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Abstract

Let ρ be an h-ary central relation (h ≥ 2) and σ a binary relation on
a finite set A such that σ 6= ρ. It is known from Rosenberg’s classification
theorem (1965) that the clone Pol ρ which consists of all operations on A

that preserve ρ is a maximal clone on A. In this paper, we find all binary
relations σ such that the clone Pol{ρ, σ} is a maximal subclone of Polρ,
where ρ is a fixed central relation.

Keywords: central relations, meet-reducible, meet-irreducible, submaxi-
mal, clones.

2020Mathematics Subject Classification: Primary: 08A40; Secondary:
08A02, 18B35.

1. Introduction

In 1941, Post presented the complete description of the countably many clones on
2 elements. It turned out that, all such clones are finitely generated and the lattice
of these clones is countable. The structure of the lattice of clones on finitely many
(but more than 2) elements is more complex and is of the cardinality 2ℵ0 . For
k ≥ 3, not much is known about the structure of the lattice of clones in spite of
the efforts made by many researchers in this area. Therefore, every new piece of
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information is considered valuable. Indeed, it would be very interesting to know
the clone lattice on the next level (below the maximal clones) and even a partial
description will shed more light onto its structure. The complete description of
all submaximal clones is known only for the 2-elements case and the 3-elements
case (see [3, 4, 5]), however the result in [3] and many results in the literature on
clones including those discussed in [4, 8, 10, 11], require intensive knowledge of
submaximal clones (that sit below certain maximal clones) on arbitrary finite sets.
Clone theory is considered to be very important because of its use to understand
universal algebras.

In [4, Chapter 17], D. Lau presented all submaximal clones of the clone Pol ρ
where ρ is a unary central relation on an arbitrary finite set. Recently in [12]
we have characterized the five types of central relation σ such that the clone
Pol{ρ, σ} is covered by Pol ρ, where ρ is a fixed h-ary central relation (h ≥ 2) on
an arbitrary finite set. In this paper, we characterize the binary relations σ such
that the clones Pol{σ, ρ} are covered by Pol ρ, where ρ is a fixed h-ary central
relation (h ≥ 2) on a finite set. Moreover, we give a result which will help anyone
to decide whether Pol{ρ, σ} is a submaximal clone where ρ and σ are as above.

This paper consists of five sections. After this introduction, in which we mo-
tivated this research and we announced the types of relations to be characterized
in the paper, the second section provides the reader with necessary notions and
notations. It is followed by the section dedicated to the description of the types of
binary relations σ such that the clones Pol{σ, ρ} are covered by Pol ρ. In Section
4, we show that the clones described in Section 3 are maximal and in Section
5, we show that the binary relations σ listed in Section 3 are the only binary
relations such that the clones Pol{ρ, σ} are maximal below Pol ρ.

2. Preliminaries

In this section, we provide the reader with some basic notions and notations; for
more details the reader can see [4, 10, 11, 13].

Let A be a fixed finite set with k elements, n and h be two integers such
that 1 ≤ n, h. An n-ary operation on A is a function f : An → A. We will use

the notation O
(n)
A for the set of all n-ary operations on A, and OA for the set

of all finitary operations on A. For C ⊆ OA, C(n) denoted the set C ∩ O
(n)
A . For

1 ≤ i ≤ n, the i-th projection is the operation π
(n)
i : An → A, (a1, . . . , an) 7→ ai.

For arbitrary positive integers m and n, there is a one-to-one correspondence
between the functions f : An → Am and the m-tuples f = (f1, . . . , fm) of
functions fi : An → A (for i = 1, . . . ,m) via f 7→ f = (f1, . . . , fm) with fi =

π
(m)
i ◦ f for all i = 1, . . . ,m. In particular, π(n) = (π

(n)
1 , . . . , π

(n)
n ) corresponds to

the identity function f : An → An. From now on, we will identify each function
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f : An → Am with the corresponding m-tuples f = (f1, . . . , fm) ∈ (O
(n)
A )m

of n-ary operations. Using this convention, the composition of two functions
f = (f1, . . . , fm) : An → Am and g = (g1, . . . , gp) : Am → Ap can be described
as follows g ◦ f = (g1 ◦ f , . . . , gp ◦ f) = (g1(f1, . . . , fm), . . . , gp(f1, . . . , fm)) where
gi(f1, . . . , fm)(a) = gi(f1(a), . . . , fm(a)) for all a ∈ An and 1 ≤ i ≤ p.

A clone on A is a subset C of OA that contains the projections and is closed

under composition; that is π
(n)
i ∈ C for all n ≥ 1 and 1 ≤ i ≤ n, and g ◦ f ∈

C(n) whenever g ∈ C(m) and f ∈ (C(n))m (for m,n ≥ 1). The clones on A

form a complete lattice LA under inclusion. Therefore, for each set F ⊆ OA of
operations, there exists a smallest clone that contains F , which will be denoted
by 〈F 〉 and will be called clone generated by F .

For two clones C and D on A, we say that C is maximal in D if D covers C

in LA. We also say that C is submaximal if C is maximal in a clone D and D

is a maximal clone on A. For a maximal clone D, there are two types of clones
C being maximal in D: C is meet-reducible if C = D ∩ F for a maximal clone F

distinct from D (but not necessarily unique) and C is meet-irreducible if it is not
meet-reducible.

Clones can be described via invariant relations. An h-ary relation on A is a
subset of Ah. The set of finitary relations on A is denoted by RA. For an n-ary

operation f ∈ O
(n)
A and an h-ary relation ρ on A, we say that f preserves ρ (or ρ

is invariant under f , or f is a polymorphism of ρ) if for all (a1,i, . . . , ah,i) ∈ ρ, i =
1, . . . , n, (f(a1,1, . . . , a1,n), f(a2,1, . . . , a2,n) . . . , f(ah,1, . . . , ah,n)) ∈ ρ. For any set
R ⊆ RA, Pol(R) is the set of operations on A preserving every relation on R,
and for F ⊆ OA Inv(F ) is the set of relations preserved by every operation on
F . If R = {ρ}, we write Pol ρ for Pol{ρ}. If A is finite, it is well known that Pol
and Inv determine a Galois connection between the subsets of OA and RA, with
closure operator F 7→ Pol InvF on OA and R 7→ [R] = Inv Pol(R) on RA. The
closed sets of operations are exactly the clones and the closed set of relations are
called relational algebras or relational clone [9]. The set of relational algebras,
ordered by inclusion is a lattice, which is dually isomorphic to the lattice LA of
clones on A. The relational algebras [R] can be described in various ways ([4, 9]).

Let ρ ⊆ Ah; for an integer m > 1 and ai = (a1,i, . . . , am,i) ∈ Am, 1 ≤ i ≤ h,
we will write (a1, . . . ,ah) ∈ ρ if for all j ∈ {1, . . . ,m}, (aj,1, . . . , aj,h) ∈ ρ. If A
is finite, every clone on A other than OA is contained in a maximal clone. An
operation g : A3 → A is called a majority operation if g(a, a, b) = g(a, b, a) =
g(b, a, a) = a for a, b ∈ A. We recall the following Baker-Pixley Theorem and the
Rosenberg’s list of maximal clones which will be used to prove some results.

Theorem 2.1 [1]. For a finite algebra A = (A,F ) with a majority term operation,
an operation f : An → A, is a term operation of A iff f preserves all subuniverses
of A2.
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Theorem 2.2 [7]. For each finite set A with Card(A) ≥ 3, the maximal clones
on A are the clones of the form Pol ρ where ρ is a relation of one of the following
six types:

(1) a bounded partial order on A;

(2) a prime permutation on A;

(3) a prime affine relation on A;

(4) a nontrivial equivalence relation on A;

(5) a central relation on A;

(6) an h-regular relation on A.

Here a partial order on A is called bounded if it has both a least and a
greatest element. A prime permutation on A is (the graph of) a fixed point
free permutation on A in which all cycles are of the same prime length, and a
prime affine relation on A is the graph of the ternary operation x − y + z for
some elementary abelian p-group (A; +,−, 0) on A (for p prime). An equivalence
relation on A is nontrivial if it is neither the equality relation ∆A on A nor the
full relation A2 on A.

To describe central relations and h-regular relations, we call an h-ary relation
ρ on A totally ref lexive (ref lexive for h = 2) if ρ contains all h-tuples of Ah

whose coordinates are not pairwise distinct, and totally symmetric (symmetric

for h = 2) if ρ is invariant under any permutation of its coordinates. If ρ is
totally reflexive and totally symmetric, we define the center of ρ, denoted by Cρ,
as follows

Cρ = {a ∈ A : (a, a2, . . . , ah) ∈ ρ for all a2, . . . , ah ∈ A}.

We say that ρ is a central relation if ρ is totally reflexive, totally symmetric
and has a nonvoid center which is a proper subset of A. For an integer h ≥ 3, a
family T = {θ1, . . . , θr} (r ≥ 1) of equivalence relations on A is called h-regular
if each θi (for 1 ≤ i ≤ r) has exactly h classes, and for arbitrary classes Bi of
θi (1 ≤ i ≤ r), the intersection B1 ∩ B2 ∩ . . . ∩ Br is nonempty. To each h-
regular family T = {θ1, . . . , θr} of equivalence relations on A, we associate an
h-ary relation λT on A as follows

λT = {(a1, . . . , ah) ∈ Ah : (∀i)(∃ p, q)p 6= q and (ap, aq) ∈ θi}.

The relations of the form λT are called h-regular (or h-generated) relations.
It is clear from the definition that h-regular relations are totally reflexive and
totally symmetric. We recall the folowing classical construction. If α and β are
two binary relation on A, the relational product of α and β, denoted by α ◦ β,
is the set {(x, y) ∈ A2 : (x, u) ∈ α, (u, y) ∈ β for some u ∈ A}. The relational
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product is an associative binary operation on the set R
(2)
A of binary relations on

A. For n ≥ 1, we denote by αn the n-th power α ◦ · · · ◦ α (n times) of α and by
tr(α) the transitive closure of α. It is easy to see that tr(α) =

⋃

n≥1 α
n. We will

denote by h the set {1, . . . , h}.

Definition 2.3 ([4], Page 126). Let h ∈ N \ {0}. An h-ary relation σ ∈ R
(h)
A

is called diagonal relation if there exists an equivalence relation ǫ on {1, . . . , h}
such that σ := {(a1, . . . , ah) ∈ Ah : (i, j) ∈ ǫ =⇒ ai = aj}.

The set of all diagonal relations on A is denoted by DA and DA = {∅} ∪
⋃

h≥1D
(h)
A , where D

(h)
A is the set of all h-ary diagonal relation on A. In particular,

Ah and δh = {(x, x, . . . , x) ∈ Ah : x ∈ A} are diagonal relations. For more
information on diagonal relations, see [4], Page 126.

Remark 2.4 ([4], Theorem 2.6.2, 2.6.3 Page 132). Let R ⊆ RA.

1. If f ∈ PolR, then f ∈ Pol([R]).

2. If σ and σ′ are relations such that σ′ ∈ [{σ}], then Pol σ ⊆ Pol σ′.

From now on, we assume that we are working on the set Ek = {0, 1, . . . , k −
1}, where k is an integer such that k > 1. We will denote by Sh the set of
permutations on h, where h ≥ 1 is an integer and for 1 ≤ i1 < · · · < ih ≤ k,
we denote by S{i1,...,ih} the set of permutations on {i1, . . . , ih}; γi1,...,ih the set

{(τ(i1), . . . , τ(ih)) : τ ∈ S{i1,...,ih}}, and ιhk the set {(a1, . . . , ah) ∈ Eh
k : ∃ i 6=

j, ai = aj}. It is well known (see [4]) that the S lupecki clone Pol ιkk is a maximal
clone. If σ is an equivalence relation, we denote by [a]σ the σ-class of a.

3. The types of σ such that the clone Pol{ρ, σ} is maximal in Pol ρ

In this section, we give the definition of the types of binary relations σ such that
Pol{ρ, σ} is maximal in Pol ρ and the main result of this paper. Let k and h be
two integers such that k ≥ 3 and h ≥ 2. For a prime permutation π of order p on
Ek, we denote by σπ the equivalence relation consisting of pairs (a, b) ∈ E2

k with
a = πi(b) for some 0 ≤ i < p.

Definition 3.1. Let σ be a binary relation and ρ an h-ary central relation on
Ek(h ≥ 2).

(i) A nonempty subset B ⊆ Ek is called a ρ-chain if Bh ⊆ ρ. A ρ-chain B is
called maximal ρ-chain if it is not contained in another ρ-chain.

(ii) We say that ρ is σ-closed if (a1, . . . , ah) ∈ ρ whenever (u1, . . . , uh) ∈ ρ for
some u1, . . . , uh with (ai, ui) ∈ σ, 1 ≤ i ≤ h.
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(iii) We suppose that ρ has t maximal ρ-chains A0, . . . , At−1 (t ≥ 2). We say
that σ is a central relation relative to maximal ρ-chains if σ is reflexive,
symmetric, and for each i ∈ Et, there exists a central element ci of ρ such
that for every a ∈ Ai, (ci, a) ∈ σ.

(iv) If h = 2, then we say that ρ is the symmetric part of σ if ρ = σ ∩ σ−1.

For h = 2 and σ * ρ, we set λ = σ∩ρ. For h ≥ 2 we denote by σh( respectively
σ′
h) the h-ary relation σh = {(a1, . . . , ah) ∈ Eh

k : ∃u ∈ Ek, (a1, u), . . . , (ah, u) ∈
σ}, σ′

h = {(a1, . . . , ah) ∈ Eh
k : ∃u ∈ Ek, (u, a1), . . . , (u, ah) ∈ σ} and for every

permutation π on h, (ρ)π = {(aπ(1), . . . , aπ(h)) : (a1, . . . , ah) ∈ ρ}.

Here we state the main result of this paper.

Theorem 3.2. Let k, h be two integers such that k ≥ 3, h ≥ 2; let ρ be an h-ary
central relation with t maximal ρ-chains A0, . . . , At−1 and σ a binary relation on
Ek. The clone Pol{ρ, σ} is maximal below Pol ρ if and only if σ fulfills one of the
following eleven conditions:

(I) σ is a nontrivial equivalence relation and ρ is σ-closed;

(II) σ is a nontrivial equivalence relation and every σ-class contains a central
element of ρ;

(III) σ is a bounded partial order with least element ⊥, greatest element ⊤,
h = 2, {⊥,⊤} ⊆ Cρ and tr(σ ∩ ρ) = σ;

(IV) σ is a bounded partial order with least element ⊥, greatest element ⊤,

h ≥ 3 and {⊥,⊤} ⊆ Cρ;

(V) σ is a central relation, h = 2 and ρ and σ are comparable (i.e., ρ ( σ or
σ ( ρ);

(VI) σ is a central relation, h ≥ 3 and Cρ ∩ Cσ 6= ∅;

(VII) σ is the graph of a prime permutation π and ρ is σπ-closed;

(VIII) σh = ρ and σ is a central relation relative to maximal ρ-chains;

(IX) ρ 6= σ and ρ is the symmetric part of σ i.e., ρ = σ ∩ σ−1;

(X) σ is a partial order with a least element ⊥ which is also a central element
of ρ, σ2 = ρ and for every i1, . . . , il ∈ {0, . . . , t−1}, ∩

1≤j≤l
Aij has a greatest

element;

(XI) σ is a partial order with a greatest element ⊤ which is also a central
element of ρ, σ′

2 = ρ and for every i1, . . . , il ∈ {0, . . . , t − 1},
⋂

1≤j≤l Aij

has a least element.

Definition 3.3. Let l ∈ {I, . . . ,XI}. We say that σ is of type l if σ verifies the
condition (l) of Theorem 3.2.
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The proof of Theorem 3.2 is divided into two parts. The sufficiency of condi-
tions in Propositions 4.1, 4.3, 4.8 and Corollary 4.5 and the necessity of conditions
in Propositions 5.1, 5.9, 5.19 and Corollary 5.17. Since ρ has at least two maximal
ρ-chains, the relation of type VIII exists only for |Cρ| ≥ 2. We need the following
proposition for many proof in the sequel.

Proposition 3.4. Let Ek be a finite set, ρ be an h-ary central relation, B a
maximal ρ-chain and σ a diagonal relation on Ek, then (1) Cρ ⊆ B and (2)
Pol σ = OEk

.

Proof. (1) Let B be a maximal ρ-chain and c ∈ Cρ. As c ∈ Cρ, for any
a1, . . . , ah−1 ∈ B, (c, a1, . . . , ah−1) ∈ ρ. Hence B ∪ {c} is a ρ-chain and B ⊆
B ∪ {c}. The maximality of B yields c ∈ B. Thus Cρ ⊆ B. It is easy to check
that (2) holds.

4. Proof of sufficiency criterion in Theorem 3.2

In this section we show that the clones listed in Theorem 3.2 are maximal below
Pol ρ. We distinguish four cases.

Case 1. σ is of type l ∈ {I, II, III, IV, V III,X,XI};

Case 2. σ is of type V or VI;

Case 3. σ is of type VII;

Case 4. σ is of type IX. We begin with Case 1.

Proposition 4.1. Let k, h be two integers such that k ≥ 3, h ≥ 2, l ∈ {I, II, III,
IV, V III,X,XI}, ρ be an h-ary central relation and σ a binary relation on Ek.
If σ is of type l, then the clone Pol{ρ, σ} is maximal in Pol ρ.

Before the proof of Proposition 4.1, we give some useful properties of σ. Let
g ∈ Pol ρ \Pol σ be an n-ary operation. Then there exist (a1, b1), . . . , (an, bn) ∈ σ

such that (g(a), g(b)) 6∈ σ, where a = (a1, . . . , an) and b = (b1, . . . , bn).

In the case when l = III, we may furthermore assume that (a1, b1), . . . , (an,
bn) ∈ σ ∩ ρ. This can be seen as follows. Write λ := σ ∩ ρ. Since tr(λ) = σ

and λ is reflexive, there exists q ≥ 1 such that tr(λ) = λq = σ. Moreover, for
i ≥ 1, Polλi ⊆ Pol λi+1; in particular, Polλ ⊆ Pol σ. Since g ∈ Pol ρ \ Pol σ, it
follows that g 6∈ Polλ. Therefore there exist (a1, b1), . . . , (an, bn) ∈ λ such that
(g(a), g(a)) 6∈ λ, where a := (a1, . . . , an), b := (b1, . . . , bn). Since g ∈ Pol ρ, we
have (g(a), g(b)) ∈ ρ, so we most have (g(a), g(b)) 6∈ σ.

Note that if l ∈ {I, II, V III,X,XI} and h = 2, then we get σ ( ρ (by
definition of σ2 and σ′

2 and the reflexivity of σ). Note also that relation of type
IV not occur with h = 2.
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Lemma 4.2. Let n, k be two integers such that n ≥ 1 and k ≥ 3, ρ be an h-
ary central relation (h ≥ 2) and σ be a binary relation on Ek. Furthermore let
g ∈ Pol ρ \ Pol σ be an n-ary operation and l ∈ {I, II, III, IV, V III,X,XI}. If
σ is of type l, then for all c, d ∈ Ek such that (c, d) ∈ σ and c 6= d, there exists a
unary operation fcd ∈ 〈(Pol{σ, ρ}) ∪ {g}〉 such that (fcd(c), fcd(d)) 6∈ σ.

Proof. Let c, d ∈ Ek such that c 6= d and (c, d) ∈ σ; choose (ai, bi) as specified
in the paragraph following Proposition 4.1. We will construct a unary operation
fcd ∈ 〈(Pol{σ, ρ})∪{g}〉 such that (fcd(c), fcd(d)) 6∈ σ. If σ is of type I, II or VIII,
then we consider the unary operations f i

cd, 1 ≤ i ≤ n defined on Ek by f i
cd(x) = ai

if x = c and f i
cd(x) = bi otherwise. If σ is of type III, IV, X or XI, then for all

1 ≤ i ≤ n, we consider the unary operations f i
cd defined on Ek by f i

cd(x) = ai if
(x, c) ∈ σ and f i

cd(x) = bi otherwise. Using the observation below Proposition 4.1,
and the (total) reflexivity of ρ, (total) symmetry of ρ, reflexivity and symmetry
of σ ( for type I, II, V III) and reflexivity and transitivity of partial order (for
types III, IV,X,XI) and the fact that (ai, bi) ∈ σ ∩ ρ for h = 2, we see that
f i
c,d ∈ Pol{σ, ρ}. Setting fcd(x) = g(f1

cd(x), . . . , fn
cd(x)), we have (fcd(c), fcd(d)) =

(g(a1, . . . , an), g(b1, . . . , bn)) 6∈ σ and fcd ∈ 〈(Pol{ρ, σ}) ∪ {g}〉.

Now, we give the proof of Proposition 4.1.

Proof. Let g ∈ Pol ρ\Pol{σ, ρ} be an n-ary operation. We show that 〈(Pol{σ, ρ})
∪ {g}〉 = Pol ρ. We have 〈(Pol{σ, ρ}) ∪ {g}〉 ⊆ Pol ρ. It remains to show that
Pol ρ ⊆ 〈(Pol{σ, ρ}) ∪ {g}〉. Let f ∈ Pol ρ be an m-ary operation on Ek. From
Lemma 4.2, we can see that for e,d ∈ Em

k such that (e,d) ∈ σ and e 6= d, there
exists 1 ≤ i ≤ m such that ci 6= di; the operation fe,d := fci,di ◦ π

m
i where fci,di

is the unary operation provided by Lemma 4.2, is an m-ary operation belonging
to 〈(Pol{σ, ρ}) ∪ {g}〉 such that (fed(e), fed(d)) = (g(a1, . . . , an), g(b1, . . . , bn))
6∈ σ.

We set S = {fed : e,d ∈ Em
k ,e 6= d, (e,d) ∈ σ}; for reason of simple

notation we set S = {fi : 1 ≤ i ≤ l}(l = CardS) and we consider the map
ext : Em

k → Em+l
k defined by ext(x) = (x, f1(x), . . . , fl(x)). Let x,y ∈ Em

k such
that x 6= y. If (x,y) ∈ σ, then (fxy(x), fxy)(y)) 6∈ σ, if (x,y) 6∈ σ, then by
definition of ext we have (ext(x), ext(y)) 6∈ σ. Thus for x 6= y, (ext(x), ext(y)) 6∈
σ. Furthermore we define an operation H on the range {ext(x) : x ∈ Em

k } of ext
by H(ext(x)) = f(x).

Now, taking into account the different values of l, we construct an extension
H̃ of H on Em+l

k belonging to Pol{ρ, σ}.

(i) If σ is of type I, we choose and fix T = {e1, . . . , eq} (where q is the number
of σ-classes) such that (ei, ej) 6∈ σ for 1 ≤ i < j ≤ q, and we define α from Ek to
{1, . . . , q} by α(a) = i if (a, ei) ∈ σ. Hence we construct an extension H̃ of H on
Em+l

k as follows. Let y = (y1, . . . , ym+l) ∈ Em+l
k , set
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H̃(y) =







f(z) if ∃z ∈ Em
k ,y = ext(z);

f(u) if ∀z ∈ Em
k , ext(z) 6= y ∧ ∃u ∈ Em

k ,

(ext(u),y) ∈ σ;

f(eα(y1), . . . , eα(ym)) elsewhere.

The function H̃ is well defined. We will show that H̃ ∈ Pol{σ, ρ}. First
we show that H̃ ∈ Pol σ. Using reflexivity, symmetry and transitivity of σ

it is easy to see that H̃ ∈ Pol σ. Second we show that H̃ ∈ Pol ρ. We can
see that for any y ∈ Em+l

k , there exists v ∈ Em
k such that H̃(y) = f(v) and

((y1, . . . , ym),v) ∈ σ (∗). Let xi = (xi,1, . . . , xi,h) ∈ ρ, 1 ≤ i ≤ m + l. For
j = 1, . . . , h, we set dj = (x1,j , . . . , xm+l,j) and d′

j = (x1,j , . . . , xm,j). It is clear
that (d1, . . . ,dh), (d′

1, . . . ,d
′
h) ∈ ρ. From (∗), there exist vj = (v1,j , . . . , vm,j),

such that H̃(dj) = f(vj) and ((x1,j , . . . , xm,j),vj) = (d′
j ,vj) ∈ σ for 1 ≤ j ≤

h. Hence u1 = (v1,1, . . . , v1,h), . . . ,um = (vm,1, . . . , vm,h) ∈ ρ (due to ρ σ-
closed, (d′

j ,vj) ∈ σ, 1 ≤ j ≤ h and (d′
1, . . . ,d

′
h) ∈ ρ). Since f ∈ Pol ρ, we

have f(u1, . . . ,uh) = (f(v1), . . . , f(vh)) ∈ ρ. Therefore (H̃(d1), . . . , H̃(dh)) =
(f(v1), . . . , f(vh)) = f(u1, . . . ,um) ∈ ρ. Thus H̃ ∈ Pol ρ. Hence H̃ ∈ Pol{ρ, σ}.

(ii) If σ is of type II, for every a ∈ Ek, we set c[a]σ = min(Cρ ∩ [a]σ) (where
Ek is ordered by the natural order of N). Set

H̃(y) =







f(u) if ∃u ∈ Em
k , y = ext(u);

c[f(u)]σ if ∀z ∈ Em
k , ext(z) 6= y ∧ ∃u ∈ Em

k ,

(ext(u),y) ∈ σ;

c[f(c[y1]σ ,...,c[ym]σ )]σ
elsewhere.

The function H̃ is well defined. Using the reflexivity and the transitivity of partial
order we can show that H̃ ∈ Pol σ. It remains to show that H̃ ∈ Pol ρ. Using the
fact that f ∈ Pol ρ, (ext(u), ext(v)) ∈ σ iff u = v, and c[f(u)]σ a central element

of ρ for u ∈ Em
k , we obtain H̃ ∈ Pol ρ. Thus H̃ ∈ Pol{ρ, σ}.

(iii) If σ is of type III or IV, then we set

H̃(y) =







f(u) if ∃u ∈ Em
k ,y = ext(u);

⊤ if ∀z ∈ Em
k , ext(z) 6= y ∧ ∃u ∈ Em

k , (ext(u),y) ∈ σ;

⊥ elsewhere.

The function H̃ is well defined. Using the reflexivity and transitivity of partial
order one can show that H̃ ∈ Pol σ. Since {⊥,⊤} ⊆ Cρ and f ∈ Pol ρ, it is easy
to show that H̃ ∈ Pol ρ. Thus H̃ ∈ Pol{ρ, σ}.
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(iv) If σ is of type VIII, then for y ∈ Em+l
k \ ext(Em

k ) set Dy = {f(x) :
(ext(x),y) ∈ σ}. If b1, . . . , bh ∈ Dy, then there exist x1, . . . ,xh ∈ Em

k such that
bi = f(xi) and (ext(xi),y) ∈ σ for all i ∈ h. Consequently, (x1, . . . ,xh) ∈ σh = ρ.
Since f ∈ Pol ρ, it follows that (b1, . . . , bh) = (f(x1), . . . , f(xh)) ∈ ρ. Therefore
Dh
y ⊆ ρ; so Dy is a ρ-chain. Hence we set τ(y) = min{j : Dy ⊆ Aj} for

y ∈ Em+l
k \ext(Em

k ) and we fix ci ∈ Ai∩Cρ such that for every a ∈ Ai (a, ci) ∈ σ.
We set

H̃(y) =







f(u) if ∃u ∈ Em
k ,y = ext(u);

cτ(y) if ∀z ∈ Em
k , ext(z) 6= y ∧ ∃u ∈ Em

k , (ext(u),y) ∈ σ;

c0 elsewhere.

The function H̃ is well defined. We show that H̃ ∈ Pol σ. Let y1 = (u1, . . . , um+l),
y2 = (v1, . . . , vm+1) ∈ Em+l

k such that (y1,y2) ∈ σ. We show that (H̃(y1), H̃(y2))
∈ σ. If y1 = y2 we are done, because σ is reflexive. Assume that y1 6= y2. We
distinguish two cases.

Case 1. y1 = ext(u1) and for all z ∈ Em
k , ext(z) 6= y2, then the definition of

H̃ yields that H̃(y2) = cτ(y2)
; so (H̃(y1), H̃(y2)) = (f(u1), cτ(y2)

) ∈ σ.

Case 2. (H̃(y1), H̃(y2)) ∈ {(c0, c0), (cτ(y1)
, cτ(y2)

), (cτ(y1)
, c0), (c0, cτ(y2)

)} ⊆

σ because Cρ ⊆ Ai, 0 ≤ i ≤ t− 1. Thus H̃ ∈ Pol σ.

(v) If σ is of type X, then for y ∈ Em+l
k \ ext(Em

k ) set also Dy = {f(x) :
(ext(x),y) ∈ σ}. If b1, b2 ∈ Dy, then there exist xi ∈ Em

k , i = 1, 2 such that
bi = ext(xi) and (ext(xi),y) ∈ σ for i = 1, 2. Consequently, (x1,x2) ∈ σ2 = ρ.
Since f ∈ Pol ρ, it follows that (b1, b2) = (f(x1), f(x2)) ∈ ρ. Therefore D2

y ⊆ ρ,
so Dy is a ρ – chain. Furthermore, we set A(y) = ∩ {Aj : Dy ⊆ Aj} for

y ∈ Em+l
k \ ext(Em

k ) and we denote by ⊤A(y) the greatest element of A(y). We

extend H on Em+l
k by setting for all y not in the range of ext,

H̃(y) =

{

⊤A(y) if ∃x ∈ Em
k , (ext(x),y) ∈ σ,

⊥ elsewhere.

Since σ is reflexive and transitive, then one can easily show that H̃ ∈ Pol σ. Due
to ⊥ ∈ Cρ it is easy to see that H̃ ∈ Pol ρ.

(vi) If σ is of type XI, then σ−1 is of type X. The same argument above show
that the extension H̃ of H defined by

H̃(y) =

{

⊥A(y) if ∃x ∈ Em
k , (ext(x),y) ∈ σ;

⊤ elsewhere

belongs to Pol{ρ, σ}. We have shown that H̃ belongs to Pol{ρ, σ} for l ∈
{I, II, III, IV, V III,X,XI}. Therefore f(x) = H̃(x, f1(x), . . . , fl(x)) and f ∈
〈Pol{ρ, σ} ∪ {g}〉 as desired.
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Now, we look at Case 2 (l ∈ {V, V I}). In this case, the maximality of
Pol{ρ, σ} below Pol ρ is given by the following known result.

Proposition 4.3 ([12], Theorem 3.2). Let k ≥ 3, ρ be an h-ary central relation
on Ek with h ≥ 2 and σ be a binary central relation on Ek such that σ 6= ρ. The
clone Pol{ρ, σ} is maximal below Pol ρ if and only if σ fulfills one of the following
two conditions:

(V) ρ and σ are comparable (i.e., ρ ( σ or σ ( ρ).

(VI) h ≥ 3 and Cρ ∩ Cσ 6= ∅.

We continue with Case 3 (l = V II). Here we use the following result due to
Rosenberg and Szendrei. Recall that ∆Ek

= {(x, x) : x ∈ Ek}.

Proposition 4.4 ([8], Proposition 4.3). Let k ≥ 3, π be a fixed point free permu-
tation on Ek with πp = id (p prime) and ρ be an h-ary σπ-closed central relation
(h ≥ 2). The relational subalgebras of [{π◦, ρ}] form a 4-element boolean lattice
consisting of [{π◦, ρ}], [{π◦}], [{ρ}] and [{∆Ek

}].

The next Corollary gives the maximality of Pol{π◦, ρ} in Pol ρ.

Corollary 4.5. Let k ≥ 3, π be a fixed point free permutation on Ek with πp = id

(p prime) and ρ be an h-ary σπ-closed central relation (h ≥ 2). Then the clone
Pol{ρ, π◦} is maximal below Pol ρ.

Proof. It follows from Proposition 4.4.

We finish our investigation with Case 4 (l = IX).

Lemma 4.6. Let k ≥ 3, ρ be a binary central relation and σ a binary relation
such that ρ = σ ∩ σ−1. A binary relation τ on Ek is preserved by all operations
in Pol σ if and only if τ ∈ {∅,∆Ek

, σ, σ−1, ρ, E2
k}.

Proof. It is clear that if τ ∈ {∅,∆Ek
, ρ, σ, σ−1, E2

k}, then Pol σ ⊆ Pol τ . Now, let
τ be a binary relation such that Pol σ ⊆ Pol τ . If τ = ∅, we are done. Otherwise
∅ ( τ . Since σ is reflexive, Pol σ contains constant unary operations; therefore
∆Ek

⊆ τ . If τ = ∆Ek
, we are done. Otherwise ∆Ek

( τ and there exists (u, v) ∈ τ

such that u 6= v. If (u, v) ∈ ρ, then for (a, b) ∈ ρ, the unary operation f defined
by f(x) = a if x = u and f(x) = b otherwise, preserves σ (due to Im(f) = {a, b}
and {a, b}2 ⊆ ρ ⊆ σ); so f preserves τ and (a, b) = (f(u), f(v)) ∈ τ . Hence ρ ⊆ τ .
If ρ = τ , we are done. Otherwise, ρ ( τ and there exists (u, v) ∈ τ \ ρ. We have
the following three cases: (i) (u, v) ∈ σ, (ii) (v, u) ∈ σ, (iii) (u, v) 6∈ σ ∪ σ−1. We
fix c ∈ Cρ. If (u, v) 6∈ σ∪σ−1, then for (a, b) ∈ E2

k , the unary operation g defined

by g(x) =







a if x = u,

b if x = v,

c elsewhere
preserves σ (due to ρ ⊆ σ and (u, v) 6∈ σ ∪ σ−1)).

Therefore (a, b) = (g(u), g(v)) ∈ τ . Hence τ = E2
k .
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If (u, v) ∈ σ, then for (a, b) ∈ σ, the unary operation g above preserves σ (due
to (v, u) 6∈ σ). Thus (a, b) = (g(u), g(v)) ∈ τ and σ ⊆ τ . If σ = τ , we are done;
otherwise σ ( τ and there exists (u, v) ∈ τ \ σ. We choose (m,n) ∈ σ \ ρ. For

(a, b) ∈ E2
k , the binary operation h defined by h(x, y) =







a if (x, y) = (u,m),
b if (x, y) = (v, n),
c elsewhere

preserves σ; hence (a, b) = (h(u,m), h(v, n)) ∈ τ . Therefore τ = E2
k . If (v, u) ∈ σ,

then using the same argument as above, we can show that τ ∈ {σ−1, E2
k}.

Lemma 4.7. If σ is of type IX, then Pol σ contains a majority operation.

Proof. Let c ∈ Cρ and m be the ternary operation defined on Ek by

m(x1, x2, x3) =

{
xi if xi = xj for some 1 ≤ i < j ≤ 3,
c elsewhere.

From the definition m is a majority operation. It is easy to see that m ∈
Pol σ.

Proposition 4.8. If σ is of type IX, then Pol σ is meet-irreducible and maximal
below Pol ρ.

Proof. Let F be a clone such that Pol σ ( F and F 6= OEk
. We will prove

that F = Pol ρ. From Lemma 4.7, Pol σ contains a majority operation m; hence
m ∈ F and by Baker-Pixley Theorem 2.1 we get F =

⋂

τ∈R Pol τ for a set R

of binary relations on Ek. Since Pol σ ( F , we get from Lemma 4.6 that R ⊆
{∅,∆Ek

, ρ, σ, σ−1, E2
k}. By assumptions, there exists an operation f such that

f ∈ F and f 6∈ Pol σ = Pol σ−1; therefore σ, σ−1 6∈ R. Thus R ⊆ {∅,∆Ek
, ρ, E2

k},
which implies that F = Pol ρ.

Remark 4.9. In fact, one can prove that if σ is of type VIII, X or XI, then Pol σ
is meet-irreducible below Pol ρ.

The more difficult part of this work is the proof of necessity in Theorem 3.2
discussed in the next section.

5. Proof of necessity in Theorem 3.2

In this section, we show that the relations of type I–XI are the only binary
relations σ such that the clones Pol{ρ, σ} are maximal in Pol ρ. For an arbitrary
h-ary central relation ρ (h ≥ 2) the submaximal clones of Pol ρ are divided into
two types, the meet-reducible submaximal clones of the form Pol ρ∩Pol σ where σ
is one of the six types listed in Theorem 2.2 and the meet-irreducible submaximal
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clones Pol σ where σ is not in the list of Theorem 2.2. Following this observation,
our investigation is about binary relation σ of Theorem 2.2 and binary relation σ

such that Pol σ is only covered by Pol ρ. Since the case of binary central relation
is fully described by Proposition 4.3, we share our investigation into four cases:
(i) σ is a nontrivial equivalence relation, (ii) σ is a bounded partial order, (iii)
σ is the graph of a prime permutation and (iv) Pol σ is meet-irreducible below
Pol ρ.

5.1. Case (i): σ is a nontrivial equivalence relation

Proposition 5.1. Let k ≥ 3, ρ be an h-ary central relation (h ≥ 2) and σ be a
nontrivial equivalence relation on Ek with t classes. If Pol{ρ, σ} is a maximal
subclone of Pol ρ, then σ is of type I or II.

The proof of Proposition 5.1 is divided into Lemmas 5.3–5.8. We set

σj =
{

(a1, . . . , ah) ∈ Eh
k : ∃u1 ∈ [a1]σ, . . . ,∃uj ∈ [aj ]σ,

(u1, . . . , uj , aj+1, . . . , ah) ∈ ρ
}

and δj =
⋂

s∈Sh
(σj)s, j ∈ h. For j ∈ h we have ρ ⊆ σj and Pol{σ, ρ} ⊆ Pol{ρ, σj}

(due to σj ∈ [{ρ, σ}]). If h = 2, then ρ * σ (due to ρ is a central relation); we
choose (a, b) ∈ ρ \ σ. If h ≥ 3, then we choose (a, b) ∈ E2

k \ σ. Let (e, d) ∈ σ

such that e 6= d. Consider the unary operation f1 defined on Ek by f1(x) = a if
x = e and f1(x) = b otherwise. Since (e, d) ∈ σ and (f1(e), f1(d)) = (a, b) 6∈ σ,
then f1 6∈ Pol σ; but, f1 ∈ Pol{ρ, σj} (due to Im f1 = {a, b}, {a, b}2 ⊆ ρ ⊆ σj
for h = 2; and ρ and σj are totally reflexive for h ≥ 3). Therefore, for all
j ∈ h, Pol{ρ, σ} ( Pol{ρ, σj} (∗1). From definition, σh is totally reflexive, totally
symmetric and ρ ⊆ σh ⊆ Eh

k ; so we have the following three cases: (1) ρ = σh,
(2) ρ ( σh ( Eh

k and (3) σh = Eh
k .

Lemma 5.2. If the assumptions of Proposition 5.1 are satisfied, then the case
ρ ( σh ( Eh

k is impossible.

Proof. Suppose that ρ ( σh ( Eh
k . Since σh is totally reflexive (reflexive if

h = 2), totally symmetric (symmetric if h = 2) and ρ ( σh ( Eh
k , then σh is an

h-ary central relation. From (∗1) we have Pol{ρ, σ} ( Pol{ρ, σh}. Furthermore,
Pol ρ and Pol σh are two distinct maximal clones, so Pol{ρ, σh} ( Pol ρ. Thus
Pol{ρ, σ} ( Pol{ρ, σh} ( Pol ρ, contradicting the maximality of Pol{ρ, σ} in
Pol ρ.

Lemma 5.3. If the assumptions of Proposition 5.1 are satisfied and ρ = σh, then
σ is of type I.

Proof. Assume that ρ = σh. It is easy to check that σh is σ-closed. Hence
ρ = σh and σ is of type I.
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We continue our investigation with the Case (3) σh = Eh
k . We recall that σ

has t classes (t ≥ 2). For i ≥ 2 we denote by ξi the i-ary relation

ξi =
{

(a1, . . . , ai) ∈ Ei
k : ∃ a′1 ∈ [a1]σ, . . . , a

′
i ∈ [ai]σ, {a

′
1, . . . , a

′
i}

h ⊆ ρ
}
.

We have σh = ξh = Eh
k and ξt satisfies one of the following two conditions:

(3.1) ξt = Et
k, (3.2) ξt 6= Et

k. In the case ξt 6= Et
k, we denote by n the least

integer N such that ξN 6= EN
k . We have n > h (due to ξh = Eh

k ).

Lemma 5.4. If the assumptions of Proposition 5.1 are satisfied and σh = Eh
k ,

then ξt = Et
k.

Proof. Assume that ξt 6= Et
k. The minimality of n yields that ξn−1 = En−1

k . It
is easy to check that ξn is totally symmetric and totally reflexive. Let c ∈ Cρ

and (a1, . . . , an−1) ∈ En−1
k = ξn−1, we have, (a1, . . . , an−1, c) ∈ ξn (due to σ

is reflexive). So ξn is an n-ary central relation (n > h), and ξn and ρ are two
distinct central relations; therefore Pol{ρ, ξn} ( Pol ρ. Since ρ, ξn ∈ [{σ, ρ}], we
have Pol{ρ, σ} ⊆ Pol{ρ, ξn} and the previous unary operation f1 preserves ρ and
ξn and does not preserve σ. Thus Pol{ρ, σ} ( Pol{ρ, ξn} ( Pol ρ; contradicting
the maximality of Pol{ρ, σ} in Pol ρ. Hence ξt = Et

k.

Now we assume that ξt = Et
k. Therefore there exist u1, . . . , ut ∈ Ek such that

(ui, uj) 6∈ σ for 1 ≤ i < j ≤ t and {u1, . . . , ut}
h ⊆ ρ. We set T = {u1, u2 . . . , ut},

T is called a transversal of σ and ρ. Furthermore, we assume that there is
a transversal T of σ and ρ such that T h ⊆ ρ. Recall that for all j ∈ h,

δj =
⋂

s∈Sh
(σj)s is totally reflexive (or reflexive if h = 2) and totally symmetric

(symmetric if h = 2). We have δh = Eh
k . For all 1 ≤ j ≤ h− 1, ρ ⊆ δj ⊆ Eh

k and
we have the following three subcases: (4.1) ρ = δj , (4.2) ρ ( δj ( Eh

k or (4.3)
δj = Eh

k .

First, we study the subcase ρ ( δj ( Eh
k for some 1 ≤ j ≤ h− 1.

Lemma 5.5. If the assumptions of Proposition 5.1 are satisfied and there is a
transversal T of the σ-classes such that T h ⊆ ρ, then there is no 1 ≤ j ≤ h − 1
such that ρ ( δj ( Eh

k .

Proof. Let 1 ≤ j ≤ h − 1 such that ρ ( δj ( Eh
k ; it is clear that δj is an h-ary

central relation distinct from ρ and a similar argument as in the proof of Lemma
5.2 shows that Pol({ρ, σ}) ( Pol({ρ, δj}) ( Pol(ρ).

Lemma 5.6. If the assumptions of Proposition 5.1 are satified and there exists a
transversal T such that T h ⊆ ρ, then there is no 1 ≤ j ≤ h− 1 such that ρ = δj .
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Proof. Let 1 ≤ j ≤ h−1 such that ρ = δj. Since δi ⊆ δl for all 1 ≤ i ≤ l ≤ h−1,
we can suppose that j is the greatest integer N such that ρ = δN . Thus ρ = δj (
δj+1. Therefore δj+1 = Eh

k . So δ1 = δj = ρ. Recall that δ1 =
⋂

s∈Sh
(σ1)s and

σ1 := {(a1, . . . , ah) ∈ Eh
k : ∃u ∈ Ek, (a1, u) ∈ σ ∧ (u, a2, . . . , ah) ∈ ρ}.

Thus σ1 6= Eh
k . We have the following possibilities

(i) ρ = σ1 or (ii) ρ ( σ1 ( Eh
k .

Assume that (i) ρ = σ1 holds. Let (a1, . . . , ah) ∈ Eh
k \ρ; since σh = Eh

k , there
exist u1, . . . , uh ∈ Ek such that (u1, . . . , uh) ∈ ρ and (a1, u1) ∈ σ, . . . , (ah, uh) ∈ σ

(∗3). Since (u1, u2, . . . , uh) ∈ ρ = σ1, there exists v1 ∈ Ek such that (u1, v1) ∈ σ

and (v1, u2, . . . , uh) ∈ ρ. Thus (a1, u1) ∈ σ and (u1, v1) ∈ σ. So (a1, v1) ∈ σ and
(a1, u2, . . . , uh) ∈ σ1 = ρ (due to (v1, u2, . . . , uh) ∈ ρ). By total symmetry of ρ
we have (u2, . . . , uh, a1) ∈ ρ = σ1; so there exists v2 ∈ Ek such that (u2, v2) ∈ σ

and (v2, u3, . . . , uh, a1) ∈ ρ. By transitivity of σ and (∗3) we obtain (a2, v2) ∈
σ, (v2, u3, . . . , uh, a1) ∈ ρ and we deduce that (a2, u3, . . . , uh, a1) ∈ σ1 = ρ. There-
fore by induction we can show that (a1, a2, . . . , ah) ∈ ρ; contradicting the choice
of (a1, . . . , ah). Therefore ρ ( σ1 ( Eh

k .

Since ρ =
⋂

s∈Sh
(σ1)s, and we have Pol σ1 ⊆ Pol ρ; in addition σ1 ∈ [{σ, ρ}],

so Pol{ρ, σ} ⊆ Pol σ1. It follows that Pol{ρ, σ} ⊆ Pol σ1 ⊆ Pol ρ. The unary
operation f1 defined above preserves ρ and σ1 and does not preserves σ, therefore
Pol{ρ, σ} ( Pol σ1. We will show that Pol σ1 ( Pol ρ. From ρ ( σ1 ( Eh

k we
choose (b1, . . . , bh) ∈ Eh

k \ σ1 and (u1, . . . , uh) ∈ σ1 \ ρ and c ∈ Cρ. Consider the
unary operation f defined on Ek by f(x) = bi if x = ui for some 1 ≤ i ≤ h and
f(x) = c otherwise. The function f is well defined (because |{u1, . . . , uh}| = h

and ρ totally reflexive). We have (u1, . . . , uh) ∈ σ1 and (f(u1), . . . , f(uh)) =
(b1, . . . , bh) 6∈ σ1, so f 6∈ Pol σ1. It is easy to check that f ∈ Pol ρ. Hence
Pol{ρ, σ} ( Pol σ1 ( Pol ρ; contradicting the maximality of Pol{ρ, σ} in Pol ρ.

From Lemmas 5.5–5.6, we conclude that for all 1 ≤ j ≤ h − 1, δj = Eh
k .

Therefore δ1 = Eh
k =

⋂

s∈Sh
(σ1)s. Hence Eh

k = σ1 = (σ1)s for all s ∈ Sh. We set
F = {{x1, . . . , xh−1} ⊆ Ek : Card({x1, . . . , xh−1}) = h− 1, {x1, . . . , xh−1} ∩Cρ =
∅}. Let m = Card(F ), then m ≥ 2 (because k ≥ 3 and h ≥ 2) and set

γm(h−1)+1 =
{

(a1, a1,1, . . . , a1,h−1, . . . , am,1, . . . , am,h−1) ∈ E
m(h−1)+1
k :

∃u1 ∈ [a1]σ : {(u1, ai,1, . . . , ai,h−1), 1 ≤ i ≤ m} ⊆ ρ
}
.

We have two subcases:

(i) γm(h−1)+1 6= E
m(h−1)+1
k and (ii) γm(h−1)+1 = E

m(h−1)+1
k .
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Lemma 5.7. If the assumptions of Proposition 5.1 are satisfies and σ1 = Eh
k ,

then γm(h−1)+1 = E
m(h−1)+1
k .

Proof. Assume σ1 = Eh
k and γm(h−1)+1 6= E

m(h−1)+1
k . We will show that

Pol({ρ, σ}) ( Pol({ρ, γm(h−1)+1}) ( Pol(ρ). Since γm(h−1)+1 ∈ [{σ, ρ}], we
have Pol({ρ, σ}) ⊆ Pol({ρ, γm(h−1)+1}) ⊆ Pol(ρ). The above unary operation
f1 preserves ρ and γm(h−1)+1 and does not preserve σ; therefore Pol({ρ, σ}) (
Pol({ρ, γm(h−1)+1}). It remains to show that Pol({ρ, γm(h−1)+1}) ( Pol(ρ). Let

c ∈ Cρ and (a1, . . . , ah) ∈ Eh
k \ ρ, we set W = {(i1, . . . , ih) : 1 ≤ i1 < · · · <

ih ≤ m(h − 1) + 1}, denoted simply by W = {(ij1, . . . , i
j
h) : 1 ≤ j ≤ q} where

q = |W |. For 1 ≤ j ≤ q, we set yj = (xj,1, . . . , xj,m(h−1)+1) such that for

all p, 1 ≤ p ≤ m(h − 1) + 1, xj,p = al if p = i
j
l for some 1 ≤ l ≤ h and

xj,p = c otherwise. For 1 ≤ i ≤ m(h − 1) + 1, we set xi = (x1,i, . . . , xq,i). Let

v = (v1, . . . , vm(h−1)+1) ∈ E
m(h−1)+1
k \ γm(h−1)+1 and f be the q-ary operation

defined on Ek by

f(x) =

{

vi, if x = xi for some 1 ≤ i ≤ m(h− 1) + 1,

c otherwise.

The operation f is well defined, because |{xi : 1 ≤ i ≤ m(h − 1) + 1}| =
m(h − 1) + 1. From construction, for all 1 ≤ i1 < · · · < ih ≤ m(h− 1) + 1, (xi1 ,

. . . ,xih) 6∈ ρ(∗4). We have f ∈ Pol ρ because c ∈ Cρ and (∗4) holds. Using
(σ1)s = Eh

k for all s ∈ Sh, the total symmetry, total reflexivity of ρ (h ≥ 3) and
c ∈ Cρ, we can show that {y1, . . . ,yq} ⊆ γm(h−1)+1. Thus f(y1, . . . ,yq) = (f(x1),
. . . , f(xm(h−1)+1)) = (v1, . . . , vm(h−1)+1) 6∈ γm(h−1)+1; so f 6∈ Pol(γm(h−1)+1).
Thus Pol({ρ, σ}) ( Pol({ρ, γm(h−1)+1}) ( Pol(ρ); contradicting the maximality
of Pol{σ, ρ} below Pol ρ.

From Lemma 5.7, we have γm(h−1)+1 = E
m(h−1)+1
k .

Lemma 5.8. If the assumptions of Proposition 5.1 are satisfied, there exists a

transversal T of σ-classes such that T h ⊆ ρ and γm(h−1)+1 = E
m(h−1)+1
k , then

every equivalence class of σ contains a central element of ρ.

Proof. Let a ∈ Ek, we set

u = (a, x1,1, . . . , x1,h−1, x2,1, . . . , x2,h−1, . . . , xm,1, . . . , xm,h−1)

such that {xj,1, . . . , xj,h−1} ∈ F, 1 ≤ j ≤ m. Since u ∈ E
m(h−1)+1
k = γm(h−1)+1,

there exists v ∈ [a]σ such that for all j ∈ {1, . . . ,m}, (v, xj,1, . . . , xj,h−1) ∈ ρ.
Hence v ∈ Cρ. Thus every equivalence class of σ contains a central element of ρ.
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Under the assumptions of Lemma 5.8, σ is of type II.

Proof. (Proof of Proposition 5.1.) It follows from Lemmas 5.3–5.8.

5.2. Case (ii): σ is a bounded partial order

For a ∈ Ek we set [a]σ = {x ∈ Ek : (a, x) ∈ σ}. The following proposition
characterizes σ under the maximality of Pol{ρ, σ} in Pol ρ.

Proposition 5.9. Let k ≥ 3, ρ be an h-ary central relation (h ≥ 2) and σ be a
bounded partial order with least element ⊥ and greatest element ⊤. If Pol{ρ, σ}
is maximal below Pol ρ, then σ is of type III or IV.

We assume that Pol{ρ, σ} is maximal below Pol ρ and we consider the fol-
lowing h-ary relations

δ = {(a1, . . . , ah) ∈ Eh
k : ∃u ∈ Ek, (a1, u) ∈ σ, (u, a2, . . . , ah) ∈ ρ},

δ′ = {(a1, . . . , ah) ∈ Eh
k : ∃u ∈ Ek, (a1, . . . , ah−1, u) ∈ ρ, (u, ah) ∈ σ}.

We can see that if h = 2, then δ = σ ◦ ρ and δ′ = ρ ◦ σ. We have ρ ⊆ δ ⊆ Eh
k and

ρ ⊆ δ′ ⊆ Eh
k . Hence δ (respectively δ′) satisfies one of the following conditions

(a) ρ = δ; (b) ρ ( δ ( Eh
k or (c) δ = Eh

k

(resp. (a) ρ = δ′; (b) ρ ( δ′ ( Eh
k or (c) δ′ = Eh

k ).

Lemma 5.10. If the assumptions of Proposition 5.9 are satisfied, then ρ 6= δ

(respectively ρ 6= δ′).

Proof. Assume that ρ = δ. Let a1, . . . , ah ∈ Ek, we have (a1,⊤) ∈ σ and
(⊤, a2, . . . , ah−1,⊤) ∈ ρ. Thus (a1, a2, . . . , ah−1,⊤) ∈ δ = ρ. Hence ⊤ ∈ Cρ. Fur-
thermore (ah,⊤) ∈ σ and (⊤, a1, a2, . . . , ah−1) ∈ ρ. Therefore (ah, a1, . . . , ah−1) ∈
ρ and ρ = Eh

k , contradiction. A similar argument solves the case ρ = δ′.

It follows that ρ ( δ ( Eh
k or δ = Eh

k and ρ ( δ′ ( Eh
k or δ′ = Eh

k .

Lemma 5.11. If the assumptions of Proposition 5.9 are satified, then the Case
ρ ( δ ( Eh

k (respectively ρ ( δ′ ( Eh
k ) is impossible.

Proof. Assume that ρ ( δ ( Eh
k . First, we show that Pol({ρ, σ}) ( Pol({ρ, δ}).

It is easy to see that Pol{ρ, σ} ⊆ Pol{ρ, δ} (due to ρ, δ ∈ [{ρ, σ}]). If ρ is binary,
then ρ * σ. Hence there exists (u, v) ∈ ρ such that (u, v) 6∈ σ. Let (a, b) ∈ σ

such that a 6= b. We consider the unary operation f defined by f(x) = u if
x = a and f(x) = v otherwise. The operation f does not preserve σ because
(a, b) ∈ σ and (f(a), f(b)) = (u, v) 6∈ σ. Since ρ ⊆ δ and (u, v) ∈ ρ, we have
{u, v}2 ⊆ ρ ⊆ δ. Thus f preserves ρ and δ. So Pol{ρ, σ} ( Pol{ρ, δ}. If the arity
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of ρ is greater than 2, then δ is totally reflexive. Let (a, b) ∈ σ such that a 6= b.
The operation h defined by h(x) = b if x = a and h(x) = a otherwise, preserves
ρ and δ and does not preserve σ(due to (a, b) ∈ σ and (h(a), h(b)) = (b, a) 6∈ σ).
Hence Pol{ρ, σ} ( Pol{ρ, δ}.

Second, we show that Pol{ρ, δ} ( Pol ρ. Let (u1, . . . , uh) ∈ δ \ ρ and c ∈ Cρ,
(a1, . . . , ah) ∈ Eh

k \ δ. The unary operation l defined on Ek by l(x) = ai if
x = ui for some 1 ≤ i ≤ h and l(x) = c otherwise, is well defined (because
|{u1, . . . , uh}| = h and ρ totally reflexive) and preserves ρ. Since (u1, . . . , uh) ∈ δ

and (l(u1), . . . , l(uh)) = (a1, . . . , ah) 6∈ δ, l does not preserve δ. Therefore
Pol({ρ, δ}) ( Pol(ρ). We conclude that Pol{ρ, σ} ( Pol{ρ, δ} ( Pol ρ, con-
tradicting the maximality of Pol{ρ, σ} in Pol ρ. A similar argument solves the
case ρ ( δ′ ( Eh

k .

Lemma 5.12. If the assumptions of Proposition 5.9 are satified and δ = Eh
k ,

then {⊥,⊤} ⊆ Cρ.

Proof. Let a1, a2, . . . , ah−1 ∈ Ek. Since (⊤, a1, . . . , ah−1) ∈ Eh
k = δ, there exists

u ∈ Ek such that (⊤, u) ∈ σ and (u, a1, . . . , ah−1) ∈ ρ. Hence u = ⊤ and
(⊤, a1, . . . , ah−1) ∈ ρ (due to ⊤ is the greatest element of σ). Therefore ⊤ ∈ Cρ.
Using the previous argument replacing δ and ⊤ by δ′ and ⊥ respectively we can
show that ⊥ ∈ Cρ.

We have shown that {⊥,⊤} ⊆ Cρ and we will use the arity of ρ to conclude.

Lemma 5.13. If the assumptions of Proposition 5.9 are satified and h ≥ 3, then
σ is a bounded partial order of type IV.

Proof. From Lemmas 5.10–5.12, σ satisfies condition (IV) of Theorem 3.2.

From now on we suppose that {⊥,⊤} ⊆ Cρ and ρ is a binary central relation.
We set λ = σ∩ρ. We have (⊥,⊤) ∈ λ, so ∆Ek

( λ ⊆ σ. Let tr(λ) be the transitive
closure of λ. Since σ is transitive, we have tr(λ) ⊆ σ. Hence (1) tr(λ) ( σ or (2)
tr(λ) = σ.

Lemma 5.14. If the assumptions of Proposition 5.9 are satified, {⊥,⊤} ⊆ Cρ

and ρ being binary, then tr(λ) = σ.

Proof. Assume that (1) holds. Since tr(λ) ∈ [{σ, ρ}], we have Pol{ρ, σ} ⊆
Pol{ρ, tr(λ)} ⊆ Pol ρ. Let (a, b) ∈ σ such that (a, b) 6∈ tr(λ), then (⊤,⊥) 6∈ σ and
the unary operation f defined on Ek by f(x) = ⊤ if (a, x) ∈ tr(λ) and f(x) = ⊥
otherwise does not preserve σ (because (a, b) ∈ σ and (f(a), f(b)) = (⊤,⊥) 6∈ σ).
But, using reflexivity and transitivity of tr(λ) one can check that f preserves
tr(λ). Thus f ∈ Pol ρ because {⊥,⊤} ⊆ Cρ; therefore Pol{ρ, σ} ( Pol{ρ, tr(λ)}.
Let (u, v) ∈ tr(λ) such that u 6= v and (a, b) ∈ ρ \ σ; then (a, b) 6∈ tr(λ). Let
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g be the unary operation defined on Ek by g(x) = a if x = u and g(x) = b

otherwise. The operation g does not preserve tr(λ) (due to (u, v) ∈ tr(λ) and
(g(u), g(v)) = (a, b) 6∈ tr(λ)). Since Im g = {a, b} and (a, b) ∈ ρ, we obtain
g ∈ Pol ρ. So Pol{ρ, tr(λ)} ( Pol ρ. Hence Pol{ρ, σ} ( Pol{ρ, tr(λ)} ( Pol ρ;
contradicting the maximality of Pol{ρ, σ} in Pol ρ.

Lemma 5.15. If the assumptions of Proposition 5.9 are satisfied, {⊥,⊤} ⊆ Cρ,
ρ being binary and tr(λ) = σ, then σ is of type III.

Proof. It is easy to observe that σ is of type III.

Proof. (Proof of Proposition 5.9) It follows from Lemmas 5.10–5.15.

5.3. Case (iii): σ is the graph of a prime permutation

In this case, the characterization of σ is given by the following known result.

Proposition 5.16 ([8], Page 37). Let k ≥ 3, ρ be an h-ary central relation
(h ≥ 2) and π a fixed point free permutation on Ek with πp = id (p prime). The
relational algebra [{π◦, ρ}] contains one of the following relations:

(1) a nontrivial unary relation,

(2) a nontrivial σπ-closed equivalence relation,

(3) a σπ-closed central relation,

(4) a σπ-closed regular relation.

Corollary 5.17. Let k ≥ 3, π be a fixed point free permutation of Ek with πp = id

(p prime) and ρ be an h-ary central relation (h ≥ 2). If Pol{ρ, π◦} is maximal
below Pol ρ, then ρ is σπ-closed.

Proof. Assume that Pol{ρ, π◦} is maximal below Pol ρ. From Proposition 5.16
[{ρ, π◦}] contains a relation γ satisfying (1), (2), (3) or (4). Thus Pol{ρ, π◦} ⊆
Pol{γ, ρ} ⊆ Pol ρ. From Theorem 2.2, Pol γ is a maximal clone. Assume that
γ 6= ρ, then Pol{ρ, γ} ( Pol ρ (because Pol ρ and Pol γ are two different maximal
clones). Thus Pol{ρ, π◦} ⊆ Pol{γ, ρ} ( Pol ρ. Let a ∈ Ek such that a ∈ γ

whenever γ is unary. Consider the constant unary operation ca with value a. It
is easy to see that ca preserves ρ and γ, and ca does not preserve π◦. Hence
Pol{ρ, π◦} ( Pol{γ, ρ} ( Pol ρ, contradicting the choice of π. Therefore γ = ρ

and we conclude that ρ is σπ-closed.

5.4. Case (iv): Polσ is maximal and meet-irreducible below Pol ρ

In this subsection, we will show that relations of type VIII, IX, X, and XI are the
only binary relations σ such that Pol σ is maximal and meet – irreducible below
Pol ρ. First we prove the following important lemma useful for some proofs.
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Lemma 5.18. Let k ≥ 3, ρ be an h-ary central relation (h ≥ 2) and γ an h-ary
nonempty relation on Ek. If Pol ρ = Pol γ, then ρ = γ.

Proof. Assume that γ is a nonempty h-ary relation and ρ an h-ary central rela-
tion (h ≥ 2) such that Pol ρ = Pol γ. Our aim is to show that ρ = γ.

Let a ∈ Ek, the constant unary operation ca with value a preserves ρ (due
to ρ (totally) reflexive), hence ca preserves γ. Therefore (a, . . . , a

︸ ︷︷ ︸
)

h times

belongs to γ

(due to γ 6= ∅). Thus δh ⊆ γ. Since Pol δh = OEk
, we obtain δh ( γ. So there

exist a = (a1, . . . , ah) ∈ γ and α, β ∈ {1, . . . , h} such that aα 6= aβ. We have the
following statement.

Claim 1. ∀1 ≤ i < j ≤ h,∃aij = (aij1 , . . . , a
ij
h ) ∈ γ such that aiji 6= a

ij
j .

In fact, if h = 2, then Claim 1 is true; if h > 2, then assume that Claim 1 is
false. Therefore there exist 1 ≤ i0 < j0 ≤ h such that for all a = (a1, . . . , ah) ∈ γ,
we have ai0 = aj0 . Set

θ =
{

(i, j) ∈ h2 : ai = aj ∀a ∈ γ
}
.

It is easy to see that θ is a nontrivial equivalence relation on h (due to (α, β) 6∈ θ

and (i0, j0) ∈ θ). Set also

δθ =
{

(a1, . . . , ah) ∈ Eh
k : (i, j) ∈ θ =⇒ ai = aj

}
.

An easy check shows that Pol δθ = OEk
and γ ⊆ δθ. Let b = (b1, . . . , bh) ∈ δθ.

For all 1 ≤ i < j ≤ h such that (i, j) 6∈ θ, bi 6= bj and there exists eij =
(e1, . . . , eh) ∈ γ such that ei 6= ej . Set E = {eij : 1 ≤ i < j ≤ h and (i, j) 6∈ θ}.
For reason of simple notation we set E = {e1, . . . ,eq} with q = |E|. We set also
xi = (e1,i, . . . , eq,i) for each i ∈ h. By construction of (xi)i∈h, we have xi 6= xj

for all 1 ≤ i < j ≤ h such that (i, j) 6∈ θ. The q-ary function f defined on E
q
k by

f(x) =

{
bi if x = xi for some 1 ≤ i ≤ h,

b1 elsewhere

preserves ρ (due to Im(f) = {b1, . . . , bh}, |{b1, . . . , bh}| ≤ h − 1 and ρ totally
reflexive and totally symmetric). Hence f preserves γ and b ∈ γ (due to E ⊆ γ

and b = f(e1, . . . ,eq) = (f(x1), . . . , f(xh)). Thus δθ ⊆ γ and γ = δθ. So
OEk

= Pol δθ = Pol γ = Pol ρ 6= OEk
which is a contradiction. So Claim 1 is true.

Claim 2. ρ ⊆ γ.

In fact, from Claim 1, for all 1 ≤ i < j ≤ h there exists aij = (aij1 , . . . , a
ij
h ) ∈ γ

such that a
ij
i 6= a

ij
j . Set F = {aij : 1 ≤ i < j ≤ h}, for reason of simple

notation we set F = {e1, . . . ,eq} with q = |F |. Let b = (b1, . . . , bh) ∈ ρ. Setting
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(xi)i∈h as above, the function f defined above preserves ρ (due to b ∈ ρ, ρ

is (totally) reflexive and (totally) symmetric); hence f preserves γ. Therefore
b = f(e1, . . . ,eq) = (f(x1), . . . , f(xh)) ∈ γ. So ρ ⊆ γ.

Claim 2. Yields the following statement.

Claim 3. γ is (totally) symmetric.

In fact, let (a1, . . . , ah) ∈ γ and π ∈ Sh, we will show that (aπ(1), . . . , aπ(h)) ∈
γ. If (a1, . . . , ah) ∈ ρ, then (aπ(1), . . . , aπ(h)) ∈ ρ ⊆ γ (due to ρ (totally) sym-
metric). Suppose now that (a1, . . . , ah) 6∈ ρ. Let c ∈ Cρ. The unary operation g

defined on Ek by

g(x) =

{
aπ(i) if x = ai for some 1 ≤ i ≤ h,

c elsewhere

preserves ρ (due to (a1, . . . , ah) 6∈ ρ and c ∈ Cρ); hence g preserves γ and
(aπ(1), . . . , aπ(h)) = (g(a1), . . . , g(ah)) ∈ γ. Therefore γ is (totally) symmetric.

We end this proof with the following statement.

Claim 4. ρ = γ.

From Claim 2, we have ρ ⊆ γ. It remains to show that γ ⊆ ρ. Since ρ

satisfies the Claim 2 and γ is (totally) reflexive and (totally) symmetric (due to
ρ ⊆ γ and Claim 3), a similar argument as in the proof of Claim 2 shows that
γ ⊆ ρ. Therefore ρ = γ.

Proposition 5.19. Let k ≥ 3, σ be a binary relation and ρ an h-ary central
relation on Ek with t distinct maximal ρ-chains A0, A1, . . . , At−1 (h ≥ 2). If
Pol σ is meet-irreducible and maximal below Pol ρ, then σ is of type VIII, IX, X
or XI.

The proof of Proposition 5.19 is shared into the following lemmas. Let σ ⊆ E2
k

such that Pol σ is meet-irreducible and maximal below Pol ρ. Set

σ1 = {x ∈ Ek : ∃u ∈ Ek, (x, u) ∈ σ}, σ′
1 = {x ∈ Ek : ∃u ∈ Ek, (u, x) ∈ σ},

σ2 = σ ◦ σ−1 and σ′
2 = σ−1 ◦ σ.

Since σ 6= ∅, we have σ1 6= ∅ and σ′
1 6= ∅. It follows that (a) ∅ ( σ1 ( Ek or

(b) σ1 = Ek and (a’) ∅ ( σ′
1 ( Ek or (b’) σ′

1 = Ek.

Lemma 5.20. If the assumptions of Proposition 5.19 are satisfied, then we have
(a) σ1 = σ′

1 = Ek and (b) σ2, σ
′
2 ∈ {∆Ek

, ρ, E2
k}.

Proof. (a) Clearly Pol σ ⊆ Pol σ1. If σ1 6= Ek, then σ1 is a relation of type (5)
in Theorem 2.2; hence Pol σ is not meet-irreducible, contradicting the choice of
σ. Therefore σ1 = Ek. A similar argument shows that σ′

1 = Ek.
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(b) We have also Pol σ ⊆ Pol σ2. Naturally we have the following cases:

(i) σ is not reflexive, (ii) σ is reflexive and not symmetric and (iii) σ is
reflexive and symmetric. Now we discuss the cases (i)–(iii) and show that in any
case Pol σ ( Pol σ2.

(i) If σ is not reflexive, then there exists u ∈ Ek such that (u, u) 6∈ σ; from
(a) there exists v ∈ Ek such that (u, v) ∈ σ; therefore (u, u) ∈ σ2 and the
constant unary function on Ek with value u preserves σ2 and does not preserve
σ. Therefore Pol σ ( Pol σ2.

(ii) If σ is reflexive and not symmetric, there exists (x, y) ∈ σ such that
(y, x) 6∈ σ; the unary operation g defined on Ek by g(w) = y if w = x and
g(w) = x otherwise, preserves σ2 because (x, y), (y, x) ∈ σ2 and σ2 is reflexive,
and does not preserve σ. Hence Pol σ ( Pol σ2.

(iii) If σ is reflexive and symmetric, then σ is not transitive (due to σ is not
an equivalence relation). Let (c, d) ∈ σ2\σ, then (c, u), (d, u) ∈ σ for some u ∈ Ek

(due to σ2 = σ ◦σ). The unary function g defined on Ek by g(x) = c if x = c and
g(x) = d otherwise, preserves σ2 and does not preserve σ. Thus Pol σ ( Pol σ2.

If Pol σ2 = OEk
, then σ2 is a diagonal relation. Hence σ2 ∈ {∆Ek

, E2
k}.

Now assume that Pol σ2 = Pol ρ. If h ≥ 3, then we choose (a, b) ∈ E2
k \ σ2 and

(u, v) ∈ σ2 such that u 6= v (due to σ2 6∈ {∆Ek
, E2

k}). Let f be the unary operation
on Ek defined by f(x) = a if x = u and f(x) = b otherwise. From (u, v) ∈ σ2 and
f(u, v) = (f(u), f(v)) = (a, b) 6∈ σ2, f does not preserve σ2; but f preserves ρ (due
to ρ totally reflexive and Im(f) = {a, b}). Hence f ∈ Pol ρ\Pol σ2, contradiction.
Therefore h = 2. From Lemma 5.18, we obtain ρ = σ2. In conclusion, we have
σ2 ∈ {∆Ek

, ρ, E2
k}.

A similar argument shows that σ′
2 ∈ {∆Ek

, ρ, E2
k}. Therefore (b) holds.

From Lemma 5.20, we have σ1 = Ek = σ′
1. We set η = {x ∈ Ek : (x, x) ∈ σ};

therefore η satisies one of the following two conditions

(i) ∅ ( η ( Ek, (ii) ∅ = η or η = Ek.

Lemma 5.21. If the assumptions of Proposition 5.19 are satisfied, then the sub-
case (i) is impossible.

Proof. Assume that (i) holds, then the unary relation η is a unary central rela-
tion, so Pol η is a maximal clone distinct from Pol ρ. Since η ∈ [{σ}] and Pol η is
a maximal clone, we get Pol σ ( Pol η. Therefore Pol σ is not meet-irreducible;
contradiction.

Hence σ is reflexive or irreflexive and Lemma 5.20 yields the following nine
cases:
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(1) σ2 = σ′
2 = ∆Ek

; (2) σ2 = ∆Ek
and σ′

2 = E2
k ; (3) σ2 = E2

k and σ′
2 = ∆Ek

;
(4) σ2 = ∆Ek

and σ′
2 = ρ; (5) σ2 = ρ and σ′

2 = ∆Ek
; (6) σ2 = σ′

2 = ρ; (7) σ2 = ρ

and σ′
2 = E2

k ; (8) σ2 = E2
k and σ′

2 = ρ; (9) σ2 = σ′
2 = E2

k . We will study these
cases in the following lines. First we look at the Case (1): σ2 = σ′

2 = ∆Ek
.

Lemma 5.22. If the assumptions of Proposition 5.19 are satisfied, then the Case
(1) σ2 = σ′

2 = ∆Ek
is impossible.

Proof. The function s defined on Ek by s(x) = y, if (x, y) ∈ σ, is a permutation
on Ek (due to Ek being finite, σ′

2 = ∆Ek
and σ1 = Ek). Let m be the order

of s; for 1 ≤ r < m, set Fr = {x ∈ Ek : sr(x) = x}. Let f ∈ Pol σ ∩ O
(n)
Ek

and x1, . . . , xn ∈ Ek. Since σ is the graph of s, (x1, s(x1)), . . . , (xn, s(xn)) ∈ σ.
Therefore (f(x1, . . . , xn), f(s(x1), . . . , s(xn)) ∈ σ = s◦; so s(f(x1, . . . , xn)) =
f(s(x1), . . . , s(xn)) and we can show by induction on r, 1 ≤ r ≤ m − 1, that
sr(f(x1, . . . , xn)) = f(sr(x1), . . . , s

r(xn)) (∗5).

Now we show that Pol σ ⊆ PolFr. Let f ∈ Pol σ be an n-ary operation
and x1, . . . , xn ∈ Fr. Then sr(xi) = xi, i = 1, . . . , n. We get f(x1, . . . , xn) =
f(sr(x1), . . . , s

r(xn)) (due to xi ∈ Fr, i ∈ n) = sr(f(x1, . . . , xn)) (by (∗5)); there-
fore f(x1, . . . , xn) ∈ Fr and f ∈ PolFr. Consequently Pol σ ⊆ PolFr. Since Fr is
a unary relation and Pol σ is meet-irreducible, we must have Fr ∈ {∅, Ek}. Hence,
for each r ∈ {1, . . . ,m−1}, Fr = ∅ and sr is a fixed point free permutation on Ek.

Let p be a prime divisor of m; then s
m
p is a fixed point free permutation on Ek in

which all cycles are of length p. Thus, (s
m
p )◦ is a relation of type (2) in Theorem

2.2 and Pol σ ( Pol(s
m
p )◦, contradicting the fact that Pol σ is meet-irreducible

below Pol ρ.

Second, we study the Cases (2) and (3).

Lemma 5.23. If the assumptions of Propositions 5.19 are satisfied, then the
Cases (2) and (3) are impossible.

Proof. For Case (2), since σ′
1 = Ek, for each a ∈ Ek there exists u ∈ Ek such

that (u, a) ∈ σ. If (u1, a) ∈ σ and (u2, a) ∈ σ, then (u2, u1) ∈ σ2 = ∆Ek
. Thus

u1 = u2. Consider the unary operation f defined on Ek by f(x) = y if (y, x) ∈ σ.
Let (a, b) ∈ E2

k = σ′
2, then there exists u ∈ Ek such that (u, a), (u, b) ∈ σ; so

f(a) = f(b) = u. If follows that f is a constant unary function. Let a ∈ Ek;
(a, a) ∈ ∆Ek

= σ2; so there exists u ∈ Ek such that (a, u) ∈ σ, i.e., f(u) = a.
Hence f is a surjective function on Ek, contradiction with the fact that f is a
constant function. We deduce that the Case (2) is impossible.

The Case (3) is also impossible (use the unary operation g define by g(x) = y

iff (x, y) ∈ σ).

Third, we study the Cases (4) and (5).
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Lemma 5.24. If the assumptions of Proposition 5.19 are satified, then the Cases
(4) and (5) are impossible.

Proof. For Case (4), define the unary operation f on Ek by f(x) = y iff (y, x) ∈
σ. Let c be a central element of ρ. For x ∈ Ek, (x, c) ∈ ρ = σ−1 ◦ σ; thus
f(x) = f(c). Therefore f is constant on Ek. By definition, σ−1 is the graph of
f and σ1 is the image of f . From (1) of Lemma 5.20, we get Ek = σ1 = Im(f).
Thus Im(f) = Ek, contradiction with the fact that f is a constant function.

A similar argument proves that Case (5) is impossible.

Fourth, we investigate the Case (6) σ2 = σ′
2 = ρ. For l = 2, . . . , k, we set

σl = {(a1, . . . , al) : ∃u ∈ Ek : (a1, u), . . . , (al, u) ∈ σ} and σ′
l = {(a1, . . . , al) :

∃u ∈ Ek : (u, a1), . . . , (u, al) ∈ σ} (for l = 2, this coincides with the definitions
of σ2 and σ′

2 given earlier). By definition, σl and σ′
l are totally symmetric. In

addition, σl ⊆
⋃

0≤j≤t−1 A
l
j and σ′

l ⊆
⋃

0≤j≤t−1A
l
j . If (a, b) ∈ ρ, then {a, b}l ⊆

σl ∩ σ′
l.

Lemma 5.25. Under the assumptions of Proposition 5.19, we have the following
statements:

(1) If σ2 = ρ, then for every maximal ρ-chain B there exists ⊤B ∈ Ek such that
(x,⊤B) ∈ σ for all x ∈ B.

(2) If σ′
2 = ρ, then for every maximal ρ-chain B there exists ⊥B ∈ Ek such that

(⊥B , x) ∈ σ for all x ∈ B.

Proof. For (1), let l ∈ {2, . . . , k}; since σl ∈ [{σ}], we have Pol σ ⊆ Pol σl. If
ρ ⊆ σ, then σ is reflexive; hence σ ⊆ σ ◦ σ−1 = ρ, therefore ρ = σ, contradicting
the choice of σ. Thus ρ * σ. Let (a, b) ∈ ρ\σ, and assume that σk (

⋃

0≤j≤t−1A
k
j .

Clearly Pol σ ⊆ Pol σk ⊆ Pol ρ. The unary operation defined on Ek by l(x) = b

if (a, x) ∈ σ and l(x) = a otherwise preserves σk (due to (a, b) ∈ ρ and Im(l) =
{a, b}) and does not preserve σ (because there exists u ∈ Ek such that (a, u) ∈ σ

and (u, b) ∈ σ−1; and (l(b), l(u)) = (a, b) 6∈ σ); hence Pol σ ( Pol σk. To see
that Pol σk ( Pol ρ, we choose (c1, . . . , ck) ∈ (

⋃

0≤j≤t−1A
k
j ) \ σk and consider the

k-tuples w1 = (b, a, . . . , a),w2 = (a, b, a . . . , a), . . . ,wk = (a, . . . , a, b) (recall that
(a, b) ∈ ρ\σ). The k-ary operation on Ek defined by g(x) = ci if x = wi for some
1 ≤ i ≤ k and g(x) = c1 elsewhere is well defined (because |{wi : 1 ≤ i ≤ k}| =
k), preserves ρ (because {c1, . . . , ck} is a ρ-chain) and does not preserve σk because
{w1, . . . ,wk} ⊆ σk and g(w1, . . . ,wk) = (g(w1), . . . , g(wk)) = (c1, . . . , ck) 6∈ σk.
Therefore Pol σ is not maximal in Pol ρ; contradiction. We conclude that σk =
⋃

0≤j≤t−1 A
k
j giving the existence of ⊤B for each maximal ρ-chain B.

The Case (2) is obtained with a similar argument as above.

Let B,D be two maximal ρ-chains, then Cρ ⊆ B∩D (due to (1) of Proposition
3.4). So (⊥B, c), (⊥D , c) ∈ σ and (⊥B ,⊥D) ∈ σ ◦ σ−1 = ρ. We conclude that
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⊥ = {⊥A0 , . . . ,⊥At−1} is a ρ-chain. Let B be a maximal ρ-chain containing ⊥,
then ⊥B ∈ B and (⊥B ,⊥B) ∈ σ. Thus the set U = {x ∈ Ek : (x, x) ∈ σ} is not
empty and Pol σ ⊆ PolU . Hence U = Ek and σ is reflexive. Thus σ ( ρ (due
to σ ⊆ σ ◦ σ−1 = ρ and ρ * σ). Therefore, {⊥B ,⊤B} ⊆ B for every maximal
ρ-chain B.

Lemma 5.26. If the assumptions of Proposition 5.19 are satisfied and σ being
transitive, then the case σ2 = σ′

2 = ρ is impossible.

Proof. Assume that σ is transitive and σ′
2 = σ2 = ρ. Since σ is reflexive,

γ = σ ∩ σ−1 is an equivalence relation and γ 6= E2
k . If γ 6= ∆Ek

, then γ is a
nontrivial equivalence relation and Pol σ ⊆ Pol γ; contradiction with our assump-
tion on σ. Thus γ = ∆Ek

and σ is a partial order. Since {⊥A0 , . . . ,⊥At−1} and
{⊤A0 , . . . ,⊤At−1} are contained in maximal ρ-chains (due to σ2 = σ′

2 = ρ), there
are u, v ∈ Ek such that (u,⊥A0), . . . , (u,⊥At−1), (⊤A0 , v), . . . , (⊤At−1 , v) ∈ σ.
Hence by transitivity of σ, u is the least element of σ and v the greatest ele-
ment of σ. Therefore σ is a bounded partial order, contradiction.

Lemma 5.27. If the assumptions of Proposition 5.19 are satisfied, σ is not tran-
sitive and σ2 = σ′

2 = ρ, then σ is symmetric.

Proof. Assume that σ2 = σ′
2 = ρ and σ is not transitive. Set γ = σ ∩ σ−1.

Then we have Pol σ ⊆ Pol γ. Suppose that Pol σ ( Pol γ. Since Pol σ is meet-
irreducible and maximal below Pol ρ, we have Pol γ = OEk

or Pol γ = Pol ρ.
Hence γ ∈ {∅,∆Ek

, E2
k} or γ = ρ (due to Lemma 5.18).

From discussion preceding Lemma 5.26, σ is reflexive and γ ⊆ σ ( ρ, thus
γ = ∆Ek

. Thus σ is antisymmetric. In addition, {⊤A0 , . . . ,⊤At−1} is a ρ-chain;
so there exists a maximal ρ-chain D such that {⊤A0 , . . . ,⊤At−1} ⊆ D; hence for
every i ∈ Et, we have (⊤Ai

,⊤D) ∈ σ. Since σ ⊆ ρ and D is a maximal ρ-chain,
we have ⊥D,⊤D ∈ D and (⊥D,⊤D) ∈ ρ. If (⊤D,⊥D) ∈ tr(σ), then there exist
u1, . . . , un ∈ Ek such that (⊤D, u1), (u1, u2), . . . , (un−1, un), (un,⊥D) ∈ σ.

Since {u1,⊤D} is also a ρ-chain, there exists a maximal ρ-chain B such that
{u1,⊤D} ⊆ B; hence ⊤D = ⊤B = u1 (due to σ antisymmetric); by induction
we show that ui = ⊤D, 1 ≤ i ≤ n. Hence ⊤D = ⊥D, ⊤A0 = · · · = ⊤At−1 and
Ek is a ρ-chain; contradiction. Thus (⊤D,⊥D) 6∈ tr(σ), and tr(σ) 6= ρ. Since
(⊥D, c), (c,⊤D) ∈ σ, we get (⊥D,⊤D) ∈ tr(σ) and Pol σ = Pol(tr(σ)) (due to
Pol σ ⊆ Pol(tr(σ))), Pol σ is meet-irreducible in Pol ρ and Pol ρ 6= Pol(tr(σ)).

If tr(σ) is antisymmetric, then tr(σ) is a partial order on Ek and σ ( tr(σ).
Let (a, b) ∈ tr(σ) such that (a, b) 6∈ σ and (u, v) ∈ σ such that u 6= v. Then
the unary operation h defined on Ek by h(x) = a if (x, u) ∈ tr(σ) and h(x) = b

otherwise, preserves tr(σ) because (a, b) ∈ tr(σ) and tr(σ) is a partial order, and
does not preserve σ (due to (u, v) ∈ σ and (h(u), h(v)) = (a, b) 6∈ σ); contra-
diction. Hence tr(σ) is not antisymmetric; so there exist a, b ∈ Ek such that
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(a, b), (b, a) ∈ tr(σ) and a 6= b. Since σ is antisymmetric, we suppose that
(a, b) 6∈ σ. Let (u, v) ∈ σ such that u 6= v. The unary operation h′ defined
on Ek by h′(x) = a if x = u and h′(x) = b otherwise, preserves tr(σ) be-
cause (a, b), (b, a) ∈ tr(σ) and tr(σ) is reflexive, and does not preserve σ (due to
(u, v) ∈ σ and (h′(u), h′(v)) = (a, b) 6∈ σ); contradiction. Therefore Pol σ = Pol γ.

Since γ ( γ ◦ γ (due to γ reflexive and symmetric), it can be shown that
Pol σ = Pol γ ( Pol(γ ◦ γ). Since Pol σ is meet-irreducible and maximal below
Pol ρ, we get Pol(γ ◦ γ) = OEk

or Pol(γ ◦ γ) = Pol ρ. Therefore γ ◦ γ = E2
k or

γ ◦ γ = ρ (by Lemma 5.18). On account of γ ◦ γ ⊆ σ ◦ σ−1 = ρ, we conclude
that γ ◦ γ = ρ. Hence γ fulfills the assumptions of Lemma 5.25; thus for every
maximal ρ-chain B there exists uB ∈ B such that (a, uB) ∈ γ for all a ∈ B.

If γ ( σ, then there exists (a, b) ∈ σ such that (b, a) 6∈ σ. Let B be a
maximal ρ-chain containing a and b. The unary operation defined on Ek by
f(a) = b, f(b) = a and f(x) = uB if x 6∈ {a, b}, preserves γ since (a, b) 6∈ γ and γ

is reflexive and symmetric. But (f(a), f(b)) = (b, a) 6∈ σ and (a, b) ∈ σ; so f does
not preserve σ. Hence Pol σ ( Pol γ ( Pol ρ, contradicting the fact that Pol σ is
maximal in Pol ρ. Therefore γ = σ and σ is reflexive and symmetric.

Lemma 5.28. If the assumptions of Proposition 5.19 are satisfied, σ is not tran-
sitive and ρ ◦ σ 6= E2

k, then the case σ2 = σ′
2 = ρ is impossible.

Proof. Assume that σ2 = σ′
2 = ρ, ρ ◦ σ 6= E2

k and σ is not transitive. Since
σ2 = σ′

2 = ρ and σ is not transitive, by Lemma 5.27 σ is reflexive and symmetric.
Therefore ρ = σ ◦ σ (due to σ−1 = σ and σ is reflexive). Since σ and ρ are
reflexive, σ and ρ are subsets of ρ ◦ σ. If ρ = ρ ◦ σ, then, from σ ◦ σ = ρ, we have
ρ◦σ = (ρ◦σ)◦σ = ρ◦(σ◦σ) = ρ◦ρ = E2

k contradicting the assumption ρ◦σ 6= E2
k .

Therefore ρ ( ρ ◦ σ. Furthermoe, σ ⊆ σ ◦ σ = ρ ( ρ ◦ σ (due to σ is reflexive
and σ−1 = σ). In addition, (ρ ◦ σ)−1 = σ−1 ◦ ρ−1 = σ ◦ ρ = σ ◦ σ ◦ σ = ρ ◦ σ;
hence ρ ◦ σ is reflexive and symmetric, and σ ⊆ ρ ( ρ ◦ σ. Let (u, v) ∈ σ \ ∆Ek

and (a, b) ∈ ρ ◦ σ \ σ, then the unary operation f defined on Ek by f(u) = a

and f(x) = b otherwise preserves ρ ◦ σ (due to ρ ◦ σ is reflexive and symmetric,
(a, b) ∈ ρ ◦ σ and Im(f) = {a, b}) and does not preserve σ (due to (u, v) ∈ σ and
(f(u), f(v)) = (a, b) 6∈ σ); therefore Pol σ ( Pol(ρ ◦ σ) (due to ρ ◦ σ ∈ [{σ}]).
Since ρ ( ρ ◦ σ 6= E2

k and ρ ◦ σ is symmetric, then ρ and ρ ◦ σ are two distinct
central relations; so Pol ρ 6= Pol ρ ◦σ. As Pol σ is meet-irreducible below Pol ρ we
have a contradiction.

Lemma 5.29. If the assumptions of Propositions 5.19 are satisfied, σ is not
transitive, σ2 = σ′

2 = ρ and ρ ◦ σ = E2
k, then we obtain a relation of type VIII.

Proof. Assume that ρ ◦ σ = E2
k , σ2 = σ′

2 = ρ and σ is not transitive; using
Lemma 5.27, σ is reflexive and symmetric. It remains to show that for every
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maximal ρ-chain B, there exists a central element cB of ρ such that for every
a ∈ B, (a, cB) ∈ σ.

Let B be a maximal ρ-chain of cardinality m, and set γ = {(a1, . . . , ak) ∈
Ek

k : ∃u ∈ Ek such that (ai, u) ∈ σ for all 1 ≤ i ≤ m and (ai, u) ∈ ρ for all
m + 1 ≤ i ≤ k} and

β = {(a1, . . . , ak) ∈ Ek
k : (ai, aj) ∈ ρ for all 1 ≤ i < j ≤ m}.

It is easy to see that γ ⊆ β. We will show that Pol γ ⊆ Pol ρ. Let
f ∈ Pol γ be an n-ary operation and let (ai, bi) ∈ ρ, 1 ≤ i ≤ n, then there
exist ui ∈ Ek, 1 ≤ i ≤ n, such that (ai, ui), (ui, bi) ∈ σ (due to σ ◦ σ = ρ). Thus
(ai, bi, ui . . . , ui

︸ ︷︷ ︸

k−2 times

) ∈ γ (∗7). Hence f((a1, b1, u1, . . . , u1), . . . , (an, bn, un, . . . , un)) =

(f(a1, . . . , an), f(b1, . . . , bn), f(u1, . . . , un), . . . , f(u1, . . . , un)) ∈ γ. Therefore
(f(a1, . . . , an), f(b1, . . . , bn)) ∈ σ ◦ σ = ρ. So Pol γ ⊆ Pol ρ. Now suppose that
γ ( β. Let (b1, . . . , bk) ∈ β \ γ, (a, b) 6∈ ρ and c be a central element of ρ. For
1 ≤ i ≤ k, set xi = (a1,i, . . . , ak,i) with

aji =

{
c if j = i,

a otherwise
for 1 ≤ i ≤ m and aji =

{
b if j = i,

a otherwise
for m+1 ≤ i ≤ k.

It is easy to see that (xi,xj) ∈ ρ if and only if i and j are elements of
{1, . . . ,m} or i = j. The k-ary function f defined by

f(x) =

{
bi if x = xi for some 1 ≤ i ≤ k;
c otherwise

is well define (due to |{xi : 1 ≤ i ≤ k}| = k) and preserves ρ. In addition, by con-
struction, we have {x1 . . . ,xk} ⊆ γ, and f(x1, . . . ,xk) = (f(x1), . . . , f(xk)) =
(b1, . . . , bk) 6∈ γ; hence Pol γ ( Pol ρ. From σ ( ρ, there exists (a, b) ∈ ρ \ σ. Let
(u, v) ∈ σ such that u 6= v, then the unary function f ′ defined by f ′(x) = a if
x = u and f ′(x) = b otherwise, preserves γ (due to (a, b) ∈ ρ, {a, b}k ⊆ γ and
Im(f ′) = {a, b}), and does not preserve σ (due to (u, v) ∈ σ and (f ′(u), f ′(v)) =
(a, b) 6∈ σ). Thus Pol σ ( Pol γ ( Pol ρ, contradicting our assumption on σ.
Therefore γ = β.

Let B = {a1, . . . , an} be a maximal ρ-chain and an+1, . . . , ak ∈ Ek such that
Ek = {a1, . . . , ak}. Since (a1, . . . , ak) ∈ β = γ, there exists u ∈ Ek such that
(ai, u) ∈ σ for, 1 ≤ i ≤ m, and (ai, u) ∈ ρ, for m + 1 ≤ i ≤ k; so u ∈ Cρ and
u ∈ B from Proposition 3.4.

We conclude that σ is of type VIII.

The following lemma will be useful for the remaining cases.

Lemma 5.30. Under the assumptions of Proposition 5.19, we have the following
statements:
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(1) If σh = Eh
k , then there exists ⊤ ∈ Ek such that for any x ∈ Ek, (x,⊤) ∈ σ.

(2) If σ′
h = Eh

k , then there exists ⊥ ∈ Ek such that for any x ∈ Ek, (⊥, x) ∈ σ.

Proof. For 2 ≤ l ≤ k, σl and σ′
l are relations defined below. We give the proof

of (1); and (2) is obtained using a similar argument.
For (1), assume that σh = Eh

k and σk 6= Ek
k . Let n ≥ h be the least integer N

such that σN 6= EN
k , then n > h ≥ 2. We will show that Pol σ ( Pol σn * Pol ρ.

By definition σn is totally symmetric. Furthermore, using σn−1 = En−1
k one can

easily see that σn is totally reflexive. Since σn ∈ [{σ}], we get Pol σ ⊆ Pol σn.
Let (a, b) ∈ E2

k \ σ and (u, v) ∈ σ \ ∆Ek
, then the unary operation f defined on

Ek by f(x) = a if x = u and f(x) = b otherwise, preserves σn (due to n > h ≥ 2,
σn totally reflexive, Im(f) = {a, b} and {a, b}n ⊆ σn) and does not preserve σ

(due to (u, v) ∈ σ and (f(u), f(v)) = (a, b) 6∈ σ); therefore Pol σ ( Pol σn. Let
(a1, . . . , ah) ∈ Eh

k \ρ and (u1, . . . , uh) ∈ ρ\ ιhk , then the unary operation g defined
on Ek by g(x) = ai if x = ui, for some 1 ≤ i ≤ h and g(x) = a1 otherwise preserves
σn (due to Im(g) = {a1, . . . , ah}, σn totally reflexive and h ≤ n − 1) and does
not preserve ρ (due to (u1, . . . , uh) ∈ ρ and (g(u1), . . . , g(uh)) = (a1, . . . , ah) 6∈
ρ. Therefore Pol σ ( Pol σn * Pol ρ, contradicting the meet-irreducibility of
Pol σ below Pol ρ. Thus Pol σn = OEk

; since σn is totally reflexive and totally
symmetric, it follows that σn = En

k , contradiction with σn 6= En
k . Thus σk = Ek

k

and there exists ⊤ ∈ Ek such that (x,⊤) ∈ σ for all x ∈ Ek and (1) holds.

From Lemma 5.21, as (⊤,⊤) ∈ σ (resp (⊥,⊥) ∈ σ) whenever σh = Eh
k

(resp. σ′
h = Eh

k ), we can claim that σ is reflexive. We continue the investigation
with Cases (7) (σ2 = ρ and σ′

2 = E2
k) and (8) (σ2 = E2

k and σ′
2 = ρ). Let

(a, b) ∈ E2
k \ σ and (u, v) ∈ σ such that u 6= v, consider the unary operation f0

defined by f0(x) = a if x = u and f0(x) = b otherwise.

Lemma 5.31. If the assumptions of Proposition 5.19 are satisfied, σ2 = ρ and
σ′
2 = E2

k, then σ is of type X.

Proof. Assume that σ2 = ρ, σ′
2 = E2

k. Since σ′
2 = E2

k, from Lemma 5.30, there
exists ⊥ ∈ Ek such that for all a ∈ Ek (⊥, a) ∈ σ. So (⊥,⊥) ∈ σ, and using the
discussion preceding Lemma 5.26, we get that σ is reflexive. As σ2 6= σ′

2, we get
that σ is not symmetric (Because if σ were symmetric, then it would hold that
σ2 = σ ◦ σ−1 = σ ◦ σ = σ−1 ◦ σ = σ′

2). It follows that σ is reflexive and not
symmetic. Let a ∈ Ek, then there exists v ∈ Ek such that (a, v) ∈ σ (see (a)
of Lemma 5.20). Therefore (a, v), (⊥, v) ∈ σ and consequently (a,⊥) ∈ σ2 = ρ.
Thus ⊥ ∈ Cρ. Set γ = σ ∩ σ−1. We have γ ( σ ⊆ σ ◦ σ−1 = ρ and Pol σ ⊆ Pol γ.
Our discussion is divided into two cases: (i) Pol σ ( Pol γ and (ii) Pol σ = Pol γ.

(i) If Pol σ ( Pol γ, then Pol γ = OEk
or Pol γ = Pol ρ. If Pol γ = OEk

,
then as γ is reflexive and γ ( σ, we get that γ = ∆Ek

. If Pol γ 6= OEk
, then

Pol γ = Pol ρ and by Lemma 5.18, we get that γ = ρ. Therefore γ ∈ {∆Ek
, ρ};
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furthermore γ ( σ ⊆ ρ, so γ = ∆Ek
and σ is antisymmetric. Let b ∈ Ek such

that b 6= ⊥, then (⊥, b) ∈ σ and (b,⊥) 6∈ σ. Therefore (b,⊥) 6∈ tr(σ). Thus
tr(σ) 6∈ {ρ,E2

k}. If σ ( tr(σ), then the unary function h defined by h(x) = a

if (x, u) ∈ tr(σ) and h(x) = b otherwise where (a, b) ∈ tr(σ) \ σ and (u, v) ∈ σ,
u 6= v, preserves tr(σ) and does not preserve σ. Hence Pol σ ( Pol(tr(σ)),
tr(σ) 6∈ {ρ,E2

k} and σ ( tr(σ); contradiction with the fact that Pol σ is meet-
irreducible and maximal below Pol ρ. Thus σ = tr(σ) and σ is a partial order.

From Lemma 5.25, for every maximal ρ-chain B there exists ⊤B such that
for all x ∈ B (x,⊤B) ∈ σ ⊆ ρ. Hence ⊤B ∈ B and ⊤B is the greatest element of
B. It remains to show that every intersection of maximal ρ-chains has a greatest
element.

Let B1, . . . , Bn be n maximal ρ-chains (n ≥ 2). Let l be the cardinality of
⋂

1≤i≤nBi and m be the cardinality of
⋂

1≤i≤nBi. If
⋃

1≤i≤nBi is a maximal
ρ-chain, we are done, because in that case B1 = Bi, i = 2, . . . , n. If

⋃

1≤i≤nBi is
not a maximal ρ-chain and

⋂

1≤i≤nBi = {⊥}, then ⊥ is the greatest element of
⋂

1≤i≤nBi. If
⋂

1≤i≤nBi is not a maximal ρ-chain and
⋂

1≤i≤nBi 6= {⊥}, then let
a, v, w ∈ Ek such that a ∈

⋂

1≤i≤nBi, a 6= ⊥ and v,w ∈
⋂

1≤i≤nBi, (v,w) 6∈ ρ.
Let λ and β be the sets defined by λ := {(a1, . . . , am) ∈ Em

k : (ai, aj) ∈ ρ ∀1 ≤
i ≤ l, ∀ 1 ≤ j ≤ m} and

β := {(a1, . . . , am) ∈ Em
k : ∀1 ≤ i ≤ l,∀1 ≤ j ≤ m, (ai, aj) ∈ ρ, ∃u ∈ Ek,

(ai, u) ∈ σ ∀ 1 ≤ i ≤ l ∧ (ai, u) ∈ ρ ∀ l + 1 ≤ i ≤ m}.

We have β ⊆ λ. Now suppose that β 6= λ. We will show that Pol β ⊆ Pol ρ. Let
f ∈ Pol β be an n-ary operation and (ai, bi) ∈ ρ, 1 ≤ i ≤ n, then there exist ui, i =
1, . . . , un, such that (ai, ui), (bi, ui) ∈ σ, 1 ≤ i ≤ n. Set yi = (ai, bi, ui, . . . , ui), 1 ≤
i ≤ n and x1 = (a1, . . . , an), x2 = (b1, . . . , bn), x3 = (u1, . . . , un), . . . ,xm =
(u1, . . . , un). Then {y1, . . . ,yn} ⊆ β (due to ρ = σ2 and (ai, bi) ∈ ρ, 1 ≤ i ≤ n});
as f ∈ Pol β, we deduce that f(y1, . . . ,y) = (f(x1), . . . , f(xm)) ∈ β and by
definition of β, we get that (f(x1), f(x2)) ∈ ρ (due to l ≥ 2); therefore f ∈ Pol ρ
and Pol β ⊆ Pol ρ. It is easy to show that Pol σ ⊆ Pol β ( using σ2 = ρ); therefore
Pol σ ⊆ Pol β ⊆ Pol ρ.

Let (b1, . . . , bm) ∈ λ \ β. For 1 ≤ i ≤ m, set xi = (ai,1, . . . , ai,k) with

ai,j =

{
a if i = j,

⊥ otherwise
for 1 ≤ i ≤ l and ai,j =







⊥ if 1 ≤ j ≤ l,

w if i = j,

v elsewhere
for

l + 1 ≤ i ≤ m. It is easy to see that (xi,xj) ∈ ρ if and only if i or j ∈ {1, . . . , l}
(∗). Consider the k-ary function f defined by f(x) = bi if x = xi, for some
1 ≤ i ≤ m and f(x) = ⊥ elsewhere. The operation f is well defined (because
|{x1, . . . ,xm}| = m). We will show that f does not preserve β. Let yj =
(a1,j , . . . , am,j), 1 ≤ j ≤ k, from the definition of xi, 1 ≤ i ≤ m and (∗) we have
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that {y1, . . . ,yk} ⊆ β, and f(y1, . . . ,yk) = (f(x1), . . . , f(xm)) = (b1, . . . , bm) 6∈
β, so f 6∈ Pol β. In addition, we can show that f ∈ Pol ρ. Hence Pol β ( Pol ρ.
Since σ ( ρ (due to Pol σ ( Pol ρ), then there exists (e, d) ∈ ρ \ σ. Let (x, y) ∈ σ

with x 6= y and (e, d) ∈ ρ \ σ; there exists u ∈ Ek such that (e, u), (d, u) ∈ σ.
The unary operation f defined on Ek by f(x) = e, f(y) = d and f(t) = u

elsewhere preserves β (due to (e, d) ∈ ρ and ρ = σ2) and does not preserve σ (due
to (x, y) ∈ σ and (f(x), f(y)) = (e, d) 6∈ σ). Therefore Pol σ ( Pol β ( Pol ρ,
contradicting the fact that Pol σ is meet-irreducible below Pol ρ. Hence β = λ,
and

⋂

1≤i≤nBi = {a1, . . . , al} is such that (a1, . . . , al, al . . . , al
︸ ︷︷ ︸

m−l times

) ∈ β; from the

definition of β, we deduce that
⋂

1≤i≤n Bi has a greatest element. Therefore σ is
of type X.

(ii) If Pol σ = Pol γ, then γ 6= ∆Ek
, γ is reflexive and symmetric. We will

show that γ = σ. In fact, if γ ( σ, then there exists (a, b) ∈ σ such that (a, b) 6∈ γ.
So (b, a) 6∈ σ (due to γ = σ∩σ−1). Furthermore, γ ⊆ γ ◦γ and Pol σ ⊆ Pol(γ ◦γ).

If γ ◦ γ = γ, then γ is a nontrivial equivalence relation and Pol σ ⊆ Pol γ,
contradiction. Hence γ ( γ ◦γ and Pol σ = Pol γ ⊆ Pol γ ◦γ, as Pol σ is maximal
and meet-irreducle below Pol ρ, we get that Pol γ ◦ γ = OEk

or Pol γ ◦ γ = Pol ρ.
By our assumption, σ2 = ρ; furthermore γ ⊆ σ ∩ σ−1 ⊆ σ and γ is symmetric;
so ∆Ek

( γ ⊆ γ ◦ γ ⊆ σ ◦ σ−1 = σ2 = ρ 6= E2
k . Therefore γ ◦ γ is not a diagonal

relation; so the equality Pol γ ◦γ = OEk
is impossible. Therefore Pol γ ◦γ = Pol ρ

and by Lemma 5.18, ρ = γ◦γ. It follows that γ fulfills the assumptions of Lemma
5.25; so for any maximal ρ-chain B there exists uB ∈ Ek such that for any x ∈ B,
(x, uB) ∈ γ. Let B be a maximal ρ-chain containing a and b, the unary operation
defined on Ek by f(a) = b, f(b) = a and f(x) = uB if x 6∈ {a, b} preserves γ

(because (a, b) 6∈ γ, γ is reflexive, symmetric and (a, uB), (b, uB) ∈ γ) and does
not preserve σ (because (a, b) ∈ σ and (f(a), f(b)) = (b, a) 6∈ σ). Therefore,
Pol σ 6= Pol γ, contradiction with the assumption Pol σ = Pol γ. Hence γ = σ

and σ is symmetric, contradicting the fact that σ2 6= σ′
2.

Lemma 5.32. If the assumptions of Proposition 5.19 are satisfied, σ2 = E2
k and

σ′
2 = ρ, then σ is of type XI.

Proof. Note that σ−1 fulfills the assumptions of Lemma 5.31 and Pol σ = Pol σ−1.
Therefore σ−1 is a relation of type X. Hence σ is the relation of type XI.

Now, we finish our discussion with Case 9: σ2 = σ′
2 = E2

k . We have two
subcases σh = σ′

h = Eh
k or (σh 6= Eh

k or σ′
h 6= Eh

k ). We begin with subcase
σh = σ′

h = Eh
k . Using Lemmas 5.30 and 5.21, it is easy to see that, σ is reflexive.

Naturally, σ can be transitive or not.

Lemma 5.33. If the assumptions of Proposition 5.19 are satisfied and σh = σ′
h =

Eh
k , then the case σ transitive is impossible.
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Proof. Assume that σ is transitive. If σ is symmetric, then σ = σ◦σ = σ2 = E2
k ;

contradiction. Hence σ is not symmetric. Set γ = σ∩σ−1. We have Pol σ ⊆ Pol γ
(due to γ ∈ [{σ}]). If Pol σ ( Pol γ, then γ ∈ {∆Ek

, ρ} because Pol σ is meet-
irreducible and ∆Ek

⊆ γ ⊆ σ ( E2
k. Suppose that γ = ∆Ek

, then by Lemma
5.30 σ is a bounded partial order, contradiction. So γ = ρ. Therefore ρ is
transitive and ρ = ρ ◦ ρ = E2

k , contradicting the fact that ρ is a central relation.
If Pol σ = Pol γ, then γ 6∈ {∅,∆Ek

, E2
k , ρ}. Hence γ is a nontrivial equivalence

relation and we obtain a contradiction.

Lemma 5.34. If the assumptions of Proposition 5.19 are satisfied, σh = σ′
h = Eh

k

and σ is not transitive, then σ is of type IX.

Proof. We claim that σ is not symmetric. In fact, if σ is symmetric, then σ

is reflexive and symmetric; from Lemma 5.30, σ is a central relation which is a
contradiction. Hence σ is not symmetric. Set γ = σ∩σ−1. As σ is not symmetric,
we have γ ( σ.

(i) If Pol σ = Pol γ, then γ is reflexive, symmetric and Pol γ is meet-irreducible
and maximal below Pol ρ. If γ is transitive, then γ is a nontrivial equivalence re-
lation; contradiction. Hence γ ( γ ◦γ. Let (a, b) ∈ (γ ◦γ)\γ. For (u, v) ∈ γ such
that u 6= v, the above operation f0 preserves γ ◦γ and does not preserve γ. Hence
Pol γ ( Pol(γ ◦ γ). It follows that (1) Pol(γ ◦ γ) = OEk

or (2) Pol(γ ◦ γ) = Pol ρ.
Suppose that (1) is satisfied, then γ ◦ γ = E2

k , therefore γ satisfies the as-
sumptions of Lemma 5.30. We conclude that γ is a central relation; contradiction.
Suppose that (2) is satisfied, then γ ◦ γ = ρ (see Lemma 5.18). We claim that
ρ * σ. Assume that ρ ⊆ σ. As γ ◦ γ = ρ and γ is reflexive, we have γ ⊆ ρ,
this inclusion is strict because Pol γ = Pol σ ( Pol ρ. Let (a, b) ∈ ρ \ γ, then
(b, a) ∈ ρ ⊆ σ; so (a, b) ∈ σ ∩ σ−1 = γ, contradicting the fact that (a, b) 6∈ γ;
therefore ρ * σ. Let (a, b) ∈ ρ \ σ and (x, y) ∈ σ \ γ; since γ ◦ γ = ρ there
exists w such that (a,w), (w, b) ∈ γ. Consider the unary operation f defined by
f(x) = a, f(y) = b and for t ∈ Ek \ {a, b}, f(t) = w. It is easy to see that f

preserves γ and does not preserve σ. Thus Pol σ ( Pol γ ( Pol ρ contradicting
the assumption Pol γ = Pol σ.

(ii) If Pol σ 6= Pol γ, then γ ∈ {∆Ek
, ρ}. Suppose that γ = ∆Ek

, then σ

is reflexive and antisymmetric. If Pol σ ( Pol(tr(σ)), then by assumptions on
σ we have tr(σ) ∈ {ρ,E2

k}. However, by Lemma 5.30, ⊤ and ⊥ are such that
(⊥, x), (x,⊤) ∈ σ for any x ∈ Ek. Hence (⊥,⊤) ∈ tr(σ), but (⊤,⊥) 6∈ tr(σ) (due
to σ antisymmetric), contradiction. Hence Pol σ = Pol tr(σ). It follows that tr(σ)
fulfills the assumptions of Lemma 5.33; thus we obtain a contradiction. Hence
γ = ρ and σ is of type IX.

We close the Case (9) with subcase σh 6= Eh
k or σ′

h 6= Eh
k . Recall that

σl = {(a1, . . . , al) ∈ El
k : ∃u ∈ Ek, (a1, u), . . . , (al, u) ∈ σ}
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and σ′
l = {(a1, . . . , al) ∈ El

k : ∃u ∈ Ek, (u, a1, ), . . . , (u, al) ∈ σ}

for 2 ≤ l ≤ k. We have shown that σ is reflexive or irreflexive.

Lemma 5.35. If the assumptions of Proposition 5.19 are satisfied, σ2 = E2
k = σ′

2

and h ≥ 3, then the following implications hold.

(i) If σh 6= Eh
k , then σh = ρ.

(ii) If σ′
h 6= Eh

k , then σ′
h = ρ.

Proof. (i) Assume that σ2 = σ′
2 = E2

k and σh 6= Eh
k . Let n be the least integer N

such that σN 6= EN
k , then 2 < n ≤ h. Since σn−1 = En−1

k , σn is totally reflexive.
Let (a, b) ∈ E2

k \ σ and (u, v) ∈ σ such that u 6= v. Then, the above unary
operation f0 preserves σn and does not preserve σ; therefore Pol σ ( Pol σn.
Assume that n < h. If σn = ιnk , then Pol σn ( Pol ιkk 6= Pol ρ, contradiction (due
to Pol σ is meet-irreducible below Pol ρ and Pol ιkk a maximal clone). Hence σn 6=
ιnk . Let (a1, . . . , an) ∈ En

k \σn, (u1, . . . , un) ∈ σn\ι
n
k . Consider the unary operation

g1 defined on Ek by g1(x) = ai if x = ui, for some 1 ≤ i ≤ n, and g1(x) = a1
elsewhere. Since n < h, Im(g1) = {a1, . . . , an} and ρ is totally reflexive, g1
preserves ρ. But, (u1, . . . , un) ∈ σn and (g1(u1), . . . , g1(un)) = (a1, . . . , an) 6∈
σn, so g1 6∈ Pol σn; thus Pol ρ * Pol σn. Therefore Pol σ ( Pol σn 6= OEk

.
Indeed, since Pol σ is meet-irreducible and maximal below Pol ρ, we must have
Pol ρ ⊆ Pol σn which is a contradiction. It follows that n = h and Pol σ ( Pol σh;
since Pol σ is meet-irreducible and maximal below Pol ρ we get Pol σh = OEk

or Pol σh = Pol ρ. If Pol σh = OEk
, then σh is a diagonal relation and as σh is

totally reflexive, we deduce that σh = Eh
k , contradiction with σh 6= Eh

k . Thus
Pol σh = Pol ρ, using Lemma 5.18 we get that σh = ρ.

The proof of (ii) is similar to that of (i).

Now, consider the set Γ = {B ⊆ Ek : Bh ⊆ ρ}. Let m = max{Card(B) : B ∈
Γ}; we have h ≤ m. For all h ≤ l ≤ m, set

ρl =
{

(a1, . . . , al) ∈ El
k : {a1, . . . , al}

h ⊆ ρ
}
.

It is easy to check that for all h ≤ l ≤ m, σl ⊆ ρl and σ′
l ⊆ ρl where σh = σ′

h = ρ.

Lemma 5.36. Under the assumptions of Proposition 5.19, the following state-
ments hold.

(i) If σh 6= Eh
k , then for every maximal ρ-chain B there exists ⊤B ∈ Ek such

that for all a ∈ B, (a,⊤B) ∈ σ.

(ii) If σ′
h 6= Eh

k , then for every maximal ρ-chain B there exists ⊥B ∈ Ek such
that for all a ∈ B, (⊥B , a) ∈ σ.
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Proof. (i) Assume that σh 6= Eh
k , then from (i) of Lemma 5.35, we have σh = ρ.

We will show that Pol σm ⊆ Pol ρ. Let f ∈ Pol σm be an n-ary operation and let
xi = (a1,i, . . . , ah,i) ∈ ρ, 1 ≤ i ≤ n; set x′

i = (a1,i, . . . , ah,i, ah,i . . . , ah,i
︸ ︷︷ ︸

m−h times

), 1 ≤ i ≤ n.

For 1 ≤ i ≤ m, x′
i ∈ σm, (due to σh = ρ). Hence

f(x′
1, . . . ,x

′
n) = (f(a1,1, . . . , a1,n), f(a2,1, . . . , a2,n), . . . , f(ah,1, . . . , ah,n)) ∈ σm.

Therefore f(x1, . . . ,xn) = (f(a1,1, . . . , a1,n), . . . , f(ah,1, . . . , ah,n)) ∈ ρ. Thus f ∈
Pol ρ. Therfore Pol σm ⊆ Pol ρ. Since σm ∈ [{σ}], we get Pol σ ⊆ Pol σm. So
Pol σ ⊆ Pol σm ⊆ Pol ρ. Assume that σm ( ρm. Let (c1, . . . , cm) ∈ ρm \ σm and
(a1, . . . , ah) ∈ ρ \ ιhk ; we set

W = {(i1, . . . , ih) : 1 ≤ i1 < . . . < ih ≤ m}

denoted for reason of simple notation by

W =
{

(ij1, . . . , i
j
h) : 1 ≤ j ≤ q

}
.

For all 1 ≤ j ≤ q, set yj = (xj,1, . . . , xj,m) and for all 1 ≤ i ≤ m, set

xi = (x1,i, . . . , xq,i) with xj,i = al if i = i
j
l , for some 1 ≤ l ≤ h, and xj,i = a1

otherwise. Then the q-ary operation f defined by f(x) = ci if x = xi for some
1 ≤ i ≤ m and f(x) = c1 otherwise, is well defined (because |{x1, . . . ,xm}| = m),
preserves ρ (because Im(f) = {c1, . . . , cm} and {c1, . . . , cm} is a ρ-chain) and
does not preserve σm, because {yj : 1 ≤ j ≤ q} ⊆ σm and f(y1, . . . ,yq) =
(f(x1), . . . , f(xm)) = (c1, . . . , cm) 6∈ σm. Therefore Pol σm ( Pol ρ. The above
unary operation f0 preserves σm and not σ. Thus Pol σ ( Pol σm ( Pol ρ,
contradiction with the fact that Pol σ is maximal below Pol ρ. Thus σm = ρm. Let
B = {a1, . . . , an} be a maximal ρ-chain, then (a1, . . . , an, an, . . . , an

︸ ︷︷ ︸

m−n times

) ∈ ρm = σm;

so there exists ⊤B ∈ Ek such that for all 1 ≤ i ≤ n, (ai,⊤B) ∈ σ.
The proof of (ii) is obained similarly.

Lemma 5.37. If the assumptions of Proposition 5.19 are satisfied and σh 6= Eh
k

or σ′
h 6= Eh

k , then σ is reflexive.

Proof. Assume that σh 6= Eh
k . Let B be a maximal ρ-chain. From Lemma 5.36,

there exists ⊤B ∈ Ek such that (x,⊤B) ∈ σ for every x ∈ B. Let c ∈ Cρ; for
all 0 ≤ i ≤ t − 1, (c,⊤Ai

) ∈ σ. We have h ≥ 3 (due to σh 6= Eh
k and σ2 = E2

k).
From Lemma 5.35, T = {⊤A0 ,⊤A1 , . . . ,⊤At−1} is a ρ-chain. So there exists a
maximal ρ-chain D such that T ⊆ D. Without loss of generality we suppose that
D = A0. Therefore (⊤A0 ,⊤A0) ∈ σ. Hence ⊤A0 ∈ η = {x ∈ Ek : (x, x) ∈ σ} and
by Lemma 5.21 we get that η = Ek and σ is reflexive. The case σ′

h 6= Eh
k can be

solved using a similar argument as above.
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We have shown that if Pol σ is a meet-irreducible submaximal clone of Pol ρ
and σh 6= Eh

k or σ′
h 6= Eh

k , then σ is reflexive. From now on we suppose that σ is
reflexive. Since σ is not a diagonal relation, we have ∆Ek

( σ ( E2
k . We consider

again the binary relation γ = σ ∩ σ−1; thus ∆Ek
⊆ γ ⊆ σ. We distinguish the

following three cases: (i) ∆Ek
= γ, (ii) ∆Ek

( γ ( σ and (iii) γ = σ.

First, we study the subcase (ii).

Lemma 5.38. If the assumptions of Proposition 5.19 are satisfied, σh 6= Eh
k or

σ′
h 6= Eh

k and σ2 = σ′
2 = E2

k, then the subcase (ii) is impossible.

Proof. Suppose that σh 6= Eh
k , σ2 = σ′

2 = E2
k and ∆Ek

( γ ( σ hold, then we
have h ≥ 3. From Lemma 5.35, we have σh = ρ. In addition Pol σ ⊆ Pol γ and
γ ⊆ γ ◦ γ ⊆ E2

k ; this yields the following possible two subcases:
(a) γ = γ ◦ γ and (b) γ ( γ ◦ γ.
Assume that subcase (a) holds, then γ is a nontrivial equivalence relation

and Pol(σ) ( Pol(γ), contradiction.
Assume that subcase (b) holds. Recall that γ is the symmetric part of σ

and γ ◦ γ is symmetric. We claim that γ ◦ γ * σ. Assume that γ ( γ ◦ γ ⊆ σ;
let (a, b) ∈ γ ◦ γ \ γ, then by symmetry of γ ◦ γ, we get (a, b), (b, a) ∈ σ; so
(a, b) ∈ σ ∩ σ−1 = γ, contradiction. It follows that γ ◦ γ * σ. Let (a, b) ∈
(γ ◦ γ) \σ, (e, d) ∈ σ \ γ; then there exists u ∈ Ek such that (a, u), (u, b) ∈ γ (∗∗).
Let f2 be the unary operation defined on Ek by f2(e) = a, f2(d) = b and f2(x) = u

elsewhere. Since (e, d) 6∈ γ, using (∗∗), the reflexivity and the symmetry of γ we
obtain that f2 preserves γ; but (e, d) ∈ σ and (f2(e), f2(d)) = (a, b) 6∈ σ; so f2
does not preserve σ. Hence Pol(σ) ( Pol(γ). Since ∆Ek

( γ ( E2
k , there is

(a, b) ∈ E2
k \ γ. Let (e, d) ∈ γ \ ∆Ek

. The function g : Ek → Ek defined by
g(e) = a and g(x) = b otherwise preserves ρ (due to h ≥ 3 and ρ totally reflexive)
and does not preserve γ (due to (e, d) ∈ γ and (g(e), g(d)) = (a, b) 6∈ γ). Hence
Pol ρ * Pol γ. Hence Pol σ ( Pol γ * Pol ρ contradicting the meet-irreducibility
of Pol σ below Pol ρ.

From Lemma 5.38, σ is symmetric or antisymmetric. The next lemma shows
that σ is symmetric.

Lemma 5.39. If the assumptions of Proposition 5.19 are satisfied, σ2 = σ′
2 = E2

k

and σh 6= Eh
k or σ′

h 6= Eh
k , then σ is symmetric.

Proof. Assume that σ2 = σ′
2 = E2

k , σh 6= Eh
k and σ is not symmetric. As

σ2 = E2
k and σh 6= Eh

k , we have h ≥ 3. From Lemma 5.38, σ is antisymmetric.
From Lemma 5.35, σh = ρ and σ is reflexive. Furthermore by Lemma 5.36,
for any maximal ρ-chain A, there exists ⊤A ∈ Ek such that for all x ∈ A,
(x,⊤A) ∈ σ. Let {Ai : 0 ≤ i ≤ t − 1} be the set of all maximal ρ-chains on Ek

and set T = {⊤A0 ,⊤A1 , . . . ,⊤At−1}. We recall that Cρ ⊆ Ai, 0 ≤ i ≤ t − 1. We
distinguish the following two subcases: (i) σ′

h = Eh
k , (ii) σ′

h 6= Eh
k .
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Assume that (i) holds. Then from Lemma 5.30, there exists ⊥ ∈ Ek such
that for any x ∈ Ek, (⊥, x) ∈ σ. Assume that σ is not transitive, then σ ( tr(σ).
Let (a, b) ∈ tr(σ) \ σ and (u, v) ∈ σ \ ∆Ek

and consider the unary operation l

defined on Ek by l(x) = a if (x, u) ∈ σ and l(x) = b otherwise, then l preserves
tr(σ) and does not preserve σ; thus Pol σ ( Pol tr(σ). Assume that tr(σ) 6= E2

k ,
let (a, b) ∈ E2

k \ tr(σ) and (u, v) ∈ tr(σ) with u 6= v. The unary operation g

defined on Ek by g(x) = a is x = u and g(x) = b elsewhere preserves ρ (due to
h ≥ 3 and ρ is totally reflexive) and does not preserve tr(σ) (due to (u, v) ∈ tr(σ)
and (g(u), g(v)) = (a, b) 6∈ tr(σ)), hence Pol ρ * Pol tr(σ), contradicting the
meet-irreducibility of Pol σ below Pol ρ. Let b ∈ Ek such that ⊥ 6= b; then by
the antisymmetry of σ we get (b,⊥) 6∈ σ. Since (b,⊥) ∈ E2

k = tr(σ), there exist
u1, . . . , un ∈ Ek such that (b, un), (un, un−1), . . . , (u2, u1), (u1,⊥) ∈ σ. It follows
that (u1,⊥), (⊥, u1) ∈ σ. The antisymmetry of σ yields ⊥ = u1. By induction
we obtain un = ⊥. Thus (b,⊥) ∈ σ, contradiction.

Assume that σ = tr(σ), then σ is transitive and σ is a partial order. Let
B be a maximal ρ-chain, then there exists ⊤B ∈ B such that for any x ∈ B,
(x,⊤B) ∈ σ. Let a ∈ Ek \ B, then {⊤B , a} is a ρ-chain (because h ≥ 3 and ρ

is totally reflexive), therefore there exists u ∈ Ek such that (⊤B, u), (a, u) ∈ σ.
Since σ is transitive, then for any x ∈ B, (x, u) ∈ σ; so B∪{u} is a ρ-chain (due to
σh = ρ). Hence u ∈ B and (u,⊤B), (⊤B , u) ∈ σ. Thus ⊤B = u and (a,⊤B) ∈ σ.
As the choice of a was arbitrary we deduce that ⊤B is the greatest element of
σ; this observation together with (⊥, x) ∈ σ for any x ∈ Ek, yield that σ is a
bounded partial order, contradiction. Thus the subcase σ′

h = Eh
k is impossible.

Assume (ii): σ′
h 6= Eh

k holds, then we get by Lemma 5.35 that σ′
h = ρ. We

distinguish three subcases. (a) σ ( tr(σ) ( E2
k , (b) σ = tr(σ), (c) tr(σ) = E2

k .

Since tr(σ) ∈ [{σ}], we have Pol σ ⊆ Pol tr(σ). If (a) holds, then using the
above unary operation l, we obtain Pol σ ( Pol tr(σ). Hence Pol σ ( Pol tr(σ) 6=
Pol ρ (due to Lemma 5.18, ∆Ek

6= tr(σ) 6= E2
k and ρ is not transitive), contra-

dicting the meet-irreducibility of Pol σ below Pol ρ.

Assume that (b) holds(i.e σ is transitive). Since ρ = σh = σ′
h and σ reflexive,

from Lemma 5.36, for any maximal ρ-chain B, there exist ⊤B ,⊥B ∈ B such that
for any x ∈ B, (x,⊤B), (⊥B , x) ∈ σ. Let B be a maximal ρ-chain, and ⊤B and
⊥B as above. A similar argument use in the subcase (i) with σ transitive shows
that ⊤B is the greatest element of σ and dually ⊥B is the least element of σ;
therefore σ is a bounded partial order, contradiction.

Assume that (c) holds. Let {Ai : 0 ≤ i ≤ t−1} be the set of maximal ρ-chains
(t ≥ 2). Since σh 6= Eh

k and σ′
h 6= Eh

k , applying Lemma 5.35 we obtain σh = σ′
h =

ρ, from Lemma 5.36, for any maximal ρ-chain B, there exist ⊤B ,⊥B ∈ B such
that for any x ∈ B, (x,⊤B), (⊥B , x) ∈ σ. In addition, from (1) of Proposition
3.4, Cρ ⊆ Ai, 0 ≤ i ≤ t − 1. Therefore {⊤Ai

: 0 ≤ i ≤ t − 1} is a ρ-chain. So
there exists a maximal ρ-chain D such that {⊤Ai

: 0 ≤ i ≤ t − 1} ⊆ D. As D
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is a maximal ρ-chain, ⊥D,⊤D ∈ D and (⊤D,⊥D) ∈ E2
k = tr(σ). So there exist

u1, . . . , un ∈ Ek such that (⊤D, u1), (u1, u2), . . . , (un−1, un), (un,⊥D) ∈ σ. Since
{u1,⊤D} is also a ρ-chain (due to h ≥ 3), there exists a maximal ρ-chain B such
that {u1,⊤D} ⊆ B (due to every ρ-chain is contained in a maximal ρ-chain).
We have ⊤B ∈ D (due to ⊤B ∈ {⊤Ai

, 0 ≤ i ≤ t − 1} ⊆ D and D is a maximal
ρ-chain), so (⊤B ,⊤D) ∈ σ; in addition (⊤D,⊤B) ∈ σ (due to ⊤D ∈ B); therefore
(⊤B ,⊤D), (⊤D,⊤B) ∈ σ and ⊤B = ⊤D (due to σ is anti-symmetric). We have
also u1 ∈ B, so (u1,⊤B) = (u1,⊤D) ∈ σ, therefore u1 = ⊤D = ⊤B (due to
(⊤D, u1) ∈ σ and σ anti-symmetric). By induction we obtain ui = ⊤D, 1 ≤ i ≤ n.
Hence ⊤D = ⊥D and ⊤A0 = . . . = ⊤At−1 ; so Ek is a ρ-chain (due to σh = ρ and
(x,⊤D) ∈ σ for all x ∈ Ek); contradiction. Therefore (c) is impossible.

Hence the case σ antisymmetric is impossible. Thus σ is symmetric.

We have shown that σ is reflexive and symmetric. Recall that ρ has t maximal
ρ-chains A0, A1, . . . , At−1. Let i ∈ {0, 1, . . . , t− 1} and m = |Ai|. Set

γ =
{

(a1, . . . , ak) ∈ Ek
k : ∃u ∈ Ek, (a1, u), . . . , (am, u) ∈ σ and

{a1, . . . , ak}
h−1 × {u} ⊆ ρ

}

and β = {(a1, . . . , ak) ∈ Ek
k : {a1, . . . , am}h ⊆ ρ}.

Lemma 5.40. If the assumptions of Proposition 5.19 are satisfied, σ2 = σ′
2 = E2

k

and (σh 6= Eh
k or σ′

h 6= Eh
k ), then β = γ.

Proof. Assume that γ 6= β and σh 6= Eh
k . From Lemma 5.35, we get σh = ρ;

using Lemma 5.39, we get that σ is symmetric. Therefore σh = σ′
h = ρ. Hence

γ ( β. Let (v1, . . . , vk) ∈ β \ γ. It is easy to check that Pol σ ⊆ Pol γ ( using
σh = ρ). Now we show that Pol γ ⊆ Pol ρ. Let f ∈ Pol γ be an n-ary operation.
Let ai = (a1,i, . . . , ah,i) ∈ ρ, 1 ≤ i ≤ n, set

a′
i = (a1,i, . . . , ah,i, ah,i, . . . , ah,i

︸ ︷︷ ︸

k−h times

), 1 ≤ i ≤ n.

Using σh = ρ one can check that a′
i ∈ γ, 1 ≤ i ≤ n (∗6). Using σh = ρ

and (∗6) one can check that (f(a1,1, . . . , a1,n), . . . , f(ah,1, . . . , ah,n)) ∈ ρ; therfore
Pol γ ⊆ Pol ρ. Hence Pol σ ⊆ Pol γ ⊆ Pol ρ. We show that these inclusions are
proper. Let (a, b) ∈ E2

k \ σ and (u, v) ∈ σ \ ∆Ek
. The unary operation g defined

on Ek by g(x) = a if x = u and g(x) = b otherwise preserve γ due to ρ =
σh, E

2
k = σ2, 3 ≤ h ≤ m, σ reflexive and symmetric, Im g = {a, b} and ρ totally

reflexive; but does not preserve σ due to (u, v) ∈ σ and (g(u), g(v)) = (a, b) 6∈ σ.
Therfore Pol σ ( Pol γ. To finish we show that Pol γ ( Pol ρ. From Lemma
5.36, for all 0 ≤ i ≤ t− 1, there exists uAi

∈ Ek such that (x, uAi
) ∈ σ for every

x ∈ Ai. Since Cρ ⊆ Ai, 0 ≤ i ≤ t− 1, {uA0 , . . . , uAt−1} is contained in a maximal
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ρ-chain D. We suppose that D = A0. Therefore (uA0 , uA1), . . . , (uA0 , uAt−1) ∈ σ.
Let a1, . . . , ah−1 ∈ Ek; {a1, . . . , ah−1} is contained in a maximal ρ-chain Ai for
some 0 ≤ i ≤ t − 1. Hence (a1, . . . , ah−1, uA0) ∈ σh = ρ. Therefore uA0 ∈ Cρ.
We choose a1, a2, . . . , ah−1 ∈ A0 and ah 6∈ A0 such that (a1, . . . , ah) 6∈ ρ (due to
A0 6= Ek). Set

W = {(i1, . . . , ih) ∈ {1, . . . , k}h : 1 ≤ i1 < . . . < ih ≤ k},

denoted simply by W = {(ij1, . . . , i
j
h) : 1 ≤ j ≤ q} where q = |W |. For all

1 ≤ j ≤ q, set yj = (x1,j, x2,j , . . . , xk,j) ∈ Ek
k with

xl,j =

{

an if l = i
j
n and (n 6= h or l > m) for some 1 ≤ n ≤ h,

uA0 otherwise;

for 1 ≤ l ≤ q. Furthermore, for 1 ≤ i ≤ k we set xi = (xi,1, xi,2, . . . , xi,q). From
construction of xi, for all 1 ≤ i1 < i2 < . . . < ih ≤ k, (xi1 ,xi2 , . . . ,xih) ∈ ρ

if and only if ih ≤ m. We define the q-ary operation f on Ek by f(x) = vi if
x = xi for some 1 ≤ i ≤ k and f(x) = uA0 otherwise. We have {y1, . . . ,yq} ⊆
γ (due to uA0 ∈ Cρ and (a1, uA0), . . . , (ah−1, uA0) ∈ σ) and f(y1, . . . ,yq) =
(f(x1), . . . , f(xk)) = (v1, . . . , vk) 6∈ γ. It is easy to check that f ∈ Pol ρ. Thus
Pol σ ( Pol γ ( Pol ρ, contradicting the maximality of Pol σ in Pol ρ. Thus
γ = β.

Lemma 5.41. If the assumptions of Proposition 5.19 are satified, σ2 = σ′
2 = E2

k

and (σh 6= Eh
k or σ′

h 6= Eh
k ), then σ is of type VIII.

Proof. We have shown above that σ is reflexive and symmetric. Furthermore
σ ◦ σ = E2

k. Let i ∈ {0, 1, . . . , t − 1} and m = |Ai|. From Lemma 5.40, γ = β.
We suppose that Ai = {a1, . . . , am}. Let am+1, . . . , ak ∈ Ek such that Ek =
{a1, . . . , ak}. We have (a1, a2, . . . , ak) ∈ β = γ; therefore there exists uAi

∈ Ek

such that for all 1 ≤ j ≤ m (aj , uAi
) ∈ σ and for all 1 ≤ i1 < i2 < . . . < ih−1 ≤

k, (ai1 , ai2 , . . . , aih−1
, uAi

) ∈ ρ. Hence uAi
∈ Cρ and σ fulfills condition VIII of

Theorem 3.2.

Now we are ready to prove Proposition 5.19.

Proof. (Proof of Proposition 5.19) Combining Lemmas 5.20–5.41, we obtain the
result.

Proof. (Proof of Theorem 3.2) Combining Propositions 4.1, 4.3, 4.4, 4.8, Corol-
lary 4.5, Propositions 5.1, 5.9, 5.16, 5.19 and Corollary 5.17 we have the result.
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