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Abstract

In this paper, the collections of all pronormal subgroups of Dn and Hall
subgroups for groups An, Sn and Dn are studied. It is proved that the
collection of all pronormal subgroups of Dn is a sublattice of L(Dn). It is
also proved that the collection of all Hall subgroups of Dn, An and Sn do
not form sublattices of respective L(Dn), L(An) and L(Sn).
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1. Introduction and notation

Throughout this article, G denotes a finite group. It is known that the set of
all subgroups of a given finite group G forms a lattice denoted by L(G) with
H ∧ K = H ∩ K and H ∨ K =< H,K > for subgroups H, K of G. The
interrelations between the theory of lattices and the theory of groups have been
studied by many researchers, see Pálfy [10], Schmidt [14], Suzuki [18]. For the
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group theoretic concepts and notations, we refer to Birkhoff [1], Luthar and Passi
[8], Schmidt [14].

There are a few types of subgroups such as, pronormal subgroups, Hall sub-
groups etc, whose collections may form lattices and these lattices can be used to
study the properties of groups. Accordingly, the study of collection of pronormal
subgroups of Dn and Hall subgroups of Sn, An and Dn has been carried out.

The following notations are used throughout this article.

• LH(G) – Collection of all Hall subgroups of G.

• LN(G) – Collection of all normal subgroups of G, which is a sublattice of
L(G).

• LPrN(G) – Collection of all pronormal subgroups of G.

• |G| – Order of G.

• |L(G)| – Number of subgroups of G= Cardinality of L(G).

• o(a) – Order of an element a of G.

• e – Neutral (Identity) element in G.

• [m, r] – lcm of m and r.

• (m, r) – gcd of m and r.

• < H,K > – Subgroup generated by the subgroups H and K of G.

• np(G) – Number of Sylow p-subgroups of G.

In what follows, n is always a positive natural number.

We use the notation Dn for the dihedral group of order 2n generated by two
elements, say a and b, such that an = e = b2; we write Dn =< a, b >. Sn denotes
the symmetric group on n symbols and An denotes the alternating group on n
symbols which is a normal subgroup of Sn.

The lattice depicted in Figure 1.1 is the Hasse diagram of L(S4); see also
[17].

Note that the lattice LPrN(S4) depicted in Figure 1.2 is not a sublattice
of the lattice L(S4), since M18 ∧ M19 = K2 in L(S4) and M18 ∧ M19 = K1

in LPrN(S4). As such, LPrN(Sn) is not necessarily a sublattice of L(Sn), in
general.

We show that the situation is different for Dn.
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Figure 1.1. L(S4).
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Figure 1.2. LPrN(S4).

2. Pronormal subgroups in Dn

In this section, some properties of the collection of pronormal subgroups of Dn

are investigated.

The following definition of a pronormal subgroup of a finite group is essen-
tially due to Hall., see [7].

Definition 2.1. Let G be a group and H be a subgroup of G. Then H is said
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to be pronormal , if H and any given conjugate of H in G, say Hg, are also
conjugates in < H,Hg >.

The definition and study of pronormal subgroups are primarily based on the
conjugate(s) of a given subgroup in a group and as such, it is a study of conjugacy
and existence of Sylow p-subgroups. In fact, the study of pronormal subgroups
is primarily based on the pioneering work by Hall [7], Rose [13], Peng [11] and
Mann [9].

We list some examples of pronormal subgroups in various groups as follows;
see [13, 19].

• Every Hall subgroup (see Def. 3.1) of a finite solvable group is pronormal.

• Every normal subgroup of a group is pronormal.

• Every maximal subgroup of a group is pronormal.

• Every Sylow p-subgroup of a finite group is pronormal.

• Every Carter subgroup (i.e., nilpotent self-normalizing subgroup) of a finite
solvable group is pronormal.

We recall the following Theorem, see [4].

Theorem 2.2. Every subgroup of Dn is cyclic or dihedral. A complete listing of
the subgroups is as follows:

(1) < ad >, where d|n, with index 2d,

(2) < ak, aib >, where k|n and 0 ≤ i ≤ k − 1, with index k.

Every subgroup of Dn occurs exactly once in this listing.

Remarks.
1. A subgroup of Dn is said to be of Type (1) if it is cyclic subgroup as stated

in (1) of Theorem 2.2.
2. A subgroup of Dn is said to be of Type (2) if it is dihedral subgroup as

stated in (2) of Theorem 2.2.
The following Lemma shows an important property about dihedral groups,

see [2, 4].

Lemma 2.3. For n odd, the only proper normal subgroups of Dn are the sub-
groups of < a >. For n even, there are two additional proper normal subgroups,
< a2, b > and < a2, ab >, both of order n and isomorphic to Dn

2
.

Interestingly, a conjugate of a given subgroup of Dn is determined by some
power of the generator a of Dn, as the following result shows.

Lemma 2.4. For any subgroup H of Dn and for any k, there is a j such that
Hakb = Haj .
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Proof. Let H be a Type (1) subgroup, then H is normal by Lemma 2.3. Now,
let H be a Type (2) subgroup of the form H =< am, aib > and accordingly
akbHakb = akb < am, aib > akb =< am, a2k−ib >. In this case, choose an element
ak−i ∈ Dn and so the conjugate of H determined by ak−i is ak−iHai−k = ak−i <
am, aib > ai−k =< am, a2k−ib >. Therefore, ak−iHai−k = akbHakb.

In what follows, we characterize the pronormal subgroups of Dn.

Theorem 2.5. A subgroup of Dn is pronormal unless it is of the form < am, aib >
where 4|m|n and 0 ≤ i ≤ m− 1.

Proof. Let H be a subgroup of Dn. If H of Type (1) then it is pronormal since
it is normal by Lemma 2.3. We therefore assume the possibilities only when H
is a subgroups of Type (2).

Claim 1. If H= < am, aib > is a subgroup of Dn of Type (2), with m is not
divisible by 4, then H is pronormal.

In view of Lemma 2.4, it is sufficient to consider Hx for an element x = ak

of H. For Hx =< am, a2k+ib >, we contend that < Hx,H >=< ag, aib > where
g = (m, 2k). Indeed, note that < Hx,H >=< am, a2k, aib >, and as g|m and
g|2k, we have < Hx,H >⊆< ag, aib >. Moreover, if z ∈< ag, aib > then there is
some q ∈ N such that z = agq+ib = a(mt1+2kt2)q+ib ∈< am, a2k, aib >=< Hx,H >
for some t1 t2 ∈ Z, and this proves < Hx,H >=< ag, aib >.

We claim that H and Hx are conjugates in < Hx,H >=< ag, aib >, i.e.,
there exists a y ∈< Hx,H > such that Hx = Hy holds. We have g = (m, 2k),
so let m = gm′ and 2k = gk′ for some m′, k′ ∈ Z. Note that if m is even
then 2|g and since 4 ∤ m, we have (m′, 2) = 1. Also if m is odd then 2 ∤ m′

and so (m′, 2) = 1. In both the cases we have (m′, 2) = 1 and therefore there
exist d1, d2 ∈ Z such that 1 = m′d1 + 2d2. Now, gk′ = m′gd1k

′ + 2gd2k
′ =

md1k
′+2gd2k

′ = ms1+2gs2, where s1 = d1k
′ and s2 = d2k

′, i.e., 2k = ms1+2gs2.
Put y = ags2 . Then Hy =< am, a2gs2+ib > and so it contains an element a2k+ib
of Hx and consquently, Hx ⊆ Hy. Therefore, Hx = Hy since Hx and Hy are
conjugates of H.

Claim 2. If H= < am, aib > is a subgroup of Dn of Type (2), with m ≥ 1 is
divisible by 4, then H is not pronormal.

Note that this case only occurs if n is divisible by 4, since 4|m and m|n. In
order to show that H is not pronormal in Dn, it is sufficient to find an element
g ∈ Dn such that H and Hg are not conjugates in < H,Hg >.

We have < H,Ha >= < am, aib, a2 >. As m is even, we have < H,Ha >=<
a2, b > if i is even and < H,Ha >=< a2, ab > if i is odd. As such, we have
following two cases.
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Case I. Suppose that i is odd. In this case < H,Ha >=< a2, ab >, and
if H and Ha are conjugates in < H,Ha > then there must exist an element
x ∈< H,Ha > such that Ha = Hx and such x is of the form a2p for some p or
a2p+1b for some p.

Subcase I(1). If x = a2p, then Hx =< am, a4p+ib >= Ha =< am, a2+ib >
and we must have amqa4p+ib = a2+ib for some q. But then, amq+4p = a2, i.e.,
amq+4p−2 = e, where e is the identity element of Dn. Now, o(a) is n and we have
n|4p+mq− 2 and so 4|4p+mq− 2. Also, 4|m and so we must have 4|− 2, which
is not true and therefore no such x exists.

Subcase I(2). If x = a2p+1b, thenHx=< am, a4p+2−ib >= Ha=< am, a2+ib >,
and so we must have amqa4p+2−ib = a2+ib for some q. As such, amq+4p+2−i = a2+i,
i.e., amq+4p−2i = e where e is the identity element of Dn. Now, o(a) is n and 4|n,
so we have n|4p +mq − 2i and 4|4p +mq − 2i. Also, 4|m and so we must have
4|2i, this is not possible as i is odd, and so no such x exists.

Therefore, in this Case I, H and Ha are not conjugates in < H,Ha >.

Case II. Suppose that i is even. In this case < H,Ha >=< a2, b >, and
if H and Ha are conjugates in < H,Ha > then there must exist an element
x ∈< H,Ha > such that Ha = Hx and such x is of the form a2p or a2pb for
some p.

Subcase II(1). If x = a2p, then Hx =< am, a4p+ib >= Ha =< am, a2+ib >,
and so we have amqa4p+ib = a2+ib for some q. As such, amq+4p = a2, i.e.,
amq+4p−2 = e, where e is the identity element of Dn. Now, o(a) is n and 4|n and
so we have n|4p + mq − 2 and 4|4p + mq − 2. Also, 4|m and so we must have
4| − 2, which is not true and so no such x exists.

Subcase II(2). If x = a2pb, then Hx =< am, a4p−ib >= Ha =< am, a2+ib >
and so we have amqa4p−ib = a2+ib for some q. Accordingly, amq+4p−i = a2+i, i.e.,
amq+4p−2i−2 = e, where e is the identity element of Dn. Now, o(a) is n and 4|n,
and so we have n|4p+mq − 2i− 2 and 4|4p +mq − 2i− 2. Also, 4|m and so we
must have 4|2, which is not true and so no such x exists.

Therefore, in Case II also, H and Ha are not conjugates in < H,Ha >.

Consequently, in either of these cases, the subgroup H is not pronormal.

It is known that the number of subgroups of Dn for n ≥ 3 is |L(Dn)| = Num-
ber of divisors of n + Sum of divisors of n. Along the same line, we have the fol-
lowing formula for the number of pronormal subgroups of Dn, i.e., |LPrN(Dn)|.

Corollary 2.6. For any n ≥ 3, |LPrN(Dn)| = d(n) +
∑

d′|n and 4∤d′
d′, where d(n)

is the number of divisors of n.
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Proof. From Theorem 2.5, every choice of a divisor m of n which is not divisible
by 4 gives a dihedral pronormal subgroup < am, aib > for every i. Moreover,
every divisor m of n will determine a cyclic pronormal subgroup < am > of Dn

and these are the only pronormal subgroups of Dn.

We prove that the set of all pronormal subgroups of Dn forms a sublattice of
the subgroup lattice of Dn, for any n.

Theorem 2.7. LPrN(Dn) is a sublattice of L(Dn).

Proof. We show that the intersection of two pronormal subgroups of Dn is again
pronormal. Let H and K be two pronormal subgroups of Dn.

If one of these subgroups is of the form < ak > then by Lemma 2.3, we are
through. So, let H =< am, aib > and K =< ar, ajb > for some m, r ≥ 1, m|n,
r|n, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ r − 1, moreover 4 ∤ m, 4 ∤ r by Theorem 2.5.
Suppose that akb ∈ H ∩K for some k, then akb = ams+ib = art+jb for suitable s
and t therefore ms + i = rt + j or ms − rt = j − i. Also, in this case H ∩K=
< a[m,r], akb >. If no such akb ∈ H ∩K, then we have H ∩K =< a[m,r] >. We
prove in each of the following cases that H ∩ K is pronormal and note that, if
H ∩K =< a[m,r] > then it is normal by Lemma 2.3 and so pronormal.

(i) If bothm and r are even numbers and neither is a multiple of 4, then [m, r]
is also even and not a multiple of 4. And so, H ∩K =< am, aib > ∩ < ar, ajb >
is pronormal.

(ii) If m is even and not a multiple of 4 and r is odd, then [m, r] is an even
number which is not a multiple of 4, and so H ∩K =< am, aib > ∩ < ar, ajb >
is pronormal.

(iii) If both m and r are odd numbers, then [m, r] is an odd number and
consequently H ∩K =< am, aib > ∩ < ar, ajb > is pronormal.

Therefore the intersection of any two pronormal subgroups is a pronormal
subgroup.

Next, we prove that the subgroup generated by the union of two pronormal
subgroups is pronormal.

Let H and K be two pronormal subgroups of Dn.

Case I. Suppose that H and K are subgroups of Type (2), say H =<
am, aib > and K =< ar, ajb > for some m, r ≥ 1, m|n, r|n, 0 ≤ i ≤ m − 1,
0 ≤ j ≤ r − 1, moreover 4 ∤ m, 4 ∤ r by Theorem 2.5.

We contend that < H∪K >=< ag, aib >, where g = (m, r, i−j). Indeed, for
S =< ag, aib > and x ∈ S, we have x = agk1+ib, for some k1 ∈ Z. However, since
g = (m, r, i − j), there exist p1, p2, p3 ∈ Z such that g = mp1 + rp2 + (i− j)p3
and so x = a(mp1+rp2+(i−j)p3)k1+ib, which is a finite product of elements of H
and K, and so x ∈< H ∪ K >, therefore S ⊆< H ∪ K >. Now to show that
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S ⊇< H ∪K > it is sufficient to show that ajb ∈ S. We have aib ∈ S, aj−i ∈ S
and so ajb ∈ S. Consequently, < am, aib, ar, ajb >⊆ S, i.e., S ⊇< H ∪K >.

Now, since H and K are pronormal, we have 4 ∤ m and 4 ∤ r, and so 4 ∤ g,
which implies that < H ∪K > is pronormal.

Case II. Suppose that each one of H and K is a cyclic subgroup of Type (1),
then obviously < H ∪K > is also cyclic of Type (1) which is normal by Lemma
2.3 and so pronormal.

Case III. Suppose that one of H and K is a cyclic subgroup of Type (1)
and the other one is of Type (2), say H =< ar > and K =< am, aib >. Then
< H ∪K >=< ag, aib > where g = (m, r). Now, 4 ∤ m, so 4 ∤ g, which implies
that < H ∪K > is pronormal.

We conclude that given pronormal subgroups H and K of a group Dn, we
have that both H∨K =< H∪K > and H∧K = H∩K are pronormal. Therefore
LPrN(Dn) is a sublattice of L(Dn).

3. Hall subgroups of Dn, An and Sn

In this section, the properties of the collection of Hall subgroups of Dn, Sn and
An are investigated.

The concept of a Hall subgroup of a finite group was introduced by Hall [7];
for more details, see [15, 19, 20].

Definition 3.1. A Hall subgroup of a finite group is a subgroup whose order is
coprime to its index.

We prove in the following Theorem that the set of all Hall subgroups of Dn

forms a lattice.

Theorem 3.2. Let Dn be a dihedral group. The poset LH(Dn) of all Hall sub-
groups of Dn is a lattice.

Proof. We know that a subgroup of Dn is either cyclic or dihedral. LH(Dn) ⊆
L(Dn), in order to show that LH(Dn) is a lattice, we determine the meet (∧LH)
and join (∨LH) of two elements of LH(Dn).

We write n = 2ipα1

1 pα2

2 pα3

3 · · · pαr
r = 2i

∏k=r
k=1 p

αk

k where each pk is an odd
prime.

Case I. Let C1 =< an1 > and C2 =< an2 >, where n1 = n
m1

and n2 = n
m2

be two cyclic subgroups of Dn of Type (1) which are also Hall subgroups with
orders m1 and m2 respectively. Since a cyclic subgroup of Type (1) which is also
a Hall subgroup has to be of odd order, m1 and m2 are odd numbers.
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Note that the subgroup < al >, where l = n
[m1,m2]

, is the smallest subgroup

containing both C1 and C2 in L(Dn).

Claim I(1). < al > is a Hall subgroup and so C1 ∨ C2 = C1 ∨LH C2 =< al >.

If < al > is not a Hall subgroup, then | < al > | contains a prime say px
with power strictly less than αx and stricly greater than 0, and as | < al > | is
[m1,m2], we must have that the prime px is in one of the expansions of m1 and
m2 with power strictly less than αx and stricly greater than 0, both m1 and m2

being odd. Consequently, one of C1 and C2 is not a Hall subgroup, which is not
true. Therefore, < al > is a Hall subgroup.

Similarly, note that the subgroup < ag >, where g = n
(m1,m2)

, is the largest

subgroup contained in both C1 and C2 in L(Dn).

Claim I(2). < ag > is a Hall subgroup and so C1 ∧LH C2 = C1 ∧ C2 =< ag >.

If < ag > is not a Hall subgroup, then | < ag > | contains a prime say px
with power strictly less than αx and stricly greater than 0, and as | < ag > | is
(m1,m2), we must have that the prime px is in the expansions of both m1 and m2

with its power strictly less than αx and stricly greater than 0. But this means,
C1 and C2 are not Hall subgroups, which is not true. Therefore, < ag > is a Hall
subgroup.

Case II. Let C =< an1 > and D =< an2 , ajb > where n1 =
n
m1

, n2 =
2n
m2

and
0 ≤ j ≤ n2− 1 be two Hall subgroups of Dn with orders m1 and m2 respectively.
Clearly, m1 is odd and 2i+1|m2 since C and D are Hall subgroups.

Consider the subgroups, X =< al, ajb >, where l = 2n
[m1,m2]

and Y =< ag >,

where g = n
(m1,m2)

.

Claim II(1). X is a Hall subgroup.

Observe that the order of X is [m1,m2] and its expansion contains primes

with their complete powers along with 2i+1, and as such, we have
(

[m1,m2],

2n
[m1,m2]

)

= 1. Consequently, X is a Hall subgroup.

Moreover, it is the smallest Hall subgroup containing both C and D having
order [m1,m2], therefore X = C ∨LH D = C ∨D.

Claim II(2). Y is a Hall subgroup.

Since the expansion of |Y | = (m1,m2) contains primes with their complete

powers, we have
(

(m1,m2),
2n

(m1,m2)

)

= 1. Consequently, Y is a Hall subgroup.

Moreover, it is the largest Hall subgroup contained in both C and D having
order (m1,m2), therefore Y = C ∧LH D = C ∧D.
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Case III. Let X1 =< an1 , akb > and X2 =< an2 , ajb >, where n1 = 2n
m1

,

n2 = 2n
m2

, 0 ≤ k ≤ n1 − 1 and 0 ≤ j ≤ n2 − 1 be two Hall subgroups of Dn with

orders m1 and m2 respectively. Clearly, 2i+1|m1,m2, since both X1 and X2 are
Hall subgroups.

Consider, X =< ag, ajb > where g1 = (n1, n2, k − j), r =
(

2n
g1
, g1

)

& g = g1
r
.

Claim III(1). X is a Hall subgroup.

Subcase III(1)(i). Suppose that r = 1. As r = 1, we have g = g1. Note
that, |X| is 2o(ag), where o(ag) = n

g
. Therefore, the index of X in Dn is g and

accordingly
(

2n
g
, g
)

=
(

2n
g1
, g1

)

= r = 1 and this shows that X is a Hall subgroup.

Subcase III(1)(ii). Suppose that r 6= 1. Since r 6= 1, we have
(

2n
g1
, g1

)

= r 6=

1, but then
(

2nr
g1

, g1
r

)

= 1, i.e.,
(

2n
g
, g
)

= 1. Therefore, the index of X in Dn is

g and so
(

2n
g
, g
)

= 1, therefore X is a Hall subgroup.

Moreover, X has the smallest possible order which is co-prime with its index
in Dn, such that the factorization of its order contains m1 and m2. If X ′ =<
ag, ahb > for some g as above and h 6= k, j is a Hall subgroup of Dn, containing
both X1 and X2 then we must have ahb = an1z1+n2z2+kz3+jz4b (as ab = ba−1 is
true in Dn) for some z1, z2, z3, z4 ∈ Z. Since g|(n1, n2, k − j), we have ahb ∈<
ag, ajb > which implies X ′ ⊆ X. Note that |X| = |X ′| since X = X ′ and
consequently, any subgroup other than X with the same order as that of X can
not contain both X1 and X2, and therefore X = X1 ∨LH X2.

Now consider

Y =

{

< as >, if n1x+ n2y = k−j has no integer solution where s = 2i+1n
(m1,m2)

.

< ad, ak−n1x0b >, if n1x+ n2y = k−j has an integer solution where d = 2n
(m1,m2)

.

Where (x0, y0) is an integer solution of an equation n1x+ n2y = k − j.

Claim III(2). Y is a Hall subgroup.

Note that, Y is a subgroup of both X1 and X2 and so Y ⊆ X1 ∧X2.

We have X1 =< an1 , akb > and X2 =< an2 , ajb >, where n1 =
2n
m1

, n2 =
2n
m2

,
0 ≤ k ≤ n1 − 1 and 0 ≤ j ≤ n2 − 1. Note that, if avb is in Y , then v = n1t+ k =
n2u+ j for some t, u ∈ Z, such that (t, u) is a solution of n1x+ n2y = k − j.

Subcase III(2)(i). Suppose that n1x + n2y = k − j has no integer solution.
In this case, no such element avb exists in Y . In order to show that Y is a
Hall subgroup in this case, we consider | < as > | = n(m1,m2)

2i+1n
= (m1,m2)

2i+1 =
∏

l∈S⊆{1,...,r} p
αl

l where each prime pl is odd and the index of Y = 2i+12n
(m1,m2)

=
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2i+1
∏k=r

k=1
p
αk
k∏

l∈S⊆{1,...,r} p
αl
l

. But then,

(

∏

l∈S⊆{1,...,r} p
αl

l ,
2i+1

∏k=r
k=1

p
αk
k∏

l∈S⊆{1,...,r} p
αl
l

)

= 1, consequently,

Y is a Hall subgroup.
Moreover, being a cyclic subgroup of Dn of Type (1), such subgroup Y is

unique with order as above. Also, by definition of Y , it has the largest possible
order which divides both m1 and m2 and such that this order is co-prime with
the index of Y in Dn. Therefore, in this case Y = X1 ∧LH X2.

Subcase III(2)(ii). Suppose that, n1x + n2y = k − j has an integer solution
say (x0, y0) which implies n1x0 + n2y0 = k − j. We have Y =< ad, ak−n1x0b >

and so |Y | = | < ad, ak−n1x0b > | = 2o(ad). Observe that o(ad) = (m1,m2)
2 , and

consequently, |Y | = (m1,m2) and hence Y is a Hall subgroup.
If any subgroup Y ′ of order |Y | is contained in both X1 and X2, say Y ′ =<

ag, apb >, then we must have apb = an1t1+kb = an2t2+jb for some t1 and t2 which
yields a solution to the equation n1x+n2y = k−j. Consequently, p is of the form
n1t1 + k and so Y ′ = Y . Therefore, any subgroup other than Y with order same
as that of Y cannot be contained in both X1 and X2, and hence Y = X1∧LH X2.

We conclude that, with these newly observed meets and joins, the poset of
all Hall subgroups of Dn, i.e., LH(Dn) forms a lattice.

Remark. We have proved that LH(Dn) is a lattice. But in general, LH(Dn) is
not a sublattice of L(Dn).

However, we have a characterization of LH(Dn) to be a sublattice of L(Dn)
for some n in the following Theorem.

Theorem 3.3. Let Dn be the dihedral group, L(Dn) its lattice of subgroups and
LH(Dn) its lattice of Hall subgroups. Then, LH(Dn) is a sublattice of L(Dn) if
and only if either n is some power of 2 or 2n is square free.

Proof. For necessity, we prove that if n is not a power of 2 and 2n is not square
free, then LH(Dn) is not a sublattice of L(Dn).

Case 1. Let 2n = 2pα1

1 pα2

2 pα3

3 · · · pαr
r be such that each pi is an odd prime

and there exists αx > 1 for at least one x.
Note that every subgroup of order 2 is a Hall subgroup since (2, pα1

1 pα2

2 pα3

3

· · · pαr
r ) = 1. Now for two subgroups of order 2, say H = {e, b} and K = {e, aqb}

with o(aq) = px, we observe that < H∪K >= S =< aq, b >. Note that |S| = 2px,
therefore (2px,

2n
2px

) = px and so S is not a Hall subgroup. This implies that the
join of two Hall subgroups is not necessarily a Hall subgroup, and so in this case
LH(Dn) is not a sublattice of L(Dn).

Case 2. Let 2n = 2ipα1

1 pα2

2 pα3

3 · · · pαr
r , with i ≥ 2 and all px are odd primes

with at least one αx 6= 0.
Consider the subgroups H =< aq, b > and K =< aq, ab > where q =

pα1

1 pα2

2 pα3

3 · · · pαr
r and |H| = |K| = 2i. Also, each one of these is a Hall subgroup
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as (2i, pα1

1 pα2

2 pα3

3 · · · pαr
r ) = 1. Now, H ∩ K =< aq, b > ∩ < aq, ab >=< aq >,

and |H ∩ K| = 2i−1 so H ∩ K is not a Hall subgroup as
(

|H ∩K|, 2n
|H∩K|

)

=
(

2i−1,
2ip

α1
1

p
α2
2

p
α3
3

···pαr
r

2i−1

)

= 2.

Consequently, in either case, LH(Dn) is not a sublattice of L(Dn).
Conversely, first suppose that n is some power of 2. Then any subgroup of

Dn other than {e} and the whole group, is also of order some power of 2 and
the order of each such subgroup is not co-prime with 2n and as such, none of
these subgroups is a Hall subgroup. So the only Hall subgroups are {e} and Dn,
therefore LH(Dn) is a sublattice of L(Dn).

Now, suppose that 2n is square-free so it has a representation 2n = 2p1p2p3
· · · pr, where each prime pi is odd and all are distinct. Also, the order of
any subgroup of Dn is either

∏

t∈S⊆{1,2,...,r} pt or 2
∏

t∈S⊆{1,2,...,r} pt, with index
2p1p2p3···pr∏

t∈S⊆{1,2,...,r} pt
or 2p1p2p3···pr

2
∏

t∈S⊆{1,2,...,r} pt
respectively, and as such, all such subgroups

are Hall subgroups as
(

∏

t∈S⊆{1,2,...,r} pt,
2p1p2p3···pr∏

t∈S⊆{1,2,...,r} pt

)

= 1 and
(

2
∏

t∈S⊆{1,2,...,r} pt,
2p1p2p3···pr

2
∏

t∈S⊆{1,2,...,r} pt

)

= 1. This proves that LH(Dn) is a sub-

lattice of L(Dn).

Theorem 3.4 ([3], [8]).. Let G be a finite group and H be a subgroup. Choose
a prime p. Distinct Sylow p-subgroups of H do not lie in a common Sylow p-
subgroup of G. In particular, np(H) ≤ np(G).

Remark. Every Sylow p-subgroup of a finite group is a Hall subgroup.
We note that LH(An) is a sublattice of L(An) for n ≤ 5. However, for n ≥ 6,

we have the following Theorem.

Theorem 3.5. LH(An) is not a sublattice of L(An) for n ≥ 6.

Proof. We use induction on n. Firstly, we observe the following statement.

Claim. LH(A6) is not a sublattice of L(A6).

We have |A6| = 360, so the order of its Sylow 2-subgroups is 8. Consider the
Sylow 2-subgroups,H =< (1 2 3 4)(5 6), (1 3)(5 6) >= {e, (1 2 3 4)(5 6), (1 3)(2 4),
(1 4 3 2)(5 6), (1 3)(5 6), (1 4)(2 3), (1 2)(3 4), (2 4)(5 6)} and K =< (1 3 2 4)(5 6),
(1 2)(5 6) >= {e, (1 3 2 4)(5 6), (1 2)(3 4), (1 4 2 3)(5 6), (1 2)(5 6), (1 4)(2 3),
(1 3)(2 4), (3 4)(5 6)}, where e is the identity element of An. Now, H ∩ K =
{e, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}, |H ∩K| = 4 and the index of H ∩K in A6

is 90. Therefore H ∩K is not a Hall subgroup as (4, 90) 6= 1, so that LH(A6) is
not a sublattice of L(A6).

Assume that LH(Ak) is not a sublattice of L(Ak), i.e., there exist two distinct
Sylow 2-subgroups, say P1 and P2 such that P1 ∩ P2 is nontrivial and not a Hall
subgroup.
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We claim that LH(Ak+1) is not a sublattice of L(Ak+1). There are Sylow
2-subgroups P1 and P2 of Ak for which P1 ∩ P2 is not a Hall subgroup and by
Theorem 3.4, their extensions say P ′

1 and P ′
2 are distinct Sylow 2-subgroups of

Ak+1. Moreover, P1∩P2 ⊆ P ′
1∩P ′

2, and so we get two distinct Sylow 2-subgroups
of Ak+1 with nontrivial intersection and which is not a Hall subgroup.

Consequently, LH(An) is not a sublattice of L(An) for n ≥ 6.

We also note that, LH(Sn) = L(Sn) for n ≤ 3. The Hasse diagram of
LH(S4) is depicted in Figure 3.1 in which the nomenclature of the subgroup is
the same as that in the Hasse diagram of L(S4) depicted in Figure 1.1. Observe
that P28 ∧ P27 = M18 in L(S4) however M18 /∈ LH(S4) and as such, LH(S4) is
not a sublattice of L(S4).

K1

P26P27P28 L11 L12 L13 L14

S4

Figure 3.1. LH(S4).

In fact, for Sn (n ≥ 4), we have the following Theorem.

Theorem 3.6. LH(Sn) is not a sublattice of L(Sn) for n ≥ 4.

Proof. We use induction on n. Firstly, we observe the following statement.

Claim. LH(S4) is not a sublattice of L(S4).

We have |S4| = 24, and so the order of its Sylow 2-subgroups is 8. Consider
two Sylow 2-subgroupsH = < (1 2 3 4), (1 3) >= {e, (1 2 3 4), (1 3)(2 4), (1 4 3 2),
(1 3), (1 4)(2 3), (1 2)(3 4), (2 4)} and K =< (1 3 2 4), (1 2) >= {e, (1 3 2 4), (1 2),
(1 4 2 3), (1 2)(3 4), (1 4)(2 3), (1 3)(2 4), (3 4)}, where e is the identity element of
Sn. Now, H∩K = {e, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}. Observe that |H∩K| = 4
and that the index of H∩K in S4 is 6. Therefore H∩K is not a Hall subgroup as
(4, 24) 6= 1; in fact, H ∧K = {e} in LH(S4), so that LH(S4) is not a sublattice
of L(S4).

Assume that LH(Sk) is not a sublattice of L(Sk), for some k, i.e., there exist
two distinct Sylow 2-subgroups and say P1 and P2 such that P1 ∩P2 is nontrivial
and not a Hall subgroup.
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Now, we need to show that LH(Sk+1) is not a sublattice of L(Sk+1). There
are Sylow 2-subgroups P1 and P2 of Sk for which P1∩P2 is not a Hall subgroup and
by Theorem 3.4, their extensions say P ′

1 and P ′
2 are distinct Sylow 2-subgroups of

Sk+1. Moreover, P1∩P2 ⊆ P ′
1∩P ′

2, and so we get two distinct Sylow 2-subgroups
of Sk+1 with their intersection a nontrivial subgroup which is not a Hall subgroup.

Consequently, LH(Sn) is not a sublattice of L(Sn) for n ≥ 4.

4. Strongness in subgroup lattices

In this section, the concept of strongness is explored for the structures L(Dn),
LH(Dn), L(An) and L(Sn).

Faigle, et al. (see [5, 12, 16]) studied strong lattices of finite length in which
the join-irreducible elements play a key role.

For the following definition and other relevant definitions in lattice theory we
refer to Grätzer [6], Stern [16], Birkhoff [1].

Definition 4.1 ([16]). An element j of a lattice L is called join-irreducible if, for
all x, y ∈ L, j = x∨ y implies j = x or j = y. For a lattice L of finite length J(L)
denotes the set of all non-zero join-irreducible elements.

We define join irreducible subgroups as follows.

Definition 4.2. A subgroup of a group G is said to be join-irreducible if it is a
join-irreducible element of L(G).

It is easy to observe that every cyclic subgroup of prime power order of a
finite group is a join irreducible subgroup. From this fact and Lemma 2 of [21],
the following Lemma follows.

Lemma 4.3. A subgroup of a finite group is a join-irreducible subgroup if and
only if it is a cyclic subgroup of prime power order.

The following concept of a strong element was coined by Faigle; see [5, 16].

Definition 4.4. Let L be a lattice of finite length. A join-irreducible element
j 6= 0 is called a strong element if the following condition holds for all x ∈ L: (St)
j ≤ x∨ j− =⇒ j ≤ x, where j− denotes the uniquely determined lower cover of j.

A lattice is said to be strong if every join-irreducible element of it is strong.

Remark. The condition (St) in the definition of a strong element is equivalent
to the following; see [16] for more details. (St’) For every q < j ∈ J(L), x ∈ L,
j ≤ x ∨ q implies j ≤ x.

The following characterization of strong lattices is due to Richter and Stern
[12].
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Theorem 4.5. A lattice L of finite length is strong if and only if it does not
contain a special pentagon sublattice with j ∈ J(L).

j ∧ x

j−

j

x

j− ∨ x

Figure 4.1. Special Pentagon.

The proof of the following Lemma is straightforward.

Lemma 4.6. Let L be a finite lattice. If atoms are the only join-irreducible
elements in L, then L is strong.

Theorem 4.7. L(Dn) is a strong lattice.

Proof. In order to show that L(Dn) is a strong lattice, we need to show that
every join-irreducible element is a strong element. We know that a subgroup of
Dn is either cyclic or dihedral. Let H be a join-irreducible subgroup of Dn, then
it is either a subgroup of the form < aib > or a subgroup of the form < am > of
Type (1), where | < am > | is divisible by exactly one prime by Lemma 4.3. Let
2n = pα0+1

0

∏k=r
k=1 p

αk

k for some i ≥ 0 and p0 = 2. In view of Theorem 4.5, in order
to show that L(Dn) is strong, it is sufficient to show that the special pentagon
as depicted in Figure 4.1 with j a join-irreducible element is not a sublattice of
L(Dn). Consider a join-irreducible subgroupH of Dn. Note that, ifH is an atom,
then there is no special pentagon containing H as depicted in Figure 4.1. Now, let
H =< am > where m = pα0

0 pα1

1 pα2

2 pα3

3 · · · pxz · · · p
αr
r for some pz ∈ {p0, p1, . . . , pr}

and 2 ≤ x < αz, then | < am > | = pαz−x
z . Also, the subgroup H− =< ampz > is

the unique lower cover of H with | < ampz > | = pαz−x−1
z .

Suppose that W =< at, ajb > where t|n, 0 ≤ j ≤ t− 1 and a join-irreducible
subgroup H are subgroups of Dn such that H ⊆ H− ∨ W , i.e., < am >⊆<
ampz > ∨ < at, ajb > and H ∨ W = H− ∨ W , i.e., < am > ∨ < at, ajb >=<
ampz > ∨ < at, ajb >. But then, we must have (m, t) = (mpz, t) = g, then
the factorization of g does not contain a power of pz greater than x. As m =
pα0

0 pα1

1 pα2

2 pα3

3 · · · pxz · · · p
αr
r and t|n does not contain pz with power more than x,

we have t|pα0

0 pα1

1 pα2

2 pα3

3 · · · pxz · · · p
αr
r which implies t|m and consequently, H ⊆ W .

The case where W is of Type (1) is analogous to the case W is of Type (2).
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Therefore, no such special pentagon as depicted in Figure 4.1 is in L(Dn) for
either choice of subgroup W and so L(Dn) is a strong lattice.

Remark. Note that LPrN(Dn) is strong since LPrN(Dn) is a sublattice of
L(Dn). Though LH(Dn) is not a sublattice of L(Dn) in general, LH(Dn) is a
strong lattice as we now show.

Theorem 4.8. In LH(Dn) only atoms are join-irreducible elements.

Proof. Let |Dn| = 2n = 2i+1
∏k=r

k=1 p
αk

k where the p′ks are odd primes and every
αk 6= 0.

Case I. Suppose that H is a Hall subgroup of Dn of Type (1). Let |H| =
∏

t∈S⊆{1,2,...,k} p
αt
t such that 2 ∤ |H| since H is Hall subgroup. Moreover, if H

is join-irreducible in LH(Dn), then the factorization of |H| contains exactly one
prime, i.e., |H| = pαz

z where z = 1, 2, . . . , k and such a subgroup H is an atom in
LH(Dn).

Consequently, a Hall subgroup H of Dn of Type (1) is join-irreducible in
LH(Dn) if and only if H is an atom.

Case II. Suppose that K is a Hall subgroup of Dn of Type (2). Note that
|K| = 2i+1

∏

x∈S⊆{1,2,...,k} p
αx
x . Also, if K has order 2i+1 then it is a Hall sub-

group. Note that nontrivial subgroups of K are not Hall subgroups and so K
is join-irreducible in LH(Dn) since it is an atom in LH(Dn). If K has order
2i+1

∏

x∈S⊆{1,2,...,k} p
αx
x , i.e., order containing at least one prime other than 2,

then it contains Hall subgroups of order pαx
x and also of order 2i+1. Therefore,

K is not join-irreducible in LH(Dn) which implies that a Hall subgroup of Dn of
Type (2) is join-irreducible if and only if its order is 2i+1. Moreover, in LH(Dn),
it is an atom.

Therefore, in LH(Dn) only atoms are join-irreducibles.

Corollary 4.9. LH(Dn) is a strong lattice.

Proof. Immediate in view of Lemma 4.6 and Theorem 4.8.

Note that L(S2) and L(S3) are strong lattices as neither contains a sublattice
isomorphic to a special pentagon as depicted in Figure 4.1 and described in
Theorem 4.5. However, for n ≥ 4 we have the following Theorem.

Theorem 4.10. L(Sn) is not a strong lattice for n ≥ 4.

Proof. In view of Theorem 4.5, in order to show that L(S4) is not a strong lat-
tice, it is sufficient to show that it does contain a sublattice isomorphic to a special
pentagon as depicted in Figure 4.1. Consider the subgroup J =< (1 2 3 4) >=
{e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)} which is a join-irreducible subgroup by Lemma
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4.3. For the subgroupM =< (1 2 3), (1 2) >= {e, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}
we have, J ∩M = {e} < J− ∪M >= S4 and the set {{e}, J−, J, M, S4} forms
a sublattice isomorphic to a special pentagon as depicted in Figure 4.1 with J−

the unique lower cover of J , J ∨ M = S4, J− ∧ M = {e}. Consequently, by
Theorem 4.5, L(S4) is not a strong lattice.

Now, observe that S4 is embedded in every Sn, n ≥ 5. In view of Lemma
4.3, a subgroup of S4 which is join-irreducible in L(S4) is also join-irreducible
in every L(Sn), n ≥ 5. Consequently, {{e}, J−, J,M, S4} also forms a sublattice
isomorphic to a special pentagon as depicted in Figure 4.1 in each Sn, n ≥ 5, and
so L(Sn) is not a strong lattice for n ≥ 4.

Note that L(A3), L(A4) and L(A5) are strong lattices as none of these con-
tains a sublattice isomorphic to a special pentagon as depicted in Figure 4.1 and
described in Theorem 4.5. However, for n ≥ 6 we have the following Theorem.

Theorem 4.11. L(An) is not a strong lattice for n ≥ 6.

Proof. Consider a subgroup J =< (1 2 3 4)(5 6) >= {e, (1 2 3 4)(5 6), (1 3)(2 4),
(1 4 3 2)(5 6)} of A6 which is join-irreducible by Lemma 4.3. For the subgroup
M =< (1 2 3), (1 2)(5 6) >= {e, (1 2 3), (1 3 2), (1 2)(5 6), (1 3)(5 6), (2 3)(5 6)}
of A6 we have J ∩M = {e}, < J− ∪M >= S∗

4 , where S∗
4 an isomorphic copy of

S4, and the set {{e}, J−, J, M, S∗
4} forms a sublattice isomorphic to a special

pentagon as depicted in Figure 4.1 with J− ≺ J , J ∨M = S∗
4 , J− ∧M = {e}.

Consequently, by Theorem 4.5, L(A6) is not a strong lattice.
Now, observe that A6 is embedded in every An, n ≥ 7. In view of the Lemma

4.3, a subgroup of A7 that is join-irreducible in L(A6) is also a join-irreducible
in every L(An), n ≥ 7. Consequently, {{e}, J−, J,M, S∗

4} also forms a sublattice
isomorphic to a special pentagon as depicted in Figure 4.1 in each An, n ≥ 7,
and so L(An) is not a strong lattice for n ≥ 6.
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