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Abstract

The notion of a pre-period of an algebra A is defined by means of the
notion of the pre-period A(f) of a monounary algebra (A; f): it is determined
by sup{A(f) | f is an endomorphism of A}. In this paper we focus on the
pre-period of a finite modular lattice. The main result is that the pre-period
of any finite modular lattice is less than or equal to the length of the lattice;
also, necessary and sufficient conditions under which the pre-period of the
glued sum is equal to the length of the lattice, are shown. Moreover, we
show the triangle inequality of the pre-period of the glued sum.
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1. INTRODUCTION

One of the most important tools in studying universal algebra is the notion of
endomorphism. An endomorphism f of a structure A can be considered as a unary
operation and (A; f) is a monounary algebra. Some properties of monounary
algebras connected with the notion of homomorphism were studied, e.g., in [3, 4,
7,11, 12).

The importance of the theory of unary and monounary algebras is pointed
out for example in the monographs [6, 8, 9, 10]. The advantage of monounary
algebras is their relatively easy visualization as they can be represented as planar
directed graphs. If the graph of a monounary algebra is connected, then it is
called a connected monounary algebra. As every graph is a sum of connected
components, every monounary algebra is a sum of connected monounary algebras.

Let f : A — A be a unary operation on a set A. Let fO be the identity
map on A and Im(f) := {f(a) | a € A}. A pre-period (or stabilizer) of f is the
least nonnegative integer n satisfying Imf™ = Imf"*! and is denoted by A(f)
(see e.g.[15]). An operation f on A is connected if for each a,b € A, there exist
nonnegative integers n,m such that f"(a) = f™(b). Some results from [2] and
[13] imply that A(f) < |A|—1 and the authors characterized f with A\(f) = |A4|—1;
moreover, if A(f) =|A| — 1, then f is connected.

Several authors focus specially on connected monounary algebras (see e.g.,
[14, 5]). We saw in [1] that if f is a connected order-preserving map on a bounded
poset P, then f has a unique fixed point « (f(a) = «); moreover, A(f) < ¢(P)
where the length ¢(P) of P is defined by |C| — 1 for the longest chain C in P.
The pre-period of a finite lattice A fizing « is the maximum of \(f) whose f is
a connected endomorphism on A and « is the fixed point and it is denoted by
Aa(A) which was studied in the case o = 0. They showed that if A is distributive,
then \g(A) < /(A) and the authors of [1] characterized A with A\g(A) = ¢(A).

In this work, we generalize some notions and facts in [1] to an endomorphism
without the connectivity. The supremum of \(f) whose f is an endomorphism of
a lattice A is called the pre-period of A denoted by A(A) which is shown to be less
than or equal to the length of A if it is finite modular. A finite modular lattice A
is said to have the maximum pre-period property (briefly MPP) if A(A) = ¢(A).
We characterize them via the concept of the connectivity. However when A is
complicated, it is not easy to study A(A). One of the ways to determine it is to
consider A as built up from simpler components.

Let A and B be (disjoint) ordered sets. The ordinal sum A @ B is defined
by taking the following order relation on AU B : a < b if and only if

(i) a,b€e Aand a <bin A,
(ii) a,b € B and a < b in B,
(i) a € A and b € B.
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If A has the top 1o and B has the bottom Og, the glued sum of A and
B, denoted A + B, is obtained from the ordinal sum by identifying 15 with
0. We will show necessary and sufficient conditions of finite modular lattices
A and B such that A + B has the MPP. Also, we prove the triangle inequality:
AMA 4+ B) < A(A) + \(B) for finite lattices A and B.

2. PRELIMINARIES

A unary operation f on a lattice A = (A;V,A) is said to be an endomorphism
on Aif f(aVvb) = f(a)V f(b) and f(aAb) = f(a)A f(b) for all a,b € A. One can
see for a finite lattice A that there exists the top 1 and the bottom 0; moreover
for an endomorphism f on A, f is connected fixing 0 if and only if f™(1) =0 for
some non-negative integer n. This implies that the pre-period A(f) of a connected
endomorphism f on a finite lattice A fixing 0 is the least non-negative integer
with fAU)(1) = 0. It was showed in [1] for a finite distributive lattice A that
Mo(A) < (A). A condition on A for A\g(A) = ¢(A) is shown in the following
theorem. Moreover, it can be stated for any finite modular lattice.

Theorem 1 [1]. Let A be a finite modular lattice. Then Ao(A) = £(A) if and
only if there is an endomorphism f on A such that 0 = fAA)(1) < fABI=1(1) <
<+ < f(1) < 1; moreover, f is connected.

3. A PRE-PERIOD OF THE GLUED SUM

In this section, we will start from obvious basic properties of a lattice.
Lemma 2. Let © be a congruence on a lattice L and let LY be the dual of L.
1. If L is bounded, then \o(L) = A (L9).
2. Ifx <y inL, then /O < y/© in L/O.
Theorem 3. Let L be a finite modular lattice. Then
Aa(L) < A(L) < (L)
foralla e L.

Proof. The first inequality is trivial. Let f : L — L be an endomorphism and
L, = f™(L) for all n > 0. Then the restriction function f |1, : L, — L1 is an
onto homomorphism. By the Homomorphism Theorem, L, 11 = L, /0, where
©, = ker(f |1, ). So,if O, # Ay, , then |L,1| < |L,| by finiteness which implies
that n < A(f). Thus,

(1) A(f) is the smallest n such that ©,, = Ar,,.
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We will show that
(2) if ©, # Ay, then ¢(L,) > {(Ly,41).

Suppose that (a,b) € ©,, with a < b. Then a and b are in a maximal chain C' =
{0, =co <c1 <+ < ¢ =1, } where k = {(L,,) since any two maximal chains
of a finite modular lattice have the same cardinality. Lemma 2 and a/0,, = b/0,,
imply that

C"={co/On 2 1/On = -+ 2 ¢1/On}

is a maximal chain in Lj,41 with (L, 1) = ¢(C") < k = ¢(L,). By (1) and (2),
(3) if A\(f) =n, then ¢(L) > ¢(Ly) > --- > ¢(L,—1) > ¢(L,) >0

which implies that n < ¢(Lg). Hence, \(L) < ¢(L). ]

Remark 4. Theorem 3 is not true for some infinite modular lattices; for example,
AM1eN@l)=cobuwt/(1®&N®1) =2.

Example 5. Let L be the lattice which is shown in Figure 1. One can see that
the map f : L — L defined by f(0) =0, f(1) =1, f(b;) = a; and f(a;) = bj—1

for 1 <14 < 4 where by = by is an endomorphism of L. Moreover,

AL) > A(f) =6 > 5 = ((L).

a4 by

as b3

az b2

al by
0

Figure 1. A non-modular lattice L with A(L) > ¢(L).

Corollary 6. Let L be a finite modular lattice. Then

L has the MPP if and only if either A\o(L) = (L) or A1 (L) = ¢(L).
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Proof. Suppose that f : L — L is an endomorphism with A(f) = ¢(L) := n.
By (3), we get ¢{(Ly,) = 0; that is, f*(L) = L,, = {a} for some a € L. So,
f"(x) = a = f*(y) for all z,y € L. Hence, f is connected with f(a) = . For
i €40,1}, let k; = min{m € NU {0} | f™(i) = a} and k = max {ko, k1}. Then

0<f0)<--<fo)=a=fr1)<---<fl)<1
and
a=fH0) < ff@) < ff 1) =a
for all z € L. So, A(f) =k and ko + k1 < {(L).
If k = kq, then kg = 0; that is, f fixes 0; and so,
(L) = A(f) < Mo(L) < (L.

Similarly, if & = ko, then \j(L) = ¢(L). The converse is clear by the fact that
max {A\o(L), A1 (L)} < A(L) < ¢(L). |

Lemma 7. Let A and B be finite lattices and let D = A + B. If f is a connected
endomorphism on D fizing Op, then f|, is a connected endomorphism on A fixing
0a. And if A is non-trivial, then B is not closed under f.

Proof. It suffices to show that A is closed under f. It is clear that f preserves
<. If f(1a) > 1A, then by uniqueness of the fix-point Op,

1a < f(1a) < f2(1a) < --- < AP (1) < fFAP)(1p) = 0p = 04,

a contradiction. Hence, f(1a) < 1A which implies that f(z) < f(1a) < 14 for
all x € A; that is, f(A) C A. Moreover, if A is non-trivial, then f(0g) = f(1a) <
1a; thus, f(0B) ¢ B. ]

Theorem 8. Let A and B be non-trivial finite modular lattices. Then A + B
has the MPP if and only if either

1. Ao(A) =¢(A) and B is a chain, or
2. \(B) =4¢(B) and A is a chain.
Proof. First, we will show that
M(A 4+ B) =/¢(A + B) if and only if A\g(A) = ¢(A) and B is a chain.
For convenience, let D = A 4 B.

(=) Let A\o(D) = ¢(D). By Theorem 1, there is a connected endomorphism
f on D fixing Op such that

0p = f*P)(1p) < A @~ (Ip) < -+ < f(Ip) < Ip.
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Suppose that m is the greatest non-negative number with f™(1p) > 1a. As
fm(Ip) > 1a > f™*'(1p) and f™(1p) = f"*'(1p), we have f"(1p) = 1a. By
Lemma 7, f|, is an endomorphism on A fixing 0o with ffA(lA) = f{(f™(1p)) <
fHY(fm(1p)) for all 0 < i < k —m — 1 which implies by Theorem 1 that
Mo(A) = £(A). Next, we will show that f™ !(1p) is the unique atom of B.
Suppose that a is an atom of B with a # f™ !(1p). Then aAf™ (1p) = f™(Ip)
which implies that f(a) A f™(1p) = f™(1p). If f(a) > f™(Ip) = 0B, then
f™(1p) = f™*(1p), a contradiction. So, f(a) < f™(1p) which implies that
f(a) = f™T(1p). Let k be the greatest non-negative integer such that a <
f¥(1p). Then k < m—2. Since f**1(1p) < f*(1p), we get aVv f*T1(1p) = f¥(1p)
which implies that

fA 1 (1p) = f(a) v fF*(1p) = /" (1p) v f*(1p).

Since k < m — 2, we get k+2 <m < m+ 1; and so, f™*(1p) < f*2(1p). Tt
follows that f**2(1p) = f**!(1p), a contradiction. So, B has the unique atom
which implies that B = 2 4 B for some lattice By. Similarly, By has the unique
atom. If we continue in this way, we get that B is a chain.

(«<=) Assume that there is an endomorphism f4 on A with f41(1a) = f4(1a)
forall 1 <i<mnand B={lg=>0y>by_1>-->by=0p}. Define a unary
operation fp on D by

bi_1 if £ = b; for some 1 <i <m,
fo(z) = .
falzx) ifxze A

It is clear that fp is an endomorphism on D such that f5 '(1p) = fh(1p) for
all 1 <i < m+n. Hence, \o(D) = ¢(D).
Observe that Aj(A + B) = M\g(A + B)? = A\o(B? + A?). Hence,
M(A +B) =£4(A+B) & A\(B?) =¢B) and A? is a chain
< A (B) =¢(B) and A is a chain.

By Corollary 6, we are done. [ |

Example 9. The lattice D = 22 | 23 is shown as Figure 2. Since 22 and 23 are
not chains, we get A\(22 4 23) < £(2%2 +23) = 5. We can find an endomorphism
f:D — D, defined by

(ag,as,1) if x = (a1, a9, as) for some ay,az,as € {0,1},
f(x) =<(0,0,1) ifx=(1,a) for some a € {0,1},
(0,0,0)  if z = (0,a) for some a € {0,1},

where 23 = {(a1, as,0a3) | a1,a2,a3 € {0,1}} and 2% = {(a1,a2) | a1, az € {0,1}}.
Hence, A\(f) = 4 which implies \(22 4 23) = 4.
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Figure 2. The glued sum 22 4 23,

Theorem 10. Let A and B be finite lattices. Then
Mi(A+B) < N(A) + X\i(B)

and

MA +B) < AA) + A(B)
forie {0,1}.

Proof. First, we will consider i = 0. Let D = A+ B and fp : D — D be an
endomorphism. To prove the second inequality, we assume that k, and k; stands
for A(A) and A(B), respectively. For the first inequality, k, and k; stands for
Mo(A) and A\g(B), respectively. From now on, the argument for the two inequali-
ties are (almost) the same: we need to show that fketko (D) = fratketl(D). Let
B :=1a = 0. Note that if f is connected with f(0p) = Op, then f(3) < .

Case (i). f(B8) = B. Then f(A) C A and f(B) C B since f is order-
preserving. Thus, foa{kak}(D) = fmaxtkek}+1(D) and we are done since
max {ka, kb} < kg + kp.

Case (ii). f(B) # B. Since [ is comparable with all elements of D, either
f(B) > por f(B) < . By duality, we may assume that f(3) < 8. So, f(A) C A.
Let fo = f |a. Since f is order-preserving and (3 is comparable with all elements
of D , the map g : B — B defined by

flz) if f(x) > B,
ola) = 1) )
Ié] if f(x) <p.
is an endomorphism of B. Note that if f is connected with f(0p) = Op, then so

are f4 and g with f4(0a) = 0a and g(0p) = Op. Let P be the set of elements
x € B with f*(x) > g for all n € Nand N := B\ P. Clearly, f |p=g |p is
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closed under P and f(N)NP =0 and N N fi(P) = () for all i > 0. We will show
that

9" (P) = ¢™"(P) and g™ (N) = {8}.

Since B is finite, there exists ¢ with g'(N) = {8}. Let T = min{t € N | ¢*(N) =
{B}}. Then for t < T, g""1(B) = g"*!(P) Ug"™ ! (N) € ¢'(P) Ug'(N) = g'(B);
and so, T < X(g) < ky. So, g"(N) = {B}. Since

gkb(P) ngb(N) — gkb(B) _ gkb-l—l(B) _ gkb-l-l(P) U gkb—f—l(N)

ko (P), we get gf(P) = g"t1(P). Hence, fretho(P) = fhathotl(p)

fka-l—kb(NUA) — fka-l-kb(NUA)
= fre(fP(NUA)) = fir(F (N UA)
= Fir () U fie (17 (4)
= SR (R N)) U R (A (A)
— fk”kb“(NUA).

So, fFatk (D) = fkatke+l(D). This implies that A(A + B) < A(A) + A(B) and
M(A +B) < A\g(A) + \o(B); and so,

M(AFB) = (A +B)? = \(B? + A%) < \(A?) + X(B?) = A1 (A) + M (B).
| |
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