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Abstract

In this paper, we prove that projective special unitary groups U5(q),
where q is prime number, can be uniquely determined by the largest elements
order and the order of the group.
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1. Introduction

Let G be a finite group, we denote the set of prime divisors of the order of G and
the set of element orders of G by π(G) and πe(G), respectively. Also we define
the largest element order of G by k(G). Morever, we denote a set of primes by
π. Also we denote a sylow p-subgroup of G by Gp and the number of sylow
p-subgroups of G by np(G). The prime graph Γ(G) of group G is a graph whose
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vertex set is π(G), and two distinct vertices u and v are adjacent if and only if
uv ∈ πe(G). Moreover, assume that Γ(G) has t(G) connected components πi, for
i = 1, 2, . . . , t(G). In the case where G is of even order, we always assume that
2 ∈ π1.

One of the important problems in finite groups theory is, group characteriza-
tion by specific property. Properties, such as, elements order, the elements with
the same order, graphs, etc. One of the methods, is group characterization by
using the order of group and the largest element orders. In fact, we say the group
G is characterizable by using the order of group and the largest element order if
there is the group H, so that, k(G) = k(H) and |G| = |H|, then G ∼= H. How-
ever, the authors proved that some of groups by this method be characterized.
For example, the authors in ([2, 3, 4, 6, 9]) proved that the simple K3-groups,
the projective special linear group PSL2(q), PSL3(q) and PSU3(q) where q is
some special power of prime, the simple K4-group of type PSL2(p), where p is a
prime but not 2n − 1, the suzuki groups Sz(q), where q − 1 and q ±√

2q + 1 are
prime number and the sporadic simple groups are characterizable by using the
largest element orders and order of the group.

In fact, we prove the following main theorem.

Main Theorem. Let G be a group with |G| = |U5(q)| and k(G) = k(U5(q)),
where q is a prime number. Then G ∼= U5(q).

2. Notation and preliminaries

In this section we provide several lemmas and definitions that we need further
for the proof of the main theorem.

Lemma 2.1 [8]. Let G be a Frobenius group of even order with kernel K and

complement H. Then

(a) t(G) = 2, π(H) and π(K) are vertex sets of the connected components of

Γ(G);

(b) |H| divides |K| − 1;

(c) K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a normal
series 1 EH EK E G such that G/H and K are Frobenius groups with kernels
K/H and H respectively.

Lemma 2.3 [1]. Let G be a 2-Frobenius group of even order. Then

(a) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;

(b) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.
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Lemma 2.4 [14]. Let G be a finite group with t(G) ≥ 2. Then one of the following

statements holds:

(a) G is a Frobenius group;

(b) G is a 2-Frobenius group. In particular, a 2-Frobenius group is soluble.

(c) G has a normal series 1EH EK EG such that H and G/K are π1-groups,
K/H is a non-abelian simple group, H is a nilpotent group and |G/K| divides
|Out(K/H)|.

Lemma 2.5 [15]. Let q, k, l be natural numbers. Then

1. (qk − 1, ql − 1) = q(k,l) − 1.

2. (qk + 1, ql + 1) =

{

q(k,l) + 1 if both k
(k,l) and l

(k,l) are odd,

(2, q + 1) otherwise.

3. (qk − 1, ql + 1) =

{

q(k,l) + 1 if k
(k,l) is even and l

(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1, the inequality (qk − 1, qk +1) ≤ 2 holds.

3. Proof of the main theorem

In this section, we prove that the projective special unitary groups U5(q) are
characterizable by using the order of the group and the largest element orders.
In fact, we prove that if G is a group with |G| = |U5(q)| and k(G) = k(U5(q)),
where q is a prime number, then G ∼= U5(q). We divide the proof to several
lemmas. From now on, we denote the projective special unitary group U5(q) and
also the odd component as q4 − q3 + q2 − q + 1 by U and p, respectively. Recall
that [5, 10] G is a group with |G| = |U | = q10(q5 +1)(q4 − 1)(q3 +1)(q2 − 1) and
k(G) = k(U) = q4 + q.

Lemma 3.1. p is an isolated vertex of Γ(G), whenever p is prime.

Proof. We prove that p is an isolated vertex of Γ(G). Assume the contrary. Then
there is t ∈ π(G)−{p} such that tp ∈ πe(G). So tp ≥ 2p = 2(q4−q3+q2−q+1) >
q4 + q. As a result k(G) > q4 + q, which is a contradiction. So t(G) ≥ 2.

Lemma 3.2. The group G is not a Frobenius group.

Proof. Let G be a Frobenius group with kernel K and complement H. Then
by Lemma 2.1, t(G) = 2 and π(H) and π(K) are vertex sets of the connected
components of Γ(G) and |H| divides |K|−1. Now by Lemma 3.1, p is an isolated
vertex of Γ(G). Thus we deduce that (i) |H| = p and |K| = |G|/p or (ii) |H| =



304 B. Azizi and H. Hasanzadeh-Bashir

|G|/p and |K| = p. Since |H| divides |K| − 1, we conclude that the last case
can not occur. So |H| = p and |K| = |G|/p, hence q4 − q3 + q2 − q + 1 |
q10(q5+1)(q4−1)(q3+1)(q2−1)

q4−q3+q2−q+1 − 1. So we conclude that q4− q3+ q2− q+1 | (q4− q3+

q2 − q +1)(q16 +2q15 − q13 − 3q11 − 4q10 +5q6 +5q5 − 5q− 5) + 4 it follows that
q4− q3+ q2− q+1 | 4 which is impossible. Hence, G is not a Frobenius group.

Lemma 3.3. The group G is not a 2-Frobenius group.

Proof. We prove that that G is not a 2-Frobenius group.Opposite, assume G be
a 2-Frobenius group.Thus by Lemma2.3 we have t(G) = 2, π(H)∪ π(G/K) = π1
and π(K/H) = π2 and also G/K and K/H are cyclic groups satisfying |G/K|
divides |Aut(K/H)|. Now, since that p is an isolated vertex in Γ(G). It follows
that π2 = p, so |K/H| = p. On the other hand |G/K| divides |Aut(K/H)|. So

|G/K| | p − 1, thus |G/K| | q4 − q3 + q2 − q. It follows that |H| | |G|
|G/K||K/H|.

As a result |H| | q15(q − 1)(3q14 + 3q13 + 2q12 + 3q11 + 3q10 + q9). Since that
H is nilpotent so H ∼= Hl × Hm × Hn, where l, m, n divisors of q15, q − 1
3q14 + 3q13 + 2q12 + 3q11 + 3q10 + q9. So G must be have the element of order
q15(q− 1)(3q14+3q13+2q12+3q11+3q10+ q9), where this is impossible, because
k(G) = k(U) = q4 + q.

Lemma 3.4. The group G is isomorphic to the group U .

Proof. By Lemma 3.2, and Lemma 3.3, we have that third case of Lemma 2.4
is satisfies, as G has a normal series 1 E H E K E G such that H and G/K
are π1-groups and also K/H is a non-abelian simple group. On the other hand
every odd order components of G are the odd order components of K/H. Since
p | K/H so t(K/H) ≥ 2. So according to the classification of the finite simple
groups we know that the possibilites for K/H are alternating group Am, m ≥ 5,
26 sporadic groups, simple groups Lie types. First, we consider the following
isomorphic.

Step 1. Let K/H ∼= Am, where m ≥ 5 and m = r, r + 1, r + 2. Then by [14]
π(Am) = r, r − 2 and |Am| | |G|. So we consider q4 − q3 + q2 − q + 1 = r, r − 2.
Now, if q4 − q3 + q2 − q + 1 = r, then q4 − q3 + q2 − q + 2 = r + 1. Since that
r + 1 | |Am|||G|, hence q4 − q3 + q2 − q + 2 | |G|, which is a contradiction. The
another case, we consider q4−q3+q2−q+1 = r−2, then q4−q3+q2−q+3 = r.
Since that r | |Am|||G|, hence q4 − q3 + q2 − q + 3 | |G|, which is a contradiction.

Step 2. If K/H be isomorphic sporadic groups, then by [10], k(S) = {11, 15, 19,
20, 23, 24, 28, 29, 30, 31, 39, 40, 60, 66, 67, 70, 119}, where S be a sporadic groups.
Now for example if q4 + q = 11, then q4 + q− 11 = 0, which this is impossible. If
q4 + q = 19, then we can see easily a contradiction. For other groups we have a
contradiction, similarily.
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Step 3. Here, we consider K/H is isomorphic to a the group of Lie-type.

3.1. Suppose thatK/H∼=2G2(3
2m+1), wherem ≥1. Now, by [10], k(2G2(3

2m+1))
= 32m+1 +3m+1 + 1, also q′3(q′3 +1)(q′ − 1) | q10(q5 +1)(q4 − 1)(q3 + 1)(q2 − 1).
Next, we consider q4 + q = 32m+1 + 3m+1 + 1, so q4 + q − 2 = 32m+1 + 3m+1 − 1.
Hence (q − 1)(q3 + q2 + q + 2) = 32m+1 + 3m+1 − 1. Now, assume 3m = x, so

we deduce (q − 1)(q3 + q2 + q + 2) = (x− −3+
√
21

6 )(x+ −3+
√
21

6 ). It follows that

q − 1 = x − −3+
√
21

6 and q3 + q2 + q + 2 = x + −3+
√
21

6 , in other words we have

q−1 = 3m− −3+
√
21

6 and q3+q2+q+2 = 3m+ −3+
√
21

6 , then we can see easily this
equation has not any solution in natural number N, so which is contradiction.

3.2. If K/H ∼=2 F4(q
′), where q′ = 22m+1 > 2 then by [10], k(2F4(q

′)) =
24m+2 + 23m+2 + 22m+1 + 2m+1 + 1. So, we consider q4 + q = 24m+2 + 23m+2 +
22m+1+2m+1+1. It follows that q4+ q−2 = 24m+2+23m+2+22m+1+2m+1−1.
Thus (q−1)(q3+q2+q+2) = 24m+2+23m+2+22m+1+2m+1−1, which is impossible,
because, (q− 1)(q3 + q2 + q+2) be even, and 24m+2 +23m+2 +22m+1 +2m+1 − 1
be odd.

3.3. Suppose thatK/H∼=2B2(2
2m+1), wherem ≥1. Now, by [10], k(2B2(2

2m+1))
= 22m+1 + 2m+1 + 1, also |2B2(2

2m+1)| = q′2(q′2 + 1)(q′ − 1) | q10(q5 + 1)(q4 −
1)(q3 + 1)(q2 − 1). For this purpose, we consider q4 + q = 22m+1 + 2m+1 + 1.
As a result q4 + q − 2 = 22m+1 + 2m+1 − 1. Hence, (q − 1)(q3 + q2 + q + 2) =
22m+1+2m+1−1. Now assume 2m = x, so (q−1)(q3+ q2+ q+2) = 2x2+2x−1.

It follows that (q−1)(q3+ q2+ q+2) = (x− −2+
√
12

4 )(x+ −2+
√
12

4 ), it follows that

(q−1) = (x− −2+
√
12

4 ) and also (q3+q2+q+2) = (x+ −2+
√
12

4 ), we can see easily
this equation has not any solution in natural number N, which is a contradiction.

3.4. Suppose that K/H ∼= G2(q
′), now by [10], k(G2(q

′)) = q′2 + q′ + 1 and also
|G2(q

′)| = q′6(q′6−1)(q′2−1) | q10(q5+1)(q4−1)(q3+1)(q2−1). For this purpose,
we consider q4 + q = q′2 + q′ + 1. As a result q4 + q − 2 = q′2 + q′ − 1. Hence
(q − 1)(q3 + q2 + q + 2) = q′2 + q′ − 1, it follows that (q − 1)(q3 + q2 + q + 2) =

(q′ − −1+
√
5

2 )(x+ −1+
√
5

2 ). So that (q− 1) = (q′ − −1+
√
5

2 ) and (q3 + q2 + q+2) =

(x+ −1+
√
5

2 ), where we can see easily this equation has not any solution in natural
number N, which is a contradiction.

3.5. If K/H ∼= Dn(q
′), Cn(q

′), where n ≥ 4, n ≥ 3, respectively. Then, we have
a contradiction, similarily.

3.6. Suppose that K/H ∼=3 D4(q
′). Now, by [10], k(3D4(q

′)) = (q′3 − 1)(q′ + 1).
On the other hand that |3D4(q

′)| | |G|, so q′12(q′8 + q′4 + 1)(q′6 − 1)(q′2 − 1) |
q10(q5 + 1)(q4 − 1)(q3 + 1)(q2 − 1). Now we consider (q′3 − 1)(q′ + 1) = q4 + q.
So q(q3 + 1) = q′3 − 1)(q′ + 1). As a result q = q′ + 1 and q3 + 1 = q′3 − 1. First
if q = q′ + 1, then q′ = q − 1. Since |3D4(q

′)| ∤ |G|, which is impossible. Now if
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q3 + 1 = q′3 − 1, then we deduce q′3 = q3 + 2, as a result q′12 = (q3 + 2)4. Since
q′12 | |G|, but we have (q3 + 2)4 ∤ |G|, which is impossible.

3.7. Suppose that K/H ∼= E6(q
′), E7(q

′), E8(q
′), F4(q

′). For example if K/H ∼=
E8(q

′), then by[10] k(E8(q
′)) = (q′ + 1)(q′2 + q′ + 1)(q′5 − 1). On the other

hand, |E8(q
′)| = q′120(q′30 − 1)(q′24 − 1)(q′20 − 1)(q′18 − 1)(q′14 − 1)(q′12 − 1)(q′8 −

1)(q′2 − 1) | q10(q5 + 1)(q4 − 1)(q3 + 1)(q2 − 1). Hence, we consider q4 + q =
(q′ + 1)(q′2 + q′ + 1)(q′5 − 1). As a result q(q3 + 1) = (q′ − 1)(q′7 + 3q′6 +
5q′5 + 6q′4 + 6q′3 + 6q′5 + 2q′ − q′2 − q′ − 1). Then q = q′ − 1, so q3 + 1 =
q′7 + 3q′6 + 5q′5 + 6q′4 + 6q′3 + 6q′5 + 2q′ − q′2 − q′ − 1, since that |E8(q

′)| ∤ |G|,
which is a contradiction.

For K/H 6∼= E6(q
′) ,E7(q

′), F4(q
′), we have a contradiction, similarily.

3.8. IfK/H ∼=2 E6(q
′), then by [10] k(2E6(q

′)) = (q′+1)(q′2+1)(q′3−1)
(3,q′+1) . On the other

hand, we know that |2E6(q
′)| = q′36(q′2−1)(q′5+1)(q′6−1)

(3,q′+1) | q10(q5 + 1)(q4 − 1)(q3 +

1)(q2 − 1). Now, we consider q4 + q = (q′+1)(q′2+1)(q′3−1)
(3,q′+1) . First if (3, q′ + 1) = 1,

then q4+ q = (q′+1)(q′2+1)(q′3−1). As a result, q(q3+1) = (q′−1)(q′5+2q′4+
3q′3+3q′2+2q′+1), hence q = q′−1 and q3+1 = q′5+2q′4+3q′3+3q′2+2q′+1,
which is impossible. Another case is impossible.

3.9. Suppose that K/H ∼= Ln+1(q
′), where n ≥ 1. First if n = 1, then K/H ∼=

L2(q
′). Now by [10], k(L2(q

′)) = q′ + 1, q′, where q′ be even, odd respectively.
Thus we consider q4+ q = q′ and q4+ q = q′+1. As a result, |L2(q

′)| ∤ |G|, which
is impossible. For n > 1, K/H 6∼= Ln+1(q

′), similarily.
Hence, K/H ∼= U . It follows that |K/H| = |U | and also, we know that

HEKEG, where p is an isolated vertex of Γ(G). It follows that k(K/H) | k(G).
Hence q4 + q = q′4 + q′. As a result q = q′. Now, since that |K/H| = |U | and
1EH EK EG, we deduce that H = 1 and G = K ∼= U .
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