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Abstract

E-inversive semigroups have been the topic of research for many years.
Properties of E-inversive semigroups were studied by Edward [1], Mitsch [9]
and many others. In [2], Ghosh defined E-inversive semiring and studied
its properties. According to him, an additively commutative semiring is
called E-inversive semiring if and only if its additive reduct is an E-inversive
semigroup. In this paper, we define strongly E-inversive semiring and study
its properties.
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1. Introduction

A semigroup S is said to beE-inversive if for every a ∈ S there is an element x ∈ S
such that ax ∈ E(S), where E(S) is the set of all idempotents of the semigroup S.
The notion of E-inversive semigroup was first introduced by Thierrin [13]. Later
on, properties of E-inversive semigroups were studied by Mitsch [9], Lallement
and Petrich [6], Hall and Munn [4], Margolis and Pin [8]. Subdirect products of E-
inversive semigroups were first studied by Mitsch [9]. In 1999, the author defined
E-inversive semiring [2]. According to him, an additively commutative semiring
is said to be E-inversive if its additive reduct is an E-inversive semigroup. Some
properties of E-inversive semirings were studied by Ghosh in that same paper
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[2]. In this paper, we define strongly E-inversive semiring and study some of its
interesting properties.

The preliminaries and prerequisites, we need for this paper, are discussed in
Section 2. In Section 3, we define strongly E-inversive semiring and study its
basic properties. Finally, Section 4 is devoted to the study of E-unitary covers
of strongly E-inversive semirings.

2. Preliminaries

A semiring (S,+, ·) is a type (2, 2)-algebra such that both the additive reduct
(S,+) and the multiplicative reduct (S, ·) are semigroups and multiplication dis-
tributes over addition from either side, that is, a(b+ c) = ab+ ac and (b+ c)a =
ba + ca for all a, b, c ∈ S. We do not assume that the additive reduct (S,+) is
commutative. Following [3], we denote a semiring (S,+, ·) as a skew-ring if its
additive reduct (S,+) is a group, not necessarily an abelian group. A semiring
(S,+, ·) is said to be a hemiring if the additive reduct (S,+) is a monoid.

Let (S,+, ·) be a semiring. An element a ∈ S is called:

– additively regular if there exists an element x ∈ S such that a+ x+ a = a;

– additively completely regular if there exists an element z ∈ S such that a +
z + a = a and z + a = a+ z;

– completely regular [12] if there exists x ∈ S such that a = a+ x+ a, a+ x =
x+ a and a(a+ x) = a+ x.

If a ∈ S is additively regular, we denote the set of all inverses of a in the semigroup
(S,+) by V +(a). A semiring S is said to be completely regular if every element
a of S is completely regular. A semiring S is called idempotent semiring if both
the reducts (S,+) and (S, ·) are bands. A subsemiring I of a semiring S is called
an ideal of S if IS ⊆ I and SI ⊆ I. An ideal I of a semiring S is called a k-ideal
of S if a ∈ I and either a + x ∈ I or x + a ∈ I for some x ∈ S implies x ∈ I.
Throughout this paper, we always let E+(S) be the set of all additive idempotents
of the semiring S. Let S and T be two semirings. A mapping ϕ : S −→ T is
called a semiring homomorphism if (a+b)ϕ = aϕ+bϕ and (ab)ϕ = (aϕ)(bϕ) hold
for all a, b ∈ S. If ϕ : S −→ T is a semiring homomorphism, then the kernel of ϕ,
denoted by kerϕ, is defined by kerϕ = {s ∈ S|sϕ ∈ E+(T )}. A subsemiring T of
the direct product S1×S2 of two semirings S1 and S2 is called subdirect product
of S1 and S2 if the two projection mappings π1 : T −→ S1 and π2 : T −→ S2
respectively given by π1(s1, s2) = s1 and π2(s1, s2) = s2 (where s1 ∈ S1, s2 ∈ S2)
are surjective.

In a semiring S, we denote Green’s relations on the semigroup (S,+) by L+,
R+, J+, D+ and H+. In fact, the relations L+, R+, J+, D+ and H+ are all
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congruences on the multiplicative reduct (S, ·). Thus, if any one of these happens
to be a congruence on the additive reduct (S,+), it will be a semiring congruence
on the semiring (S,+, ·). A completely regular semiring S is said to be completely
simple [12] if J+ = S × S.

Before closing this section, we recall an important result which will be helpful
in our further discussion.

Theorem 1 [12]. The following conditions on a semiring are equivalent:

(i) S is completely regular;

(ii) every H+-class is a skew-ring;

(iii) S is union (disjoint) of skew-rings;

(iv) S is a b-lattice of completely simple semirings.

3. Basic properties of strongly E-inversive semirings

In this section, we define strongly E-inversive semiring and study some of its
properties.

Definition. A semiring S is said to be a strongly E-inversive semiring if for each
a ∈ S, there exists an element x ∈ S such that (i) a+ x ∈ E+(S), (ii) ax = xa,
(iii) a(a+ x) = a+ x and (iv) a(x+ a) = x+ a.

There are plenty of examples of strongly E-inversive semirings; for instance,
every ring is a strongly E-inversive semiring, every skew-ring is a strongly E-
inversive semiring, every completely regular semiring is a strongly E-inversive
semiring (as every completely regular semiring is union of skew-rings), every
idempotent semiring is a strongly E-inversive semiring. However, the converse of
the above statement is not true in general as the following example shows.

Example 2. Define on the set N, the following operations ⊕ and ⊙:

a⊕ b = min{a+ b,M}

a⊙ b = min{ab,M},

whereM ∈ N is a fixed natural number. It is easy to verify that M is an additive
idempotent element as well as a multiplicative idempotent. Now, for any a ∈ N

choose an element x ∈ N such that a + x > M . Then a ⊕ x = x ⊕ a = M ,
a⊙x = x⊙a, a⊙(a⊕x) = a⊙M =M = a⊕x, a⊙(x⊕a) = a⊙M =M = x⊕a.
Hence (N,⊕,⊙) is a strongly E-inversive semiring. Since any element b(> M) ∈ N

is not additively regular, it follows that this semiring is not a quasi completely
regular semiring [7] and hence not a completely regular semiring. Moreover, it is
interesting to point out that this semiring is not even an idempotent semiring.
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Example 3. Any semiring S with (S, ·) a band is strongly E-inversive. In fact
for any a ∈ S, a+ a ∈ E+(S), a · a = a · a, a(a+ a) = a+ a.

Theorem 4. A semiring S is a strongly E-inversive semiring if and only if for all
a ∈ S there exists y ∈ S such that a+y, y+a ∈ E+(S); ay = ya; (a+y)a = a+y;
(y + a)a = y + a.

Proof. First suppose that the semiring S is a strongly E-inversive semiring.
Then for any a ∈ S, there exists an element x ∈ S such that a + x ∈ E+(S),
ax = xa, a(a+x) = a+x and a(x+a) = x+a. Now, if we choose y = x+a+x,
then it can be easily verified that y + a+ y = y and hence a+ y, y + a ∈ E+(S).
Since ax = xa, we must have ay = ya. Again, (a + y)a = a2 + ya = a2 + ay =
a(a+ y) = a(a+ x+ a+ x) = a(a+x) + a(a+ x) = a+ x+ a+ x = a+ y. Hence
(a+ y)a = a+ y. Similarly, we can show that (y + a)a = y + a.

Converse part follows easily.

Theorem 5. A semiring S is a strongly E-inversive semiring if and only if for
all a ∈ S there exists y ∈ S such that y + a+ y = y, ay = ya, a(a+ y) = a+ y,
a(y + a) = y + a.

Proof. First suppose that the semiring S is a strongly E-inversive semiring.
Then for any a ∈ S, there exists an element x ∈ S such that a + x ∈ E+(S),
ax = xa, a(a+x) = a+x and a(x+a) = x+a. Now, if we choose y = x+a+x,
then it can be easily verified that y + a + y = y, ay = ya, a(a+ y) = a+ y and
a(y + a) = y + a.

Converse part is obvious.

Remark 6. The definition of strongly E-inversive semiring is not one-sided.
Moreover, a semiring S is strongly E-inversive if and only if W (a) =

{

x ∈ S :
x+ a+ x = x, ax = xa, a(a + x) = a+ x, a(x+ a) = x+ a

}

6= ∅ for every a ∈ S.
Now following [9], we get that if (S,+, ·) is a strongly E-inversive semiring then
(S,+) is an E-inversive semigroup as I(a) =

{

x ∈ S : a+ x, x+ a ∈ E+(S)
}

6= ∅
for every a ∈ S and it is obvious that W (a) ⊆ I(a) for all a ∈ S.

Though the additive reduct of a strongly E-inversive semiring is always an
E-inversive semigroup, but the converse may not be true as the following example
shows.

Example 7. Consider the semiring (N,+, ·), where addition ‘+’ of two elements
is maximum of two elements in N and multiplication ‘·’ is the usual multiplication
of natural numbers. Then (N,+) is an E-inversive semigroup and (N,+, ·) is an
E-inversive semiring but not a strongly E-inversive semiring.

Proposition 8. Every left (right, both sided) k-ideal of a strongly E-inversive
semiring is strongly E-inversive.
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Proof. Let I be a left k-ideal of a strongly E-inversive semiring S and a ∈ I.
Since S is strongly E-inversive, it follows that W (a) 6= ∅. Let x ∈W (a). As I is
a left ideal of S and a ∈ I, we must have a2, xa ∈ I. This implies a2 + xa ∈ I,
i.e., a+ x ∈ I. Again, I is a left k-ideal of S and a, a+ x ∈ I imply that x ∈ I.
Consequently, I is a strongly E-inversive semiring.

The following well known result can be found, for instance, in [10].

Lemma 9. The following conditions on a semigroup (S, ·) are equivalent.

(1) S is a rectangular band;

(2) S is regular and satisfies the identity ab = axb;

(3) S is a completely simple band.

Proposition 10. Let S be a strongly E-inversive semiring such that the mul-
tiplicative reduct (S, ·) is a completely simple semigroup and e ∈ W (e), for all
e ∈ E+(S). Then (S, ·) is a rectangular band. Conversely, if S is a semiring such
that (S, ·) is a rectangular band, then S is a strongly E-inversive semiring such
that e ∈W (e), for all e ∈ E+(S).

Proof. Since E+(S) is an ideal of (S, ·) and (S, ·) is simple, it follows that S =
E+(S). Let a ∈ S. Then a ∈ E+(S) and hence by the given condition, it follows
that a ∈ W (a). This implies a(a+ a) = a+ a, a2 = a. Thus (S, ·) is a band and
hence by Lemma 9, it follows that (S, ·) is a rectangular band.

Conversely, if S is a semiring whose multiplicative reduct (S, ·) is a rectangu-
lar band, then by Example 3, it at once follows that S is a strongly E-inversive
semiring such that e ∈W (e), for all e ∈ E+(S).

Proposition 11. If for every element a in a semiring S there is exactly one
x ∈ S such that a+ x ∈ E+(S), then S is a skew-ring.

Proof. From [9, Proposition 2], it follows that (S,+) is a group and hence S is
a skew-ring.

Proposition 12. Let S be a strongly E-inversive semiring without zero. Then
the following conditions are equivalent:

(i) S is weakly additive cancellative (i.e., a + x = b + x and x + a = x + b
imply that a = b) and for each a ∈ S there exists some x ∈ W (a) satisfying
x(a+ x) = a+ x, x(x+ a) = x+ a;

(ii) S is a completely simple semiring.

Proof. (i)=⇒(ii) Let a ∈ S. Then there exists an element x ∈ W (a) such that
x+ a+ x = x, ax = xa, a(a+ x) = a+ x = x(a+ x), a(x+ a) = x+ a = x(x+ a).
Now, clearly (a + x + a) + x = a + x and x + (a + x + a) = x + a. Since S is
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weakly additive cancellative, we must have a+x+a = a and thus S is additively
regular. Now (a+x)(x+a) = a(x+a)+x(x+a) = x+a+x+a = x+a. Again,
(a+x)(x+a) = (a+x)x+(a+x)a = x(a+x)+a(a+x) = a+x+a+x = a+x.
Hence a + x = x + a. Therefore, S is a completely regular semiring. By [5,
Theorem 3.3.3], it follows that (S,+) is completely simple, so J+ = S × S.
Hence S is a completely simple semiring.

(ii)=⇒(i) Since S is a completely simple semiring, so (S,+) is a completely
simple semigroup. Then by [5, Theorem 3.3.3], we must have S is weakly additive
cancellative. Again, since S is completely simple, it follows that S is a completely
regular semiring and hence by Theorem 1, it follows that S is union of skew-rings.
Let a ∈ S. Then Ha, the H+-class containing the element a is a skew-ring. Let
y ∈ Ha be the inverse of a in the group (Ha,+). Then clearly y ∈ W (a) such
that y(a+ y) = a+ y, y(y + a) = y + a.

Proposition 13. Let S be a strongly E-inversive semiring. Then the following
are equivalent:

(i) S is left additive cancellative;

(ii) S is a right skew-ring.

Proof. Since S is strongly E-inversive semiring, so its additive reduct is an E-
inversive semigroup. Again, a semiring is called right skew-ring if its additive
reduct is a right group. Hence the result holds from [9, Proposition 4].

Definition. A nonempty subset I of a semiring S is said to be a bi-ideal of S if
a ∈ I and x ∈ S imply that a + x, x + a, ax, xa ∈ I. A semiring S is said to be
an ideal extension of a semiring T if T is a bi-ideal of S.

Theorem 14. Let S be an ideal extension of a semiring T . If S is strongly
E-inversive, then T is also strongly E-inversive.

Proof. Let t ∈ T . Then t ∈ S. Since S is strongly E-inversive, there exists an
element x ∈ S such that x+t+x = x, xt = tx, t(t+x) = t+x and t(x+t) = x+t.
Since T is a bi-ideal of S and t ∈ T , x ∈ S, it follows that x = x + t + x ∈ T .
Hence T is strongly E-inversive.

The converse of Theorem 14 can be proved by taking additional condition as
follows.

Theorem 15. Let S be an ideal extension of a strongly E-inversive semiring T
such that set = ets = et for all s ∈ S \ T, et ∈ E+(T ) and S is weakly additive
cancellative. Then S is also strongly E-inversive.
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Proof. Let s ∈ S. If s ∈ T then obviously s is a strongly E-inversive element.
Let s /∈ T , so s ∈ S\T . Then s+t ∈ T for all t ∈ T as T is a bi-ideal of S. Since T
is strongly E-inversive, there exists an element x ∈ T such that x+(s+t)+x = x.
Then t+x+s+t+x = t+x which implies that s+t+x, t+x+s ∈ E+(T ). Hence
s(s+ t+x), (s+ t+x)s, s(t+x+s), (t+x+s)s ∈ E+(T ). By given condition, we
have s(s+ t+x) = (s+ t+x)s = s+ t+x and s(t+x+s) = (t+x+s)s = t+x+s
which imply that s2 + s(t+ x) = s2 + (t+ x)s and s(t+ x) + s2 = (t+ x)s+ s2.
Hence s(t+ x) = (t+ x)s as S is weakly additive cancellative. Now if we choose
t+x = xs, then xs+ s+xs = xs, sxs = xss, s(s+xs) = s+xs, s(xs+ s) = xs+ s.
Hence S is strongly E-inversive.

Corollary 16. Let S be an ideal extension of a strongly E-inversive semiring T
such that |E+(T )| = 1 and S is weakly additive cancellative. Then S is strongly
E-inversive semiring such that for all s ∈ S there exists x ∈ S satisfying (i)
s+ x = x+ s ∈ E+(S), (ii) sx = xs and (iii) s(s+ x) = s+ x = x(s+ x).

4. E-unitary covers of strongly E-inversive semirings

It is easy to verify that the direct product of strongly E-inversive semirings is
again a strongly E-inversive semiring. But the subdirect product of even two
strongly E-inversive semirings may not be strongly E-inversive. In this section,
we characterize all those subdirect products of two strongly E-inversive semirings
which are again strongly E-inversive. Also, we study E-unitary covers of strongly
E-inversive semirings.

Proposition 17. Homomorphic image of a strongly E-inversive semiring is
strongly E-inversive.

Proof. Let ϕ : S −→ T be a semiring epimorphism between two semirings S and
T such that S is strongly E-inversive. Let b ∈ T be arbitrary. Then there exists
an element a ∈ S such that b = aϕ. Now, for the element a ∈ S, there exists an
element x ∈ S such that x ∈W (a). Let y = xϕ. Then one can easily verify that
y ∈W (b). Since b ∈ T is arbitrary, it follows that T is strongly E-inversive.

Corollary 18. If S is a strongly E-inversive semiring such that it is a subdirect
product of two semirings A and B, then both A and B are strongly E-inversive.

Remark 19. Subdirect product of two strongly E-inversive semirings may not
be strongly E-inversive. This follows from the following example.

Example 20. Let A = B = (Z,+, ·) and S be the subsemiring of A× B gener-
ated by {(1, 1), (−1,−3)}. Then S is a subdirect product of strongly E-inversive
semirings A and B, but S is not strongly E-inversive, since E+(S) = {(0, 0)} and
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for the element (1, 1) ∈ S, there is no element (x, y) ∈ S such that (1, 1)+(x, y) =
(0, 0) ∈ E+(S).

In [9], Mitsch established necessary and sufficient condition for subdirect
products of two E-inversive semigroups to be again E-inversive. Now, we estab-
lish a necessary and sufficient condition for subdirect products of two strongly
E-inversive semirings to be again strongly E-inversive. For this purpose, let us
first define the following definition.

Definition (surjective subhomomorphism). Suppose S, T be two strongly E-
inversive semirings and ψ : S −→ P(T ) (the power set of T ) is a mapping. Then
ψ is called surjective subhomomorphism of S onto T if the following conditions
are satisfied:

(1) sψ 6= ∅ for all s ∈ S,

(2) s1ψ + s2ψ ⊆ (s1 + s2)ψ and (s1ψ)(s2ψ) ⊆ (s1s2)ψ for all s1, s2 ∈ S,

(3)
⋃

s∈S
sψ = T ,

(4) for every t ∈ sψ, there exist x ∈W (s) and y ∈W (t) such that y ∈ xψ.

Theorem 21. Let S, T be two strongly E-inversive semirings and ψ be a surjec-
tive subhomomorphism of S onto T . Then π(S, T, ψ) = {(s, t) ∈ S × T : t ∈ sψ}
is a strongly E-inversive semiring which is a subdirect product of S and T . Con-
versely, every strongly E-inversive semiring which is a subdirect product of two
strongly E-inversive semirings can be obtained in this way.

Proof. Let A = π(S, T, ψ). Then by condition (2) of the definition of surjective
subhomomorphism, it follows that A is a semiring. Again, following [9, Theorem
7], it follows that (A,+) is an E-inversive semigroup which is a subdirect product
of S and T . To show A is strongly E-inversive, let (s, t) ∈ A. Then t ∈ sψ and
hence by condition (4), there exist x ∈ W (s) and y ∈ W (t) such that y ∈ xψ.
This implies (x, y) ∈ A. Moreover, it is easy to verify that (x, y) ∈ W ((s, t)).
Hence A is a strongly E-inversive semiring.

Conversely, let B be a strongly E-inversive semiring which is a subdirect
product of two strongly E-inversive semirings S and T . Then (B,+) is an E-
inversive semigroup. Let α : S −→ P(T ) be defined by sα = {t ∈ T : (s, t) ∈ B}
for every s ∈ S. Since B is a subsemiring of S × T , we can easily verify that the
condition (2) holds. Let t ∈ sα, where s ∈ S and t ∈ T . Then (s, t) ∈ B, hence
there exists (x, y) ∈ B such that (x, y) ∈W ((s, t)) as B is a strongly E-inversive
semiring. Therefore, (x, y) + (s, t) + (x, y) = (x, y), (s, t)(x, y) = (x, y)(s, t),
(s, t)((s, t)+ (x, y)) = (s, t)+ (x, y), (s, t)((x, y)+ (s, t)) = (x, y)+ (s, t). Then we
get, x+s+x = x, sx = xs, s(s+x) = s+x, s(x+s) = x+s. Hence x ∈W (s) and
similarly we get y ∈ W (t). As (x, y) ∈ B, so y ∈ xα. Therefore, the condition
(4) holds. Finally, since (B,+) is an E-inversive semigroup, by [9, Theorem 7],
it follows that the conditions (1), (3) hold and B = π(S, T, α).
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Definition. A subset T of a strongly E-inversive semiring S is called an ideal of
S if all a, b ∈ T and all s ∈ S imply that a+ b, sa, as ∈ T . An ideal T of S is said
to be full if E+(S) ⊆ T . An ideal T of S is called a normal ideal if s+T + s′ ⊆ T
and s′ + T + s ⊆ T for all s ∈ S and s′ ∈ I(s).

Lemma 22. Let S be a strongly E-inversive semiring. Then the least skew-ring
congruence σ on S is given by : for a, b ∈ S,

a σ b if and only if x+ a = b+ y for some x, y ∈ N ,

where N is the intersection of all full normal ideals of S.

Proof. Following the proof of [9, Proposition 9], it is easy to verify that for every
full normal ideal T , the relation σT on S given by : for a, b ∈ S, a σT b if and only
if x + a = b + y for some x, y ∈ T is a group congruence on (S,+). Let a σT b
and c ∈ S. This implies xc + ac = bc + yc with xc, yc ∈ T and thus ac σT bc.
Similarly, we can show that ca σT cb. Therefore, σT is a semiring congruence on
S such that (S/σT ,+) is a group. Consequently, S/σT is a skew-ring and hence
σT is a skew-ring congruence on S.

Conversely, let δ be a skew-ring congruence on S and let T = {t ∈ S : tδ = 0δ,
where 0δ is the zero element of the skew-ring S/δ}. Obviously, T is an ideal of
S such that E+(S) ⊆ T . Now for each s ∈ S and s′ ∈ I(s), s′

δ
is the additive

inverse of sδ ∈ S/δ. Again, for any t ∈ T , (s + t + s′)δ = (s + s′)δ = 0δ. Hence
s+t+s′ ∈ T . Similarly, it can be verified that s′+t+s ∈ T . Therefore, T is a full
normal ideal of S. It is easy to show that σT ≤ δ. Let aδb, then (b′ + a)δ(b′ + b),
where b′ ∈ I(b) and hence b′ + a ∈ T . Now (b+ b′) + a = b+ (b′ + a) implies that
aσT b, so σT = δ. Now it is clear that σ = σN , where N is the intersection of all
full normal ideals of S.

Definition. A semiring S with additive idempotents is said to be E-unitary if
its additive semigroup reduct (S,+) is an E-unitary semigroup, i.e., e + s, e ∈
E+(S), s ∈ S imply s ∈ E+(S). One can easily verify that this condition is
equivalent to : s+ e, e ∈ E+(S), s ∈ S imply s ∈ E+(S). A semiring T is called
E-unitary cover of a semiring S if T is E-unitary and if there is an epimorphism
ϕ : T −→ S such that ϕ is additive idempotent separating, i.e., for any two
elements e, f ∈ E+(T ), eϕ = fϕ implies e = f . In addition, if there is a least
skew-ring congruence δ on T and a skew-ring R such that T/δ ∼= R, then T is
called E-unitary cover of S through R.

Proposition 23. If σ is the least skew-ring congruence on a strongly E-inversive,
E-unitary semiring S, then ker σ = N = E+(S), where N is the intersection of
all full normal ideals of S.
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Proof. Using Lemma 22 and following the proof of [9, Corollary 10], in a similar
way it can be easily verified that E+(S) is a full normal ideal of S and E+(S) =
N = kerσ.

Definition. Suppose S be a strongly E-inversive semiring and R be a skew-
ring; a subhomomorphism ψ of S into R is called nullary if 0 ∈ sψ implies that
s ∈ E+(S), where s ∈ S and 0 is the zero element of the skew-ring R.

Lemma 24. Let S be a strongly E-inversive semiring, R be a skew-ring and ψ be
a nullary surjective subhomomorphism of S onto R. Then π2 ◦ π2

−1 is the least
skew-ring congruence on the strongly E-inversive semiring T = π(S,R,ψ), where
π2 : T −→ R is the projection mapping defined by π2(s, r) = r for all (s, r) ∈ T .
Hence T/σ = T/π2 ◦ π2

−1 ∼= R, where σ is the least skew-ring congruence on T .

Proof. From Theorem 21, it follows that T is strongly E-inversive semiring which
is a subdirect product of S and R and hence R is a homomorphic image of T
under the projection mapping defined by π2(s, r) = r for all (s, r) ∈ T . Now, the
congruence induced by π2 on T , i.e., π2 ◦ π2

−1 on T is a skew-ring congruence as
R is a skew-ring. Then σ ⊆ π2 ◦ π2

−1, where σ is the least skew-ring congruence
on the strongly E-inversive semiring T .

Suppose (s1, r1) π2 ◦ π2
−1 (s2, r2), where (s1, r1), (s2, r2) ∈ T . This implies

(s1, r1)π2 = (s2, r2)π2, i.e., r1 = r2 and thus (s1, r2) ∈ T . Since T is strongly E-
inversive, then there exists (u, v) ∈ T such that (u, v)+(s1, r2) ∈ E+(T ) = {(e, 0) :
e ∈ E+(S)}, where 0 is the zero element of the skew-ring R. Therefore, v = −r2
and so (u,−r2) ∈ T and (u+ s1, 0) ∈ E+(T ). Again, (s2, r2) + (u,−r2) = (s2 +
u, 0) ∈ T implies 0 ∈ (s2+u)ψ. Since ψ is nullary, therefore s2+u ∈ E+(S). Let
N be the intersection of all full normal ideals of T . Then (s2 +u, 0), (u+ s1, 0) ∈
E+(T ) ⊆ N and (s2 + u, 0) + (s1, r1) = (s2 + u+ s1, r1) = (s2, r1) + (u+ s1, 0) =
(s2, r2) + (u + s1, 0) imply that (s1, r1)σ (s2, r2). Hence π2 ◦ π2

−1 ⊆ σ and so
π2 ◦ π2

−1 = σ. Consequently, T/σ = T/π2 ◦ π2
−1 ∼= R.

Theorem 25. Let S be a strongly E-inversive semiring, R be a skew-ring and
ψ be a nullary surjective subhomomorphism of S onto R. Then π(S,R,ψ) is a
strongly E-inversive, E-unitary cover of S through R.

Proof. By Theorem 21, it follows that π(S,R,ψ) is a strongly E-inversive semir-
ing. Similar to the proof of [9, Theorem 8], we can prove that π(S,R,ψ) is an
E-unitary cover of S. Finally, by Lemma 24, it follows that π(S,R,ψ)/σ ∼= R,
where σ is the least skew-ring congruence on π(S,R,ψ) and hence π(S,R,ψ) is
a strongly E-inversive, E-unitary cover of S through R.

A construction of all unitary, surjective subhomomorphisms of an inverse
semigroup onto a group was described by Petrich and Reilly in [11]. Later on,
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this result was generalized by Mitsch in [9] for E-inversive semigroups. In the
following theorem, we make an extension of this idea to strongly E-inversive
semirings.

Theorem 26. Let S be a strongly E-inversive semiring and R be a skew-ring.
Then ψ is a nullary surjective subhomomorphism of S onto R if and only if
ψ = α−1 ◦ β for some strongly E-inversive semiring T and some surjective ho-
momorphisms α : T −→ S and β : T −→ R such that ker β ⊆ kerα.

Proof. First we assume that T is a strongly E-inversive semiring and ψ = α−1◦β,
where α : T −→ S and β : T −→ R are surjective homomorphisms such that
ker β ⊆ kerα. As α, β both are surjective, it follows that sψ 6= ∅ and ψ is
surjective, i.e.,

⋃

s∈S
sψ = R. Suppose r1 ∈ s1ψ and r2 ∈ s2ψ, where s1, s2 ∈ S.

Then there exist t1, t2 ∈ T such that t1α = s1, t1β = r1, t2α = s2, t2β = r2. Now,
r1+r2 = (t1+t2)β and (t1+t2)α = s1+s2 imply that (r1+r2) ∈ (s1+s2)(α

−1◦β) =
(s1 + s2)ψ and similarly (r1r2) ∈ (s1s2)ψ. Therefore, s1ψ + s2ψ ⊆ (s1 + s2)ψ
and (s1ψ)(s2ψ) ⊆ (s1s2)ψ for all s1, s2 ∈ S. Again, as T is a strongly E-inversive
semiring, so W (t1) 6= ∅. Let t′1 ∈ W (t1). Let t′1α = s3 and t′1β = r3. Then
clearly s3 ∈W (s1), r3 ∈W (r1) and obviously r3 ∈ s3(α

−1 ◦ β) = s3ψ and thus ψ
is a surjective subhomomorphism. Now, suppose 0 ∈ sψ. Then there exists some
t ∈ T such that tα = s and tβ = 0. This implies t ∈ ker β ⊆ kerα and hence
s = tα ∈ E+(S). Consequently, ψ is nullary surjective subhomomorphism of S
onto R.

Conversely, we assume that ψ is a nullary surjective subhomomorphism from
S onto R. By Theorem 25, it follows that π(S,R,ψ) is a strongly E-inversive,
E-unitary cover of S through R and by Theorem 21, we have π(S,R,ψ) is a
subdirect product of S and R. Let T = π(S,R,ψ) and let π1 : T −→ S and
π2 : T −→ R be the projection mappings. By Lemma 24, π2 ◦ π2

−1 is the least
skew-ring congruence on T and so by Proposition 23, we have kerπ2 = E+(T ).
Clearly, E+(T ) ⊆ ker π1 and so by the sufficiency of this theorem γ = π1

−1 ◦ π2
is a nullary surjective subhomomorphism from S onto R and it can be easily
verified that π(S,R, γ) = {(tπ1, tπ2) : t ∈ T} = T . Hence sγ = {r ∈ R :
(s, r) ∈ π(S,R, γ)} = {r ∈ R : (s, r) ∈ T} = sψ for all s ∈ S. Therefore,
ψ = γ = π1

−1 ◦ π2.

We are now in a position to prove the converse of the Theorem 25.

Theorem 27. Let S be a strongly E-inversive semiring, R be a skew-ring and
T be a strongly E-inversive, E-unitary cover of S through R. Then there is a
nullary surjective subhomomorphism ψ of S onto R such that π(S,R,ψ) is a
homomorphic image of T and π(S,R,ψ) is a strongly E-inversive, E-unitary
cover of S through R. Moreover, if T is a subdirect product of S and R, then
T ∼= π(S,R,ψ).
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Proof. Using Theorem 21, Proposition 23, Theorem 25 and Theorem 26, the
proof follows similar to the proof of [9, Theorem 13].

Following [9], a subdirect product H of a semigroup K and a group G is
called full if (e, 1) ∈ H for every e ∈ E(K), where 1 is the identity element of the
group G. A subdirect product T of a semiring S and a skew-ring R is called full
if (e, 0) ∈ T for every e ∈ E+(S), where 0 is the zero element of the skew-ring R.

In [9], Mitsch gave the construction of all E-inversive semigroups which are
full subdirect products of a semilattice and a group. Similar to semigroup, using
the concept of surjective subhomomorphism, we here describe the construction of
all strongly E-inversive semirings which are full subdirect products of an idem-
potent semiring and a skew-ring.

Theorem 28. Let I be an idempotent semiring, R be a skew-ring and H(R)
be the collection of all subhemirings of R. Suppose θ : I −→ H(R) ⊆ P(R)
is a mapping such that θ is a surjective subhomomorphism of I onto R. Then
S = {(α, r) ∈ I × R : r ∈ αθ} is a strongly E-inversive semiring which is a full
subdirect product of I and R. Conversely, every such semiring can be constructed
in this manner.

Proof. Suppose S = {(α, r) ∈ I × R : r ∈ αθ}, where θ is a surjective subho-
momorphism of I onto R. Then by Theorem 21, it follows that S is a strongly
E-inversive semiring which is a subdirect product of I and R. Also, S is full as
αθ is a subhemiring of R for all α ∈ I.

Conversely, suppose that S is a strongly E-inversive semiring which is a full
subdirect product of an idempotent semiring I and a skew-ring R. We define
θ : I −→ H(R) ⊆ P(R) by αθ = {r ∈ R : (α, r) ∈ S} for all α ∈ I. Since
(α, 0) ∈ S for all α ∈ I, it follows that 0 ∈ αθ and thus αθ 6= ∅. Moreover,
⋃

α∈I
αθ = R, since S is a subdirect product of I and R. It is easy to verify

that αθ is a subhemiring of R for all α ∈ I. Suppose r1 ∈ αθ and r2 ∈ βθ.
Then (α, r1), (β, r2) ∈ S. Since S is a semiring, we must have (α + β, r1 + r2) =
(α, r1)+(β, r2) ∈ S and (αβ, r1r2) = (α, r1)(β, r2) ∈ S and thus αθ+βθ ⊆ (α+β)θ
and (αθ)(βθ) ⊆ (αβ)θ. Let r ∈ αθ. Then (α, r) ∈ S. As S is strongly E-inversive,
so there exists (β, p) ∈ S such that (β, p) ∈ W ((α, r)). It is easy to verify that
β ∈ W (α) and p ∈ W (r). Obviously, p ∈ βθ as (β, p) ∈ S. Therefore, θ is a
surjective subhomomorphism of I onto R and finally, one can easily verify that
S ∼= {(α, r) ∈ I ×R : r ∈ αθ}.
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