly FE-inversive semirings S and 7. Then (B,+) is an E-
inversive semigroup. Let ao: S — P(T) be defined by s« = {t € T : (s,t) € B}
for every s € S. Since B is a subsemiring of S x T, we can easily verify that the
condition (2) holds. Let t € sa, where s € S and t € T. Then (s,t) € B, hence
there exists (z,y) € B such that (z,y) € W((s,t)) as B is a strongly E-inversive
semiring. Therefore, (z,y) + (s,t) + (z,y) = (z,9), (s,t)(z,y) = (x,y)(s,1),
(s, t)((sv t) + (=, y)) = (37 t) +(z,9), (s, t)(({L', y) + (s, t)) = (.’L’, y) +(s,t). Then we
get, t+s+x =z, s¢ =x8,s(s+x) =s+x,s(x+s) =x+s. Hence x € W(s) and
similarly we get y € W(t). As (z,y) € B, so y € xa. Therefore, the condition
(4) holds. Finally, since (B,+) is an E-inversive semigroup, by [9, Theorem 7],
it follows that the conditions (1), (3) hold and B = #(S,T, «). |
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Definition. A subset T of a strongly E-inversive semiring S is called an ideal of
Sifall a,b €T and all s € S imply that a + b, sa,as € T. An ideal T of S is said
to be full if E*(S) C T. Anideal T of S is called a normal ideal if s+ T +s C T
and '+ T +s CT forall s € S and s € I(s).

Lemma 22. Let S be a strongly E-inversive semiring. Then the least skew-ring
congruence o on S is given by : for a,b € S,

acb if and only if t + a =b+y for some x,y € N,
where N 1is the intersection of all full normal ideals of S.

Proof. Following the proof of [9, Proposition 9], it is easy to verify that for every
full normal ideal T, the relation o7 on S given by : for a,b € S, aor b if and only
if x4+ a=0b+y for some x,y € T is a group congruence on (S,+). Let aopb
and ¢ € S. This implies zc + ac = bc 4+ yc with xc,yc € T and thus acor be.
Similarly, we can show that ca op cb. Therefore, or is a semiring congruence on
S such that (S/op,+) is a group. Consequently, S/or is a skew-ring and hence
ot is a skew-ring congruence on S.

Conversely, let 0 be a skew-ring congruence on S and let T'= {t € S : t5 = Oy,
where 0j is the zero element of the skew-ring S/d6}. Obviously, T is an ideal of
S such that E*(S) C T. Now for each s € S and s’ € I(s), sj is the additive
inverse of s5 € S/§. Again, for any t € T, (s +t+ s')s = (s + ') = 05. Hence
s+t+s € T. Similarly, it can be verified that s’ +t+s € T. Therefore, T is a full
normal ideal of S. It is easy to show that op < §. Let adb, then (V' 4+ a)d(V' + b),
where b’ € I(b) and hence b’ +a € T. Now (b+¥')+a = b+ (/ + a) implies that
aorb, so op = 6. Now it is clear that o = o, where N is the intersection of all
full normal ideals of S. [ |

Definition. A semiring S with additive idempotents is said to be F-unitary if
its additive semigroup reduct (S,+) is an E-unitary semigroup, i.e., e + s,e €
E*(S),s € S imply s € E*(S). One can easily verify that this condition is
equivalent to : s +e,e € ET(S), s € S imply s € ET(S). A semiring 7T is called
FE-unitary cover of a semiring .S if 7' is F-unitary and if there is an epimorphism
p : T — S such that ¢ is additive idempotent separating, i.e., for any two
elements e, f € E1(T), ep = fp implies e = f. In addition, if there is a least
skew-ring congruence ¢ on T' and a skew-ring R such that 7/ = R, then T is
called E-unitary cover of S through R.

Proposition 23. If o is the least skew-ring congruence on a strongly E-inversive,
E-unitary semiring S, then keroc = N = ET(S), where N is the intersection of
all full normal ideals of S.
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Proof. Using Lemma 22 and following the proof of [9, Corollary 10], in a similar
way it can be easily verified that ET(S) is a full normal ideal of S and E*(S) =
N = kero. [

Definition. Suppose S be a strongly FE-inversive semiring and R be a skew-
ring; a subhomomorphism 1 of S into R is called nullary if 0 € s implies that
s € ET(S), where s € S and 0 is the zero element of the skew-ring R.

Lemma 24. Let S be a strongly E-inversive semiring, R be a skew-ring and 1 be
a nullary surjective subhomomorphism of S onto R. Then my o mo~! is the least
skew-ring congruence on the strongly E-inversive semiring T = w(S, R, 1), where
w9 : T —> R is the projection mapping defined by ma(s,r) = for all (s,r) € T.
Hence T/o = T/mg 0o ma~! = R, where o is the least skew-ring congruence on T.

Proof. From Theorem 21, it follows that T is strongly E-inversive semiring which
is a subdirect product of S and R and hence R is a homomorphic image of T'
under the projection mapping defined by ma(s,r) = r for all (s,7) € T. Now, the
congruence induced by 7o on T, i.e., myom ! on T is a skew-ring congruence as
R is a skew-ring. Then o C my 0 ™!, where o is the least skew-ring congruence
on the strongly F-inversive semiring 7.

Suppose (s1,71) T2 0 T~ ! (s2,72), where (sq1,71), (52,72) € T. This implies
(s1,7m1)m2 = (S2,7r2)m2, i.6., 11 = 79 and thus (s1,72) € T. Since T is strongly E-
inversive, then there exists (u,v) € T such that (u,v)+(s1,72) € ET(T) = {(e,0) :
e € ET(S)}, where 0 is the zero element of the skew-ring R. Therefore, v = —ry
and so (u,—r2) € T and (u + s1,0) € EY(T). Again, (s2,72) + (u, —13) = (s2 +
u,0) € T implies 0 € (s3+u)1. Since 1 is nullary, therefore sy +u € ET(S). Let
N be the intersection of all full normal ideals of 7. Then (s2 + u,0), (u+ s1,0) €
E*(T) C N and (s2 +u,0) + (s1,71) = (s2 +u + s1,71) = (s2,71) + (u + 51,0) =
(s2,72) + (u + 51,0) imply that (s1,71)0 (s2,72). Hence mp o 1~ C ¢ and so

7y ome ! = . Consequently, /o = T/m omy ' = R. ]

Theorem 25. Let S be a strongly E-inversive semiring, R be a skew-ring and
Y be a nullary surjective subhomomorphism of S onto R. Then w(S,R,v) is a
strongly E-inversive, E-unitary cover of S through R.

Proof. By Theorem 21, it follows that 7(S, R, 1) is a strongly E-inversive semir-
ing. Similar to the proof of [9, Theorem 8|, we can prove that 7(S, R,) is an
E-unitary cover of S. Finally, by Lemma 24, it follows that 7(S, R,¢)/c = R,
where o is the least skew-ring congruence on 7 (S, R,v) and hence 7(S, R, 1)) is
a strongly F-inversive, E-unitary cover of S through R. [

A construction of all unitary, surjective subhomomorphisms of an inverse
semigroup onto a group was described by Petrich and Reilly in [11]. Later on,
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this result was generalized by Mitsch in [9] for E-inversive semigroups. In the
following theorem, we make an extension of this idea to strongly FE-inversive
semirings.

Theorem 26. Let S be a strongly E-inversive semiring and R be a skew-ring.
Then ¢ is a nullary surjective subhomomorphism of S onto R if and only if
Y = o' o B for some strongly E-inversive semiring T and some surjective ho-
momorphisms a:' T — S and f: T —> R such that ker  C ker «.

Proof. First we assume that T is a strongly E-inversive semiring and 1) = o 1of3,
where oo : T' — S and 8 : T — R are surjective homomorphisms such that
ker 3 C kera. As «,3 both are surjective, it follows that sy # @ and ) is
surjective, i.e., [J;cg 81 = R. Suppose r1 € 519 and 73 € sp9), where 51,59 € S.
Then there exist t1,t9 € T such that t1a = s1, t18 = r1, toaw = S9, t93 = ro. Now,
r1+79 = (t1+t2)B and (t1+ts)a = s1+s9 imply that (r1+72) € (s1+52)(a 1of) =
(s1 + s2)¢ and similarly (r172) € (s152)¢. Therefore, s19 + 9t C (s1 + $2)¢
and (s19)(s21)) C (s152)¢ for all s1,s9 € S. Again, as T is a strongly E-inversive
semiring, so W(t1) # 0. Let t) € W(t1). Let tia = s3 and ¢} = r3. Then
clearly s3 € W(s1),73 € W(r1) and obviously r3 € s3(a~! o 3) = s31) and thus 1)
is a surjective subhomomorphism. Now, suppose 0 € si. Then there exists some
t € T such that ta« = s and t8 = 0. This implies ¢t € ker 8 C ker o and hence
s = ta € E1(S). Consequently, v is nullary surjective subhomomorphism of S
onto R.

Conversely, we assume that ¢ is a nullary surjective subhomomorphism from
S onto R. By Theorem 25, it follows that =« (S, R,v) is a strongly E-inversive,
E-unitary cover of S through R and by Theorem 21, we have (S, R,) is a
subdirect product of S and R. Let T' = n(S,R,v) and let my : T — S and
7o : T — R be the projection mappings. By Lemma 24, 7y o my ! is the least
skew-ring congruence on T' and so by Proposition 23, we have ker mo = ET(T).
Clearly, E*(T) C ker m; and so by the sufficiency of this theorem v = 771 o mo
is a nullary surjective subhomomorphism from S onto R and it can be easily
verified that 7(S,R,vy) = {(tm,tmy) : t € T} = T. Hence sy = {r € R :
(s,r) € w(S,R,y)} = {r € R: (s,r) € T} = s for all s € S. Therefore,
p=vy=m"tom. [ |

We are now in a position to prove the converse of the Theorem 25.

Theorem 27. Let S be a strongly E-inversive semiring, R be a skew-ring and
T be a strongly E-inversive, E-unitary cover of S through R. Then there is a
nullary surjective subhomomorphism 1 of S onto R such that w(S,R,v) is a
homomorphic image of T and ©(S, R,) is a strongly E-inversive, E-unitary
cover of S through R. Moreover, if T is a subdirect product of S and R, then
T=7(S,R,¢).
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Proof. Using Theorem 21, Proposition 23, Theorem 25 and Theorem 26, the
proof follows similar to the proof of [9, Theorem 13]. [

Following [9], a subdirect product H of a semigroup K and a group G is
called full if (e, 1) € H for every e € E(K), where 1 is the identity element of the
group G. A subdirect product T of a semiring S and a skew-ring R is called full
if (e,0) € T for every e € ET(S), where 0 is the zero element of the skew-ring R.

In [9], Mitsch gave the construction of all E-inversive semigroups which are
full subdirect products of a semilattice and a group. Similar to semigroup, using
the concept of surjective subhomomorphism, we here describe the construction of
all strongly FE-inversive semirings which are full subdirect products of an idem-
potent semiring and a skew-ring.

Theorem 28. Let I be an idempotent semiring, R be a skew-ring and H(R)
be the collection of all subhemirings of R. Suppose 0 : I — H(R) C P(R)
is a mapping such that 0 is a surjective subhomomorphism of I onto R. Then
S ={(ayr) €I X R:r € ab} is a strongly E-inversive semiring which is a full
subdirect product of I and R. Conversely, every such semiring can be constructed
in this manner.

Proof. Suppose S = {(a,r) € I x R: r € af}, where 0 is a surjective subho-
momorphism of I onto R. Then by Theorem 21, it follows that S is a strongly
FE-inversive semiring which is a subdirect product of I and R. Also, S is full as
af is a subhemiring of R for all a € 1.

Conversely, suppose that S is a strongly E-inversive semiring which is a full
subdirect product of an idempotent semiring I and a skew-ring R. We define
0:1 — H(R) C PR) by ad = {r € R: (a,r) € S} for all & € I. Since
(a,0) € S for all a € I, it follows that 0 € af and thus af # (. Moreover,
Uger @ = R, since S is a subdirect product of I and R. It is easy to verify
that af is a subhemiring of R for all « € I. Suppose r; € afl and r9 € S6.
Then («,r1),(8,r2) € S. Since S is a semiring, we must have (a + 3,r; +13) =
(o, 71)+(B,72) € S and (af,r17m2) = (e, 71) (B, 72) € S and thus af+460 C (a+5)0
and (af)(80) C (aB)0. Let r € af. Then (a,r) € S. As S is strongly E-inversive,
so there exists (8,p) € S such that (8,p) € W((«a,r)). It is easy to verify that
B € W(a) and p € W(r). Obviously, p € 86 as (8,p) € S. Therefore, 0 is a
surjective subhomomorphism of I onto R and finally, one can easily verify that
S={(ayr) €I X R:r € ab}. |
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