BINARY RELATIONS AND SUBMAXIMAL CLONES DETERMINED BY CENTRAL RELATION

Y.L. Tenkeu Jeufack, J. Djoumessi
AND
E.R.A. Temgoua
Department of Mathematics
Ecole Normale Supérieure
University of Yaoundé-1
P.O. Box 47 Yaoundé Cameroon
e-mail: ytenkeu2018@gmail.com joseph.djoumessi@yahoo.fr retemgoua@yahoo.fr

Abstract

Let ρ be an h-ary central relation $(h \geq 2)$ and σ a binary relation on a finite set A such that $\sigma \neq \rho$. It is known from Rosenberg's classification theorem (1965) that the clone $\operatorname{Pol} \rho$ which consists of all operations on A that preserve ρ is a maximal clone on A. In this paper, we find all binary relations σ such that the clone $\operatorname{Pol}\{\rho, \sigma\}$ is a maximal subclone of $\operatorname{Pol} \rho$, where ρ is a fixed central relation.

Keywords: central relations, meet-reducible, meet-irreducible, submaximal, clones.
2020 Mathematics Subject Classification: Primary: 08A40; Secondary: 08A02, 18B35.

1. Introduction

In 1941, Post presented the complete description of the countably many clones on 2 elements. It turned out that, all such clones are finitely generated and the lattice of these clones is countable. The structure of the lattice of clones on finitely many (but more than 2) elements is more complex and is of the cardinality $2^{\aleph_{0}}$. For $k \geq 3$, not much is known about the structure of the lattice of clones in spite of the efforts made by many researchers in this area. Therefore, every new piece of
information is considered valuable. Indeed, it would be very interesting to know the clone lattice on the next level (below the maximal clones) and even a partial description will shed more light onto its structure. The complete description of all submaximal clones is known only for the 2 -elements case and the 3 -elements case (see $[3,4,5]$), however the result in $[3]$ and many results in the literature on clones including those discussed in $[4,8,10,11]$, require intensive knowledge of submaximal clones (that sit below certain maximal clones) on arbitrary finite sets. Clone theory is considered to be very important because of its use to understand universal algebras.

In [4, Chapter 17], D. Lau presented all submaximal clones of the clone $\operatorname{Pol} \rho$ where ρ is a unary central relation on an arbitrary finite set. Recently in [12] we have characterized the five types of central relation σ such that the clone $\operatorname{Pol}\{\rho, \sigma\}$ is covered by $\operatorname{Pol} \rho$, where ρ is a fixed h-ary central relation $(h \geq 2)$ on an arbitrary finite set. In this paper, we characterize the binary relations σ such that the clones $\operatorname{Pol}\{\sigma, \rho\}$ are covered by $\operatorname{Pol} \rho$, where ρ is a fixed h-ary central relation ($h \geq 2$) on a finite set. Moreover, we give a result which will help anyone to decide whether $\operatorname{Pol}\{\rho, \sigma\}$ is a submaximal clone where ρ and σ are as above.

This paper consists of five sections. After this introduction, in which we motivated this research and we announced the types of relations to be characterized in the paper, the second section provides the reader with necessary notions and notations. It is followed by the section dedicated to the description of the types of binary relations σ such that the clones $\operatorname{Pol}\{\sigma, \rho\}$ are covered by $\operatorname{Pol} \rho$. In Section 4, we show that the clones described in Section 3 are maximal and in Section 5 , we show that the binary relations σ listed in Section 3 are the only binary relations such that the clones $\operatorname{Pol}\{\rho, \sigma\}$ are maximal below $\operatorname{Pol} \rho$.

2. Preliminaries

In this section, we provide the reader with some basic notions and notations; for more details the reader can see $[4,10,11,13]$.

Let A be a fixed finite set with k elements, n and h be two integers such that $1 \leq n, h$. An n-ary operation on A is a function $f: A^{n} \rightarrow A$. We will use the notation $O_{A}^{(n)}$ for the set of all n-ary operations on A, and O_{A} for the set of all finitary operations on A. For $\mathcal{C} \subseteq O_{A}, \mathcal{C}^{(n)}$ denoted the set $\mathcal{C} \cap O_{A}^{(n)}$. For $1 \leq i \leq n$, the i-th projection is the operation $\pi_{i}^{(n)}: A^{n} \rightarrow A,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{i}$. For arbitrary positive integers m and n, there is a one-to-one correspondence between the functions $f: A^{n} \rightarrow A^{m}$ and the m-tuples $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ of functions $f_{i}: A^{n} \rightarrow A$ (for $i=1, \ldots, m$) via $f \mapsto \boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ with $f_{i}=$ $\pi_{i}^{(m)} \circ f$ for all $i=1, \ldots, m$. In particular, $\pi^{(n)}=\left(\pi_{1}^{(n)}, \ldots, \pi_{n}^{(n)}\right)$ corresponds to the identity function $f: A^{n} \rightarrow A^{n}$. From now on, we will identify each function
$f: A^{n} \rightarrow A^{m}$ with the corresponding m-tuples $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right) \in\left(\mathcal{O}_{A}^{(n)}\right)^{m}$ of n-ary operations. Using this convention, the composition of two functions $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right): A^{n} \rightarrow A^{m}$ and $\boldsymbol{g}=\left(g_{1}, \ldots, g_{p}\right): A^{m} \rightarrow A^{p}$ can be described as follows $\boldsymbol{g} \circ \boldsymbol{f}=\left(g_{1} \circ \boldsymbol{f}, \ldots, g_{p} \circ \boldsymbol{f}\right)=\left(g_{1}\left(f_{1}, \ldots, f_{m}\right), \ldots, g_{p}\left(f_{1}, \ldots, f_{m}\right)\right)$ where $g_{i}\left(f_{1}, \ldots, f_{m}\right)(\boldsymbol{a})=g_{i}\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a})\right)$ for all $\boldsymbol{a} \in A^{n}$ and $1 \leq i \leq p$.

A clone on A is a subset \mathcal{C} of O_{A} that contains the projections and is closed under composition; that is $\pi_{i}^{(n)} \in \mathcal{C}$ for all $n \geq 1$ and $1 \leq i \leq n$, and $g \circ f \in$ $C^{(n)}$ whenever $g \in C^{(m)}$ and $f \in\left(C^{(n)}\right)^{m}$ (for $m, n \geq 1$). The clones on A form a complete lattice \mathcal{L}_{A} under inclusion. Therefore, for each set $F \subseteq O_{A}$ of operations, there exists a smallest clone that contains F, which will be denoted by $\langle F\rangle$ and will be called clone generated by F.

For two clones C and D on A, we say that C is maximal in D if D covers C in \mathcal{L}_{A}. We also say that C is submaximal if C is maximal in a clone D and D is a maximal clone on A. For a maximal clone D, there are two types of clones C being maximal in $D: C$ is meet-reducible if $C=D \cap F$ for a maximal clone F distinct from D (but not necessarily unique) and C is meet-irreducible if it is not meet-reducible.

Clones can be described via invariant relations. An h-ary relation on A is a subset of A^{h}. The set of finitary relations on A is denoted by R_{A}. For an n-ary operation $f \in O_{A}^{(n)}$ and an h-ary relation ρ on A, we say that f preserves ρ (or ρ is invariant under f, or f is a polymorphism of ρ) if for all $\left(a_{1, i}, \ldots, a_{h, i}\right) \in \rho, i=$ $1, \ldots, n,\left(f\left(a_{1,1}, \ldots, a_{1, n}\right), f\left(a_{2,1}, \ldots, a_{2, n}\right) \ldots, f\left(a_{h, 1}, \ldots, a_{h, n}\right)\right) \in \rho$. For any set $R \subseteq R_{A}, \operatorname{Pol}(R)$ is the set of operations on A preserving every relation on R, and for $F \subseteq O_{A} \operatorname{Inv}(F)$ is the set of relations preserved by every operation on F. If $R=\{\rho\}$, we write $\operatorname{Pol} \rho$ for $\operatorname{Pol}\{\rho\}$. If A is finite, it is well known that Pol and Inv determine a Galois connection between the subsets of O_{A} and R_{A}, with closure operator $F \mapsto \operatorname{Pol} \operatorname{Inv} F$ on O_{A} and $R \mapsto[R]=\operatorname{Inv} \operatorname{Pol}(R)$ on R_{A}. The closed sets of operations are exactly the clones and the closed set of relations are called relational algebras or relational clone [9]. The set of relational algebras, ordered by inclusion is a lattice, which is dually isomorphic to the lattice L_{A} of clones on A. The relational algebras $[R]$ can be described in various ways ([4, 9]).

Let $\rho \subseteq A^{h}$; for an integer $m>1$ and $\boldsymbol{a}_{i}=\left(a_{1, i}, \ldots, a_{m, i}\right) \in A^{m}, 1 \leq i \leq h$, we will write $\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{h}\right) \in \rho$ if for all $j \in\{1, \ldots, m\},\left(a_{j, 1}, \ldots, a_{j, h}\right) \in \rho$. If A is finite, every clone on A other than O_{A} is contained in a maximal clone. An operation $g: A^{3} \rightarrow A$ is called a majority operation if $g(a, a, b)=g(a, b, a)=$ $g(b, a, a)=a$ for $a, b \in A$. We recall the following Baker-Pixley Theorem and the Rosenberg's list of maximal clones which will be used to prove some results.

Theorem 2.1 [1]. For a finite algebra $\mathcal{A}=(A, F)$ with a majority term operation, an operation $f: A^{n} \rightarrow A$, is a term operation of A iff f preserves all subuniverses of \mathcal{A}^{2}.

Theorem $2.2[7]$. For each finite set A with $\operatorname{Card}(A) \geq 3$, the maximal clones on A are the clones of the form $\operatorname{Pol} \rho$ where ρ is a relation of one of the following six types:
(1) a bounded partial order on A;
(2) a prime permutation on A;
(3) a prime affine relation on A;
(4) a nontrivial equivalence relation on A;
(5) a central relation on A;
(6) an h-regular relation on A.

Here a partial order on A is called bounded if it has both a least and a greatest element. A prime permutation on A is (the graph of) a fixed point free permutation on A in which all cycles are of the same prime length, and a prime affine relation on A is the graph of the ternary operation $x-y+z$ for some elementary abelian p-group $(A ;+,-, 0)$ on A (for p prime). An equivalence relation on A is nontrivial if it is neither the equality relation Δ_{A} on A nor the full relation A^{2} on A.

To describe central relations and h-regular relations, we call an h-ary relation ρ on A totally reflexive (reflexive for $h=2$) if ρ contains all h-tuples of A^{h} whose coordinates are not pairwise distinct, and totally symmetric (symmetric for $h=2$) if ρ is invariant under any permutation of its coordinates. If ρ is totally reflexive and totally symmetric, we define the center of ρ, denoted by C_{ρ}, as follows

$$
C_{\rho}=\left\{a \in A:\left(a, a_{2}, \ldots, a_{h}\right) \in \rho \text { for all } a_{2}, \ldots, a_{h} \in A\right\} .
$$

We say that ρ is a central relation if ρ is totally reflexive, totally symmetric and has a nonvoid center which is a proper subset of A. For an integer $h \geq 3$, a family $T=\left\{\theta_{1}, \ldots, \theta_{r}\right\}(r \geq 1)$ of equivalence relations on A is called h-regular if each θ_{i} (for $1 \leq i \leq r$) has exactly h classes, and for arbitrary classes B_{i} of $\theta_{i}(1 \leq i \leq r)$, the intersection $B_{1} \cap B_{2} \cap \ldots \cap B_{r}$ is nonempty. To each h regular family $T=\left\{\theta_{1}, \ldots, \theta_{r}\right\}$ of equivalence relations on A, we associate an h-ary relation λ_{T} on A as follows

$$
\lambda_{T}=\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}:(\forall i)(\exists p, q) p \neq q \text { and }\left(a_{p}, a_{q}\right) \in \theta_{i}\right\} .
$$

The relations of the form λ_{T} are called h-regular (or h-generated) relations. It is clear from the definition that h-regular relations are totally reflexive and totally symmetric. We recall the folowing classical construction. If α and β are two binary relation on A, the relational product of α and β, denoted by $\alpha \circ \beta$, is the set $\left\{(x, y) \in A^{2}:(x, u) \in \alpha,(u, y) \in \beta\right.$ for some $\left.u \in A\right\}$. The relational
product is an associative binary operation on the set $R_{A}^{(2)}$ of binary relations on A. For $n \geq 1$, we denote by α^{n} the n-th power $\alpha \circ \cdots \circ \alpha$ (n times) of α and by $\operatorname{tr}(\alpha)$ the transitive closure of α. It is easy to see that $\operatorname{tr}(\alpha)=\bigcup_{n \geq 1} \alpha^{n}$. We will denote by \underline{h} the set $\{1, \ldots, h\}$.

Definition 2.3 ([4], Page 126). Let $h \in \mathbb{N} \backslash\{0\}$. An h-ary relation $\sigma \in R_{A}^{(h)}$ is called diagonal relation if there exists an equivalence relation ϵ on $\{1, \ldots, h\}$ such that $\sigma:=\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}:(i, j) \in \epsilon \Longrightarrow a_{i}=a_{j}\right\}$.

The set of all diagonal relations on A is denoted by D_{A} and $D_{A}=\{\emptyset\} \cup$ $\bigcup_{h \geq 1} D_{A}^{(h)}$, where $D_{A}^{(h)}$ is the set of all h-ary diagonal relation on A. In particular, A^{h} and $\delta^{h}=\left\{(x, x, \ldots, x) \in A^{h}: x \in A\right\}$ are diagonal relations. For more information on diagonal relations, see [4], Page 126.

Remark 2.4 ([4], Theorem 2.6.2, 2.6.3 Page 132). Let $R \subseteq R_{A}$.

1. If $f \in \operatorname{Pol} R$, then $f \in \operatorname{Pol}([R])$.
2. If σ and σ^{\prime} are relations such that $\sigma^{\prime} \in[\{\sigma\}]$, then $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma^{\prime}$.

From now on, we assume that we are working on the set $E_{k}=\{0,1, \ldots, k-$ $1\}$, where k is an integer such that $k>1$. We will denote by S_{h} the set of permutations on \underline{h}, where $h \geq 1$ is an integer and for $1 \leq i_{1}<\cdots<i_{h} \leq k$, we denote by $S_{\left\{i_{1}, \ldots, i_{h}\right\}}$ the set of permutations on $\left\{i_{1}, \ldots, i_{h}\right\} ; \gamma_{i_{1}, \ldots, i_{h}}$ the set $\left\{\left(\tau\left(i_{1}\right), \ldots, \tau\left(i_{h}\right)\right): \tau \in S_{\left\{i_{1}, \ldots, i_{h}\right\}}\right\}$, and ι_{k}^{h} the set $\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists i \neq\right.$ $\left.j, a_{i}=a_{j}\right\}$. It is well known (see [4]) that the Stupecki clone $\operatorname{Pol} \iota_{k}^{k}$ is a maximal clone. If σ is an equivalence relation, we denote by $[a]_{\sigma}$ the σ-class of a.

3. The types of σ such that the clone $\operatorname{Pol}\{\rho, \sigma\}$ is maximal in $\operatorname{Pol} \rho$

In this section, we give the definition of the types of binary relations σ such that $\operatorname{Pol}\{\rho, \sigma\}$ is maximal in $\operatorname{Pol} \rho$ and the main result of this paper. Let k and h be two integers such that $k \geq 3$ and $h \geq 2$. For a prime permutation π of order p on E_{k}, we denote by σ_{π} the equivalence relation consisting of pairs $(a, b) \in E_{k}^{2}$ with $a=\pi^{i}(b)$ for some $0 \leq i<p$.

Definition 3.1. Let σ be a binary relation and ρ an h-ary central relation on $E_{k}(h \geq 2)$.
(i) A nonempty subset $B \subseteq E_{k}$ is called a ρ-chain if $B^{h} \subseteq \rho$. A ρ-chain B is called maximal ρ-chain if it is not contained in another ρ-chain.
(ii) We say that ρ is σ-closed if $\left(a_{1}, \ldots, a_{h}\right) \in \rho$ whenever $\left(u_{1}, \ldots, u_{h}\right) \in \rho$ for some u_{1}, \ldots, u_{h} with $\left(a_{i}, u_{i}\right) \in \sigma, 1 \leq i \leq h$.
(iii) We suppose that ρ has t maximal ρ-chains $A_{0}, \ldots, A_{t-1}(t \geq 2)$. We say that σ is a central relation relative to maximal ρ-chains if σ is reflexive, symmetric, and for each $i \in E_{t}$, there exists a central element c_{i} of ρ such that for every $a \in A_{i},\left(c_{i}, a\right) \in \sigma$.
(iv) If $h=2$, then we say that ρ is the symmetric part of σ if $\rho=\sigma \cap \sigma^{-1}$.

For $h=2$ and $\sigma \nsubseteq \rho$, we set $\lambda=\sigma \cap \rho$. For $h \geq 2$ we denote by σ_{h} (respectively $\left.\sigma_{h}^{\prime}\right)$ the h-ary relation $\sigma_{h}=\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists u \in E_{k},\left(a_{1}, u\right), \ldots,\left(a_{h}, u\right) \in\right.$ $\sigma\}, \sigma_{h}^{\prime}=\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists u \in E_{k},\left(u, a_{1}\right), \ldots,\left(u, a_{h}\right) \in \sigma\right\}$ and for every permutation π on $\underline{h},(\rho)_{\pi}=\left\{\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right):\left(a_{1}, \ldots, a_{h}\right) \in \rho\right\}$.

Here we state the main result of this paper.
Theorem 3.2. Let k, h be two integers such that $k \geq 3, h \geq 2$; let ρ be an h-ary central relation with t maximal ρ-chains A_{0}, \ldots, A_{t-1} and σ a binary relation on E_{k}. The clone $\operatorname{Pol}\{\rho, \sigma\}$ is maximal below $\operatorname{Pol} \rho$ if and only if σ fulfills one of the following eleven conditions:
(I) σ is a nontrivial equivalence relation and ρ is σ-closed;
(II) σ is a nontrivial equivalence relation and every σ-class contains a central element of ρ;
(III) σ is a bounded partial order with least element \perp, greatest element T, $h=2,\{\perp, \top\} \subseteq C_{\rho}$ and $\operatorname{tr}(\sigma \cap \rho)=\sigma ;$
(IV) σ is a bounded partial order with least element \perp, greatest element T , $h \geq 3$ and $\{\perp, \top\} \subseteq C_{\rho}$;
(V) σ is a central relation, $h=2$ and ρ and σ are comparable (i.e., $\rho \subsetneq \sigma$ or $\sigma \subsetneq \rho$);
(VI) σ is a central relation, $h \geq 3$ and $C_{\rho} \cap C_{\sigma} \neq \emptyset$;
(VII) σ is the graph of a prime permutation π and ρ is σ_{π}-closed;
(VIII) $\sigma_{h}=\rho$ and σ is a central relation relative to maximal ρ-chains;
(IX) $\rho \neq \sigma$ and ρ is the symmetric part of σ i.e., $\rho=\sigma \cap \sigma^{-1}$;
(X) σ is a partial order with a least element \perp which is also a central element of $\rho, \sigma_{2}=\rho$ and for every $i_{1}, \ldots, i_{l} \in\{0, \ldots, t-1\},{ }_{1 \leq j \leq l}^{\cap} A_{i_{j}}$ has a greatest element;
(XI) σ is a partial order with a greatest element \top which is also a central element of $\rho, \sigma_{2}^{\prime}=\rho$ and for every $i_{1}, \ldots, i_{l} \in\{0, \ldots, t-1\}, \bigcap_{1 \leq j \leq l} A_{i_{j}}$ has a least element.

Definition 3.3. Let $l \in\{I, \ldots, X I\}$. We say that σ is of type l if σ verifies the condition (1) of Theorem 3.2.

The proof of Theorem 3.2 is divided into two parts. The sufficiency of conditions in Propositions 4.1, 4.3, 4.8 and Corollary 4.5 and the necessity of conditions in Propositions 5.1, 5.9, 5.19 and Corollary 5.17. Since ρ has at least two maximal ρ-chains, the relation of type VIII exists only for $\left|C_{\rho}\right| \geq 2$. We need the following proposition for many proof in the sequel.
Proposition 3.4. Let E_{k} be a finite set, ρ be an h-ary central relation, $B a$ maximal ρ-chain and σ a diagonal relation on E_{k}, then (1) $C_{\rho} \subseteq B$ and (2) $\operatorname{Pol} \sigma=O_{E_{k}}$.
Proof. (1) Let B be a maximal ρ-chain and $c \in C_{\rho}$. As $c \in C_{\rho}$, for any $a_{1}, \ldots, a_{h-1} \in B,\left(c, a_{1}, \ldots, a_{h-1}\right) \in \rho$. Hence $B \cup\{c\}$ is a ρ-chain and $B \subseteq$ $B \cup\{c\}$. The maximality of B yields $c \in B$. Thus $C_{\rho} \subseteq B$. It is easy to check that (2) holds.

4. Proof of sufficiency criterion in Theorem 3.2

In this section we show that the clones listed in Theorem 3.2 are maximal below Pol ρ. We distinguish four cases.

Case 1. σ is of type $l \in\{I, I I, I I I, I V, V I I I, X, X I\} ;$
Case 2. σ is of type V or VI;
Case 3. σ is of type VII;
Case 4. σ is of type IX. We begin with Case 1.
Proposition 4.1. Let k, h be two integers such that $k \geq 3, h \geq 2, l \in\{I, I I, I I I$, IV,VIII, X,XI\}, ρ be an h-ary central relation and σ a binary relation on E_{k}. If σ is of type l, then the clone $\operatorname{Pol}\{\rho, \sigma\}$ is maximal in $\operatorname{Pol} \rho$.

Before the proof of Proposition 4.1, we give some useful properties of σ. Let $g \in \operatorname{Pol} \rho \backslash \operatorname{Pol} \sigma$ be an n-ary operation. Then there exist $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in \sigma$ such that $(g(\boldsymbol{a}), g(\boldsymbol{b})) \notin \sigma$, where $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$.

In the case when $l=I I I$, we may furthermore assume that $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}\right.$, $\left.b_{n}\right) \in \sigma \cap \rho$. This can be seen as follows. Write $\lambda:=\sigma \cap \rho$. Since $\operatorname{tr}(\lambda)=\sigma$ and λ is reflexive, there exists $q \geq 1$ such that $\operatorname{tr}(\lambda)=\lambda^{q}=\sigma$. Moreover, for $i \geq 1, \operatorname{Pol} \lambda^{i} \subseteq \operatorname{Pol} \lambda^{i+1}$; in particular, $\operatorname{Pol} \lambda \subseteq \operatorname{Pol} \sigma$. Since $g \in \operatorname{Pol} \rho \backslash \operatorname{Pol} \sigma$, it follows that $g \notin \operatorname{Pol} \lambda$. Therefore there exist $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in \lambda$ such that $(g(\boldsymbol{a}), g(\boldsymbol{a})) \notin \lambda$, where $\boldsymbol{a}:=\left(a_{1}, \ldots, a_{n}\right), \boldsymbol{b}:=\left(b_{1}, \ldots, b_{n}\right)$. Since $g \in \operatorname{Pol} \rho$, we have $(g(\boldsymbol{a}), g(\boldsymbol{b})) \in \rho$, so we most have $(g(\boldsymbol{a}), g(\boldsymbol{b})) \notin \sigma$.

Note that if $l \in\{I, I I, V I I I, X, X I\}$ and $h=2$, then we get $\sigma \subsetneq \rho$ (by definition of σ_{2} and σ_{2}^{\prime} and the reflexivity of σ). Note also that relation of type IV not occur with $h=2$.

Lemma 4.2. Let n, k be two integers such that $n \geq 1$ and $k \geq 3$, ρ be an h ary central relation $(h \geq 2)$ and σ be a binary relation on E_{k}. Furthermore let $g \in \operatorname{Pol} \rho \backslash \operatorname{Pol} \sigma$ be an n-ary operation and $l \in\{I, I I, I I I, I V, V I I I, X, X I\}$. If σ is of type l, then for all $c, d \in E_{k}$ such that $(c, d) \in \sigma$ and $c \neq d$, there exists a unary operation $f_{c d} \in\langle(\operatorname{Pol}\{\sigma, \rho\}) \cup\{g\}\rangle$ such that $\left(f_{c d}(c), f_{c d}(d)\right) \notin \sigma$.

Proof. Let $c, d \in E_{k}$ such that $c \neq d$ and $(c, d) \in \sigma$; choose $\left(a_{i}, b_{i}\right)$ as specified in the paragraph following Proposition 4.1. We will construct a unary operation $f_{c d} \in\langle(\operatorname{Pol}\{\sigma, \rho\}) \cup\{g\}\rangle$ such that $\left(f_{c d}(c), f_{c d}(d)\right) \notin \sigma$. If σ is of type I, II or VIII, then we consider the unary operations $f_{c d}^{i}, 1 \leq i \leq n$ defined on E_{k} by $f_{c d}^{i}(x)=a_{i}$ if $x=c$ and $f_{c d}^{i}(x)=b_{i}$ otherwise. If σ is of type III, IV, X or XI, then for all $1 \leq i \leq n$, we consider the unary operations $f_{c d}^{i}$ defined on E_{k} by $f_{c d}^{i}(x)=a_{i}$ if $(x, c) \in \sigma$ and $f_{c d}^{i}(x)=b_{i}$ otherwise. Using the observation below Proposition 4.1, and the (total) reflexivity of ρ, (total) symmetry of ρ, reflexivity and symmetry of σ (for type $I, I I, V I I I$) and reflexivity and transitivity of partial order (for types $I I I, I V, X, X I)$ and the fact that $\left(a_{i}, b_{i}\right) \in \sigma \cap \rho$ for $h=2$, we see that $f_{c, d}^{i} \in \operatorname{Pol}\{\sigma, \rho\}$. Setting $f_{c d}(x)=g\left(f_{c d}^{1}(x), \ldots, f_{c d}^{n}(x)\right)$, we have $\left(f_{c d}(c), f_{c d}(d)\right)=$ $\left(g\left(a_{1}, \ldots, a_{n}\right), g\left(b_{1}, \ldots, b_{n}\right)\right) \notin \sigma$ and $f_{c d} \in\langle(\operatorname{Pol}\{\rho, \sigma\}) \cup\{g\}\rangle$.

Now, we give the proof of Proposition 4.1.
Proof. Let $g \in \operatorname{Pol} \rho \backslash \operatorname{Pol}\{\sigma, \rho\}$ be an n-ary operation. We show that $\langle(\operatorname{Pol}\{\sigma, \rho\})$ $\cup\{g\}\rangle=\operatorname{Pol} \rho$. We have $\langle(\operatorname{Pol}\{\sigma, \rho\}) \cup\{g\}\rangle \subseteq \operatorname{Pol} \rho$. It remains to show that $\operatorname{Pol} \rho \subseteq\langle(\operatorname{Pol}\{\sigma, \rho\}) \cup\{g\}\rangle$. Let $f \in \operatorname{Pol} \rho$ be an m-ary operation on E_{k}. From Lemma 4.2, we can see that for $\boldsymbol{e}, \boldsymbol{d} \in E_{k}^{m}$ such that $(\boldsymbol{e}, \boldsymbol{d}) \in \sigma$ and $\boldsymbol{e} \neq \boldsymbol{d}$, there exists $1 \leq i \leq m$ such that $c_{i} \neq d_{i}$; the operation $f_{\boldsymbol{e}, \boldsymbol{d}}:=f_{c_{i}, d_{i}} \circ \pi_{i}^{m}$ where $f_{c_{i}, d_{i}}$ is the unary operation provided by Lemma 4.2, is an m-ary operation belonging to $\langle(\operatorname{Pol}\{\sigma, \rho\}) \cup\{g\}\rangle$ such that $\left(f_{\boldsymbol{e} \boldsymbol{d}}(\boldsymbol{e}), f_{\boldsymbol{e} \boldsymbol{d}}(\boldsymbol{d})\right)=\left(g\left(a_{1}, \ldots, a_{n}\right), g\left(b_{1}, \ldots, b_{n}\right)\right)$ $\notin \sigma$.

We set $S=\left\{f_{\boldsymbol{e d}}: \boldsymbol{e}, \boldsymbol{d} \in E_{k}^{m}, \boldsymbol{e} \neq \boldsymbol{d},(\boldsymbol{e}, \boldsymbol{d}) \in \sigma\right\}$; for reason of simple notation we set $S=\left\{f_{i}: 1 \leq i \leq l\right\}(l=\operatorname{Card} S)$ and we consider the map ext : $E_{k}^{m} \rightarrow E_{k}^{m+l}$ defined by $\operatorname{ext}(\boldsymbol{x})=\left(\boldsymbol{x}, f_{1}(\boldsymbol{x}), \ldots, f_{l}(\boldsymbol{x})\right)$. Let $\boldsymbol{x}, \boldsymbol{y} \in E_{k}^{m}$ such that $\boldsymbol{x} \neq \boldsymbol{y}$. If $(\boldsymbol{x}, \boldsymbol{y}) \in \sigma$, then $\left.\left(f_{\boldsymbol{x} \boldsymbol{y}}(\boldsymbol{x}), f_{\boldsymbol{x}}^{\boldsymbol{y}}\right)(\boldsymbol{y})\right) \notin \sigma$, if $(\boldsymbol{x}, \boldsymbol{y}) \notin \sigma$, then by definition of ext we have $(\operatorname{ext}(\boldsymbol{x}), \operatorname{ext}(\boldsymbol{y})) \notin \sigma$. Thus for $\boldsymbol{x} \neq \boldsymbol{y},(\operatorname{ext}(\boldsymbol{x}), \operatorname{ext}(\boldsymbol{y})) \notin$ σ. Furthermore we define an operation H on the range $\left\{\operatorname{ext}(\boldsymbol{x}): \boldsymbol{x} \in E_{k}^{m}\right\}$ of ext by $H(\operatorname{ext}(\boldsymbol{x}))=f(\boldsymbol{x})$.

Now, taking into account the different values of l, we construct an extension \tilde{H} of H on E_{k}^{m+l} belonging to $\operatorname{Pol}\{\rho, \sigma\}$.
(i) If σ is of type I, we choose and fix $T=\left\{e_{1}, \ldots, e_{q}\right\}$ (where q is the number of σ-classes) such that $\left(e_{i}, e_{j}\right) \notin \sigma$ for $1 \leq i<j \leq q$, and we define α from E_{k} to $\{1, \ldots, q\}$ by $\alpha(a)=i$ if $\left(a, e_{i}\right) \in \sigma$. Hence we construct an extension \tilde{H} of H on E_{k}^{m+l} as follows. Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m+l}\right) \in E_{k}^{m+l}$, set

$$
\tilde{H}(\boldsymbol{y})= \begin{cases}f(\boldsymbol{z}) & \text { if } \exists \boldsymbol{z} \in E_{k}^{m}, \boldsymbol{y}=\operatorname{ext}(\boldsymbol{z}) ; \\ f(\boldsymbol{u}) & \text { if } \forall \boldsymbol{z} \in E_{k}^{m}, \operatorname{ext}(\boldsymbol{z}) \neq \boldsymbol{y} \wedge \exists \boldsymbol{u} \in E_{k}^{m}, \\ & (\operatorname{ext}(\boldsymbol{u}), \boldsymbol{y}) \in \sigma ; \\ f\left(e_{\alpha\left(y_{1}\right)}, \ldots, e_{\alpha\left(y_{m}\right)}\right) & \text { elsewhere. }\end{cases}
$$

The function \tilde{H} is well defined. We will show that $\tilde{H} \in \operatorname{Pol}\{\sigma, \rho\}$. First we show that $\tilde{H} \in \operatorname{Pol} \sigma$. Using reflexivity, symmetry and transitivity of σ it is easy to see that $\tilde{H} \in \operatorname{Pol} \sigma$. Second we show that $\tilde{H} \in \operatorname{Pol} \rho$. We can see that for any $\boldsymbol{y} \in E_{k}^{m+l}$, there exists $\boldsymbol{v} \in E_{k}^{m}$ such that $\tilde{H}(\boldsymbol{y})=f(\boldsymbol{v})$ and $\left(\left(y_{1}, \ldots, y_{m}\right), \boldsymbol{v}\right) \in \sigma(*)$. Let $\boldsymbol{x}_{i}=\left(x_{i, 1}, \ldots, x_{i, h}\right) \in \rho, 1 \leq i \leq m+l$. For $j=1, \ldots, h$, we set $\boldsymbol{d}_{j}=\left(x_{1, j}, \ldots, x_{m+l, j}\right)$ and $\boldsymbol{d}_{j}^{\prime}=\left(x_{1, j}, \ldots, x_{m, j}\right)$. It is clear that $\left(\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{h}\right),\left(\boldsymbol{d}_{1}^{\prime}, \ldots, \boldsymbol{d}_{h}^{\prime}\right) \in \rho$. From $(*)$, there exist $\boldsymbol{v}_{j}=\left(v_{1, j}, \ldots, v_{m, j}\right)$, such that $\tilde{H}\left(\boldsymbol{d}_{j}\right)=f\left(\boldsymbol{v}_{j}\right)$ and $\left(\left(x_{1, j}, \ldots, x_{m, j}\right), \boldsymbol{v}_{j}\right)=\left(\boldsymbol{d}_{j}^{\prime}, \boldsymbol{v}_{j}\right) \in \sigma$ for $1 \leq j \leq$ h. Hence $\boldsymbol{u}_{1}=\left(v_{1,1}, \ldots, v_{1, h}\right), \ldots, \boldsymbol{u}_{m}=\left(v_{m, 1}, \ldots, v_{m, h}\right) \in \rho$ (due to $\rho \sigma$ closed, $\left(\boldsymbol{d}_{j}^{\prime}, \boldsymbol{v}_{j}\right) \in \sigma, 1 \leq j \leq h$ and $\left(\boldsymbol{d}_{1}^{\prime}, \ldots, \boldsymbol{d}_{h}^{\prime}\right) \in \rho$). Since $f \in \operatorname{Pol} \rho$, we have $f\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{h}\right)=\left(f\left(\boldsymbol{v}_{1}\right), \ldots, f\left(\boldsymbol{v}_{h}\right)\right) \in \rho$. Therefore $\left(\tilde{H}\left(\boldsymbol{d}_{1}\right), \ldots, \tilde{H}\left(\boldsymbol{d}_{h}\right)\right)=$ $\left(f\left(\boldsymbol{v}_{1}\right), \ldots, f\left(\boldsymbol{v}_{h}\right)\right)=f\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right) \in \rho$. Thus $\tilde{H} \in \operatorname{Pol} \rho$. Hence $\tilde{H} \in \operatorname{Pol}\{\rho, \sigma\}$.
(ii) If σ is of type II, for every $a \in E_{k}$, we set $c_{[a]_{\sigma}}=\min \left(C_{\rho} \cap[a]_{\sigma}\right)$ (where E_{k} is ordered by the natural order of \mathbb{N}). Set

$$
\tilde{H}(\boldsymbol{y})= \begin{cases}f(\boldsymbol{u}) & \text { if } \exists \boldsymbol{u} \in E_{k}^{m}, \boldsymbol{y}=\operatorname{ext}(\boldsymbol{u}) ; \\ c_{[f(\boldsymbol{u})]_{\sigma}} & \text { if } \forall \boldsymbol{z} \in E_{k}^{m}, \operatorname{ext}(\boldsymbol{z}) \neq \boldsymbol{y} \wedge \exists \boldsymbol{u} \in E_{k}^{m}, \\ & (\operatorname{ext}(\boldsymbol{u}), \boldsymbol{y}) \in \sigma ; \\ c_{\left[f\left(c_{\left[y_{1}\right] \sigma}, \ldots, c_{\left[y_{m}\right] \sigma}\right)\right]_{\sigma}} & \text { elsewhere. }\end{cases}
$$

The function \tilde{H} is well defined. Using the reflexivity and the transitivity of partial order we can show that $\tilde{H} \in \operatorname{Pol} \sigma$. It remains to show that $\tilde{H} \in \operatorname{Pol} \rho$. Using the fact that $f \in \operatorname{Pol} \rho,(\operatorname{ext}(\boldsymbol{u}), \operatorname{ext}(\boldsymbol{v})) \in \sigma$ iff $\boldsymbol{u}=\boldsymbol{v}$, and $c_{[f(\boldsymbol{u})]_{\sigma}}$ a central element of ρ for $\boldsymbol{u} \in E_{k}^{m}$, we obtain $\tilde{H} \in \operatorname{Pol} \rho$. Thus $\tilde{H} \in \operatorname{Pol}\{\rho, \sigma\}$.
(iii) If σ is of type III or IV, then we set

$$
\tilde{H}(\boldsymbol{y})= \begin{cases}f(\boldsymbol{u}) & \text { if } \exists \boldsymbol{u} \in E_{k}^{m}, \boldsymbol{y}=\operatorname{ext}(\boldsymbol{u}) ; \\ \mathrm{T} & \text { if } \forall \boldsymbol{z} \in E_{k}^{m}, \operatorname{ext}(\boldsymbol{z}) \neq \boldsymbol{y} \wedge \exists \boldsymbol{u} \in E_{k}^{m},(\operatorname{ext}(\boldsymbol{u}), \boldsymbol{y}) \in \sigma \\ \perp & \text { elsewhere. }\end{cases}
$$

The function \tilde{H} is well defined. Using the reflexivity and transitivity of partial order one can show that $\tilde{H} \in \operatorname{Pol} \sigma$. Since $\{\perp, \top\} \subseteq C_{\rho}$ and $f \in \operatorname{Pol} \rho$, it is easy to show that $\tilde{H} \in \operatorname{Pol} \rho$. Thus $\tilde{H} \in \operatorname{Pol}\{\rho, \sigma\}$.
(iv) If σ is of type VIII, then for $\boldsymbol{y} \in E_{k}^{m+l} \backslash \operatorname{ext}\left(E_{k}^{m}\right)$ set $D_{\boldsymbol{y}}=\{f(\boldsymbol{x})$: $(\operatorname{ext}(\boldsymbol{x}), \boldsymbol{y}) \in \sigma\}$. If $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{h} \in D \boldsymbol{y}$, then there exist $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h} \in E_{k}^{m}$ such that $\boldsymbol{b}_{i}=f\left(\boldsymbol{x}_{i}\right)$ and $\left(\operatorname{ext}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}\right) \in \sigma$ for all $i \in \underline{h}$. Consequently, $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}\right) \in \sigma_{h}=\rho$. Since $f \in \operatorname{Pol} \rho$, it follows that $\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{h}\right)=\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{h}\right)\right) \in \rho$. Therefore $D_{\boldsymbol{y}}^{h} \subseteq \rho$; so $D_{\boldsymbol{y}}$ is a ρ-chain. Hence we set $\tau(\boldsymbol{y})=\min \left\{j: D \boldsymbol{y} \subseteq A_{j}\right\}$ for $\boldsymbol{y} \in E_{k}^{m+l} \backslash \operatorname{ext}\left(E_{k}^{m}\right)$ and we fix $c_{i} \in A_{i} \cap C_{\rho}$ such that for every $a \in A_{i}\left(a, c_{i}\right) \in \sigma$. We set

$$
\tilde{H}(\boldsymbol{y})= \begin{cases}f(\boldsymbol{u}) & \text { if } \exists \boldsymbol{u} \in E_{k}^{m}, \boldsymbol{y}=\operatorname{ext}(\boldsymbol{u}) ; \\ c_{\tau(\boldsymbol{y})} & \text { if } \forall \boldsymbol{z} \in E_{k}^{m}, \operatorname{ext}(\boldsymbol{z}) \neq \boldsymbol{y} \wedge \exists \boldsymbol{u} \in E_{k}^{m},(\operatorname{ext}(\boldsymbol{u}), \boldsymbol{y}) \in \sigma \\ c_{0} & \text { elsewhere }\end{cases}
$$

The function \tilde{H} is well defined. We show that $\tilde{H} \in \operatorname{Pol} \sigma$. Let $\boldsymbol{y}_{1}=\left(u_{1}, \ldots, u_{m+l}\right)$, $\boldsymbol{y}_{2}=\left(v_{1}, \ldots, v_{m+1}\right) \in E_{k}^{m+l}$ such that $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \in \sigma$. We show that $\left(\tilde{H}\left(\boldsymbol{y}_{1}\right), \tilde{H}\left(\boldsymbol{y}_{2}\right)\right)$ $\in \sigma$. If $\boldsymbol{y}_{1}=\boldsymbol{y}_{2}$ we are done, because σ is reflexive. Assume that $\boldsymbol{y}_{1} \neq \boldsymbol{y}_{2}$. We distinguish two cases.

Case 1. $\boldsymbol{y}_{1 \sim}=\operatorname{ext}\left(\boldsymbol{u}_{1}\right)$ and for all $\boldsymbol{z} \in E_{k}^{m}, \operatorname{ext}(\boldsymbol{z}) \neq \boldsymbol{y}_{2}$, then the definition of \tilde{H} yields that $\tilde{H}\left(\boldsymbol{y}_{2}\right)=c_{\tau\left(\boldsymbol{y}_{2}\right)}$; so $\left(\tilde{H}\left(\boldsymbol{y}_{1}\right), \tilde{H}\left(\boldsymbol{y}_{2}\right)\right)=\left(f\left(\boldsymbol{u}_{1}\right), c_{\tau\left(\boldsymbol{y}_{2}\right)}\right) \in \sigma$.

Case 2. $\left(\tilde{H}\left(\boldsymbol{y}_{1}\right), \tilde{H}\left(\boldsymbol{y}_{2}\right)\right) \in\left\{\left(c_{0}, c_{0}\right),\left(c_{\tau\left(\boldsymbol{y}_{1}\right)}, c_{\tau\left(\boldsymbol{y}_{2}\right)}\right),\left(c_{\tau\left(\boldsymbol{y}_{1}\right)}, c_{0}\right),\left(c_{0}, c_{\tau\left(\boldsymbol{y}_{2}\right)}\right)\right\} \subseteq$ σ because $C_{\rho} \subseteq A_{i}, 0 \leq i \leq t-1$. Thus $\tilde{H} \in \operatorname{Pol} \sigma$.
(v) If σ is of type X, then for $\boldsymbol{y} \in E_{k}^{m+l} \backslash \operatorname{ext}\left(E_{k}^{m}\right)$ set also $D \boldsymbol{y}=\{f(\boldsymbol{x})$: $(\operatorname{ext}(\boldsymbol{x}), \boldsymbol{y}) \in \sigma\}$. If $\boldsymbol{b}_{1}, \boldsymbol{b}_{2} \in D \boldsymbol{y}$, then there exist $\boldsymbol{x}_{i} \in E_{k}^{m}, i=1,2$ such that $\boldsymbol{b}_{i}=\operatorname{ext}\left(\boldsymbol{x}_{i}\right)$ and $\left(\operatorname{ext}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}\right) \in \sigma$ for $i=1,2$. Consequently, $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \in \sigma_{2}=\rho$. Since $f \in \operatorname{Pol} \rho$, it follows that $\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)=\left(f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right)\right) \in \rho$. Therefore $D_{\boldsymbol{y}}^{2} \subseteq \rho$, so $D_{\boldsymbol{y}}$ is a ρ - chain. Furthermore, we set $A(\boldsymbol{y})=\cap\left\{A_{j}: D \boldsymbol{y} \subseteq A_{j}\right\}$ for $\boldsymbol{y} \in E_{k}^{m+l} \backslash \operatorname{ext}\left(E_{k}^{m}\right)$ and we denote by $\top_{A(\boldsymbol{y})}$ the greatest element of $A(\boldsymbol{y})$. We extend H on E_{k}^{m+l} by setting for all \boldsymbol{y} not in the range of ext,

$$
\tilde{H}(\boldsymbol{y})= \begin{cases}\top_{A(\boldsymbol{y})} & \text { if } \exists \boldsymbol{x} \in E_{k}^{m},(\operatorname{ext}(\boldsymbol{x}), \boldsymbol{y}) \in \sigma \\ \perp & \text { elsewhere }\end{cases}
$$

Since σ is reflexive and transitive, then one can easily show that $\tilde{H} \in \operatorname{Pol} \sigma$. Due to $\perp \in C_{\rho}$ it is easy to see that $\tilde{H} \in \operatorname{Pol} \rho$.
(vi) If σ is of type XI, then σ^{-1} is of type X. The same argument above show that the extension \tilde{H} of H defined by

$$
\tilde{H}(\boldsymbol{y})= \begin{cases}\perp_{A(\boldsymbol{y})} & \text { if } \exists \boldsymbol{x} \in E_{k}^{m},(\operatorname{ext}(\boldsymbol{x}), \boldsymbol{y}) \in \sigma ; \\ \top & \text { elsewhere }\end{cases}
$$

belongs to $\operatorname{Pol}\{\rho, \sigma\}$. We have shown that \tilde{H} belongs to $\operatorname{Pol}\{\rho, \sigma\}$ for $l \in$ $\{I, I I, I I I, I V, V I I I, X, X I\}$. Therefore $f(\boldsymbol{x})=\tilde{H}\left(\boldsymbol{x}, f_{1}(\boldsymbol{x}), \ldots, f_{l}(\boldsymbol{x})\right)$ and $f \in$ $\langle\operatorname{Pol}\{\rho, \sigma\} \cup\{g\}\rangle$ as desired.

Now, we look at Case $2(l \in\{V, V I\})$. In this case, the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ below $\operatorname{Pol} \rho$ is given by the following known result.

Proposition 4.3 ([12], Theorem 3.2). Let $k \geq 3$, ρ be an h-ary central relation on E_{k} with $h \geq 2$ and σ be a binary central relation on E_{k} such that $\sigma \neq \rho$. The clone $\operatorname{Pol}\{\rho, \sigma\}$ is maximal below $\operatorname{Pol} \rho$ if and only if σ fulfills one of the following two conditions:
(V) ρ and σ are comparable (i.e., $\rho \subsetneq \sigma$ or $\sigma \subsetneq \rho$).
(VI) $h \geq 3$ and $C_{\rho} \cap C_{\sigma} \neq \emptyset$.

We continue with Case $3(l=V I I)$. Here we use the following result due to Rosenberg and Szendrei. Recall that $\Delta_{E_{k}}=\left\{(x, x): x \in E_{k}\right\}$.
Proposition 4.4 ([8], Proposition 4.3). Let $k \geq 3$, π be a fixed point free permutation on E_{k} with $\pi^{p}=i d$ (p prime) and ρ be an h-ary σ_{π}-closed central relation $(h \geq 2)$. The relational subalgebras of $\left[\left\{\pi^{\circ}, \rho\right\}\right]$ form a 4 -element boolean lattice consisting of $\left[\left\{\pi^{\circ}, \rho\right\}\right],\left[\left\{\pi^{\circ}\right\}\right],[\{\rho\}]$ and $\left[\left\{\Delta_{E_{k}}\right\}\right]$.

The next Corollary gives the maximality of $\operatorname{Pol}\left\{\pi^{\circ}, \rho\right\}$ in $\operatorname{Pol} \rho$.
Corollary 4.5. Let $k \geq 3, \pi$ be a fixed point free permutation on E_{k} with $\pi^{p}=i d$ (p prime) and ρ be an h-ary σ_{π}-closed central relation $(h \geq 2)$. Then the clone $\operatorname{Pol}\left\{\rho, \pi^{\circ}\right\}$ is maximal below $\operatorname{Pol} \rho$.
Proof. It follows from Proposition 4.4.
We finish our investigation with Case $4(l=I X)$.
Lemma 4.6. Let $k \geq 3$, ρ be a binary central relation and σ a binary relation such that $\rho=\sigma \cap \sigma^{-1}$. A binary relation τ on E_{k} is preserved by all operations in $\operatorname{Pol} \sigma$ if and only if $\tau \in\left\{\emptyset, \Delta_{E_{k}}, \sigma, \sigma^{-1}, \rho, E_{k}^{2}\right\}$.
Proof. It is clear that if $\tau \in\left\{\emptyset, \Delta_{E_{k}}, \rho, \sigma, \sigma^{-1}, E_{k}^{2}\right\}$, then $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \tau$. Now, let τ be a binary relation such that $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \tau$. If $\tau=\emptyset$, we are done. Otherwise $\emptyset \subsetneq \tau$. Since σ is reflexive, Pol σ contains constant unary operations; therefore $\Delta_{E_{k}} \subseteq \tau$. If $\tau=\Delta_{E_{k}}$, we are done. Otherwise $\Delta_{E_{k}} \subsetneq \tau$ and there exists $(u, v) \in \tau$ such that $u \neq v$. If $(u, v) \in \rho$, then for $(a, b) \in \rho$, the unary operation f defined by $f(x)=a$ if $x=u$ and $f(x)=b$ otherwise, preserves σ (due to $\operatorname{Im}(f)=\{a, b\}$ and $\left.\{a, b\}^{2} \subseteq \rho \subseteq \sigma\right)$; so f preserves τ and $(a, b)=(f(u), f(v)) \in \tau$. Hence $\rho \subseteq \tau$. If $\rho=\tau$, we are done. Otherwise, $\rho \subsetneq \tau$ and there exists $(u, v) \in \tau \backslash \rho$. We have the following three cases: (i) $(u, v) \in \sigma$, (ii) $(v, u) \in \sigma$, (iii) $(u, v) \notin \sigma \cup \sigma^{-1}$. We fix $c \in C_{\rho}$. If $(u, v) \notin \sigma \cup \sigma^{-1}$, then for $(a, b) \in E_{k}^{2}$, the unary operation g defined by $g(x)=\left\{\begin{array}{ll}a & \text { if } x=u, \\ b & \text { if } x=v, \\ c & \text { elsewhere }\end{array} \quad\right.$ preserves σ (due to $\rho \subseteq \sigma$ and $\left.(u, v) \notin \sigma \cup \sigma^{-1}\right)$). Therefore $(a, b)=(g(u), g(v)) \in \tau$. Hence $\tau=E_{k}^{2}$.

If $(u, v) \in \sigma$, then for $(a, b) \in \sigma$, the unary operation g above preserves σ (due to $(v, u) \notin \sigma$). Thus $(a, b)=(g(u), g(v)) \in \tau$ and $\sigma \subseteq \tau$. If $\sigma=\tau$, we are done; otherwise $\sigma \subsetneq \tau$ and there exists $(u, v) \in \tau \backslash \sigma$. We choose $(m, n) \in \sigma \backslash \rho$. For $(a, b) \in E_{k}^{2}$, the binary operation h defined by $h(x, y)= \begin{cases}a & \text { if }(x, y)=(u, m), \\ b & \text { if }(x, y)=(v, n), \\ c & \text { elsewhere }\end{cases}$ preserves σ; hence $(a, b)=(h(u, m), h(v, n)) \in \tau$. Therefore $\tau=E_{k}^{2}$. If $(v, u) \in \sigma$, then using the same argument as above, we can show that $\tau \in\left\{\sigma^{-1}, E_{k}^{2}\right\}$.

Lemma 4.7. If σ is of type $I X$, then $\operatorname{Pol} \sigma$ contains a majority operation.
Proof. Let $c \in C_{\rho}$ and m be the ternary operation defined on E_{k} by

$$
m\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}x_{i} & \text { if } x_{i}=x_{j} \text { for some } 1 \leq i<j \leq 3 \\ c & \text { elsewhere }\end{cases}
$$

From the definition m is a majority operation. It is easy to see that $m \in$ Pol σ.

Proposition 4.8. If σ is of type $I X$, then $\operatorname{Pol} \sigma$ is meet-irreducible and maximal below Pol ρ.

Proof. Let F be a clone such that $\operatorname{Pol} \sigma \subsetneq F$ and $F \neq O_{E_{k}}$. We will prove that $F=\operatorname{Pol} \rho$. From Lemma 4.7, $\operatorname{Pol} \sigma$ contains a majority operation m; hence $m \in F$ and by Baker-Pixley Theorem 2.1 we get $F=\bigcap_{\tau \in R} \operatorname{Pol} \tau$ for a set R of binary relations on E_{k}. Since $\operatorname{Pol} \sigma \subsetneq F$, we get from Lemma 4.6 that $R \subseteq$ $\left\{\emptyset, \Delta_{E_{k}}, \rho, \sigma, \sigma^{-1}, E_{k}^{2}\right\}$. By assumptions, there exists an operation f such that $f \in F$ and $f \notin \operatorname{Pol} \sigma=\operatorname{Pol} \sigma^{-1}$; therefore $\sigma, \sigma^{-1} \notin R$. Thus $R \subseteq\left\{\emptyset, \Delta_{E_{k}}, \rho, E_{k}^{2}\right\}$, which implies that $F=\operatorname{Pol} \rho$.

Remark 4.9. In fact, one can prove that if σ is of type VIII, X or XI, then $\operatorname{Pol} \sigma$ is meet-irreducible below $\operatorname{Pol} \rho$.

The more difficult part of this work is the proof of necessity in Theorem 3.2 discussed in the next section.

5. Proof of necessity in Theorem 3.2

In this section, we show that the relations of type I-XI are the only binary relations σ such that the clones $\operatorname{Pol}\{\rho, \sigma\}$ are maximal in $\operatorname{Pol} \rho$. For an arbitrary h-ary central relation $\rho(h \geq 2)$ the submaximal clones of $\operatorname{Pol} \rho$ are divided into two types, the meet-reducible submaximal clones of the form $\operatorname{Pol} \rho \cap \operatorname{Pol} \sigma$ where σ is one of the six types listed in Theorem 2.2 and the meet-irreducible submaximal
clones $\operatorname{Pol} \sigma$ where σ is not in the list of Theorem 2.2. Following this observation, our investigation is about binary relation σ of Theorem 2.2 and binary relation σ such that $\operatorname{Pol} \sigma$ is only covered by $\operatorname{Pol} \rho$. Since the case of binary central relation is fully described by Proposition 4.3, we share our investigation into four cases: (i) σ is a nontrivial equivalence relation, (ii) σ is a bounded partial order, (iii) σ is the graph of a prime permutation and (iv) $\operatorname{Pol} \sigma$ is meet-irreducible below Pol ρ.

5.1. Case (i): σ is a nontrivial equivalence relation

Proposition 5.1. Let $k \geq 3, \rho$ be an h-ary central relation $(h \geq 2)$ and σ be a nontrivial equivalence relation on E_{k} with t classes. If $\operatorname{Pol}\{\rho, \sigma\}$ is a maximal subclone of $\operatorname{Pol} \rho$, then σ is of type I or II.

The proof of Proposition 5.1 is divided into Lemmas 5.3-5.8. We set

$$
\begin{aligned}
\sigma_{j}=\{ & \left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists u_{1} \in\left[a_{1}\right]_{\sigma}, \ldots, \exists u_{j} \in\left[a_{j}\right]_{\sigma}, \\
& \left.\left(u_{1}, \ldots, u_{j}, a_{j+1}, \ldots, a_{h}\right) \in \rho\right\}
\end{aligned}
$$

and $\delta_{j}=\bigcap_{s \in S_{h}}\left(\sigma_{j}\right)_{s}, j \in \underline{h}$. For $j \in \underline{h}$ we have $\rho \subseteq \sigma_{j}$ and $\operatorname{Pol}\{\sigma, \rho\} \subseteq \operatorname{Pol}\left\{\rho, \sigma_{j}\right\}$ (due to $\sigma_{j} \in[\{\rho, \sigma\}]$). If $h=2$, then $\rho \nsubseteq \sigma$ (due to ρ is a central relation); we choose $(a, b) \in \rho \backslash \sigma$. If $h \geq 3$, then we choose $(a, b) \in E_{k}^{2} \backslash \sigma$. Let $(e, d) \in \sigma$ such that $e \neq d$. Consider the unary operation f_{1} defined on E_{k} by $f_{1}(x)=a$ if $x=e$ and $f_{1}(x)=b$ otherwise. Since $(e, d) \in \sigma$ and $\left(f_{1}(e), f_{1}(d)\right)=(a, b) \notin \sigma$, then $f_{1} \notin \operatorname{Pol} \sigma ;$ but, $f_{1} \in \operatorname{Pol}\left\{\rho, \sigma_{j}\right\}$ (due to $\operatorname{Im} f_{1}=\{a, b\},\{a, b\}^{2} \subseteq \rho \subseteq \sigma_{j}$ for $h=2$; and ρ and σ_{j} are totally reflexive for $h \geq 3$). Therefore, for all $j \in \underline{h}, \operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\left\{\rho, \sigma_{j}\right\}\left(*_{1}\right)$. From definition, σ_{h} is totally reflexive, totally symmetric and $\rho \subseteq \sigma_{h} \subseteq E_{k}^{h}$; so we have the following three cases: (1) $\rho=\sigma_{h}$, (2) $\rho \subsetneq \sigma_{h} \subsetneq E_{k}^{h}$ and (3) $\sigma_{h}=E_{k}^{h}$.

Lemma 5.2. If the assumptions of Proposition 5.1 are satisfied, then the case $\rho \subsetneq \sigma_{h} \subsetneq E_{k}^{h}$ is impossible.
Proof. Suppose that $\rho \subsetneq \sigma_{h} \subsetneq E_{k}^{h}$. Since σ_{h} is totally reflexive (reflexive if $h=2$), totally symmetric (symmetric if $h=2$) and $\rho \subsetneq \sigma_{h} \subsetneq E_{k}^{h}$, then σ_{h} is an h-ary central relation. From ($*_{1}$) we have $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\left\{\rho, \sigma_{h}\right\}$. Furthermore, $\operatorname{Pol} \rho$ and $\operatorname{Pol} \sigma_{h}$ are two distinct maximal clones, so $\operatorname{Pol}\left\{\rho, \sigma_{h}\right\} \subsetneq \operatorname{Pol} \rho$. Thus $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\left\{\rho, \sigma_{h}\right\} \subsetneq \operatorname{Pol} \rho$, contradicting the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ in Pol ρ.

Lemma 5.3. If the assumptions of Proposition 5.1 are satisfied and $\rho=\sigma_{h}$, then σ is of type I.
Proof. Assume that $\rho=\sigma_{h}$. It is easy to check that σ_{h} is σ-closed. Hence $\rho=\sigma_{h}$ and σ is of type I.

We continue our investigation with the Case (3) $\sigma_{h}=E_{k}^{h}$. We recall that σ has t classes $(t \geq 2)$. For $i \geq 2$ we denote by ξ_{i} the i-ary relation

$$
\xi_{i}=\left\{\left(a_{1}, \ldots, a_{i}\right) \in E_{k}^{i}: \exists a_{1}^{\prime} \in\left[a_{1}\right]_{\sigma}, \ldots, a_{i}^{\prime} \in\left[a_{i}\right]_{\sigma},\left\{a_{1}^{\prime}, \ldots, a_{i}^{\prime}\right\}^{h} \subseteq \rho\right\} .
$$

We have $\sigma_{h}=\xi_{h}=E_{k}^{h}$ and ξ_{t} satisfies one of the following two conditions:
(3.1) $\xi_{t}=E_{k}^{t}$, (3.2) $\xi_{t} \neq E_{k}^{t}$. In the case $\xi_{t} \neq E_{k}^{t}$, we denote by n the least integer N such that $\xi_{N} \neq E_{k}^{N}$. We have $n>h$ (due to $\xi_{h}=E_{k}^{h}$).

Lemma 5.4. If the assumptions of Proposition 5.1 are satisfied and $\sigma_{h}=E_{k}^{h}$, then $\xi_{t}=E_{k}^{t}$.

Proof. Assume that $\xi_{t} \neq E_{k}^{t}$. The minimality of n yields that $\xi_{n-1}=E_{k}^{n-1}$. It is easy to check that ξ_{n} is totally symmetric and totally reflexive. Let $c \in C_{\rho}$ and $\left(a_{1}, \ldots, a_{n-1}\right) \in E_{k}^{n-1}=\xi_{n-1}$, we have, $\left(a_{1}, \ldots, a_{n-1}, c\right) \in \xi_{n}$ (due to σ is reflexive). So ξ_{n} is an n-ary central relation ($n>h$), and ξ_{n} and ρ are two distinct central relations; therefore $\operatorname{Pol}\left\{\rho, \xi_{n}\right\} \subsetneq \operatorname{Pol} \rho$. Since $\rho, \xi_{n} \in[\{\sigma, \rho\}]$, we have $\operatorname{Pol}\{\rho, \sigma\} \subseteq \operatorname{Pol}\left\{\rho, \xi_{n}\right\}$ and the previous unary operation f_{1} preserves ρ and ξ_{n} and does not preserve σ. Thus $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\left\{\rho, \xi_{n}\right\} \subsetneq \operatorname{Pol} \rho$; contradicting the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ in $\operatorname{Pol} \rho$. Hence $\xi_{t}=E_{k}^{t}$.

Now we assume that $\xi_{t}=E_{k}^{t}$. Therefore there exist $u_{1}, \ldots, u_{t} \in E_{k}$ such that $\left(u_{i}, u_{j}\right) \notin \sigma$ for $1 \leq i<j \leq t$ and $\left\{u_{1}, \ldots, u_{t}\right\}^{h} \subseteq \rho$. We set $T=\left\{u_{1}, u_{2} \ldots, u_{t}\right\}$, T is called a transversal of σ and ρ. Furthermore, we assume that there is a transversal T of σ and ρ such that $T^{h} \subseteq \rho$. Recall that for all $j \in \underline{h}$, $\delta_{j}=\bigcap_{s \in S_{h}}\left(\sigma_{j}\right)_{s}$ is totally reflexive (or reflexive if $h=2$) and totally symmetric (symmetric if $h=2$). We have $\delta_{h}=E_{k}^{h}$. For all $1 \leq j \leq h-1, \rho \subseteq \delta_{j} \subseteq E_{k}^{h}$ and we have the following three subcases: (4.1) $\rho=\delta_{j}$, (4.2) $\rho \subsetneq \delta_{j} \subsetneq E_{k}^{h}$ or (4.3) $\delta_{j}=E_{k}^{h}$.

First, we study the subcase $\rho \subsetneq \delta_{j} \subsetneq E_{k}^{h}$ for some $1 \leq j \leq h-1$.
Lemma 5.5. If the assumptions of Proposition 5.1 are satisfied and there is a transversal T of the σ-classes such that $T^{h} \subseteq \rho$, then there is no $1 \leq j \leq h-1$ such that $\rho \subsetneq \delta_{j} \subsetneq E_{k}^{h}$.

Proof. Let $1 \leq j \leq h-1$ such that $\rho \subsetneq \delta_{j} \subsetneq E_{k}^{h}$; it is clear that δ_{j} is an h-ary central relation distinct from ρ and a similar argument as in the proof of Lemma 5.2 shows that $\operatorname{Pol}(\{\rho, \sigma\}) \subsetneq \operatorname{Pol}\left(\left\{\rho, \delta_{j}\right\}\right) \subsetneq \operatorname{Pol}(\rho)$.

Lemma 5.6. If the assumptions of Proposition 5.1 are satified and there exists a transversal T such that $T^{h} \subseteq \rho$, then there is no $1 \leq j \leq h-1$ such that $\rho=\delta_{j}$.

Proof. Let $1 \leq j \leq h-1$ such that $\rho=\delta_{j}$. Since $\delta_{i} \subseteq \delta_{l}$ for all $1 \leq i \leq l \leq h-1$, we can suppose that j is the greatest integer N such that $\rho=\delta_{N}$. Thus $\rho=\delta_{j} \subsetneq$ δ_{j+1}. Therefore $\delta_{j+1}=E_{k}^{h}$. So $\delta_{1}=\delta_{j}=\rho$. Recall that $\delta_{1}=\bigcap_{s \in S_{h}}\left(\sigma_{1}\right)_{s}$ and

$$
\sigma_{1}:=\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists u \in E_{k},\left(a_{1}, u\right) \in \sigma \wedge\left(u, a_{2}, \ldots, a_{h}\right) \in \rho\right\} .
$$

Thus $\sigma_{1} \neq E_{k}^{h}$. We have the following possibilities

$$
\text { (i) } \rho=\sigma_{1} \text { or (ii) } \rho \subsetneq \sigma_{1} \subsetneq E_{k}^{h} \text {. }
$$

Assume that (i) $\rho=\sigma_{1}$ holds. Let $\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h} \backslash \rho$; since $\sigma_{h}=E_{k}^{h}$, there exist $u_{1}, \ldots, u_{h} \in E_{k}$ such that $\left(u_{1}, \ldots, u_{h}\right) \in \rho$ and $\left(a_{1}, u_{1}\right) \in \sigma, \ldots,\left(a_{h}, u_{h}\right) \in \sigma$ $\left(*_{3}\right)$. Since $\left(u_{1}, u_{2}, \ldots, u_{h}\right) \in \rho=\sigma_{1}$, there exists $v_{1} \in E_{k}$ such that $\left(u_{1}, v_{1}\right) \in \sigma$ and $\left(v_{1}, u_{2}, \ldots, u_{h}\right) \in \rho$. Thus $\left(a_{1}, u_{1}\right) \in \sigma$ and $\left(u_{1}, v_{1}\right) \in \sigma$. So $\left(a_{1}, v_{1}\right) \in \sigma$ and $\left(a_{1}, u_{2}, \ldots, u_{h}\right) \in \sigma_{1}=\rho$ (due to $\left(v_{1}, u_{2}, \ldots, u_{h}\right) \in \rho$). By total symmetry of ρ we have $\left(u_{2}, \ldots, u_{h}, a_{1}\right) \in \rho=\sigma_{1}$; so there exists $v_{2} \in E_{k}$ such that $\left(u_{2}, v_{2}\right) \in \sigma$ and $\left(v_{2}, u_{3}, \ldots, u_{h}, a_{1}\right) \in \rho$. By transitivity of σ and $\left(*_{3}\right)$ we obtain $\left(a_{2}, v_{2}\right) \in$ $\sigma,\left(v_{2}, u_{3}, \ldots, u_{h}, a_{1}\right) \in \rho$ and we deduce that $\left(a_{2}, u_{3}, \ldots, u_{h}, a_{1}\right) \in \sigma_{1}=\rho$. Therefore by induction we can show that $\left(a_{1}, a_{2}, \ldots, a_{h}\right) \in \rho$; contradicting the choice of $\left(a_{1}, \ldots, a_{h}\right)$. Therefore $\rho \subsetneq \sigma_{1} \subsetneq E_{k}^{h}$.

Since $\rho=\bigcap_{s \in S_{h}}\left(\sigma_{1}\right)_{s}$, and we have $\operatorname{Pol} \sigma_{1} \subseteq \operatorname{Pol} \rho$; in addition $\sigma_{1} \in[\{\sigma, \rho\}]$, so $\operatorname{Pol}\{\rho, \sigma\} \subseteq \operatorname{Pol} \sigma_{1}$. It follows that $\operatorname{Pol}\{\rho, \sigma\} \subseteq \operatorname{Pol} \sigma_{1} \subseteq \operatorname{Pol} \rho$. The unary operation f_{1} defined above preserves ρ and σ_{1} and does not preserves σ, therefore $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol} \sigma_{1}$. We will show that $\operatorname{Pol} \sigma_{1} \subsetneq \operatorname{Pol} \rho$. From $\rho \subsetneq \sigma_{1} \subsetneq E_{k}^{h}$ we choose $\left(b_{1}, \ldots, b_{h}\right) \in E_{k}^{h} \backslash \sigma_{1}$ and $\left(u_{1}, \ldots, u_{h}\right) \in \sigma_{1} \backslash \rho$ and $c \in C_{\rho}$. Consider the unary operation f defined on E_{k} by $f(x)=b_{i}$ if $x=u_{i}$ for some $1 \leq i \leq h$ and $f(x)=c$ otherwise. The function f is well defined (because $\left|\left\{u_{1}, \ldots, u_{h}\right\}\right|=h$ and ρ totally reflexive). We have $\left(u_{1}, \ldots, u_{h}\right) \in \sigma_{1}$ and $\left(f\left(u_{1}\right), \ldots, f\left(u_{h}\right)\right)=$ $\left(b_{1}, \ldots, b_{h}\right) \notin \sigma_{1}$, so $f \notin \operatorname{Pol} \sigma_{1}$. It is easy to check that $f \in \operatorname{Pol} \rho$. Hence $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol} \sigma_{1} \subsetneq \operatorname{Pol} \rho ;$ contradicting the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ in $\operatorname{Pol} \rho$.

From Lemmas 5.5-5.6, we conclude that for all $1 \leq j \leq h-1, \delta_{j}=E_{k}^{h}$. Therefore $\delta_{1}=E_{k}^{h}=\bigcap_{s \in S_{h}}\left(\sigma_{1}\right)_{s}$. Hence $E_{k}^{h}=\sigma_{1}=\left(\sigma_{1}\right)_{s}$ for all $s \in S_{h}$. We set $F=\left\{\left\{x_{1}, \ldots, x_{h-1}\right\} \subseteq E_{k}: \operatorname{Card}\left(\left\{x_{1}, \ldots, x_{h-1}\right\}\right)=h-1,\left\{x_{1}, \ldots, x_{h-1}\right\} \cap C_{\rho}=\right.$ $\emptyset\}$. Let $m=\operatorname{Card}(F)$, then $m \geq 2$ (because $k \geq 3$ and $h \geq 2$) and set

$$
\begin{aligned}
\gamma_{m(h-1)+1}= & \left\{\left(a_{1}, a_{1,1}, \ldots, a_{1, h-1}, \ldots, a_{m, 1}, \ldots, a_{m, h-1}\right) \in E_{k}^{m(h-1)+1}:\right. \\
& \left.\exists u_{1} \in\left[a_{1}\right]_{\sigma}:\left\{\left(u_{1}, a_{i, 1}, \ldots, a_{i, h-1}\right), 1 \leq i \leq m\right\} \subseteq \rho\right\} .
\end{aligned}
$$

We have two subcases:

$$
\text { (i) } \gamma_{m(h-1)+1} \neq E_{k}^{m(h-1)+1} \text { and (ii) } \gamma_{m(h-1)+1}=E_{k}^{m(h-1)+1} .
$$

Lemma 5.7. If the assumptions of Proposition 5.1 are satisfies and $\sigma_{1}=E_{k}^{h}$, then $\gamma_{m(h-1)+1}=E_{k}^{m(h-1)+1}$.
Proof. Assume $\sigma_{1}=E_{k}^{h}$ and $\gamma_{m(h-1)+1} \neq E_{k}^{m(h-1)+1}$. We will show that $\operatorname{Pol}(\{\rho, \sigma\}) \subsetneq \operatorname{Pol}\left(\left\{\rho, \gamma_{m(h-1)+1}\right\}\right) \subsetneq \operatorname{Pol}(\rho)$. Since $\gamma_{m(h-1)+1} \in[\{\sigma, \rho\}]$, we have $\operatorname{Pol}(\{\rho, \sigma\}) \subseteq \operatorname{Pol}\left(\left\{\rho, \gamma_{m(h-1)+1}\right\}\right) \subseteq \operatorname{Pol}(\rho)$. The above unary operation f_{1} preserves ρ and $\gamma_{m(h-1)+1}$ and does not preserve σ; therefore $\operatorname{Pol}(\{\rho, \sigma\}) \subsetneq$ $\operatorname{Pol}\left(\left\{\rho, \gamma_{m(h-1)+1}\right\}\right)$. It remains to show that $\operatorname{Pol}\left(\left\{\rho, \gamma_{m(h-1)+1}\right\}\right) \subsetneq \operatorname{Pol}(\rho)$. Let $c \in C_{\rho}$ and $\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h} \backslash \rho$, we set $W=\left\{\left(i_{1}, \ldots, i_{h}\right): 1 \leq i_{1}<\cdots<\right.$ $\left.i_{h} \leq m(h-1)+1\right\}$, denoted simply by $W=\left\{\left(i_{1}^{j}, \ldots, i_{h}^{j}\right): 1 \leq j \leq q\right\}$ where $q=|W|$. For $1 \leq j \leq q$, we set $\boldsymbol{y}_{j}=\left(x_{j, 1}, \ldots, x_{j, m(h-1)+1}\right)$ such that for all $p, 1 \leq p \leq m(h-1)+1, x_{j, p}=a_{l}$ if $p=i_{l}^{j}$ for some $1 \leq l \leq h$ and $x_{j, p}=c$ otherwise. For $1 \leq i \leq m(h-1)+1$, we set $\boldsymbol{x}_{i}=\left(x_{1, i}, \ldots, x_{q, i}\right)$. Let $\boldsymbol{v}=\left(v_{1}, \ldots, v_{m(h-1)+1}\right) \in E_{k}^{m(h-1)+1} \backslash \gamma_{m(h-1)+1}$ and f be the q-ary operation defined on E_{k} by

$$
f(\boldsymbol{x})= \begin{cases}v_{i}, & \text { if } \boldsymbol{x}=\boldsymbol{x}_{i} \text { for some } 1 \leq i \leq m(h-1)+1, \\ c & \text { otherwise }\end{cases}
$$

The operation f is well defined, because $\left|\left\{\boldsymbol{x}_{i}: 1 \leq i \leq m(h-1)+1\right\}\right|=$ $m(h-1)+1$. From construction, for all $1 \leq i_{1}<\cdots<i_{h} \leq m(h-1)+1,\left(\boldsymbol{x}_{i_{1}}\right.$, $\left.\ldots, \boldsymbol{x}_{i_{h}}\right) \notin \rho\left(*_{4}\right)$. We have $f \in \operatorname{Pol} \rho$ because $c \in C_{\rho}$ and ($*_{4}$) holds. Using $\left(\sigma_{1}\right)_{s}=E_{k}^{h}$ for all $s \in S_{h}$, the total symmetry, total reflexivity of $\rho(h \geq 3)$ and $c \in C_{\rho}$, we can show that $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{q}\right\} \subseteq \gamma_{m(h-1)+1}$. Thus $f\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{q}\right)=\left(f\left(\boldsymbol{x}_{1}\right)\right.$, $\left.\ldots, f\left(\boldsymbol{x}_{m(h-1)+1}\right)\right)=\left(v_{1}, \ldots, v_{m(h-1)+1}\right) \notin \gamma_{m(h-1)+1} ;$ so $f \notin \operatorname{Pol}\left(\gamma_{m(h-1)+1}\right)$. Thus $\operatorname{Pol}(\{\rho, \sigma\}) \subsetneq \operatorname{Pol}\left(\left\{\rho, \gamma_{m(h-1)+1}\right\}\right) \subsetneq \operatorname{Pol}(\rho)$; contradicting the maximality of $\operatorname{Pol}\{\sigma, \rho\}$ below $\operatorname{Pol} \rho$.

From Lemma 5.7, we have $\gamma_{m(h-1)+1}=E_{k}^{m(h-1)+1}$.
Lemma 5.8. If the assumptions of Proposition 5.1 are satisfied, there exists a transversal T of σ-classes such that $T^{h} \subseteq \rho$ and $\gamma_{m(h-1)+1}=E_{k}^{m(h-1)+1}$, then every equivalence class of σ contains a central element of ρ.

Proof. Let $a \in E_{k}$, we set

$$
\boldsymbol{u}=\left(a, x_{1,1}, \ldots, x_{1, h-1}, x_{2,1}, \ldots, x_{2, h-1}, \ldots, x_{m, 1}, \ldots, x_{m, h-1}\right)
$$

such that $\left\{x_{j, 1}, \ldots, x_{j, h-1}\right\} \in F, 1 \leq j \leq m$. Since $\boldsymbol{u} \in E_{k}^{m(h-1)+1}=\gamma_{m(h-1)+1}$, there exists $v \in[a]_{\sigma}$ such that for all $j \in\{1, \ldots, m\},\left(v, x_{j, 1}, \ldots, x_{j, h-1}\right) \in \rho$. Hence $v \in C_{\rho}$. Thus every equivalence class of σ contains a central element of ρ.

Under the assumptions of Lemma 5.8, σ is of type II.
Proof. (Proof of Proposition 5.1.) It follows from Lemmas 5.3-5.8.

5.2. Case (ii): σ is a bounded partial order

For $a \in E_{k}$ we set $[a]_{\sigma}=\left\{x \in E_{k}:(a, x) \in \sigma\right\}$. The following proposition characterizes σ under the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ in $\operatorname{Pol} \rho$.

Proposition 5.9. Let $k \geq 3, \rho$ be an h-ary central relation $(h \geq 2)$ and σ be a bounded partial order with least element \perp and greatest element T . If $\operatorname{Pol}\{\rho, \sigma\}$ is maximal below $\operatorname{Pol} \rho$, then σ is of type III or IV.

We assume that $\operatorname{Pol}\{\rho, \sigma\}$ is maximal below $\operatorname{Pol} \rho$ and we consider the following h-ary relations

$$
\begin{aligned}
\delta & =\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists u \in E_{k},\left(a_{1}, u\right) \in \sigma,\left(u, a_{2}, \ldots, a_{h}\right) \in \rho\right\}, \\
\delta^{\prime} & =\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}: \exists u \in E_{k},\left(a_{1}, \ldots, a_{h-1}, u\right) \in \rho,\left(u, a_{h}\right) \in \sigma\right\} .
\end{aligned}
$$

We can see that if $h=2$, then $\delta=\sigma \circ \rho$ and $\delta^{\prime}=\rho \circ \sigma$. We have $\rho \subseteq \delta \subseteq E_{k}^{h}$ and $\rho \subseteq \delta^{\prime} \subseteq E_{k}^{h}$. Hence δ (respectively δ^{\prime}) satisfies one of the following conditions

$$
\begin{aligned}
& \text { (a) } \rho=\delta ; \text { (b) } \rho \subsetneq \delta \subsetneq E_{k}^{h} \text { or (c) } \delta=E_{k}^{h} \\
\text { (resp. (a) } \rho=\delta^{\prime} ; ~(b) ~ & \subsetneq \delta^{\prime} \subsetneq E_{k}^{h} \text { or (c) } \delta^{\prime}=E_{k}^{h} \text {). }
\end{aligned}
$$

Lemma 5.10. If the assumptions of Proposition 5.9 are satisfied, then $\rho \neq \delta$ (respectively $\rho \neq \delta^{\prime}$).

Proof. Assume that $\rho=\delta$. Let $a_{1}, \ldots, a_{h} \in E_{k}$, we have $\left(a_{1}, T\right) \in \sigma$ and $\left(\mathrm{T}, a_{2}, \ldots, a_{h-1}, \mathrm{~T}\right) \in \rho$. Thus $\left(a_{1}, a_{2}, \ldots, a_{h-1}, \mathrm{~T}\right) \in \delta=\rho$. Hence $\mathrm{T} \in C_{\rho}$. Furthermore $\left(a_{h}, \top\right) \in \sigma$ and $\left(\top, a_{1}, a_{2}, \ldots, a_{h-1}\right) \in \rho$. Therefore $\left(a_{h}, a_{1}, \ldots, a_{h-1}\right) \in$ ρ and $\rho=E_{k}^{h}$, contradiction. A similar argument solves the case $\rho=\delta^{\prime}$.

It follows that $\rho \subsetneq \delta \subsetneq E_{k}^{h}$ or $\delta=E_{k}^{h}$ and $\rho \subsetneq \delta^{\prime} \subsetneq E_{k}^{h}$ or $\delta^{\prime}=E_{k}^{h}$.
Lemma 5.11. If the assumptions of Proposition 5.9 are satified, then the Case $\rho \subsetneq \delta \subsetneq E_{k}^{h}$ (respectively $\rho \subsetneq \delta^{\prime} \subsetneq E_{k}^{h}$) is impossible.
Proof. Assume that $\rho \subsetneq \delta \subsetneq E_{k}^{h}$. First, we show that $\operatorname{Pol}(\{\rho, \sigma\}) \subsetneq \operatorname{Pol}(\{\rho, \delta\})$. It is easy to see that $\operatorname{Pol}\{\rho, \sigma\} \subseteq \operatorname{Pol}\{\rho, \delta\}$ (due to $\rho, \delta \in[\{\rho, \sigma\}]$). If ρ is binary, then $\rho \nsubseteq \sigma$. Hence there exists $(u, v) \in \rho$ such that $(u, v) \notin \sigma$. Let $(a, b) \in \sigma$ such that $a \neq b$. We consider the unary operation f defined by $f(x)=u$ if $x=a$ and $f(x)=v$ otherwise. The operation f does not preserve σ because $(a, b) \in \sigma$ and $(f(a), f(b))=(u, v) \notin \sigma$. Since $\rho \subseteq \delta$ and $(u, v) \in \rho$, we have $\{u, v\}^{2} \subseteq \rho \subseteq \delta$. Thus f preserves ρ and δ. So $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\{\rho, \delta\}$. If the arity
of ρ is greater than 2 , then δ is totally reflexive. Let $(a, b) \in \sigma$ such that $a \neq b$. The operation h defined by $h(x)=b$ if $x=a$ and $h(x)=a$ otherwise, preserves ρ and δ and does not preserve σ (due to $(a, b) \in \sigma$ and $(h(a), h(b))=(b, a) \notin \sigma)$. Hence $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\{\rho, \delta\}$.

Second, we show that $\operatorname{Pol}\{\rho, \delta\} \subsetneq \operatorname{Pol} \rho$. Let $\left(u_{1}, \ldots, u_{h}\right) \in \delta \backslash \rho$ and $c \in C_{\rho}$, $\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h} \backslash \delta$. The unary operation l defined on E_{k} by $l(x)=a_{i}$ if $x=u_{i}$ for some $1 \leq i \leq h$ and $l(x)=c$ otherwise, is well defined (because $\left|\left\{u_{1}, \ldots, u_{h}\right\}\right|=h$ and ρ totally reflexive) and preserves ρ. Since $\left(u_{1}, \ldots, u_{h}\right) \in \delta$ and $\left(l\left(u_{1}\right), \ldots, l\left(u_{h}\right)\right)=\left(a_{1}, \ldots, a_{h}\right) \notin \delta, l$ does not preserve δ. Therefore $\operatorname{Pol}(\{\rho, \delta\}) \subsetneq \operatorname{Pol}(\rho)$. We conclude that $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\{\rho, \delta\} \subsetneq \operatorname{Pol} \rho$, contradicting the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ in $\operatorname{Pol} \rho$. A similar argument solves the case $\rho \subsetneq \delta^{\prime} \subsetneq E_{k}^{h}$.

Lemma 5.12. If the assumptions of Proposition 5.9 are satified and $\delta=E_{k}^{h}$, then $\{\perp, \top\} \subseteq C_{\rho}$.

Proof. Let $a_{1}, a_{2}, \ldots, a_{h-1} \in E_{k}$. Since $\left(\top, a_{1}, \ldots, a_{h-1}\right) \in E_{k}^{h}=\delta$, there exists $u \in E_{k}$ such that $(T, u) \in \sigma$ and $\left(u, a_{1}, \ldots, a_{h-1}\right) \in \rho$. Hence $u=T$ and $\left(\mathrm{T}, a_{1}, \ldots, a_{h-1}\right) \in \rho$ (due to T is the greatest element of σ). Therefore $T \in C_{\rho}$. Using the previous argument replacing δ and \top by δ^{\prime} and \perp respectively we can show that $\perp \in C_{\rho}$.

We have shown that $\{\perp, \top\} \subseteq C_{\rho}$ and we will use the arity of ρ to conclude.
Lemma 5.13. If the assumptions of Proposition 5.9 are satified and $h \geq 3$, then σ is a bounded partial order of type IV.

Proof. From Lemmas 5.10-5.12, σ satisfies condition (IV) of Theorem 3.2.
From now on we suppose that $\{\perp, \top\} \subseteq C_{\rho}$ and ρ is a binary central relation. We set $\lambda=\sigma \cap \rho$. We have $(\perp, T) \in \lambda$, so $\Delta_{E_{k}} \subsetneq \lambda \subseteq \sigma$. Let $\operatorname{tr}(\lambda)$ be the transitive closure of λ. Since σ is transitive, we have $\operatorname{tr}(\lambda) \subseteq \sigma$. Hence (1) $\operatorname{tr}(\lambda) \subsetneq \sigma$ or (2) $\operatorname{tr}(\lambda)=\sigma$.

Lemma 5.14. If the assumptions of Proposition 5.9 are satified, $\{\perp, \top\} \subseteq C_{\rho}$ and ρ being binary, then $\operatorname{tr}(\lambda)=\sigma$.

Proof. Assume that (1) holds. Since $\operatorname{tr}(\lambda) \in[\{\sigma, \rho\}]$, we have $\operatorname{Pol}\{\rho, \sigma\} \subseteq$ $\operatorname{Pol}\{\rho, \operatorname{tr}(\lambda)\} \subseteq \operatorname{Pol} \rho$. Let $(a, b) \in \sigma$ such that $(a, b) \notin \operatorname{tr}(\lambda)$, then $(\top, \perp) \notin \sigma$ and the unary operation f defined on E_{k} by $f(x)=\mathrm{T}$ if $(a, x) \in \operatorname{tr}(\lambda)$ and $f(x)=\perp$ otherwise does not preserve σ (because $(a, b) \in \sigma$ and $(f(a), f(b))=(\top, \perp) \notin \sigma)$. But, using reflexivity and transitivity of $\operatorname{tr}(\lambda)$ one can check that f preserves $\operatorname{tr}(\lambda)$. Thus $f \in \operatorname{Pol} \rho$ because $\{\perp, \top\} \subseteq C_{\rho} ;$ therefore $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\{\rho, \operatorname{tr}(\lambda)\}$. Let $(u, v) \in \operatorname{tr}(\lambda)$ such that $u \neq v$ and $(a, b) \in \rho \backslash \sigma$; then $(a, b) \notin \operatorname{tr}(\lambda)$. Let
g be the unary operation defined on E_{k} by $g(x)=a$ if $x=u$ and $g(x)=b$ otherwise. The operation g does not preserve $\operatorname{tr}(\lambda)$ (due to $(u, v) \in \operatorname{tr}(\lambda)$ and $(g(u), g(v))=(a, b) \notin \operatorname{tr}(\lambda))$. Since $\operatorname{Im} g=\{a, b\}$ and $(a, b) \in \rho$, we obtain $g \in \operatorname{Pol} \rho$. So $\operatorname{Pol}\{\rho, \operatorname{tr}(\lambda)\} \subsetneq \operatorname{Pol} \rho$. Hence $\operatorname{Pol}\{\rho, \sigma\} \subsetneq \operatorname{Pol}\{\rho, \operatorname{tr}(\lambda)\} \subsetneq \operatorname{Pol} \rho$; contradicting the maximality of $\operatorname{Pol}\{\rho, \sigma\}$ in $\operatorname{Pol} \rho$.

Lemma 5.15. If the assumptions of Proposition 5.9 are satisfied, $\{\perp, \top\} \subseteq C_{\rho}$, ρ being binary and $\operatorname{tr}(\lambda)=\sigma$, then σ is of type III.

Proof. It is easy to observe that σ is of type III.
Proof. (Proof of Proposition 5.9) It follows from Lemmas 5.10-5.15.

5.3. Case (iii): σ is the graph of a prime permutation

In this case, the characterization of σ is given by the following known result.
Proposition 5.16 ([8], Page 37). Let $k \geq 3$, ρ be an h-ary central relation $(h \geq 2)$ and π a fixed point free permutation on E_{k} with $\pi^{p}=i d$ (p prime). The relational algebra $\left[\left\{\pi^{\circ}, \rho\right\}\right]$ contains one of the following relations:
(1) a nontrivial unary relation,
(2) a nontrivial σ_{π}-closed equivalence relation,
(3) a $\sigma_{\pi-c l o s e d ~ c e n t r a l ~ r e l a t i o n, ~}^{\text {- }}$
(4) $a \sigma_{\pi}$-closed regular relation.

Corollary 5.17. Let $k \geq 3$, π be a fixed point free permutation of E_{k} with $\pi^{p}=i d$ (p prime) and ρ be an h-ary central relation $\left(h \geq 2\right.$). If $\operatorname{Pol}\left\{\rho, \pi^{\circ}\right\}$ is maximal below $\operatorname{Pol} \rho$, then ρ is σ_{π}-closed.

Proof. Assume that $\operatorname{Pol}\left\{\rho, \pi^{\circ}\right\}$ is maximal below Pol ρ. From Proposition 5.16 $\left[\left\{\rho, \pi^{\circ}\right\}\right]$ contains a relation γ satisfying (1), (2), (3) or (4). Thus $\operatorname{Pol}\left\{\rho, \pi^{\circ}\right\} \subseteq$ $\operatorname{Pol}\{\gamma, \rho\} \subseteq \operatorname{Pol} \rho$. From Theorem 2.2, $\operatorname{Pol} \gamma$ is a maximal clone. Assume that $\gamma \neq \rho$, then $\operatorname{Pol}\{\rho, \gamma\} \subsetneq \operatorname{Pol} \rho$ (because $\operatorname{Pol} \rho$ and $\operatorname{Pol} \gamma$ are two different maximal clones). Thus $\operatorname{Pol}\left\{\rho, \pi^{\circ}\right\} \subseteq \operatorname{Pol}\{\gamma, \rho\} \subsetneq \operatorname{Pol} \rho$. Let $a \in E_{k}$ such that $a \in \gamma$ whenever γ is unary. Consider the constant unary operation c_{a} with value a. It is easy to see that c_{a} preserves ρ and γ, and c_{a} does not preserve π°. Hence $\operatorname{Pol}\left\{\rho, \pi^{\circ}\right\} \subsetneq \operatorname{Pol}\{\gamma, \rho\} \subsetneq \operatorname{Pol} \rho$, contradicting the choice of π. Therefore $\gamma=\rho$ and we conclude that ρ is σ_{π}-closed.

5.4. Case (iv): Pol σ is maximal and meet-irreducible below Pol ρ

In this subsection, we will show that relations of type VIII, IX, X, and XI are the only binary relations σ such that $\operatorname{Pol} \sigma$ is maximal and meet - irreducible below Pol ρ. First we prove the following important lemma useful for some proofs.

Lemma 5.18. Let $k \geq 3$, ρ be an h-ary central relation $(h \geq 2)$ and γ an h-ary nonempty relation on E_{k}. If $\operatorname{Pol} \rho=\operatorname{Pol} \gamma$, then $\rho=\gamma$.

Proof. Assume that γ is a nonempty h-ary relation and ρ an h-ary central relation $(h \geq 2)$ such that $\operatorname{Pol} \rho=\operatorname{Pol} \gamma$. Our aim is to show that $\rho=\gamma$.

Let $a \in E_{k}$, the constant unary operation c_{a} with value a preserves ρ (due to ρ (totally) reflexive), hence c_{a} preserves γ. Therefore $(\underbrace{a, \ldots, a}_{h \text { times }})$ belongs to γ (due to $\gamma \neq \emptyset$). Thus $\delta^{h} \subseteq \gamma$. Since Pol $\delta^{h}=O_{E_{k}}$, we obtain $\delta^{h} \subsetneq \gamma$. So there exist $\boldsymbol{a}=\left(a_{1}, \ldots, a_{h}\right) \in \gamma$ and $\alpha, \beta \in\{1, \ldots, h\}$ such that $a_{\alpha} \neq a_{\beta}$. We have the following statement.
Claim 1. $\forall 1 \leq i<j \leq h, \exists \boldsymbol{a}^{i j}=\left(a_{1}^{i j}, \ldots, a_{h}^{i j}\right) \in \gamma$ such that $a_{i}^{i j} \neq a_{j}^{i j}$.
In fact, if $h=2$, then Claim 1 is true; if $h>2$, then assume that Claim 1 is false. Therefore there exist $1 \leq i_{0}<j_{0} \leq h$ such that for all $\boldsymbol{a}=\left(a_{1}, \ldots, a_{h}\right) \in \gamma$, we have $a_{i_{0}}=a_{j_{0}}$. Set

$$
\theta=\left\{(i, j) \in \underline{h}^{2}: a_{i}=a_{j} \forall \boldsymbol{a} \in \gamma\right\} .
$$

It is easy to see that θ is a nontrivial equivalence relation on \underline{h} (due to $(\alpha, \beta) \notin \theta$ and $\left.\left(i_{0}, j_{0}\right) \in \theta\right)$. Set also

$$
\delta_{\theta}=\left\{\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h}:(i, j) \in \theta \Longrightarrow a_{i}=a_{j}\right\}
$$

An easy check shows that $\operatorname{Pol} \delta_{\theta}=O_{E_{k}}$ and $\gamma \subseteq \delta_{\theta}$. Let $\boldsymbol{b}=\left(b_{1}, \ldots, b_{h}\right) \in \delta_{\theta}$. For all $1 \leq i<j \leq h$ such that $(i, j) \notin \theta, b_{i} \neq b_{j}$ and there exists $e^{i j}=$ $\left(e_{1}, \ldots, e_{h}\right) \in \gamma$ such that $e_{i} \neq e_{j}$. Set $E=\left\{e^{i j}: 1 \leq i<j \leq h\right.$ and $\left.(i, j) \notin \theta\right\}$. For reason of simple notation we set $E=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}\right\}$ with $q=|E|$. We set also $\boldsymbol{x}_{i}=\left(e_{1, i}, \ldots, e_{q, i}\right)$ for each $i \in \underline{h}$. By construction of $\left(\boldsymbol{x}_{i}\right)_{i \in \underline{h}}$, we have $\boldsymbol{x}_{i} \neq \boldsymbol{x}_{j}$ for all $1 \leq i<j \leq h$ such that $(i, j) \notin \theta$. The q-ary function \bar{f} defined on E_{k}^{q} by

$$
f(\boldsymbol{x})= \begin{cases}b_{i} & \text { if } \boldsymbol{x}=\boldsymbol{x}_{i} \text { for some } 1 \leq i \leq h \\ b_{1} & \text { elsewhere }\end{cases}
$$

preserves ρ (due to $\operatorname{Im}(f)=\left\{b_{1}, \ldots, b_{h}\right\},\left|\left\{b_{1}, \ldots, b_{h}\right\}\right| \leq h-1$ and ρ totally reflexive and totally symmetric). Hence f preserves γ and $\boldsymbol{b} \in \gamma$ (due to $E \subseteq \gamma$ and $\boldsymbol{b}=f\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}\right)=\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{h}\right)\right)$. Thus $\delta_{\theta} \subseteq \gamma$ and $\gamma=\delta_{\theta}$. So $O_{E_{k}}=\operatorname{Pol} \delta_{\theta}=\operatorname{Pol} \gamma=\operatorname{Pol} \rho \neq O_{E_{k}}$ which is a contradiction. So Claim 1 is true.
Claim 2. $\rho \subseteq \gamma$.
In fact, from Claim 1, for all $1 \leq i<j \leq h$ there exists $\boldsymbol{a}^{i j}=\left(a_{1}^{i j}, \ldots, a_{h}^{i j}\right) \in \gamma$ such that $a_{i}^{i j} \neq a_{j}^{i j}$. Set $F=\left\{\boldsymbol{a}^{i j}: 1 \leq i<j \leq h\right\}$, for reason of simple notation we set $F=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}\right\}$ with $q=|F|$. Let $\boldsymbol{b}=\left(b_{1}, \ldots, b_{h}\right) \in \rho$. Setting
$\left(\boldsymbol{x}_{i}\right)_{i \in \underline{h}}$ as above, the function f defined above preserves ρ (due to $\boldsymbol{b} \in \rho, \rho$ is (totally) reflexive and (totally) symmetric); hence f preserves γ. Therefore $\boldsymbol{b}=f\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}\right)=\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{h}\right)\right) \in \gamma$. So $\rho \subseteq \gamma$.
Claim 2. Yields the following statement.
Claim 3. γ is (totally) symmetric.
In fact, let $\left(a_{1}, \ldots, a_{h}\right) \in \gamma$ and $\pi \in S_{h}$, we will show that $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in$ γ. If $\left(a_{1}, \ldots, a_{h}\right) \in \rho$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \rho \subseteq \gamma$ (due to ρ (totally) symmetric). Suppose now that $\left(a_{1}, \ldots, a_{h}\right) \notin \rho$. Let $c \in C_{\rho}$. The unary operation g defined on E_{k} by

$$
g(x)= \begin{cases}a_{\pi(i)} & \text { if } x=a_{i} \text { for some } 1 \leq i \leq h, \\ c & \text { elsewhere }\end{cases}
$$

preserves ρ (due to $\left(a_{1}, \ldots, a_{h}\right) \notin \rho$ and $c \in C_{\rho}$); hence g preserves γ and $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right)=\left(g\left(a_{1}\right), \ldots, g\left(a_{h}\right)\right) \in \gamma$. Therefore γ is (totally) symmetric.

We end this proof with the following statement.
Claim 4. $\rho=\gamma$.
From Claim 2, we have $\rho \subseteq \gamma$. It remains to show that $\gamma \subseteq \rho$. Since ρ satisfies the Claim 2 and γ is (totally) reflexive and (totally) symmetric (due to $\rho \subseteq \gamma$ and Claim 3), a similar argument as in the proof of Claim 2 shows that $\gamma \subseteq \rho$. Therefore $\rho=\gamma$.

Proposition 5.19. Let $k \geq 3, \sigma$ be a binary relation and ρ an h-ary central relation on E_{k} with t distinct maximal ρ-chains $A_{0}, A_{1}, \ldots, A_{t-1}(h \geq 2)$. If $\operatorname{Pol} \sigma$ is meet-irreducible and maximal below $\operatorname{Pol} \rho$, then σ is of type VIII, IX, X or XI.

The proof of Proposition 5.19 is shared into the following lemmas. Let $\sigma \subseteq E_{k}^{2}$ such that $\operatorname{Pol} \sigma$ is meet-irreducible and maximal below $\operatorname{Pol} \rho$. Set

$$
\begin{gathered}
\sigma_{1}=\left\{x \in E_{k}: \exists u \in E_{k},(x, u) \in \sigma\right\}, \sigma_{1}^{\prime}=\left\{x \in E_{k}: \exists u \in E_{k},(u, x) \in \sigma\right\}, \\
\sigma_{2}=\sigma \circ \sigma^{-1} \text { and } \sigma_{2}^{\prime}=\sigma^{-1} \circ \sigma .
\end{gathered}
$$

Since $\sigma \neq \emptyset$, we have $\sigma_{1} \neq \emptyset$ and $\sigma_{1}^{\prime} \neq \emptyset$. It follows that (a) $\emptyset \subsetneq \sigma_{1} \subsetneq E_{k}$ or (b) $\sigma_{1}=E_{k}$ and (a') $\emptyset \subsetneq \sigma_{1}^{\prime} \subsetneq E_{k}$ or (b') $\sigma_{1}^{\prime}=E_{k}$.

Lemma 5.20. If the assumptions of Proposition 5.19 are satisfied, then we have (a) $\sigma_{1}=\sigma_{1}^{\prime}=E_{k}$ and (b) $\sigma_{2}, \sigma_{2}^{\prime} \in\left\{\Delta_{E_{k}}, \rho, E_{k}^{2}\right\}$.

Proof. (a) Clearly $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{1}$. If $\sigma_{1} \neq E_{k}$, then σ_{1} is a relation of type (5) in Theorem 2.2; hence $\operatorname{Pol} \sigma$ is not meet-irreducible, contradicting the choice of σ. Therefore $\sigma_{1}=E_{k}$. A similar argument shows that $\sigma_{1}^{\prime}=E_{k}$.
(b) We have also $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{2}$. Naturally we have the following cases:
(i) σ is not reflexive, (ii) σ is reflexive and not symmetric and (iii) σ is reflexive and symmetric. Now we discuss the cases (i)-(iii) and show that in any case $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{2}$.
(i) If σ is not reflexive, then there exists $u \in E_{k}$ such that $(u, u) \notin \sigma$; from (a) there exists $v \in E_{k}$ such that $(u, v) \in \sigma$; therefore $(u, u) \in \sigma_{2}$ and the constant unary function on E_{k} with value u preserves σ_{2} and does not preserve σ. Therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{2}$.
(ii) If σ is reflexive and not symmetric, there exists $(x, y) \in \sigma$ such that $(y, x) \notin \sigma$; the unary operation g defined on E_{k} by $g(w)=y$ if $w=x$ and $g(w)=x$ otherwise, preserves σ_{2} because $(x, y),(y, x) \in \sigma_{2}$ and σ_{2} is reflexive, and does not preserve σ. Hence $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{2}$.
(iii) If σ is reflexive and symmetric, then σ is not transitive (due to σ is not an equivalence relation). Let $(c, d) \in \sigma_{2} \backslash \sigma$, then $(c, u),(d, u) \in \sigma$ for some $u \in E_{k}$ (due to $\sigma_{2}=\sigma \circ \sigma$). The unary function g defined on E_{k} by $g(x)=c$ if $x=c$ and $g(x)=d$ otherwise, preserves σ_{2} and does not preserve σ. Thus $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{2}$.

If Pol $\sigma_{2}=O_{E_{k}}$, then σ_{2} is a diagonal relation. Hence $\sigma_{2} \in\left\{\Delta_{E_{k}}, E_{k}^{2}\right\}$. Now assume that $\operatorname{Pol} \sigma_{2}=\operatorname{Pol} \rho$. If $h \geq 3$, then we choose $(a, b) \in E_{k}^{2} \backslash \sigma_{2}$ and $(u, v) \in \sigma_{2}$ such that $u \neq v$ (due to $\sigma_{2} \notin\left\{\Delta_{E_{k}}, E_{k}^{2}\right\}$). Let f be the unary operation on E_{k} defined by $f(x)=a$ if $x=u$ and $f(x)=b$ otherwise. From $(u, v) \in \sigma_{2}$ and $f(u, v)=(f(u), f(v))=(a, b) \notin \sigma_{2}, f$ does not preserve σ_{2}; but f preserves ρ (due to ρ totally reflexive and $\operatorname{Im}(f)=\{a, b\})$. Hence $f \in \operatorname{Pol} \rho \backslash \operatorname{Pol} \sigma_{2}$, contradiction. Therefore $h=2$. From Lemma 5.18, we obtain $\rho=\sigma_{2}$. In conclusion, we have $\sigma_{2} \in\left\{\Delta_{E_{k}}, \rho, E_{k}^{2}\right\}$.

A similar argument shows that $\sigma_{2}^{\prime} \in\left\{\Delta_{E_{k}}, \rho, E_{k}^{2}\right\}$. Therefore (b) holds.
From Lemma 5.20, we have $\sigma_{1}=E_{k}=\sigma_{1}^{\prime}$. We set $\eta=\left\{x \in E_{k}:(x, x) \in \sigma\right\} ;$ therefore η satisies one of the following two conditions

$$
\text { (i) } \emptyset \subsetneq \eta \subsetneq E_{k} \text {, (ii) } \emptyset=\eta \text { or } \eta=E_{k} \text {. }
$$

Lemma 5.21. If the assumptions of Proposition 5.19 are satisfied, then the subcase (i) is impossible.

Proof. Assume that (i) holds, then the unary relation η is a unary central relation, so $\operatorname{Pol} \eta$ is a maximal clone distinct from $\operatorname{Pol} \rho$. Since $\eta \in[\{\sigma\}]$ and $\operatorname{Pol} \eta$ is a maximal clone, we get $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \eta$. Therefore $\operatorname{Pol} \sigma$ is not meet-irreducible; contradiction.

Hence σ is reflexive or irreflexive and Lemma 5.20 yields the following nine cases:
(1) $\sigma_{2}=\sigma_{2}^{\prime}=\Delta_{E_{k}}$; (2) $\sigma_{2}=\Delta_{E_{k}}$ and $\sigma_{2}^{\prime}=E_{k}^{2}$; (3) $\sigma_{2}=E_{k}^{2}$ and $\sigma_{2}^{\prime}=\Delta_{E_{k}}$; (4) $\sigma_{2}=\Delta_{E_{k}}$ and $\sigma_{2}^{\prime}=\rho$; (5) $\sigma_{2}=\rho$ and $\sigma_{2}^{\prime}=\Delta_{E_{k}}$; (6) $\sigma_{2}=\sigma_{2}^{\prime}=\rho$; (7) $\sigma_{2}=\rho$ and $\sigma_{2}^{\prime}=E_{k}^{2}$; (8) $\sigma_{2}=E_{k}^{2}$ and $\sigma_{2}^{\prime}=\rho ;(9) \sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$. We will study these cases in the following lines. First we look at the Case (1): $\sigma_{2}=\sigma_{2}^{\prime}=\Delta_{E_{k}}$.

Lemma 5.22. If the assumptions of Proposition 5.19 are satisfied, then the Case (1) $\sigma_{2}=\sigma_{2}^{\prime}=\Delta_{E_{k}}$ is impossible.

Proof. The function s defined on E_{k} by $s(x)=y$, if $(x, y) \in \sigma$, is a permutation on E_{k} (due to E_{k} being finite, $\sigma_{2}^{\prime}=\Delta_{E_{k}}$ and $\sigma_{1}=E_{k}$). Let m be the order of s; for $1 \leq r<m$, set $F_{r}=\left\{x \in E_{k}: s^{r}(x)=x\right\}$. Let $f \in \operatorname{Pol} \sigma \cap O_{E_{k}}^{(n)}$ and $x_{1}, \ldots, x_{n} \in E_{k}$. Since σ is the graph of $s,\left(x_{1}, s\left(x_{1}\right)\right), \ldots,\left(x_{n}, s\left(x_{n}\right)\right) \in \sigma$. Therefore $\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(s\left(x_{1}\right), \ldots, s\left(x_{n}\right)\right) \in \sigma=s^{\circ}\right.$; so $s\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=$ $f\left(s\left(x_{1}\right), \ldots, s\left(x_{n}\right)\right)$ and we can show by induction on $r, 1 \leq r \leq m-1$, that $s^{r}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(s^{r}\left(x_{1}\right), \ldots, s^{r}\left(x_{n}\right)\right)\left(*_{5}\right)$.

Now we show that $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} F_{r}$. Let $f \in \operatorname{Pol} \sigma$ be an n-ary operation and $x_{1}, \ldots, x_{n} \in F_{r}$. Then $s^{r}\left(x_{i}\right)=x_{i}, i=1, \ldots, n$. We get $f\left(x_{1}, \ldots, x_{n}\right)=$ $f\left(s^{r}\left(x_{1}\right), \ldots, s^{r}\left(x_{n}\right)\right)$ (due to $\left.x_{i} \in F_{r}, i \in \underline{n}\right)=s^{r}\left(f\left(x_{1}, \ldots, x_{n}\right)\right.$) (by $\left.\left(*_{5}\right)\right)$; therefore $f\left(x_{1}, \ldots, x_{n}\right) \in F_{r}$ and $f \in \operatorname{Pol} F_{r}$. Consequently $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} F_{r}$. Since F_{r} is a unary relation and $\operatorname{Pol} \sigma$ is meet-irreducible, we must have $F_{r} \in\left\{\emptyset, E_{k}\right\}$. Hence, for each $r \in\{1, \ldots, m-1\}, F_{r}=\emptyset$ and s^{r} is a fixed point free permutation on E_{k}. Let p be a prime divisor of m; then $s^{\frac{m}{p}}$ is a fixed point free permutation on E_{k} in which all cycles are of length p. Thus, $\left(s^{\frac{m}{p}}\right)^{\circ}$ is a relation of type (2) in Theorem 2.2 and $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol}\left(s^{\frac{m}{p}}\right)^{\circ}$, contradicting the fact that $\operatorname{Pol} \sigma$ is meet-irreducible below $\operatorname{Pol} \rho$.

Second, we study the Cases (2) and (3).
Lemma 5.23. If the assumptions of Propositions 5.19 are satisfied, then the Cases (2) and (3) are impossible.

Proof. For Case (2), since $\sigma_{1}^{\prime}=E_{k}$, for each $a \in E_{k}$ there exists $u \in E_{k}$ such that $(u, a) \in \sigma$. If $\left(u_{1}, a\right) \in \sigma$ and $\left(u_{2}, a\right) \in \sigma$, then $\left(u_{2}, u_{1}\right) \in \sigma_{2}=\Delta_{E_{k}}$. Thus $u_{1}=u_{2}$. Consider the unary operation f defined on E_{k} by $f(x)=y$ if $(y, x) \in \sigma$. Let $(a, b) \in E_{k}^{2}=\sigma_{2}^{\prime}$, then there exists $u \in E_{k}$ such that $(u, a),(u, b) \in \sigma$; so $f(a)=f(b)=u$. If follows that f is a constant unary function. Let $a \in E_{k}$; $(a, a) \in \Delta_{E_{k}}=\sigma_{2}$; so there exists $u \in E_{k}$ such that $(a, u) \in \sigma$, i.e., $f(u)=a$. Hence f is a surjective function on E_{k}, contradiction with the fact that f is a constant function. We deduce that the Case (2) is impossible.

The Case (3) is also impossible (use the unary operation g define by $g(x)=y$ iff $(x, y) \in \sigma)$.

Third, we study the Cases (4) and (5).

Lemma 5.24. If the assumptions of Proposition 5.19 are satified, then the Cases (4) and (5) are impossible.

Proof. For Case (4), define the unary operation f on E_{k} by $f(x)=y$ iff $(y, x) \in$ σ. Let c be a central element of ρ. For $x \in E_{k},(x, c) \in \rho=\sigma^{-1} \circ \sigma$; thus $f(x)=f(c)$. Therefore f is constant on E_{k}. By definition, σ^{-1} is the graph of f and σ_{1} is the image of f. From (1) of Lemma 5.20, we get $E_{k}=\sigma_{1}=\operatorname{Im}(f)$. Thus $\operatorname{Im}(f)=E_{k}$, contradiction with the fact that f is a constant function.

A similar argument proves that Case (5) is impossible.
Fourth, we investigate the Case (6) $\sigma_{2}=\sigma_{2}^{\prime}=\rho$. For $l=2, \ldots, k$, we set $\sigma_{l}=\left\{\left(a_{1}, \ldots, a_{l}\right): \exists u \in E_{k}:\left(a_{1}, u\right), \ldots,\left(a_{l}, u\right) \in \sigma\right\}$ and $\sigma_{l}^{\prime}=\left\{\left(a_{1}, \ldots, a_{l}\right):\right.$ $\left.\exists u \in E_{k}:\left(u, a_{1}\right), \ldots,\left(u, a_{l}\right) \in \sigma\right\}$ (for $l=2$, this coincides with the definitions of σ_{2} and σ_{2}^{\prime} given earlier). By definition, σ_{l} and σ_{l}^{\prime} are totally symmetric. In addition, $\sigma_{l} \subseteq \bigcup_{0 \leq j \leq t-1} A_{j}^{l}$ and $\sigma_{l}^{\prime} \subseteq \bigcup_{0 \leq j \leq t-1} A_{j}^{l}$. If $(a, b) \in \rho$, then $\{a, b\}^{l} \subseteq$ $\sigma_{l} \cap \sigma_{l}^{\prime}$.

Lemma 5.25. Under the assumptions of Proposition 5.19, we have the following statements:
(1) If $\sigma_{2}=\rho$, then for every maximal ρ-chain B there exists $\top_{B} \in E_{k}$ such that $\left(x, \top_{B}\right) \in \sigma$ for all $x \in B$.
(2) If $\sigma_{2}^{\prime}=\rho$, then for every maximal ρ-chain B there exists $\perp_{B} \in E_{k}$ such that $\left(\perp_{B}, x\right) \in \sigma$ for all $x \in B$.
Proof. For (1), let $l \in\{2, \ldots, k\} ;$ since $\sigma_{l} \in[\{\sigma\}]$, we have $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{l}$. If $\rho \subseteq \sigma$, then σ is reflexive; hence $\sigma \subseteq \sigma \circ \sigma^{-1}=\rho$, therefore $\rho=\sigma$, contradicting the choice of σ. Thus $\rho \nsubseteq \sigma$. Let $(a, b) \in \rho \backslash \sigma$, and assume that $\sigma_{k} \subsetneq \bigcup_{0 \leq j \leq t-1} A_{j}^{k}$. Clearly $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{k} \subseteq \operatorname{Pol} \rho$. The unary operation defined on E_{k} by $l(x)=b$ if $(a, x) \in \sigma$ and $l(x)=a$ otherwise preserves σ_{k} (due to $(a, b) \in \rho$ and $\operatorname{Im}(l)=$ $\{a, b\}$) and does not preserve σ (because there exists $u \in E_{k}$ such that $(a, u) \in \sigma$ and $(u, b) \in \sigma^{-1}$; and $\left.(l(b), l(u))=(a, b) \notin \sigma\right)$; hence $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{k}$. To see that $\operatorname{Pol} \sigma_{k} \subsetneq \operatorname{Pol} \rho$, we choose $\left(c_{1}, \ldots, c_{k}\right) \in\left(\bigcup_{0 \leq j \leq t-1} A_{j}^{k}\right) \backslash \sigma_{k}$ and consider the k-tuples $\boldsymbol{w}_{1}=(b, a, \ldots, a), \boldsymbol{w}_{2}=(a, b, a \ldots, a), \ldots, \boldsymbol{w}_{k}=(a, \ldots, a, b)$ (recall that $(a, b) \in \rho \backslash \sigma)$. The k-ary operation on E_{k} defined by $g(\boldsymbol{x})=c_{i}$ if $x=\boldsymbol{w}_{i}$ for some $1 \leq i \leq k$ and $g(\boldsymbol{x})=c_{1}$ elsewhere is well defined (because $\left|\left\{\boldsymbol{w}_{i}: 1 \leq i \leq k\right\}\right|=$ k), preserves ρ (because $\left\{c_{1}, \ldots, c_{k}\right\}$ is a ρ-chain) and does not preserve σ_{k} because $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}\right\} \subseteq \sigma_{k}$ and $g\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}\right)=\left(g\left(\boldsymbol{w}_{1}\right), \ldots, g\left(\boldsymbol{w}_{k}\right)\right)=\left(c_{1}, \ldots, c_{k}\right) \notin \sigma_{k}$. Therefore $\operatorname{Pol} \sigma$ is not maximal in $\operatorname{Pol} \rho$; contradiction. We conclude that $\sigma_{k}=$ $\bigcup_{0 \leq j \leq t-1} A_{j}^{k}$ giving the existence of \top_{B} for each maximal ρ-chain B.

The Case (2) is obtained with a similar argument as above.
Let B, D be two maximal ρ-chains, then $C_{\rho} \subseteq B \cap D$ (due to (1) of Proposition 3.4). So $\left(\perp_{B}, c\right),\left(\perp_{D}, c\right) \in \sigma$ and $\left(\perp_{B}, \perp_{D}\right) \in \sigma \circ \sigma^{-1}=\rho$. We conclude that
$\perp=\left\{\perp_{A_{0}}, \ldots, \perp_{A_{t-1}}\right\}$ is a ρ-chain. Let B be a maximal ρ-chain containing \perp, then $\perp_{B} \in B$ and $\left(\perp_{B}, \perp_{B}\right) \in \sigma$. Thus the set $U=\left\{x \in E_{k}:(x, x) \in \sigma\right\}$ is not empty and $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} U$. Hence $U=E_{k}$ and σ is reflexive. Thus $\sigma \subsetneq \rho$ (due to $\sigma \subseteq \sigma \circ \sigma^{-1}=\rho$ and $\rho \nsubseteq \sigma$). Therefore, $\left\{\perp_{B}, \top_{B}\right\} \subseteq B$ for every maximal ρ-chain B.

Lemma 5.26. If the assumptions of Proposition 5.19 are satisfied and σ being transitive, then the case $\sigma_{2}=\sigma_{2}^{\prime}=\rho$ is impossible.

Proof. Assume that σ is transitive and $\sigma_{2}^{\prime}=\sigma_{2}=\rho$. Since σ is reflexive, $\gamma=\sigma \cap \sigma^{-1}$ is an equivalence relation and $\gamma \neq E_{k}^{2}$. If $\gamma \neq \Delta_{E_{k}}$, then γ is a nontrivial equivalence relation and $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$; contradiction with our assumption on σ. Thus $\gamma=\Delta_{E_{k}}$ and σ is a partial order. Since $\left\{\perp_{A_{0}}, \ldots, \perp_{A_{t-1}}\right\}$ and $\left\{\top_{A_{0}}, \ldots, \top_{A_{t-1}}\right\}$ are contained in maximal ρ-chains (due to $\sigma_{2}=\sigma_{2}^{\prime}=\rho$), there are $u, v \in E_{k}$ such that $\left(u, \perp_{A_{0}}\right), \ldots,\left(u, \perp_{A_{t-1}}\right),\left(\top_{A_{0}}, v\right), \ldots,\left(\top_{A_{t-1}}, v\right) \in \sigma$. Hence by transitivity of σ, u is the least element of σ and v the greatest element of σ. Therefore σ is a bounded partial order, contradiction.

Lemma 5.27. If the assumptions of Proposition 5.19 are satisfied, σ is not transitive and $\sigma_{2}=\sigma_{2}^{\prime}=\rho$, then σ is symmetric.
Proof. Assume that $\sigma_{2}=\sigma_{2}^{\prime}=\rho$ and σ is not transitive. Set $\gamma=\sigma \cap \sigma^{-1}$. Then we have $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$. Suppose that $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma$. Since $\operatorname{Pol} \sigma$ is meetirreducible and maximal below $\operatorname{Pol} \rho$, we have $\operatorname{Pol} \gamma=O_{E_{k}}$ or $\operatorname{Pol} \gamma=\operatorname{Pol} \rho$. Hence $\gamma \in\left\{\emptyset, \Delta_{E_{k}}, E_{k}^{2}\right\}$ or $\gamma=\rho$ (due to Lemma 5.18).

From discussion preceding Lemma 5.26, σ is reflexive and $\gamma \subseteq \sigma \subsetneq \rho$, thus $\gamma=\Delta_{E_{k}}$. Thus σ is antisymmetric. In addition, $\left\{\top_{A_{0}}, \ldots, \top_{A_{t-1}}\right\}$ is a ρ-chain; so there exists a maximal ρ-chain D such that $\left\{\top_{A_{0}}, \ldots, \top_{A_{t-1}}\right\} \subseteq D$; hence for every $i \in E_{t}$, we have $\left(\top_{A_{i}}, T_{D}\right) \in \sigma$. Since $\sigma \subseteq \rho$ and D is a maximal ρ-chain, we have $\perp_{D}, T_{D} \in D$ and $\left(\perp_{D}, \top_{D}\right) \in \rho$. If $\left(\top_{D}, \perp_{D}\right) \in \operatorname{tr}(\sigma)$, then there exist $u_{1}, \ldots, u_{n} \in E_{k}$ such that $\left(\top_{D}, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{n-1}, u_{n}\right),\left(u_{n}, \perp_{D}\right) \in \sigma$.

Since $\left\{u_{1}, \top_{D}\right\}$ is also a ρ-chain, there exists a maximal ρ-chain B such that $\left\{u_{1}, \top_{D}\right\} \subseteq B$; hence $\top_{D}=\top_{B}=u_{1}$ (due to σ antisymmetric); by induction we show that $u_{i}=\top_{D}, 1 \leq i \leq n$. Hence $\top_{D}=\perp_{D}, \top_{A_{0}}=\cdots=\top_{A_{t-1}}$ and E_{k} is a ρ-chain; contradiction. Thus $\left(\top_{D}, \perp_{D}\right) \notin \operatorname{tr}(\sigma)$, and $\operatorname{tr}(\sigma) \neq \rho$. Since $\left(\perp_{D}, c\right),\left(c, \top_{D}\right) \in \sigma$, we get $\left(\perp_{D}, \top_{D}\right) \in \operatorname{tr}(\sigma)$ and $\operatorname{Pol} \sigma=\operatorname{Pol}(\operatorname{tr}(\sigma))$ (due to $\operatorname{Pol} \sigma \subseteq \operatorname{Pol}(\operatorname{tr}(\sigma))), \operatorname{Pol} \sigma$ is meet-irreducible in $\operatorname{Pol} \rho$ and $\operatorname{Pol} \rho \neq \operatorname{Pol}(\operatorname{tr}(\sigma))$.

If $\operatorname{tr}(\sigma)$ is antisymmetric, then $\operatorname{tr}(\sigma)$ is a partial order on E_{k} and $\sigma \subsetneq \operatorname{tr}(\sigma)$. Let $(a, b) \in \operatorname{tr}(\sigma)$ such that $(a, b) \notin \sigma$ and $(u, v) \in \sigma$ such that $u \neq v$. Then the unary operation h defined on E_{k} by $h(x)=a$ if $(x, u) \in \operatorname{tr}(\sigma)$ and $h(x)=b$ otherwise, preserves $\operatorname{tr}(\sigma)$ because $(a, b) \in \operatorname{tr}(\sigma)$ and $\operatorname{tr}(\sigma)$ is a partial order, and does not preserve σ (due to $(u, v) \in \sigma$ and $(h(u), h(v))=(a, b) \notin \sigma)$; contradiction. Hence $\operatorname{tr}(\sigma)$ is not antisymmetric; so there exist $a, b \in E_{k}$ such that
$(a, b),(b, a) \in \operatorname{tr}(\sigma)$ and $a \neq b$. Since σ is antisymmetric, we suppose that $(a, b) \notin \sigma$. Let $(u, v) \in \sigma$ such that $u \neq v$. The unary operation h^{\prime} defined on E_{k} by $h^{\prime}(x)=a$ if $x=u$ and $h^{\prime}(x)=b$ otherwise, preserves $\operatorname{tr}(\sigma)$ because $(a, b),(b, a) \in \operatorname{tr}(\sigma)$ and $\operatorname{tr}(\sigma)$ is reflexive, and does not preserve σ (due to $(u, v) \in \sigma$ and $\left.\left(h^{\prime}(u), h^{\prime}(v)\right)=(a, b) \notin \sigma\right) ;$ contradiction. Therefore $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma$.

Since $\gamma \subsetneq \gamma \circ \gamma$ (due to γ reflexive and symmetric), it can be shown that $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma \subsetneq \operatorname{Pol}(\gamma \circ \gamma)$. Since $\operatorname{Pol} \sigma$ is meet-irreducible and maximal below $\operatorname{Pol} \rho$, we get $\operatorname{Pol}(\gamma \circ \gamma)=O_{E_{k}}$ or $\operatorname{Pol}(\gamma \circ \gamma)=\operatorname{Pol} \rho$. Therefore $\gamma \circ \gamma=E_{k}^{2}$ or $\gamma \circ \gamma=\rho$ (by Lemma 5.18). On account of $\gamma \circ \gamma \subseteq \sigma \circ \sigma^{-1}=\rho$, we conclude that $\gamma \circ \gamma=\rho$. Hence γ fulfills the assumptions of Lemma 5.25; thus for every maximal ρ-chain B there exists $u_{B} \in B$ such that $\left(a, u_{B}\right) \in \gamma$ for all $a \in B$.

If $\gamma \subsetneq \sigma$, then there exists $(a, b) \in \sigma$ such that $(b, a) \notin \sigma$. Let B be a maximal ρ-chain containing a and b. The unary operation defined on E_{k} by $f(a)=b, f(b)=a$ and $f(x)=u_{B}$ if $x \notin\{a, b\}$, preserves γ since $(a, b) \notin \gamma$ and γ is reflexive and symmetric. But $(f(a), f(b))=(b, a) \notin \sigma$ and $(a, b) \in \sigma$; so f does not preserve σ. Hence $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma \subsetneq \operatorname{Pol} \rho$, contradicting the fact that $\operatorname{Pol} \sigma$ is maximal in $\operatorname{Pol} \rho$. Therefore $\gamma=\sigma$ and σ is reflexive and symmetric.

Lemma 5.28. If the assumptions of Proposition 5.19 are satisfied, σ is not transitive and $\rho \circ \sigma \neq E_{k}^{2}$, then the case $\sigma_{2}=\sigma_{2}^{\prime}=\rho$ is impossible.

Proof. Assume that $\sigma_{2}=\sigma_{2}^{\prime}=\rho, \rho \circ \sigma \neq E_{k}^{2}$ and σ is not transitive. Since $\sigma_{2}=\sigma_{2}^{\prime}=\rho$ and σ is not transitive, by Lemma 5.27σ is reflexive and symmetric. Therefore $\rho=\sigma \circ \sigma$ (due to $\sigma^{-1}=\sigma$ and σ is reflexive). Since σ and ρ are reflexive, σ and ρ are subsets of $\rho \circ \sigma$. If $\rho=\rho \circ \sigma$, then, from $\sigma \circ \sigma=\rho$, we have $\rho \circ \sigma=(\rho \circ \sigma) \circ \sigma=\rho \circ(\sigma \circ \sigma)=\rho \circ \rho=E_{k}^{2}$ contradicting the assumption $\rho \circ \sigma \neq E_{k}^{2}$. Therefore $\rho \subsetneq \rho \circ \sigma$. Furthermoe, $\sigma \subseteq \sigma \circ \sigma=\rho \subsetneq \rho \circ \sigma$ (due to σ is reflexive and $\sigma^{-1}=\sigma$). In addition, $(\rho \circ \sigma)^{-1}=\sigma^{-1} \circ \rho^{-1}=\sigma \circ \rho=\sigma \circ \sigma \circ \sigma=\rho \circ \sigma$; hence $\rho \circ \sigma$ is reflexive and symmetric, and $\sigma \subseteq \rho \subsetneq \rho \circ \sigma$. Let $(u, v) \in \sigma \backslash \Delta_{E_{k}}$ and $(a, b) \in \rho \circ \sigma \backslash \sigma$, then the unary operation f defined on E_{k} by $f(u)=a$ and $f(x)=b$ otherwise preserves $\rho \circ \sigma$ (due to $\rho \circ \sigma$ is reflexive and symmetric, $(a, b) \in \rho \circ \sigma$ and $\operatorname{Im}(f)=\{a, b\})$ and does not preserve σ (due to $(u, v) \in \sigma$ and $(f(u), f(v))=(a, b) \notin \sigma)$; therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol}(\rho \circ \sigma)$ (due to $\rho \circ \sigma \in[\{\sigma\}]$). Since $\rho \subsetneq \rho \circ \sigma \neq E_{k}^{2}$ and $\rho \circ \sigma$ is symmetric, then ρ and $\rho \circ \sigma$ are two distinct central relations; so $\operatorname{Pol} \rho \neq \operatorname{Pol} \rho \circ \sigma$. As $\operatorname{Pol} \sigma$ is meet-irreducible below $\operatorname{Pol} \rho$ we have a contradiction.

Lemma 5.29. If the assumptions of Propositions 5.19 are satisfied, σ is not transitive, $\sigma_{2}=\sigma_{2}^{\prime}=\rho$ and $\rho \circ \sigma=E_{k}^{2}$, then we obtain a relation of type VIII.

Proof. Assume that $\rho \circ \sigma=E_{k}^{2}, \sigma_{2}=\sigma_{2}^{\prime}=\rho$ and σ is not transitive; using Lemma 5.27, σ is reflexive and symmetric. It remains to show that for every
maximal ρ-chain B, there exists a central element c_{B} of ρ such that for every $a \in B,\left(a, c_{B}\right) \in \sigma$.

Let B be a maximal ρ-chain of cardinality m, and set $\gamma=\left\{\left(a_{1}, \ldots, a_{k}\right) \in\right.$ $E_{k}^{k}: \exists u \in E_{k}$ such that $\left(a_{i}, u\right) \in \sigma$ for all $1 \leq i \leq m$ and $\left(a_{i}, u\right) \in \rho$ for all $m+1 \leq i \leq k\}$ and

$$
\beta=\left\{\left(a_{1}, \ldots, a_{k}\right) \in E_{k}^{k}:\left(a_{i}, a_{j}\right) \in \rho \text { for all } 1 \leq i<j \leq m\right\} .
$$

It is easy to see that $\gamma \subseteq \beta$. We will show that $\operatorname{Pol} \gamma \subseteq \operatorname{Pol} \rho$. Let $f \in \operatorname{Pol} \gamma$ be an n-ary operation and let $\left(a_{i}, b_{i}\right) \in \rho, 1 \leq i \leq n$, then there exist $u_{i} \in E_{k}, 1 \leq i \leq n$, such that $\left(a_{i}, u_{i}\right),\left(u_{i}, b_{i}\right) \in \sigma$ (due to $\sigma \circ \sigma=\rho$). Thus $(a_{i}, b_{i}, \underbrace{u_{i} \ldots, u_{i}}_{k-2 \text { times }}) \in \gamma\left(*_{7}\right)$. Hence $f\left(\left(a_{1}, b_{1}, u_{1}, \ldots, u_{1}\right), \ldots,\left(a_{n}, b_{n}, u_{n}, \ldots, u_{n}\right)\right)=$ $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right), f\left(u_{1}, \ldots, u_{n}\right), \ldots, f\left(u_{1}, \ldots, u_{n}\right)\right) \in \gamma$. Therefore $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \in \sigma \circ \sigma=\rho$. So $\operatorname{Pol} \gamma \subseteq \operatorname{Pol} \rho$. Now suppose that $\gamma \subsetneq \beta$. Let $\left(b_{1}, \ldots, b_{k}\right) \in \beta \backslash \gamma,(a, b) \notin \rho$ and c be a central element of ρ. For $1 \leq i \leq k$, set $\boldsymbol{x}_{i}=\left(a_{1, i}, \ldots, a_{k, i}\right)$ with
$a_{j i}=\left\{\begin{array}{ll}c & \text { if } j=i, \\ a & \text { otherwise }\end{array}\right.$ for $1 \leq i \leq m$ and $a_{j i}=\left\{\begin{array}{ll}b & \text { if } j=i, \\ a & \text { otherwise }\end{array}\right.$ for $m+1 \leq i \leq k$.
It is easy to see that $\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \in \rho$ if and only if i and j are elements of $\{1, \ldots, m\}$ or $i=j$. The k-ary function f defined by

$$
f(\boldsymbol{x})= \begin{cases}b_{i} & \text { if } \boldsymbol{x}=\boldsymbol{x}_{i} \text { for some } 1 \leq i \leq k \\ c & \text { otherwise }\end{cases}
$$

is well define (due to $\left|\left\{\boldsymbol{x}_{i}: 1 \leq i \leq k\right\}\right|=k$) and preserves ρ. In addition, by construction, we have $\left\{\boldsymbol{x}_{1} \ldots, \boldsymbol{x}_{k}\right\} \subseteq \gamma$, and $f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)=\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{k}\right)\right)=$ $\left(b_{1}, \ldots, b_{k}\right) \notin \gamma ;$ hence $\operatorname{Pol} \gamma \subsetneq \operatorname{Pol} \rho$. From $\sigma \subsetneq \rho$, there exists $(a, b) \in \rho \backslash \sigma$. Let $(u, v) \in \sigma$ such that $u \neq v$, then the unary function f^{\prime} defined by $f^{\prime}(x)=a$ if $x=u$ and $f^{\prime}(x)=b$ otherwise, preserves γ (due to $(a, b) \in \rho,\{a, b\}^{k} \subseteq \gamma$ and $\left.\operatorname{Im}\left(f^{\prime}\right)=\{a, b\}\right)$, and does not preserve σ (due to $(u, v) \in \sigma$ and $\left(f^{\prime}(u), f^{\prime}(v)\right)=$ $(a, b) \notin \sigma)$. Thus $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma \subsetneq \operatorname{Pol} \rho$, contradicting our assumption on σ. Therefore $\gamma=\beta$.

Let $B=\left\{a_{1}, \ldots, a_{n}\right\}$ be a maximal ρ-chain and $a_{n+1}, \ldots, a_{k} \in E_{k}$ such that $E_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$. Since $\left(a_{1}, \ldots, a_{k}\right) \in \beta=\gamma$, there exists $u \in E_{k}$ such that $\left(a_{i}, u\right) \in \sigma$ for, $1 \leq i \leq m$, and $\left(a_{i}, u\right) \in \rho$, for $m+1 \leq i \leq k$; so $u \in C_{\rho}$ and $u \in B$ from Proposition 3.4.

We conclude that σ is of type VIII.
The following lemma will be useful for the remaining cases.
Lemma 5.30. Under the assumptions of Proposition 5.19, we have the following statements:
(1) If $\sigma_{h}=E_{k}^{h}$, then there exists $\top \in E_{k}$ such that for any $x \in E_{k},(x, \top) \in \sigma$.
(2) If $\sigma_{h}^{\prime}=E_{k}^{h}$, then there exists $\perp \in E_{k}$ such that for any $x \in E_{k},(\perp, x) \in \sigma$.

Proof. For $2 \leq l \leq k, \sigma_{l}$ and σ_{l}^{\prime} are relations defined below. We give the proof of (1); and (2) is obtained using a similar argument.

For (1), assume that $\sigma_{h}=E_{k}^{h}$ and $\sigma_{k} \neq E_{k}^{k}$. Let $n \geq h$ be the least integer N such that $\sigma_{N} \neq E_{k}^{N}$, then $n>h \geq 2$. We will show that $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{n} \nsubseteq \operatorname{Pol} \rho$. By definition σ_{n} is totally symmetric. Furthermore, using $\sigma_{n-1}=E_{k}^{n-1}$ one can easily see that σ_{n} is totally reflexive. Since $\sigma_{n} \in[\{\sigma\}]$, we get $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{n}$. Let $(a, b) \in E_{k}^{2} \backslash \sigma$ and $(u, v) \in \sigma \backslash \Delta_{E_{k}}$, then the unary operation f defined on E_{k} by $f(x)=a$ if $x=u$ and $f(x)=b$ otherwise, preserves σ_{n} (due to $n>h \geq 2$, σ_{n} totally reflexive, $\operatorname{Im}(f)=\{a, b\}$ and $\left.\{a, b\}^{n} \subseteq \sigma_{n}\right)$ and does not preserve σ (due to $(u, v) \in \sigma$ and $(f(u), f(v))=(a, b) \notin \sigma)$; therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{n}$. Let $\left(a_{1}, \ldots, a_{h}\right) \in E_{k}^{h} \backslash \rho$ and $\left(u_{1}, \ldots, u_{h}\right) \in \rho \backslash \iota_{k}^{h}$, then the unary operation g defined on E_{k} by $g(x)=a_{i}$ if $x=u_{i}$, for some $1 \leq i \leq h$ and $g(x)=a_{1}$ otherwise preserves σ_{n} (due to $\operatorname{Im}(g)=\left\{a_{1}, \ldots, a_{h}\right\}, \sigma_{n}$ totally reflexive and $h \leq n-1$) and does not preserve ρ (due to $\left(u_{1}, \ldots, u_{h}\right) \in \rho$ and $\left(g\left(u_{1}\right), \ldots, g\left(u_{h}\right)\right)=\left(a_{1}, \ldots, a_{h}\right) \notin$ ρ. Therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{n} \nsubseteq \operatorname{Pol} \rho$, contradicting the meet-irreducibility of $\operatorname{Pol} \sigma$ below $\operatorname{Pol} \rho$. Thus Pol $\sigma_{n}=O_{E_{k}}$; since σ_{n} is totally reflexive and totally symmetric, it follows that $\sigma_{n}=E_{k}^{n}$, contradiction with $\sigma_{n} \neq E_{k}^{n}$. Thus $\sigma_{k}=E_{k}^{k}$ and there exists $\top \in E_{k}$ such that $(x, \top) \in \sigma$ for all $x \in E_{k}$ and (1) holds.

From Lemma 5.21, as $(\top, \top) \in \sigma(\operatorname{resp}(\perp, \perp) \in \sigma)$ whenever $\sigma_{h}=E_{k}^{h}$ (resp. $\sigma_{h}^{\prime}=E_{k}^{h}$), we can claim that σ is reflexive. We continue the investigation with Cases (7) ($\sigma_{2}=\rho$ and $\sigma_{2}^{\prime}=E_{k}^{2}$) and (8) $\left(\sigma_{2}=E_{k}^{2}\right.$ and $\left.\sigma_{2}^{\prime}=\rho\right)$. Let $(a, b) \in E_{k}^{2} \backslash \sigma$ and $(u, v) \in \sigma$ such that $u \neq v$, consider the unary operation f_{0} defined by $f_{0}(x)=a$ if $x=u$ and $f_{0}(x)=b$ otherwise.

Lemma 5.31. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{2}=\rho$ and $\sigma_{2}^{\prime}=E_{k}^{2}$, then σ is of type X.

Proof. Assume that $\sigma_{2}=\rho, \sigma_{2}^{\prime}=E_{k}^{2}$. Since $\sigma_{2}^{\prime}=E_{k}^{2}$, from Lemma 5.30, there exists $\perp \in E_{k}$ such that for all $a \in E_{k}(\perp, a) \in \sigma$. So $(\perp, \perp) \in \sigma$, and using the discussion preceding Lemma 5.26 , we get that σ is reflexive. As $\sigma_{2} \neq \sigma_{2}^{\prime}$, we get that σ is not symmetric (Because if σ were symmetric, then it would hold that $\sigma_{2}=\sigma \circ \sigma^{-1}=\sigma \circ \sigma=\sigma^{-1} \circ \sigma=\sigma_{2}^{\prime}$). It follows that σ is reflexive and not symmetic. Let $a \in E_{k}$, then there exists $v \in E_{k}$ such that (a, v) $\in \sigma$ (see (a) of Lemma 5.20). Therefore $(a, v),(\perp, v) \in \sigma$ and consequently $(a, \perp) \in \sigma_{2}=\rho$. Thus $\perp \in C_{\rho}$. Set $\gamma=\sigma \cap \sigma^{-1}$. We have $\gamma \subsetneq \sigma \subseteq \sigma \circ \sigma^{-1}=\rho$ and $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$. Our discussion is divided into two cases: (i) $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma$ and (ii) $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma$.
(i) If $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma$, then $\operatorname{Pol} \gamma=O_{E_{k}}$ or $\operatorname{Pol} \gamma=\operatorname{Pol} \rho$. If $\operatorname{Pol} \gamma=O_{E_{k}}$, then as γ is reflexive and $\gamma \subsetneq \sigma$, we get that $\gamma=\Delta_{E_{k}}$. If $\operatorname{Pol} \gamma \neq O_{E_{k}}$, then $\operatorname{Pol} \gamma=\operatorname{Pol} \rho$ and by Lemma 5.18, we get that $\gamma=\rho$. Therefore $\gamma \in\left\{\Delta_{E_{k}}, \rho\right\}$;
furthermore $\gamma \subsetneq \sigma \subseteq \rho$, so $\gamma=\Delta_{E_{k}}$ and σ is antisymmetric. Let $b \in E_{k}$ such that $b \neq \perp$, then $(\perp, b) \in \sigma$ and $(b, \perp) \notin \sigma$. Therefore $(b, \perp) \notin \operatorname{tr}(\sigma)$. Thus $\operatorname{tr}(\sigma) \notin\left\{\rho, E_{k}^{2}\right\}$. If $\sigma \subsetneq \operatorname{tr}(\sigma)$, then the unary function h defined by $h(x)=a$ if $(x, u) \in \operatorname{tr}(\sigma)$ and $h(x)=b$ otherwise where $(a, b) \in \operatorname{tr}(\sigma) \backslash \sigma$ and $(u, v) \in \sigma$, $u \neq v$, preserves $\operatorname{tr}(\sigma)$ and does not preserve σ. Hence $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol}(\operatorname{tr}(\sigma))$, $\operatorname{tr}(\sigma) \notin\left\{\rho, E_{k}^{2}\right\}$ and $\sigma \subsetneq \operatorname{tr}(\sigma)$; contradiction with the fact that $\operatorname{Pol} \sigma$ is meetirreducible and maximal below $\operatorname{Pol} \rho$. Thus $\sigma=\operatorname{tr}(\sigma)$ and σ is a partial order.

From Lemma 5.25 , for every maximal ρ-chain B there exists \top_{B} such that for all $x \in B\left(x, \top_{B}\right) \in \sigma \subseteq \rho$. Hence $\top_{B} \in B$ and \top_{B} is the greatest element of B. It remains to show that every intersection of maximal ρ-chains has a greatest element.

Let B_{1}, \ldots, B_{n} be n maximal ρ-chains ($n \geq 2$). Let l be the cardinality of $\bigcap_{1 \leq i \leq n} B_{i}$ and m be the cardinality of $\bigcap_{1 \leq i \leq n} B_{i}$. If $\bigcup_{1 \leq i \leq n} B_{i}$ is a maximal ρ-chain, we are done, because in that case $\overline{B_{1}}=B_{i}, i=2, \ldots, n$. If $\bigcup_{1 \leq i \leq n} B_{i}$ is not a maximal ρ-chain and $\bigcap_{1 \leq i \leq n} B_{i}=\{\perp\}$, then \perp is the greatest element of $\bigcap_{1 \leq i \leq n} B_{i}$. If $\bigcap_{1 \leq i \leq n} B_{i}$ is not a maximal ρ-chain and $\bigcap_{1 \leq i \leq n} B_{i} \neq\{\perp\}$, then let $a, v, w \in E_{k}$ such that $a \in \bigcap_{1 \leq i \leq n} B_{i}, a \neq \perp$ and $v, w \in \bigcap_{1 \leq i \leq n} B_{i},(v, w) \notin \rho$. Let λ and β be the sets defined by $\lambda:=\left\{\left(a_{1}, \ldots, a_{m}\right) \in E_{k}^{m}:\left(a_{i}, a_{j}\right) \in \rho \quad \forall 1 \leq\right.$ $i \leq l, \forall 1 \leq j \leq m\}$ and

$$
\begin{gathered}
\beta:=\left\{\left(a_{1}, \ldots, a_{m}\right) \in E_{k}^{m}: \forall 1 \leq i \leq l, \forall 1 \leq j \leq m,\left(a_{i}, a_{j}\right) \in \rho, \exists u \in E_{k},\right. \\
\left.\left(a_{i}, u\right) \in \sigma \forall 1 \leq i \leq l \wedge\left(a_{i}, u\right) \in \rho \forall l+1 \leq i \leq m\right\} .
\end{gathered}
$$

We have $\beta \subseteq \lambda$. Now suppose that $\beta \neq \lambda$. We will show that $\operatorname{Pol} \beta \subseteq \operatorname{Pol} \rho$. Let $f \in \operatorname{Pol} \beta$ be an n-ary operation and $\left(a_{i}, b_{i}\right) \in \rho, 1 \leq i \leq n$, then there exist $u_{i}, i=$ $1, \ldots, u_{n}$, such that $\left(a_{i}, u_{i}\right),\left(b_{i}, u_{i}\right) \in \sigma, 1 \leq i \leq n$. Set $\boldsymbol{y}_{i}=\left(a_{i}, b_{i}, u_{i}, \ldots, u_{i}\right), 1 \leq$ $i \leq n$ and $\boldsymbol{x}_{1}=\left(a_{1}, \ldots, a_{n}\right), \boldsymbol{x}_{2}=\left(b_{1}, \ldots, b_{n}\right), \boldsymbol{x}_{3}=\left(u_{1}, \ldots, u_{n}\right), \ldots, \boldsymbol{x}_{m}=$ $\left(u_{1}, \ldots, u_{n}\right)$. Then $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right\} \subseteq \beta$ (due to $\rho=\sigma_{2}$ and $\left.\left(a_{i}, b_{i}\right) \in \rho, 1 \leq i \leq n\right\}$); as $f \in \operatorname{Pol} \beta$, we deduce that $f\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}\right)=\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}\right)\right) \in \beta$ and by definition of β, we get that $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in \rho$ (due to $l \geq 2$); therefore $f \in \operatorname{Pol} \rho$ and $\operatorname{Pol} \beta \subseteq \operatorname{Pol} \rho$. It is easy to show that $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \beta$ (using $\sigma_{2}=\rho$); therefore $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \beta \subseteq \operatorname{Pol} \rho$.

Let $\left(b_{1}, \ldots, b_{m}\right) \in \lambda \backslash \beta$. For $1 \leq i \leq m$, set $\boldsymbol{x}_{i}=\left(a_{i, 1}, \ldots, a_{i, k}\right)$ with

$$
a_{i, j}=\left\{\begin{array}{ll}
a & \text { if } i=j, \\
\perp & \text { otherwise }
\end{array} \text { for } 1 \leq i \leq l \text { and } a_{i, j}=\left\{\begin{array}{ll}
\perp & \text { if } 1 \leq j \leq l, \\
w & \text { if } i=j, \\
v & \text { elsewhere }
\end{array}\right. \text { for }\right.
$$

$l+1 \leq i \leq m$. It is easy to see that $\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \in \rho$ if and only if i or $j \in\{1, \ldots, l\}$ $(*)$. Consider the k-ary function f defined by $f(\boldsymbol{x})=b_{i}$ if $\boldsymbol{x}=\boldsymbol{x}_{i}$, for some $1 \leq i \leq m$ and $f(\boldsymbol{x})=\perp$ elsewhere. The operation f is well defined (because $\left.\left|\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}\right|=m\right)$. We will show that f does not preserve β. Let $\boldsymbol{y}_{j}=$ $\left(a_{1, j}, \ldots, a_{m, j}\right), 1 \leq j \leq k$, from the definition of $\boldsymbol{x}_{i}, 1 \leq i \leq m$ and (*) we have
that $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right\} \subseteq \beta$, and $f\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)=\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}\right)\right)=\left(b_{1}, \ldots, b_{m}\right) \notin$ β, so $f \notin \operatorname{Pol} \beta$. In addition, we can show that $f \in \operatorname{Pol} \rho$. Hence $\operatorname{Pol} \beta \subsetneq \operatorname{Pol} \rho$. Since $\sigma \subsetneq \rho$ (due to $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \rho$), then there exists $(e, d) \in \rho \backslash \sigma$. Let $(x, y) \in \sigma$ with $x \neq y$ and $(e, d) \in \rho \backslash \sigma$; there exists $u \in E_{k}$ such that $(e, u),(d, u) \in \sigma$. The unary operation f defined on E_{k} by $f(x)=e, f(y)=d$ and $f(t)=u$ elsewhere preserves β (due to $(e, d) \in \rho$ and $\rho=\sigma_{2}$) and does not preserve σ (due to $(x, y) \in \sigma$ and $(f(x), f(y))=(e, d) \notin \sigma)$. Therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \beta \subsetneq \operatorname{Pol} \rho$, contradicting the fact that $\operatorname{Pol} \sigma$ is meet-irreducible below $\operatorname{Pol} \rho$. Hence $\beta=\lambda$, and $\bigcap_{1 \leq i \leq n} B_{i}=\left\{a_{1}, \ldots, a_{l}\right\}$ is such that $(a_{1}, \ldots, a_{l}, \underbrace{}_{m-l} a_{l \text { times }} \ldots, a_{l}) \in \beta$; from the definition of β, we deduce that $\bigcap_{1 \leq i \leq n} B_{i}$ has a greatest element. Therefore σ is of type X.
(ii) If $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma$, then $\gamma \neq \Delta_{E_{k}}, \gamma$ is reflexive and symmetric. We will show that $\gamma=\sigma$. In fact, if $\gamma \subsetneq \sigma$, then there exists $(a, b) \in \sigma$ such that $(a, b) \notin \gamma$. So $(b, a) \notin \sigma$ (due to $\gamma=\sigma \cap \sigma^{-1}$). Furthermore, $\gamma \subseteq \gamma \circ \gamma$ and $\operatorname{Pol} \sigma \subseteq \operatorname{Pol}(\gamma \circ \gamma)$.

If $\gamma \circ \gamma=\gamma$, then γ is a nontrivial equivalence relation and $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$, contradiction. Hence $\gamma \subsetneq \gamma \circ \gamma$ and $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma \subseteq \operatorname{Pol} \gamma \circ \gamma$, as $\operatorname{Pol} \sigma$ is maximal and meet-irreducle below $\operatorname{Pol} \rho$, we get that $\operatorname{Pol} \gamma \circ \gamma=O_{E_{k}}$ or $\operatorname{Pol} \gamma \circ \gamma=\operatorname{Pol} \rho$. By our assumption, $\sigma_{2}=\rho$; furthermore $\gamma \subseteq \sigma \cap \sigma^{-1} \subseteq \sigma$ and γ is symmetric; so $\Delta_{E_{k}} \subsetneq \gamma \subseteq \gamma \circ \gamma \subseteq \sigma \circ \sigma^{-1}=\sigma_{2}=\rho \neq E_{k}^{2}$. Therefore $\gamma \circ \gamma$ is not a diagonal relation; so the equality $\operatorname{Pol} \gamma \circ \gamma=O_{E_{k}}$ is impossible. Therefore $\operatorname{Pol} \gamma \circ \gamma=\operatorname{Pol} \rho$ and by Lemma 5.18, $\rho=\gamma \circ \gamma$. It follows that γ fulfills the assumptions of Lemma 5.25 ; so for any maximal ρ-chain B there exists $u_{B} \in E_{k}$ such that for any $x \in B$, $\left(x, u_{B}\right) \in \gamma$. Let B be a maximal ρ-chain containing a and b, the unary operation defined on E_{k} by $f(a)=b, f(b)=a$ and $f(x)=u_{B}$ if $x \notin\{a, b\}$ preserves γ (because $(a, b) \notin \gamma, \gamma$ is reflexive, symmetric and $\left.\left(a, u_{B}\right),\left(b, u_{B}\right) \in \gamma\right)$ and does not preserve σ (because $(a, b) \in \sigma$ and $(f(a), f(b))=(b, a) \notin \sigma)$. Therefore, $\operatorname{Pol} \sigma \neq \operatorname{Pol} \gamma$, contradiction with the assumption $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma$. Hence $\gamma=\sigma$ and σ is symmetric, contradicting the fact that $\sigma_{2} \neq \sigma_{2}^{\prime}$.

Lemma 5.32. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{2}=E_{k}^{2}$ and $\sigma_{2}^{\prime}=\rho$, then σ is of type XI.
Proof. Note that σ^{-1} fulfills the assumptions of Lemma 5.31 and $\operatorname{Pol} \sigma=\operatorname{Pol} \sigma^{-1}$. Therefore σ^{-1} is a relation of type X. Hence σ is the relation of type XI.

Now, we finish our discussion with Case 9: $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$. We have two subcases $\sigma_{h}=\sigma_{h}^{\prime}=E_{k}^{h}$ or $\left(\sigma_{h} \neq E_{k}^{h}\right.$ or $\left.\sigma_{h}^{\prime} \neq E_{k}^{h}\right)$. We begin with subcase $\sigma_{h}=\sigma_{h}^{\prime}=E_{k}^{h}$. Using Lemmas 5.30 and 5.21 , it is easy to see that, σ is reflexive. Naturally, σ can be transitive or not.

Lemma 5.33. If the assumptions of Proposition 5.19 are satisfied and $\sigma_{h}=\sigma_{h}^{\prime}=$ E_{k}^{h}, then the case σ transitive is impossible.

Proof. Assume that σ is transitive. If σ is symmetric, then $\sigma=\sigma \circ \sigma=\sigma_{2}=E_{k}^{2}$; contradiction. Hence σ is not symmetric. Set $\gamma=\sigma \cap \sigma^{-1}$. We have $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$ (due to $\gamma \in[\{\sigma\}]$). If $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma$, then $\gamma \in\left\{\Delta_{E_{k}}, \rho\right\}$ because $\operatorname{Pol} \sigma$ is meetirreducible and $\Delta_{E_{k}} \subseteq \gamma \subseteq \sigma \subsetneq E_{k}^{2}$. Suppose that $\gamma=\Delta_{E_{k}}$, then by Lemma 5.30σ is a bounded partial order, contradiction. So $\gamma=\rho$. Therefore ρ is transitive and $\rho=\rho \circ \rho=E_{k}^{2}$, contradicting the fact that ρ is a central relation. If $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma$, then $\gamma \notin\left\{\emptyset, \Delta_{E_{k}}, E_{k}^{2}, \rho\right\}$. Hence γ is a nontrivial equivalence relation and we obtain a contradiction.

Lemma 5.34. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{h}=\sigma_{h}^{\prime}=E_{k}^{h}$ and σ is not transitive, then σ is of type $I X$.

Proof. We claim that σ is not symmetric. In fact, if σ is symmetric, then σ is reflexive and symmetric; from Lemma 5.30, σ is a central relation which is a contradiction. Hence σ is not symmetric. Set $\gamma=\sigma \cap \sigma^{-1}$. As σ is not symmetric, we have $\gamma \subsetneq \sigma$.
(i) If $\operatorname{Pol} \sigma=\operatorname{Pol} \gamma$, then γ is reflexive, symmetric and $\operatorname{Pol} \gamma$ is meet-irreducible and maximal below $\operatorname{Pol} \rho$. If γ is transitive, then γ is a nontrivial equivalence relation; contradiction. Hence $\gamma \subsetneq \gamma \circ \gamma$. Let $(a, b) \in(\gamma \circ \gamma) \backslash \gamma$. For $(u, v) \in \gamma$ such that $u \neq v$, the above operation f_{0} preserves $\gamma \circ \gamma$ and does not preserve γ. Hence $\operatorname{Pol} \gamma \subsetneq \operatorname{Pol}(\gamma \circ \gamma)$. It follows that (1) $\operatorname{Pol}(\gamma \circ \gamma)=O_{E_{k}}$ or $(2) \operatorname{Pol}(\gamma \circ \gamma)=\operatorname{Pol} \rho$.

Suppose that (1) is satisfied, then $\gamma \circ \gamma=E_{k}^{2}$, therefore γ satisfies the assumptions of Lemma 5.30. We conclude that γ is a central relation; contradiction. Suppose that (2) is satisfied, then $\gamma \circ \gamma=\rho$ (see Lemma 5.18). We claim that $\rho \nsubseteq \sigma$. Assume that $\rho \subseteq \sigma$. As $\gamma \circ \gamma=\rho$ and γ is reflexive, we have $\gamma \subseteq \rho$, this inclusion is strict because $\operatorname{Pol} \gamma=\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \rho$. Let $(a, b) \in \rho \backslash \gamma$, then $(b, a) \in \rho \subseteq \sigma$; so $(a, b) \in \sigma \cap \sigma^{-1}=\gamma$, contradicting the fact that $(a, b) \notin \gamma ;$ therefore $\rho \nsubseteq \sigma$. Let $(a, b) \in \rho \backslash \sigma$ and $(x, y) \in \sigma \backslash \gamma$; since $\gamma \circ \gamma=\rho$ there exists w such that $(a, w),(w, b) \in \gamma$. Consider the unary operation f defined by $f(x)=a, f(y)=b$ and for $t \in E_{k} \backslash\{a, b\}, f(t)=w$. It is easy to see that f preserves γ and does not preserve σ. Thus $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma \subsetneq \operatorname{Pol} \rho$ contradicting the assumption $\operatorname{Pol} \gamma=\operatorname{Pol} \sigma$.
(ii) If $\operatorname{Pol} \sigma \neq \operatorname{Pol} \gamma$, then $\gamma \in\left\{\Delta_{E_{k}}, \rho\right\}$. Suppose that $\gamma=\Delta_{E_{k}}$, then σ is reflexive and antisymmetric. If $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol}(\operatorname{tr}(\sigma))$, then by assumptions on σ we have $\operatorname{tr}(\sigma) \in\left\{\rho, E_{k}^{2}\right\}$. However, by Lemma 5.30, \top and \perp are such that $(\perp, x),(x, \top) \in \sigma$ for any $x \in E_{k}$. Hence $(\perp, \top) \in \operatorname{tr}(\sigma)$, but $(\top, \perp) \notin \operatorname{tr}(\sigma)$ (due to σ antisymmetric), contradiction. Hence $\operatorname{Pol} \sigma=\operatorname{Pol} \operatorname{tr}(\sigma)$. It follows that $\operatorname{tr}(\sigma)$ fulfills the assumptions of Lemma 5.33; thus we obtain a contradiction. Hence $\gamma=\rho$ and σ is of type IX.

We close the Case (9) with subcase $\sigma_{h} \neq E_{k}^{h}$ or $\sigma_{h}^{\prime} \neq E_{k}^{h}$. Recall that

$$
\sigma_{l}=\left\{\left(a_{1}, \ldots, a_{l}\right) \in E_{k}^{l}: \exists u \in E_{k},\left(a_{1}, u\right), \ldots,\left(a_{l}, u\right) \in \sigma\right\}
$$

$$
\text { and } \sigma_{l}^{\prime}=\left\{\left(a_{1}, \ldots, a_{l}\right) \in E_{k}^{l}: \exists u \in E_{k},\left(u, a_{1},\right), \ldots,\left(u, a_{l}\right) \in \sigma\right\}
$$

for $2 \leq l \leq k$. We have shown that σ is reflexive or irreflexive.
Lemma 5.35. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{2}=E_{k}^{2}=\sigma_{2}^{\prime}$ and $h \geq 3$, then the following implications hold.
(i) If $\sigma_{h} \neq E_{k}^{h}$, then $\sigma_{h}=\rho$.
(ii) If $\sigma_{h}^{\prime} \neq E_{k}^{h}$, then $\sigma_{h}^{\prime}=\rho$.

Proof. (i) Assume that $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$ and $\sigma_{h} \neq E_{k}^{h}$. Let n be the least integer N such that $\sigma_{N} \neq E_{k}^{N}$, then $2<n \leq h$. Since $\sigma_{n-1}=E_{k}^{n-1}, \sigma_{n}$ is totally reflexive. Let $(a, b) \in E_{k}^{2} \backslash \sigma$ and $(u, v) \in \sigma$ such that $u \neq v$. Then, the above unary operation f_{0} preserves σ_{n} and does not preserve σ; therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{n}$. Assume that $n<h$. If $\sigma_{n}=\iota_{k}^{n}$, then $\operatorname{Pol} \sigma_{n} \subsetneq \operatorname{Pol} \iota_{k}^{k} \neq \operatorname{Pol} \rho$, contradiction (due to $\operatorname{Pol} \sigma$ is meet-irreducible below $\operatorname{Pol} \rho$ and $\operatorname{Pol} \iota_{k}^{k}$ a maximal clone). Hence $\sigma_{n} \neq$ ι_{k}^{n}. Let $\left(a_{1}, \ldots, a_{n}\right) \in E_{k}^{n} \backslash \sigma_{n},\left(u_{1}, \ldots, u_{n}\right) \in \sigma_{n} \backslash \iota_{k}^{n}$. Consider the unary operation g_{1} defined on E_{k} by $g_{1}(x)=a_{i}$ if $x=u_{i}$, for some $1 \leq i \leq n$, and $g_{1}(x)=a_{1}$ elsewhere. Since $n<h, \operatorname{Im}\left(g_{1}\right)=\left\{a_{1}, \ldots, a_{n}\right\}$ and ρ is totally reflexive, g_{1} preserves ρ. But, $\left(u_{1}, \ldots, u_{n}\right) \in \sigma_{n}$ and $\left(g_{1}\left(u_{1}\right), \ldots, g_{1}\left(u_{n}\right)\right)=\left(a_{1}, \ldots, a_{n}\right) \notin$ σ_{n}, so $g_{1} \notin \operatorname{Pol} \sigma_{n}$; thus $\operatorname{Pol} \rho \nsubseteq \operatorname{Pol} \sigma_{n}$. Therefore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{n} \neq O_{E_{k}}$. Indeed, since $\operatorname{Pol} \sigma$ is meet-irreducible and maximal below $\operatorname{Pol} \rho$, we must have $\operatorname{Pol} \rho \subseteq \operatorname{Pol} \sigma_{n}$ which is a contradiction. It follows that $n=h$ and $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{h}$; since $\operatorname{Pol} \sigma$ is meet-irreducible and maximal below $\operatorname{Pol} \rho$ we get $\operatorname{Pol} \sigma_{h}=O_{E_{k}}$ or $\operatorname{Pol} \sigma_{h}=\operatorname{Pol} \rho$. If $\operatorname{Pol} \sigma_{h}=O_{E_{k}}$, then σ_{h} is a diagonal relation and as σ_{h} is totally reflexive, we deduce that $\sigma_{h}=E_{k}^{h}$, contradiction with $\sigma_{h} \neq E_{k}^{h}$. Thus $\operatorname{Pol} \sigma_{h}=\operatorname{Pol} \rho$, using Lemma 5.18 we get that $\sigma_{h}=\rho$.

The proof of (ii) is similar to that of (i).
Now, consider the set $\Gamma=\left\{B \subseteq E_{k}: B^{h} \subseteq \rho\right\}$. Let $m=\max \{\operatorname{Card}(B): B \in$ $\Gamma\}$; we have $h \leq m$. For all $h \leq l \leq m$, set

$$
\rho_{l}=\left\{\left(a_{1}, \ldots, a_{l}\right) \in E_{k}^{l}:\left\{a_{1}, \ldots, a_{l}\right\}^{h} \subseteq \rho\right\} .
$$

It is easy to check that for all $h \leq l \leq m, \sigma_{l} \subseteq \rho_{l}$ and $\sigma_{l}^{\prime} \subseteq \rho_{l}$ where $\sigma_{h}=\sigma_{h}^{\prime}=\rho$.
Lemma 5.36. Under the assumptions of Proposition 5.19, the following statements hold.
(i) If $\sigma_{h} \neq E_{k}^{h}$, then for every maximal ρ-chain B there exists $\top_{B} \in E_{k}$ such that for all $a \in B,\left(a, \top_{B}\right) \in \sigma$.
(ii) If $\sigma_{h}^{\prime} \neq E_{k}^{h}$, then for every maximal ρ-chain B there exists $\perp_{B} \in E_{k}$ such that for all $a \in B,\left(\perp_{B}, a\right) \in \sigma$.

Proof. (i) Assume that $\sigma_{h} \neq E_{k}^{h}$, then from (i) of Lemma 5.35, we have $\sigma_{h}=\rho$. We will show that $\operatorname{Pol} \sigma_{m} \subseteq \operatorname{Pol} \rho$. Let $f \in \operatorname{Pol} \sigma_{m}$ be an n-ary operation and let $\boldsymbol{x}_{i}=\left(a_{1, i}, \ldots, a_{h, i}\right) \in \rho, 1 \leq i \leq n ;$ set $\boldsymbol{x}_{i}^{\prime}=(a_{1, i}, \ldots, a_{h, i}, \underbrace{a_{h, i} \ldots, a_{h, i}}_{m-h \text { times }}), 1 \leq i \leq n$. For $1 \leq i \leq m, \boldsymbol{x}_{i}^{\prime} \in \sigma_{m}$, (due to $\sigma_{h}=\rho$). Hence

$$
f\left(\boldsymbol{x}_{1}^{\prime}, \ldots, \boldsymbol{x}_{n}^{\prime}\right)=\left(f\left(a_{1,1}, \ldots, a_{1, n}\right), f\left(a_{2,1}, \ldots, a_{2, n}\right), \ldots, f\left(a_{h, 1}, \ldots, a_{h, n}\right)\right) \in \sigma_{m}
$$

Therefore $f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)=\left(f\left(a_{1,1}, \ldots, a_{1, n}\right), \ldots, f\left(a_{h, 1}, \ldots, a_{h, n}\right)\right) \in \rho$. Thus $f \in$ $\operatorname{Pol} \rho$. Therfore $\operatorname{Pol} \sigma_{m} \subseteq \operatorname{Pol} \rho$. Since $\sigma_{m} \in[\{\sigma\}]$, we get $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{m}$. So $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \sigma_{m} \subseteq \operatorname{Pol} \rho$. Assume that $\sigma_{m} \subsetneq \rho_{m}$. Let $\left(c_{1}, \ldots, c_{m}\right) \in \rho_{m} \backslash \sigma_{m}$ and $\left(a_{1}, \ldots, a_{h}\right) \in \rho \backslash \iota_{k}^{h}$; we set

$$
W=\left\{\left(i_{1}, \ldots, i_{h}\right): 1 \leq i_{1}<\ldots<i_{h} \leq m\right\}
$$

denoted for reason of simple notation by

$$
W=\left\{\left(i_{1}^{j}, \ldots, i_{h}^{j}\right): 1 \leq j \leq q\right\} .
$$

For all $1 \leq j \leq q$, set $\boldsymbol{y}_{j}=\left(x_{j, 1}, \ldots, x_{j, m}\right)$ and for all $1 \leq i \leq m$, set $\boldsymbol{x}_{i}=\left(x_{1, i}, \ldots, x_{q, i}\right)$ with $x_{j, i}=a_{l}$ if $i=i_{l}^{j}$, for some $1 \leq l \leq h$, and $x_{j, i}=a_{1}$ otherwise. Then the q-ary operation f defined by $f(\boldsymbol{x})=c_{i}$ if $\boldsymbol{x}=\boldsymbol{x}_{i}$ for some $1 \leq i \leq m$ and $f(\boldsymbol{x})=c_{1}$ otherwise, is well defined (because $\left|\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}\right|=m$), preserves ρ (because $\operatorname{Im}(f)=\left\{c_{1}, \ldots, c_{m}\right\}$ and $\left\{c_{1}, \ldots, c_{m}\right\}$ is a ρ-chain) and does not preserve σ_{m}, because $\left\{\boldsymbol{y}_{j}: 1 \leq j \leq q\right\} \subseteq \sigma_{m}$ and $f\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{q}\right)=$ $\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}\right)\right)=\left(c_{1}, \ldots, c_{m}\right) \notin \sigma_{m}$. Therefore $\operatorname{Pol} \sigma_{m} \subsetneq \operatorname{Pol} \rho$. The above unary operation f_{0} preserves σ_{m} and not σ. Thus $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \sigma_{m} \subsetneq \operatorname{Pol} \rho$, contradiction with the fact that $\operatorname{Pol} \sigma$ is maximal below $\operatorname{Pol} \rho$. Thus $\sigma_{m}=\rho_{m}$. Let $B=\left\{a_{1}, \ldots, a_{n}\right\}$ be a maximal ρ-chain, then $(a_{1}, \ldots, a_{n}, \underbrace{a_{n}, \ldots, a_{n}}_{m-n \text { times }}) \in \rho_{m}=\sigma_{m}$; so there exists $\top_{B} \in E_{k}$ such that for all $1 \leq i \leq n,\left(a_{i}, \top_{B}\right) \in \sigma$.

The proof of (ii) is obained similarly.
Lemma 5.37. If the assumptions of Proposition 5.19 are satisfied and $\sigma_{h} \neq E_{k}^{h}$ or $\sigma_{h}^{\prime} \neq E_{k}^{h}$, then σ is reflexive.
Proof. Assume that $\sigma_{h} \neq E_{k}^{h}$. Let B be a maximal ρ-chain. From Lemma 5.36, there exists $\top_{B} \in E_{k}$ such that $\left(x, \top_{B}\right) \in \sigma$ for every $x \in B$. Let $c \in C_{\rho}$; for all $0 \leq i \leq t-1,\left(c, \top_{A_{i}}\right) \in \sigma$. We have $h \geq 3$ (due to $\sigma_{h} \neq E_{k}^{h}$ and $\sigma_{2}=E_{k}^{2}$). From Lemma 5.35, $T=\left\{\top_{A_{0}}, \top_{A_{1}}, \ldots, \top_{A_{t-1}}\right\}$ is a ρ-chain. So there exists a maximal ρ-chain D such that $T \subseteq D$. Without loss of generality we suppose that $D=A_{0}$. Therefore $\left(\top_{A_{0}}, \top_{A_{0}}\right) \in \sigma$. Hence $\top_{A_{0}} \in \eta=\left\{x \in E_{k}:(x, x) \in \sigma\right\}$ and by Lemma 5.21 we get that $\eta=E_{k}$ and σ is reflexive. The case $\sigma_{h}^{\prime} \neq E_{k}^{h}$ can be solved using a similar argument as above.

We have shown that if $\operatorname{Pol} \sigma$ is a meet-irreducible submaximal clone of $\operatorname{Pol} \rho$ and $\sigma_{h} \neq E_{k}^{h}$ or $\sigma_{h}^{\prime} \neq E_{k}^{h}$, then σ is reflexive. From now on we suppose that σ is reflexive. Since σ is not a diagonal relation, we have $\Delta_{E_{k}} \subsetneq \sigma \subsetneq E_{k}^{2}$. We consider again the binary relation $\gamma=\sigma \cap \sigma^{-1}$; thus $\Delta_{E_{k}} \subseteq \gamma \subseteq \sigma$. We distinguish the following three cases: (i) $\Delta_{E_{k}}=\gamma$, (ii) $\Delta_{E_{k}} \subsetneq \gamma \subsetneq \sigma$ and (iii) $\gamma=\sigma$. First, we study the subcase (ii).
Lemma 5.38. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{h} \neq E_{k}^{h}$ or $\sigma_{h}^{\prime} \neq E_{k}^{h}$ and $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$, then the subcase (ii) is impossible.
Proof. Suppose that $\sigma_{h} \neq E_{k}^{h}, \sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$ and $\Delta_{E_{k}} \subsetneq \gamma \subsetneq \sigma$ hold, then we have $h \geq 3$. From Lemma 5.35, we have $\sigma_{h}=\rho$. In addition $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$ and $\gamma \subseteq \gamma \circ \gamma \subseteq E_{k}^{2}$; this yields the following possible two subcases:
(a) $\gamma=\gamma \circ \gamma$ and (b) $\gamma \subsetneq \gamma \circ \gamma$.

Assume that subcase (a) holds, then γ is a nontrivial equivalence relation and $\operatorname{Pol}(\sigma) \subsetneq \operatorname{Pol}(\gamma)$, contradiction.

Assume that subcase (b) holds. Recall that γ is the symmetric part of σ and $\gamma \circ \gamma$ is symmetric. We claim that $\gamma \circ \gamma \nsubseteq \sigma$. Assume that $\gamma \subsetneq \gamma \circ \gamma \subseteq \sigma$; let $(a, b) \in \gamma \circ \gamma \backslash \gamma$, then by symmetry of $\gamma \circ \gamma$, we get $(a, b),(b, a) \in \sigma$; so $(a, b) \in \sigma \cap \sigma^{-1}=\gamma$, contradiction. It follows that $\gamma \circ \gamma \nsubseteq \sigma$. Let $(a, b) \in$ $(\gamma \circ \gamma) \backslash \sigma,(e, d) \in \sigma \backslash \gamma$; then there exists $u \in E_{k}$ such that $(a, u),(u, b) \in \gamma(* *)$. Let f_{2} be the unary operation defined on E_{k} by $f_{2}(e)=a, f_{2}(d)=b$ and $f_{2}(x)=u$ elsewhere. Since $(e, d) \notin \gamma$, using (**), the reflexivity and the symmetry of γ we obtain that f_{2} preserves γ; but $(e, d) \in \sigma$ and $\left(f_{2}(e), f_{2}(d)\right)=(a, b) \notin \sigma$; so f_{2} does not preserve σ. Hence $\operatorname{Pol}(\sigma) \subsetneq \operatorname{Pol}(\gamma)$. Since $\Delta_{E_{k}} \subsetneq \gamma \subsetneq E_{k}^{2}$, there is $(a, b) \in E_{k}^{2} \backslash \gamma$. Let $(e, d) \in \gamma \backslash \Delta_{E_{k}}$. The function $g: E_{k} \rightarrow E_{k}$ defined by $g(e)=a$ and $g(x)=b$ otherwise preserves ρ (due to $h \geq 3$ and ρ totally reflexive) and does not preserve γ (due to $(e, d) \in \gamma$ and $(g(e), g(d))=(a, b) \notin \gamma)$. Hence $\operatorname{Pol} \rho \nsubseteq \operatorname{Pol} \gamma$. Hence $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma \nsubseteq \operatorname{Pol} \rho$ contradicting the meet-irreducibility of $\operatorname{Pol} \sigma$ below $\operatorname{Pol} \rho$.

From Lemma 5.38, σ is symmetric or antisymmetric. The next lemma shows that σ is symmetric.

Lemma 5.39. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$ and $\sigma_{h} \neq E_{k}^{h}$ or $\sigma_{h}^{\prime} \neq E_{k}^{h}$, then σ is symmetric.
Proof. Assume that $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}, \sigma_{h} \neq E_{k}^{h}$ and σ is not symmetric. As $\sigma_{2}=E_{k}^{2}$ and $\sigma_{h} \neq E_{k}^{h}$, we have $h \geq 3$. From Lemma 5.38, σ is antisymmetric. From Lemma 5.35, $\sigma_{h}=\rho$ and σ is reflexive. Furthermore by Lemma 5.36, for any maximal ρ-chain A, there exists $\top_{A} \in E_{k}$ such that for all $x \in A$, $\left(x, \top_{A}\right) \in \sigma$. Let $\left\{A_{i}: 0 \leq i \leq t-1\right\}$ be the set of all maximal ρ-chains on E_{k} and set $T=\left\{\top_{A_{0}}, \top_{A_{1}}, \ldots, \top_{A_{t-1}}\right\}$. We recall that $C_{\rho} \subseteq A_{i}, 0 \leq i \leq t-1$. We distinguish the following two subcases: (i) $\sigma_{h}^{\prime}=E_{k}^{h}$, (ii) $\sigma_{h}^{\prime} \neq E_{k}^{h}$.

Assume that (i) holds. Then from Lemma 5.30, there exists $\perp \in E_{k}$ such that for any $x \in E_{k},(\perp, x) \in \sigma$. Assume that σ is not transitive, then $\sigma \subsetneq \operatorname{tr}(\sigma)$. Let $(a, b) \in \operatorname{tr}(\sigma) \backslash \sigma$ and $(u, v) \in \sigma \backslash \Delta_{E_{k}}$ and consider the unary operation l defined on E_{k} by $l(x)=a$ if $(x, u) \in \sigma$ and $l(x)=b$ otherwise, then l preserves $\operatorname{tr}(\sigma)$ and does not preserve σ; thus $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \operatorname{tr}(\sigma)$. Assume that $\operatorname{tr}(\sigma) \neq E_{k}^{2}$, let $(a, b) \in E_{k}^{2} \backslash \operatorname{tr}(\sigma)$ and $(u, v) \in \operatorname{tr}(\sigma)$ with $u \neq v$. The unary operation g defined on E_{k} by $g(x)=a$ is $x=u$ and $g(x)=b$ elsewhere preserves ρ (due to $h \geq 3$ and ρ is totally reflexive) and does not preserve $\operatorname{tr}(\sigma)$ (due to $(u, v) \in \operatorname{tr}(\sigma)$ and $(g(u), g(v))=(a, b) \notin \operatorname{tr}(\sigma))$, hence $\operatorname{Pol} \rho \nsubseteq \operatorname{Pol} \operatorname{tr}(\sigma)$, contradicting the meet-irreducibility of $\operatorname{Pol} \sigma$ below $\operatorname{Pol} \rho$. Let $b \in E_{k}$ such that $\perp \neq b$; then by the antisymmetry of σ we get $(b, \perp) \notin \sigma$. Since $(b, \perp) \in E_{k}^{2}=\operatorname{tr}(\sigma)$, there exist $u_{1}, \ldots, u_{n} \in E_{k}$ such that $\left(b, u_{n}\right),\left(u_{n}, u_{n-1}\right), \ldots,\left(u_{2}, u_{1}\right),\left(u_{1}, \perp\right) \in \sigma$. It follows that $\left(u_{1}, \perp\right),\left(\perp, u_{1}\right) \in \sigma$. The antisymmetry of σ yields $\perp=u_{1}$. By induction we obtain $u_{n}=\perp$. Thus $(b, \perp) \in \sigma$, contradiction.

Assume that $\sigma=\operatorname{tr}(\sigma)$, then σ is transitive and σ is a partial order. Let B be a maximal ρ-chain, then there exists $\top_{B} \in B$ such that for any $x \in B$, $\left(x, \top_{B}\right) \in \sigma$. Let $a \in E_{k} \backslash B$, then $\left\{\top_{B}, a\right\}$ is a ρ-chain (because $h \geq 3$ and ρ is totally reflexive), therefore there exists $u \in E_{k}$ such that $\left(\top_{B}, u\right),(a, u) \in \sigma$. Since σ is transitive, then for any $x \in B,(x, u) \in \sigma$; so $B \cup\{u\}$ is a ρ-chain (due to $\left.\sigma_{h}=\rho\right)$. Hence $u \in B$ and $\left(u, \top_{B}\right),\left(\top_{B}, u\right) \in \sigma$. Thus $\top_{B}=u$ and $\left(a, \top_{B}\right) \in \sigma$. As the choice of a was arbitrary we deduce that \top_{B} is the greatest element of σ; this observation together with $(\perp, x) \in \sigma$ for any $x \in E_{k}$, yield that σ is a bounded partial order, contradiction. Thus the subcase $\sigma_{h}^{\prime}=E_{k}^{h}$ is impossible.

Assume (ii): $\sigma_{h}^{\prime} \neq E_{k}^{h}$ holds, then we get by Lemma 5.35 that $\sigma_{h}^{\prime}=\rho$. We distinguish three subcases. (a) $\sigma \subsetneq \operatorname{tr}(\sigma) \subsetneq E_{k}^{2}$, (b) $\sigma=\operatorname{tr}(\sigma)$, (c) $\operatorname{tr}(\sigma)=E_{k}^{2}$.

Since $\operatorname{tr}(\sigma) \in[\{\sigma\}]$, we have $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \operatorname{tr}(\sigma)$. If (a) holds, then using the above unary operation l, we obtain $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \operatorname{tr}(\sigma)$. Hence $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \operatorname{tr}(\sigma) \neq$ $\operatorname{Pol} \rho$ (due to Lemma 5.18, $\Delta_{E_{k}} \neq \operatorname{tr}(\sigma) \neq E_{k}^{2}$ and ρ is not transitive), contradicting the meet-irreducibility of $\operatorname{Pol} \sigma$ below $\operatorname{Pol} \rho$.

Assume that (b) holds(i.e σ is transitive). Since $\rho=\sigma_{h}=\sigma_{h}^{\prime}$ and σ reflexive, from Lemma 5.36, for any maximal ρ-chain B, there exist $\top_{B}, \perp_{B} \in B$ such that for any $x \in B,\left(x, \top_{B}\right),\left(\perp_{B}, x\right) \in \sigma$. Let B be a maximal ρ-chain, and \top_{B} and \perp_{B} as above. A similar argument use in the subcase (i) with σ transitive shows that \top_{B} is the greatest element of σ and dually \perp_{B} is the least element of σ; therefore σ is a bounded partial order, contradiction.

Assume that (c) holds. Let $\left\{A_{i}: 0 \leq i \leq t-1\right\}$ be the set of maximal ρ-chains $(t \geq 2)$. Since $\sigma_{h} \neq E_{k}^{h}$ and $\sigma_{h}^{\prime} \neq E_{k}^{h}$, applying Lemma 5.35 we obtain $\sigma_{h}=\sigma_{h}^{\prime}=$ ρ, from Lemma 5.36 , for any maximal ρ-chain B, there exist $\top_{B}, \perp_{B} \in B$ such that for any $x \in B,\left(x, \top_{B}\right),\left(\perp_{B}, x\right) \in \sigma$. In addition, from (1) of Proposition 3.4, $C_{\rho} \subseteq A_{i}, 0 \leq i \leq t-1$. Therefore $\left\{\top_{A_{i}}: 0 \leq i \leq t-1\right\}$ is a ρ-chain. So there exists a maximal ρ-chain D such that $\left\{\top_{A_{i}}: 0 \leq i \leq t-1\right\} \subseteq D$. As D
is a maximal ρ-chain, $\perp_{D}, \top_{D} \in D$ and $\left(\top_{D}, \perp_{D}\right) \in E_{k}^{2}=\operatorname{tr}(\sigma)$. So there exist $u_{1}, \ldots, u_{n} \in E_{k}$ such that $\left(T_{D}, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{n-1}, u_{n}\right),\left(u_{n}, \perp_{D}\right) \in \sigma$. Since $\left\{u_{1}, \top_{D}\right\}$ is also a ρ-chain (due to $h \geq 3$), there exists a maximal ρ-chain B such that $\left\{u_{1}, T_{D}\right\} \subseteq B$ (due to every ρ-chain is contained in a maximal ρ-chain). We have $\top_{B} \in D$ (due to $\top_{B} \in\left\{\top_{A_{i}}, 0 \leq i \leq t-1\right\} \subseteq D$ and D is a maximal ρ-chain), so $\left(\top_{B}, \top_{D}\right) \in \sigma$; in addition $\left(\top_{D}, \top_{B}\right) \in \sigma$ (due to $\top_{D} \in B$); therefore $\left(\top_{B}, \top_{D}\right),\left(\top_{D}, \top_{B}\right) \in \sigma$ and $\top_{B}=\top_{D}$ (due to σ is anti-symmetric). We have also $u_{1} \in B$, so $\left(u_{1}, \top_{B}\right)=\left(u_{1}, \top_{D}\right) \in \sigma$, therefore $u_{1}=\top_{D}=\top_{B}$ (due to $\left(\top_{D}, u_{1}\right) \in \sigma$ and σ anti-symmetric). By induction we obtain $u_{i}=\top_{D}, 1 \leq i \leq n$. Hence $\top_{D}=\perp_{D}$ and $\top_{A_{0}}=\ldots=\top_{A_{t-1}}$; so E_{k} is a ρ-chain (due to $\sigma_{h}=\rho$ and $\left(x, \top_{D}\right) \in \sigma$ for all $\left.x \in E_{k}\right)$; contradiction. Therefore (c) is impossible.

Hence the case σ antisymmetric is impossible. Thus σ is symmetric.
We have shown that σ is reflexive and symmetric. Recall that ρ has t maximal ρ-chains $A_{0}, A_{1}, \ldots, A_{t-1}$. Let $i \in\{0,1, \ldots, t-1\}$ and $m=\left|A_{i}\right|$. Set

$$
\begin{aligned}
\gamma=\{ & \left(a_{1}, \ldots, a_{k}\right) \in E_{k}^{k}: \exists u \in E_{k},\left(a_{1}, u\right), \ldots,\left(a_{m}, u\right) \in \sigma \text { and } \\
& \left.\left\{a_{1}, \ldots, a_{k}\right\}^{h-1} \times\{u\} \subseteq \rho\right\}
\end{aligned}
$$

and $\beta=\left\{\left(a_{1}, \ldots, a_{k}\right) \in E_{k}^{k}:\left\{a_{1}, \ldots, a_{m}\right\}^{h} \subseteq \rho\right\}$.
Lemma 5.40. If the assumptions of Proposition 5.19 are satisfied, $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$ and $\left(\sigma_{h} \neq E_{k}^{h}\right.$ or $\left.\sigma_{h}^{\prime} \neq E_{k}^{h}\right)$, then $\beta=\gamma$.
Proof. Assume that $\gamma \neq \beta$ and $\sigma_{h} \neq E_{k}^{h}$. From Lemma 5.35, we get $\sigma_{h}=\rho$; using Lemma 5.39 , we get that σ is symmetric. Therefore $\sigma_{h}=\sigma_{h}^{\prime}=\rho$. Hence $\gamma \subsetneq \beta$. Let $\left(v_{1}, \ldots, v_{k}\right) \in \beta \backslash \gamma$. It is easy to check that $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma$ (using $\sigma_{h}=\rho$). Now we show that $\operatorname{Pol} \gamma \subseteq \operatorname{Pol} \rho$. Let $f \in \operatorname{Pol} \gamma$ be an n-ary operation. Let $\boldsymbol{a}_{i}=\left(a_{1, i}, \ldots, a_{h, i}\right) \in \rho, 1 \leq i \leq n$, set

$$
\boldsymbol{a}_{i}^{\prime}=(a_{1, i}, \ldots, a_{h, i}, \underbrace{a_{h, i}, \ldots, a_{h, i}}_{k-h \text { times }}), 1 \leq i \leq n .
$$

Using $\sigma_{h}=\rho$ one can check that $\boldsymbol{a}_{i}^{\prime} \in \gamma, 1 \leq i \leq n\left(*_{6}\right)$. Using $\sigma_{h}=\rho$ and $\left(*_{6}\right)$ one can check that $\left(f\left(a_{1,1}, \ldots, a_{1, n}\right), \ldots, f\left(a_{h, 1}, \ldots, a_{h, n}\right)\right) \in \rho$; therfore $\operatorname{Pol} \gamma \subseteq \operatorname{Pol} \rho$. Hence $\operatorname{Pol} \sigma \subseteq \operatorname{Pol} \gamma \subseteq \operatorname{Pol} \rho$. We show that these inclusions are proper. Let $(a, b) \in E_{k}^{2} \backslash \sigma$ and $(u, v) \in \sigma \backslash \Delta_{E_{k}}$. The unary operation g defined on E_{k} by $g(x)=a$ if $x=u$ and $g(x)=b$ otherwise preserve γ due to $\rho=$ $\sigma_{h}, E_{k}^{2}=\sigma_{2}, 3 \leq h \leq m, \sigma$ reflexive and symmetric, $\operatorname{Im} g=\{a, b\}$ and ρ totally reflexive; but does not preserve σ due to $(u, v) \in \sigma$ and $(g(u), g(v))=(a, b) \notin \sigma$. Therfore $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma$. To finish we show that $\operatorname{Pol} \gamma \subsetneq \operatorname{Pol} \rho$. From Lemma 5.36, for all $0 \leq i \leq t-1$, there exists $u_{A_{i}} \in E_{k}$ such that $\left(x, u_{A_{i}}\right) \in \sigma$ for every $x \in A_{i}$. Since $C_{\rho} \subseteq A_{i}, 0 \leq i \leq t-1,\left\{u_{A_{0}}, \ldots, u_{A_{t-1}}\right\}$ is contained in a maximal
ρ-chain D. We suppose that $D=A_{0}$. Therefore $\left(u_{A_{0}}, u_{A_{1}}\right), \ldots,\left(u_{A_{0}}, u_{A_{t-1}}\right) \in \sigma$. Let $a_{1}, \ldots, a_{h-1} \in E_{k} ;\left\{a_{1}, \ldots, a_{h-1}\right\}$ is contained in a maximal ρ-chain A_{i} for some $0 \leq i \leq t-1$. Hence $\left(a_{1}, \ldots, a_{h-1}, u_{A_{0}}\right) \in \sigma_{h}=\rho$. Therefore $u_{A_{0}} \in C_{\rho}$. We choose $a_{1}, a_{2}, \ldots, a_{h-1} \in A_{0}$ and $a_{h} \notin A_{0}$ such that $\left(a_{1}, \ldots, a_{h}\right) \notin \rho$ (due to $A_{0} \neq E_{k}$). Set

$$
W=\left\{\left(i_{1}, \ldots, i_{h}\right) \in\{1, \ldots, k\}^{h}: 1 \leq i_{1}<\ldots<i_{h} \leq k\right\}
$$

denoted simply by $W=\left\{\left(i_{1}^{j}, \ldots, i_{h}^{j}\right): 1 \leq j \leq q\right\}$ where $q=|W|$. For all $1 \leq j \leq q$, set $y_{j}=\left(x_{1, j}, x_{2, j}, \ldots, x_{k, j}\right) \in E_{k}^{k}$ with

$$
x_{l, j}= \begin{cases}a_{n} & \text { if } l=i_{n}^{j} \text { and }(n \neq h \text { or } l>m) \text { for some } 1 \leq n \leq h, \\ u_{A_{0}} & \text { otherwise }\end{cases}
$$

for $1 \leq l \leq q$. Furthermore, for $1 \leq i \leq k$ we set $\boldsymbol{x}_{i}=\left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, q}\right)$. From construction of \boldsymbol{x}_{i}, for all $1 \leq i_{1}<i_{2}<\ldots<i_{h} \leq k,\left(\boldsymbol{x}_{i_{1}}, \boldsymbol{x}_{i_{2}}, \ldots, \boldsymbol{x}_{i_{h}}\right) \in \rho$ if and only if $i_{h} \leq m$. We define the q-ary operation f on E_{k} by $f(\boldsymbol{x})=v_{i}$ if $\boldsymbol{x}=\boldsymbol{x}_{i}$ for some $1 \leq i \leq k$ and $f(\boldsymbol{x})=u_{A_{0}}$ otherwise. We have $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{q}\right\} \subseteq$ γ (due to $u_{A_{0}} \in C_{\rho}$ and $\left(a_{1}, u_{A_{0}}\right), \ldots,\left(a_{h-1}, u_{A_{0}}\right) \in \sigma$) and $f\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{q}\right)=$ $\left(f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{k}\right)\right)=\left(v_{1}, \ldots, v_{k}\right) \notin \gamma$. It is easy to check that $f \in \operatorname{Pol} \rho$. Thus $\operatorname{Pol} \sigma \subsetneq \operatorname{Pol} \gamma \subsetneq \operatorname{Pol} \rho$, contradicting the maximality of $\operatorname{Pol} \sigma$ in $\operatorname{Pol} \rho$. Thus $\gamma=\beta$.

Lemma 5.41. If the assumptions of Proposition 5.19 are satified, $\sigma_{2}=\sigma_{2}^{\prime}=E_{k}^{2}$ and ($\sigma_{h} \neq E_{k}^{h}$ or $\sigma_{h}^{\prime} \neq E_{k}^{h}$), then σ is of type VIII.

Proof. We have shown above that σ is reflexive and symmetric. Furthermore $\sigma \circ \sigma=E_{k}^{2}$. Let $i \in\{0,1, \ldots, t-1\}$ and $m=\left|A_{i}\right|$. From Lemma 5.40, $\gamma=\beta$. We suppose that $A_{i}=\left\{a_{1}, \ldots, a_{m}\right\}$. Let $a_{m+1}, \ldots, a_{k} \in E_{k}$ such that $E_{k}=$ $\left\{a_{1}, \ldots, a_{k}\right\}$. We have $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \beta=\gamma$; therefore there exists $u_{A_{i}} \in E_{k}$ such that for all $1 \leq j \leq m\left(a_{j}, u_{A_{i}}\right) \in \sigma$ and for all $1 \leq i_{1}<i_{2}<\ldots<i_{h-1} \leq$ $k,\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{h-1}}, u_{A_{i}}\right) \in \rho$. Hence $u_{A_{i}} \in C_{\rho}$ and σ fulfills condition VIII of Theorem 3.2.

Now we are ready to prove Proposition 5.19.
Proof. (Proof of Proposition 5.19) Combining Lemmas 5.20-5.41, we obtain the result.

Proof. (Proof of Theorem 3.2) Combining Propositions 4.1, 4.3, 4.4, 4.8, Corollary 4.5, Propositions 5.1, 5.9, 5.16, 5.19 and Corollary 5.17 we have the result.

Acknowledgments

The authors would like to express their thanks to the referees for their comments and suggestions which improved the paper.

References

[1] K.A. Baker and A.F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, Math. Z. 143 (1975) 165-174.
[2] L. Diekouam, Y.L.J. Tenkeu, E.R.A. Temgoua and M. Tonga, Meet-reducible submaximal clones determined by nontrivial equivalence relations, J. Algebra, Number Theory; Adv. Appl. 17 (2017) 29-93. http://dx.doi.org/jantaa_7100121803
[3] D. Lau, Submaximale Klassen von P_{3}, J. Inf. Process. Cybern. EIK 18 (4-5) (1982) 227-243.
[4] D. Lau, Function Algebras on finite sets. A basic course on many-valued logic and clone theory (Springer-Verlag, New York, Heidelberg, Berlin, 2006).
[5] E.L. Post, Introduction to a general theory of elementary propositions, Amer. J. Math. 43 (1921) 163-185.
[6] E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Ann. Math. Studies 5 (Princeton University Press, 1941).
[7] I.G. Rosenberg, La structure des fonctions de plusieurs variables sur un ensemble fini, C.R. Acad. Sci. Paris, Ser. A-B 260 (1965) 3817-3819.
[8] I.G. Rosenberg and Á. Szendrei, Submaximal clones with a prime order automorphism, Acta Sci. Math. 49 (1985) 29-48.
[9] R. Pöschel and L.A. Kaluz̆nin, Funktionen-Und Relationenalgebren (VEB Deutscher Verlag der Wissenschaften, Berlin, 1979).
[10] E.R.A. Temgoua and I.G. Rosenberg, Binary central relations and submaximal clones determined by nontrivial equivalence relations, Algebra Univ. 67 (2012) 299-311.
https://doi.org/10.1007/s00012-012-0183-2
[11] E.R.A. Temgoua, Meet-irreducible submaximal clones determined by nontrivial equivalence relations, Algebra Univ. 70 (2013) 175-196.
https://doi.org/10.1007/s00012-013-0244-1
[12] Y.L.J. Jeufack, L. Diekouam and E.R.A. Temgoua, Meet-reducible submaximal clones determined by two central relations, Asian Eur. J. Math. 12 (2018) 26 pages. https://doi.org/10.1142/1793557119500645
[13] Á. Szendrei, Clones in Universal Algebra. Séminaire de Mathématiques Supérieures 99 (Les presses de l'université de Montréal, 1986).

Revised 13 April 2022
Accepted 13 April 2022

