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Abstract

We consider an R-group G, where R is a zero symmetric right near-
ring. We obtain the Ω-dimension of sum of two ideals of G, as a natu-
ral generalization of sum of two subspaces of a finite dimensional vector
space; indeed, difficulty due to non-linearity in G. However, in this paper
we overcome the situation under a suitable assumption. More precisely, we
prove that for a proper ideal Ω of G with Ω-finite Goldie dimension (Ω-
FGD), if K1,K2 are ideals of G wherein K1 ∩K2 is an Ω-complement, then
dimΩ(K1 +K2) = dimΩ(K1) + dimΩ(K2)− dimΩ(K1 ∩K2). In the sequel,
we prove several properties.
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1. Introduction

It is customary to generalize the theory of vector spaces over a field to that of
modules over rings in a natural way. The dimension of the vector space over a
field is a maximal set of linearly independent vectors or a minimal set of vectors
which spans the space. The former statement when generalized to modules over
associative rings or to module over nearrings (known as R-groups) become the
concept of Goldie dimension (or uniform dimension). A module is uniform if
every non-zero submodule is essential. Uniform submodules play a significant
role to establish various finite dimension conditions in modules over associative
rings. However, certain results may not be possible to generalize to modules over
rings unless we impose some assumption(s). In particular, in the theory of finite
dimensional vector spaces, for a subspace W of a vector space V , dim(V/W) =
dim(V ) \ dim(W ) is well known. This condition may not hold in general, when
we consider a module over rings. For simplicity, K = 6Z is a uniform submodule
of Z-module over Z, and dim(Z/6Z) = dim(Z2×Z3) = 2 6= 0 = dim(Z)\dim(6Z).
Also, a similar situation can arise when we generalize the dimension of sum of
two subspaces of a vector space. This motivates us to obtain the dimension of
sum of two ideals of an R-group with relative finite Goldie dimension (where
R is a nearring) under the assumption that their intersection is a complement
ideal. Goldie [10] characterized several equivalent conditions for a module to have
finite uniform dimension. In Bhavanari [6], uniform dimension was generalized
to R-groups and obtained characterization for an R-group to have finite Goldie
dimension. Goldie dimension aspects in R-groups were extensively studied in
[4, 7, 15,18].

Let Ω be a proper ideal of G. Our aim in this paper is to prove, if G
has Ω-FGD and K = K1 ∩ K2 is an Ω-complement, then dimΩ(K1 + K2) =
dimΩ(K1) + dimΩ(K2)− dimΩ(K), where K1 and K2 are ideals of G.

2. Preliminaries

A (right) nearring (R,+, ·) (Pilz [16]) is an algebraic system, where R is an
additive group (need not be abelian) and a multiplicative semigroup, satisfying
only one distributive axiom: (r1 + r2)r3 = r1r3 + r2r3 for all r1, r2, r3 ∈ R. If
(R,+, ·) is a right nearring, then 0a = 0 and (−a)b = −ab, for all a, b ∈ R, but
in general a0 6= 0 for some a ∈ R. We call R is zero symmetric if r0 = 0 for
all r ∈ R, denoted by R = R0. An additive group (G,+) is called an R-group
(or module over a nearring R), denoted by RG or simply by G if there exists a
mapping R × G → G (image (r, g) → rg), satisfying (1) (r + s)g = rg + sg; (2)
(rs)g = r(sg) for all g ∈ G and r, s ∈ R. It is evident that every nearring is an
R-group (over itself). Also, if R is a ring, then each (left) module over R is an



On the finite Goldie dimension of sum of two ideals of ... 179

R-group. Throughout, G denotes an R-group where R is a zero-symmetric right
nearring. A normal subgroup H of G is called an ideal if r(g + h)− rg ∈ H for
all r ∈ R, h ∈ H, g ∈ G. Since R is zero symmetric, for any ideals A and B of
G, A+ B is an ideal of G ([16], Corollary 2.3), and we use A⊕B to denote the
direct sum of A and B.

An ideal H of G is essential ( [18]), if for any ideal K of G, H ∩ K = (0)
implies K = (0). If every ideal (0) 6= H of G is essential then G is uniform.

For standard definitions and notations in nearrings, we refer to [8, 16].

3. Relative finite dimension in R-group

We start this section with the definitions of Ω-uniform ideal, Ω-direct sum and
Ω-FGD

Definition 3.1. (1) An ideal H of G is said to be relative essential, if there
exists a proper ideal Ω of G such that

(a) H * Ω,

(b) for any ideal K of G, H ∩K ⊆ Ω implies K ⊆ Ω.

We denote it by H ≤e
Ω G (or H is Ω-essential in G).

(2) We denote H1 ≤e
Ω H2 when H2 considered as an R-group. In case, Ω = (0),

this is referred as G-essential, by [6]. An ideal I of G is relative uniform, if
every ideal J of G, J ⊆ I, then J ≤e

Ω G.

(3) Let Ω be a proper ideals of G and let {Ii}i∈I be a family of ideals of Ω. We
say that {Ii}i∈I is Ω-direct if Ii ∩

(
∑

j 6=i Ij
)

⊆ Ω.

(4) G has Ω-FGD (or G has finite Goldie dimension with respect to a proper
ideal Ω of G), if G does not contain an infinite number of ideals Hi * Ω,
whose sum is Ω-direct.

Lemma 3.1. If G has Ω-FGD, then every ideal H * Ω of G, contains an Ω-
uniform ideal.

Proof. Suppose that G has Ω-FGD. In a contrary way, suppose H contains no
Ω-uniform ideal. Then H is not Ω-uniform. So there exist ideals H1 and H ′

1 of
G contained in H, and H1,H

′
1 * Ω such that H1 ∩H ′

1 ⊆ Ω, H1 +H ′
1 ⊆ H. Then

by supposition H ′
1 is not Ω-uniform, which implies that there exist ideals H2,H

′
2

contained in H ′
1 and H2,H

′
2 * Ω such that H2 ∩H ′

2 ⊆ Ω,H2 +H ′
2 ⊆ H ′

1. If we
continue, then we get {Hi}

∞
1 , {H ′

i}
∞
1 of two infinite sequences of ideals of G, not

contained in Ω such that Hi ∩H ′
i ⊆ Ω and Hi +H ′

i ⊆ H ′
i−1, for i ≥ 2. Thus, the

sum
∑∞

i=1Hi is infinite Ω-direct, a contradiction that G has Ω-FGD.



180 Tapatee, Kedukodi, Panackal and Kuncham

Proposition 3.1. Let I, J be ideals of G and Ω proper ideal of G. If I ⊆ J and
J is Ω-uniform, then I is also Ω-uniform.

Proof. Easy verification.

Lemma 3.2. Let Hi, 1 ≤ i ≤ 3, be ideals of G, and Ω a proper ideal of G. Then

(1) H1 ≤
e
Ω H3, H2 ≤

e
Ω H3 and H1 ∩H2 * Ω implies that H1 ∩H2 ≤

e
Ω H3.

(2) Let H1 ⊆ H2 ⊆ H3. Then H1 ≤
e
Ω H3 if and only if H1 ≤

e
Ω H2 and H2 ≤

e
Ω H3.

Proof. (1) Suppose that H1 ≤e
Ω H3 and H2 ≤e

Ω H3 and (H1 ∩ H2) * Ω. Let
(H1 ∩ H2) ∩ K ⊆ Ω, where K is an ideal of G, K ⊆ H3. This implies H1 ∩
(H2 ∩K) ⊆ Ω. Since H2 ∩K is an ideal of G, K ⊆ H3 and H1 ≤e

Ω H3, we get
H2 ∩K ⊆ Ω. Again, since H2 ≤

e
Ω H3, we have K ⊆ T .

(2) Suppose H1 ≤e
Ω H3. Let K be an ideal of G such that H1 ∩K ⊆ Ω and

K ⊆ H2. Since K ⊆ H2 ⊆ H3 and H1 ≤
e
Ω H3, we have that K ⊆ Ω. Next, let K

be an ideal of G such that H2∩K ⊆ Ω and K ⊆ H3. Now H1∩K ⊆ H2∩K ⊆ Ω
and since H1 ≤e

Ω H3, we have K ⊆ Ω. Conversely, suppose H1 ≤e
Ω H2 and

H2 ≤e
Ω H3. To prove H1 ≤e

Ω H3, let K be an ideal of G such that H1 ∩K ⊆ Ω
and K ⊆ H3. We have H1 ∩ (H2 ∩K) ⊆ H1 ∩K ⊆ Ω. Since H2 ∩K is ideal of
G, H2 ∩K ⊆ H2, and H1 ≤e

Ω H2, we have H2 ∩K ⊆ Ω. Also, as H2 ≤
e
Ω H3, we

get K ⊆ Ω.

Following the Notation 3.4.6 of [8], 〈A〉 denotes the ideal generated by A, for
a given subset A of G and for a ∈ G, 〈a〉 denotes 〈{a}〉.

Notation 3.1. Let u ∈ G. Then 〈u〉 =
⋃∞

i=1Ai+1, where Ai+1 = A∗
i ∪ A0

i ∪ A+
i

with A0 = {u}, and

A∗
i = {s+ y − s : s ∈ G, y ∈ Ai},

A+
i = {r(s+ a)− rs : r ∈ R, s ∈ G, a ∈ Ai},

A0
i = {a− b : a, b ∈ Ai} ∪ {a+ b : a, b ∈ Ai}.

Lemma 3.3. Let K, L and Ω (proper) be ideals of G such that K ∩ L = Ω. If
a ∈ K, b ∈ L, then for any a1 ∈ 〈a〉, there exists b1 ∈ 〈b〉 such that a1 + b1 ∈
〈a+ b〉+Ω.

Proof. Write X = {a}, Y = {b} and Z = {a + b}. Let 〈a〉 =
⋃∞

k=1Xk, 〈b〉 =
⋃∞

k=1 Yk, 〈a + b〉 =
⋃∞

k=1 Zk. Let S(k) be the statement: a1 ∈ Xk, implies
there exists b1 ∈ Yk such that a1 + b1 ∈ Zk + Ω. Then S(1) is trivially true.
To verify S(2), let a1 ∈ X2 = X∗

1 ∪ X+
1 ∪ Xo

1, as in Notation 3.1. Now a1 =
g + x1 − g or a1 = r(g + x1) − rg or a1 = x1 − x2, where r ∈ R, g ∈ G
and x1, x2 ∈ X1. If a1 = g + x1 − g, then write b1 = g + y1 − g ∈ Y1, so
that a1 + b1 = g + x1 − g + g + y1 − g = g + (x1 + y1) − g ∈ Z∗

1 + Ω. If
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a1 = r(g+x1)−rg ∈ X+, then write b1 = r(g+x1+y1)−r(g+x1) ∈ Y1. Clearly,
a1+b1−a1−b1 ∈ 〈a〉∩〈b〉 ⊆ Ω, implies a1+b1 = t+b1+a1, for some t ∈ Ω. Now,
a1+ b1 = t+ r(g+x1+y1)− r(g+x1)+ r(g+x1)− rg = t+ r(g+x1+y1)− rg =
Ω+Z+

1 = Z+
1 +Ω, as Ω is normal. If a1 = x1 − x2 ∈ Xo

1, write b1 = y1 − y2 ∈ Yo
1,

where y1, y2 ∈ Y1. Since −x1 + y1 + x2 − y1 ∈ X1 ∩ Y1 ⊆ K ∩ L ⊆ Ω, we have
−x2 + y1 = ω+ y1 − x2, for some ω ∈ Ω. Then, a1 + b1 = (x1 − x2) + (y1 − y2) =
x1 + ω + y1 − x2 − y2 = ω1 + x1 + y1 + ω2 − (x2 + y2), where ω1, ω2 ∈ Ω. This
implies a1 + b1 = (ω1 + ω2) + (x1 + y1) − (x2 + y2) ∈ Ω + Zo

1 = Zo
1 + Ω, as Ω

is normal. Therefore, from all the above three cases, it follows that a1 + b1 ∈
(Z∗

1 + Ω) ∪ (Z+
1 + Ω) ∪ (Zo

1 + Ω) ⊆ (Z∗
1 ∪ Z+

1 ∪ Zo
1) + Ω = Z2 + Ω. Hence S(2) is

true. Suppose the induction hypothesis. That is, S(k − 1) is true, for some k,
with k − 1 ≥ 2. Let a1 ∈ Xk. Then a1 = g + x1 − g or a1 = r(g + x1) − rg
or a1 = x1 − x2, where r ∈ R, g ∈ G and x1, x2 ∈ Xk−1. Then there exist
y1, y2 ∈ Yk−1 such that x1 + y1, x2 + y2 ∈ Zk−1. If a1 = g + x1 − g, then we take
b1 = g+ y1 − g. If a1 = r(g+ x1)− rg, then take b1 = r(g+ x1 + y1)− r(g+ x1).
If a1 = x1 − x2, then we take b1 = y1 − y2. In either case, we have b1 ∈ Yk and
a1 + b1 ∈ (Z∗

k−1 ∪ Z+
k−1 ∪ Zo

k−1) + Ω = Zk +Ω. Thus S(k) is true.

Lemma 3.4. Let Ω ⊂ Li ⊆ Ki, for i = 1, 2 be ideals of G such that K1∩K2 = Ω.
Then Li ≤

e
Ω Ki, for i = 1, 2 if and only if L1 + L2 ≤

e
Ω K1 +K2.

Proof. Assume that Li ≤e
Ω Ki, for i = 1, 2. Write A1 = L1 + K2 and A2 =

K1 + L2. Clearly, since L1 * Ω and L2 * Ω and K2 * Ω, we have A1 =
L1 + K2 * Ω. Now to show A1 ≤e

Ω K1 + K2. Let a ∈ K1 + K2 such that
a /∈ Ω, then a = k1 + k2, for some k1 ∈ K1, k2 ∈ K2 and 〈a〉 * Ω. If k1 ∈ Ω,
then a = k1 + k2 ∈ Ω + K2 ⊆ L1 + K2 = A1. Therefore, 〈a〉 ⊆ A1, implies
〈a〉 ∩ A = 〈a〉 * Ω. If k1 /∈ Ω, then since L1 ≤e

Ω K1, and 〈k1〉 ⊆ K1, we get
L∩〈k1〉 * Ω. Then there exists x1 ∈ L1∩〈k1〉 such that x1 /∈ Ω. Since x1 ∈ 〈k1〉,
by Lemma 3.3, there exists x2 ∈ 〈k2〉 such that x1+x2 ∈ 〈k1+k2〉+Ω = 〈a〉+Ω.
Clearly, since x1 /∈ Ω, we have x1 + x2 /∈ Ω. This shows that x1 + x2 ∈ 〈a〉. Also,
x1 + x2 ∈ L1 +K2 = A1, implies x1 + x2 ∈ 〈a〉 ∩A1, but x1 + x2 /∈ Ω. Therefore,
〈a〉 ∩ A1 * Ω, shows that A1 ≤e

Ω K1 +K2. Similarly, A2 ≤e
Ω K1 +K2. Then by

Lemma 3.2(1), we have A1∩A2 ≤
e
Ω K1+K2. Now to show L1+L2 = A1∩A2, let

x ∈ A1∩A2. Then x = l1+k2 = k1+ l2, implies l1+k2 = k1+ l2. Now −k1+ l1 =
l2−k2 ∈ (K1+L1)∩(K2+L2) = K1∩K2 = Ω. Therefore, −k1+l1 = l2−k2 = ω for
some ω ∈ Ω. Now k2 = l2−ω ∈ L2+Ω = L2. Hence x = l1+k2 ∈ L1+L2, shows
that A1∩A2 ⊆ L1+L2. Also, L1+L2 ⊆ L1+K2 = A1 and L1+L2 ⊆ K1+L2 = A2,
implies L1+L2 ⊆ A1∩A2. Therefore, L1+L2 = A1∩A2 ≤

e
Ω K1+K2. Conversely,

suppose that L1+L2 ≤
e
Ω K1+K2 and L1 �e

Ω K1. Then there exists an ideal A of
G such that A ⊆ G1, L1∩A ⊆ Ω but A * Ω. Now we show that (L1+L2)∩A ⊆ Ω.
Let x ∈ (L1 + L2) ∩ A. Then x = l1 + l2, for some x ∈ A, l1 ∈ L1, l2 ∈ L2. Now
l2 = −l1 + x ∈ (L1 + A) ∩ L2 ⊆ K1 ∩K2 = Ω ⊂ L1. Therefore, l2 ∈ L1. Hence
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x = l1 + l2 ∈ L1 ∩A ⊆ Ω, which shows that, (L1 +L2) ∩A ⊆ Ω, a contradiction.
Hence L1 ≤

e
Ω K1. In a similar way, we will get L2 ≤

e
Ω K2.

Corollary 3.1. Let Ω ⊂ Hi ⊆ Gi for i = 1 to n such that
⋂n

i=1 Gi = Ω. Then
∑n

i=1 Hi ≤
e
Ω

∑n
i=1Gi if and only if Hi ≤

e
Ω Gi, 1 ≤ i ≤ n.

Proof. By using Lemma 3.4 and induction on n.

Proposition 3.2. Let Ω be a proper ideal of G. If G has Ω-FGD, then there
exist Ω-uniform ideals Ω ⊂ Hi, 1 ≤ i ≤ n, such that their sum is Ω-direct and
Ω-essential in G (in this case, we denote as H1 ⊕ · · · ⊕Hn ≤e

Ω G). The integer
‘n’ is independent of Ω-uniform ideals (the relative dimension of G with respect
to Ω, and we write dimΩ(G) = n).

Proof. Suppose G has Ω-uniform ideals H1,H2, . . . ,Hn such that its sum is Ω-
direct and

∑n
i=1Hi ≤

e
Ω G. Let K1,K2, . . . ,Km be ideals of G such that Ki * Ω,

and
∑m

i=1 Ki is Ω-direct. Now to show m ≤ n, first we show that if L is an ideal
of G such that L∩Hi * Ω for all i, then L ≤e

Ω G. Suppose L∩Hi * Ω. SinceHi is
Ω-uniform, by definition, every ideal contained in Hi is Ω-essential. In particular,
L ∩ Hi is an ideal contained in Hi and so L ∩ Hi ≤

e
Ω Hi. Now by Lemma 3.4,

∑n
i=1(L ∩Hi) ≤

e
Ω

∑n
i=1 Hi and since

∑n
i=1Hi ≤

e
Ω G, by Lemma 3.2(2), we have

∑n
i=1(L ∩Hi) ≤

e
Ω G. Again by Lemma 3.2(2), since

∑n
i=1(L ∩Hi) ⊆ L ⊆ G and

∑n
i=1(L∩Hi) ≤

e
Ω G, we get L ≤e

Ω G. Now if
∑m

i=2 Ki ≤
e
Ω G, then since

∑m
i=2Ki

is Ω-direct, we have
∑m

i=2Ki ∩ K1 ⊆ Ω, but K1 * Ω, a contradiction. Hence
∑m

i=2 Ki �se
Ω G. So there exists an j ∈ {1, 2, . . . , n} such that

∑m
i=2Ki ∩Hj ⊆ Ω,

and Hj * Ω. Suppose j = 1. Then
∑m

i=2 Ki ∩ H1 ⊆ Ω, which shows that
∑m

i=2 Ki + H1 is Ω-direct. Again, since H1 +
∑m

i=3 Ki �e
Ω G, there exists j ∈

{2, . . . , n} such that
∑m

i=3 Ki + Hj ⊆ Ω, and Hj * Ω, say j = 2, which implies
that

∑m
i=3 Ki + H1 + H2 is Ω-direct. Continuing this process, we get m ≤ n.

Hence G has Ω-FGD.

Remark 3.1. If an ideal H of G is Ω-uniform, then dimΩ(H) = 1.

Example 3.1. Let R = (Z24,+24, ·24) and G = R. Consider the ideals H1 = 〈8〉,
H2 = 〈12〉, H3 = 〈4〉, H4 = 〈6〉, H5 = 〈2〉, H6 = 〈3〉. Take Ω = H4. Then G has
Ω-FGD, and Ω-dim 2, but G has no FGD.

Example 3.2. Consider (R = (Z2 × Z2 × Z3),+, ·) given in (Sonata [1] 12/2,
1) and G = R. The ideals of G are H1 = {0, 3}, H2 = {0, 6}, H3 = {0, 9},
H4 = {0, 3, 6, 9}, H5 = {0, 2, 4}, H6 = {0, 1, 2, 3, 4, 5}, H7 = {0, 2, 4, 6, 8, 10},
H8 = {0, 2, 4, 7, 9, 11}. Take Ω = H5. Then G has Ω-FGD with Ω-dim 2, but G
has no FGD.
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Example 3.3. Let R =

((

0 Zpn

0 0

)

,+pn , ·pn

)

, where p is prime and n ∈ Z+.

Here R non-commutative matrix ring and let G = R. Now G is considered as

an R-group. The ideals of G are Hi =

{(

0 pnZpn

0 0

)

: n ∈ Z+

}

. Consider

H = Hn−1 and Ω = H1. Then, Hi ≤
e
Ω Hi+1, for all i ≥ 2. Therefore, H has

Ω-FGD.

Definition 3.2. Let H be an ideal of G. An ideal H ′ of G is called a relative
complement of H if there exists a proper ideal Ω of G such that H ′ is maximal
with respect to H ∩H ′ ⊆ Ω. In this case, we call H ′ as Ω-complement of H.

If Ω = (0), then the Ω-complement corresponds to just the complement
defined in [18].

Lemma 3.5. Let A and Ω (proper) be ideals of G. If B ⊆ Ω is the maximal
among the ideals of G with A ∩ B ⊆ Ω, then A ⊕ B ≤e

Ω G and B is an Ω-
complement of A.

Proof. It is sufficient to show the Ω-essentiality. Suppose D is an ideal of G such
that (A+B)∩D ⊆ Ω. To show, D ⊆ Ω, first we show that A∩(B+D) ⊆ Ω. For if
A∩(B+D) * Ω, there exists a ∈ A∩(B+D), but a /∈ Ω. Then a = b+d, for some
a ∈ A, b ∈ B and d ∈ D, but a /∈ Ω. Then d = a− b ∈ (A +B) ∩D ⊆ Ω. Also,
b ∈ B ⊆ Ω, implies a = b+ d ∈ Ω, a contradiction. Therefore, A ∩ (B +D) ⊆ Ω.
Now by maximality of B, we have B + D = B, shows that D ⊆ B ⊆ A + B.
Hence D = (A+B) ∩D ⊆ Ω, proves A⊕B ≤e

Ω G.

Lemma 3.6. Let Ω be a proper ideal of G. If H and K are ideals of G with
H ∩K ⊆ Ω, then dimΩ(H +K)=dimΩ(H)+dimΩ(K).

Proof. Suppose dimΩ(H) = t and dimΩ(K) = s. Then, there exist Ω-uniform
ideals A1, . . . , At of H such that A1 + A2 + · · · + At is Ω-direct and Ω-essential
in H. Similarly, there exist Ω-uniform ideals B1, . . . , Bs of K such that B1 +
B2 + · · · + Bs is Ω-direct and Ω-essential in K. Since H ∩ K ⊆ Ω, A1 + A2 +
· · · + At + B1 + B2 + · · · + Bs is Ω-direct in H +K. By Corollary 3.1, we have
A1+A2+· · ·+At+B1+B2+· · ·+Bs ≤

e
Ω H+K. Therefore, dimΩ(H+K) = t+s.

Hence dimΩ(H +K)=dimΩ(H) + dimΩ(K).

Corollary 3.2. If A1, . . . , An are ideals of G, then

dimΩ(A1 ⊕A2 ⊕ · · · ⊕An) = dimΩ(A1) + · · ·+ dimΩ(An).

Proof. Follows from Lemma 3.6 and the mathematical induction.

Theorem 3.1. Let Ω be a proper ideal of G and dimΩ(G) = n. Then for any
ideal H of G, H ≤e

Ω G if and only if dimΩ(H) = dimΩ(G).
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Proof. Suppose H ≤e
Ω G and dimΩ(H) = n. Then there exist Ω-uniform ideals

A1, . . . , An of H such that A1 + A2 + · · · + An is Ω-direct and Ω-essential in
H. Now, A1 ⊕ A2 ⊕ · · · ⊕ An ≤e

Ω H and H ≤e
Ω G, implies by Lemma 3.2(2),

A1 ⊕ A2 ⊕ · · · ⊕ An ≤e
Ω G. Therefore, dimΩ(G) = n, shows that dimΩ(G) =

dimΩ(H). Conversely, suppose dimΩ(H) = dimΩ(G) = n. Then there exist
Ω-uniform ideals A1, . . . , An of H such that A1 + A2 + · · · + An is Ω-direct and
Ω-essential in H. If A1⊕A2⊕· · ·⊕An �e

Ω G, we can get an Ω-unform ideal An+1

of G such that A1 +A2 + · · ·+An +An+1 is Ω-direct. Then dimΩ(G) ≥ n+1, a
contradiction. So, A1 ⊕A2 ⊕ · · · ⊕An ≤e

Ω G. Since A1 ⊕A2 ⊕ · · · ⊕An ⊆ H ⊆ G,
we get H ≤e

Ω G.

The proof of the following corollary is straightforward.

Corollary 3.3. Let Ω be a proper ideal of G and dimΩ(G) = n. Then for any
ideal H of G, dimΩ(H) = dimΩ(G) if and only if H contains an Ω-direct sum of
n Ω-uniform ideals.

Lemma 3.7. Let Ω be a proper ideal of G. If G has Ω-FGD and H an ideal
of G with dimΩ(H) < dimΩ(G). Then there exist Ω-uniform ideals A1, . . . , Ak

such that H + A1 + · · · + Ak is Ω-direct and Ω-essential in G. Moreover, k =
dimΩ(G)− dimΩ(H).

Proof. Since dimΩ(H) < dimΩ(G), by Theorem 3.1, H �e
Ω G. Write

B = {K : H ∩K ⊆ Ω, where K is an ideal of G}.

By Zorn’s lemma, there is an ideal H ′ which is maximal with respect to H∩H ′ ⊆
Ω. Then by Lemma 3.5, H ⊕ H ′ ≤e

Ω G. Let k = dimΩ(H
′). Now there exist

Ω-uniform ideals A1, . . . , Ak such that A1 ⊕ · · · ⊕ Ak ≤e
Ω H ′. By Corollary 3.1,

we have H ⊕A1 ⊕ · · · ⊕Ak ≤e
Ω H ⊕H ′.

By Lemma 3.2(2), we have

H ⊕A1 ⊕ · · · ⊕Ak ≤e
Ω G.

Then by Corollary 3.2 and Theorem 3.1,

dimΩ(G) = dimΩ(H ⊕A1 ⊕ · · · ⊕Ak)

= dimΩ(H) + dimΩ(A1) + · · · + dimΩ(Ak), by Corollary 3.2

= dimΩ(H) + k, since each Ai is Ω-uniform, dimΩ(Ai) = 1.

Therefore, k = dimΩ(G)− dimΩ(H).

Theorem 3.2. Suppose G has Ω-FGD and K1,K2 are ideals of G such that
K = K1 ∩ K2 is an Ω-complement, contained in Ω. Then dimΩ(K1 + K2) =
dimΩ(K1) + dimΩ(K2)− dimΩ(K).
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Proof. Let A be an Ω-complement of K in K1 and B an Ω-complement of K
in K2. Then by Lemma 3.5, A ⊕ K ≤e

Ω K1 and B ⊕ K ≤e
Ω K2. To show

(A+ K)/K ≤e
Ω/K

K1/K, let T/K be an ideal of G/K, contained in K1/K such that
(A+ K)/K ∩ T/K ⊆ Ω/K, where K is contained in T .

Then
((A+ K) ∩ T )/K = (A+K)/K ∩ T/K ⊆ Ω/K,

implies (A+K) ∩ T ⊆ Ω. Since A⊕K ≤e
Ω K1, we get T ⊆ Ω. Hence T/K ⊆ Ω/K,

shows that (A+K)/K ≤e
Ω/K

K1/K. In a similar way, we get (B + K)/K ≤e
Ω/K

K2/K.

Since
K1/K ∩ K2/K = (K1 ∩K2)/K ⊆ Ω/K,

we have

(A+B + K)/K = (A+ K)/K + (B + K)/K ≤e
Ω/K

K1/K + K2/K = (K1 +K2)/K.

First we show that A + B + K ≤e
Ω K1 + K2. Let I be an ideal of G such

that (A + B + K) ∩ I ⊆ Ω. Let x + K ∈ ((A+B +K)/K) ∩ ((I +K)/K). Now
x+K = a+b+K = y+K for some a ∈ A, b ∈ B, and y ∈ I. Then (a+b)−y = k
for some k ∈ K. So y = (a+ b)− k ∈ A+B+K, hence y ∈ (A+B+K)∩ I ⊆ Ω.
Now x+K = y +K ∈ Ω/K. Therefore,

((A+B +K)/K) ∩ ((I +K)/K) ⊆ Ω/K.

Since (A+ B + K)/K ≤e
Ω/K

(K1 +K2)/K, we have (I +K)/K ⊆ Ω/K, implies that I ⊆
I +K ⊆ Ω. Therefore, A+B +K ≤e

Ω K1 +K2.

To prove A+B +K is Ω-direct, first we show that (A+B)∩K ⊆ Ω. If not,
there exist a ∈ A, b ∈ B and k ∈ K such that k = a+ b /∈ Ω, implies a = k − b ∈
K1 ∩K2 = K. Hence a ∈ A∩K ⊆ Ω. Also, b = −a+ k ∈ K1 ∩K ⊆ K1 ∩K2 = K,
implies b ∈ B∩K ⊆ Ω. Then, k = a+ b ∈ Ω+Ω ⊆ Ω, a contradiction. Therefore,
(A+B) ∩ K ⊆ Ω.

In a similar way we obtain A ∩ (B + K) ⊆ Ω and B ∩ (A + K) ⊆ Ω, which
shows that

(A⊕B ⊕K) ≤e
Ω K1 +K2.

Therefore,

dimΩ(K1 +K2) = dimΩ(A⊕B ⊕K), ( Theorem 3.1)

= dimΩ(A) + dimΩ(B) + dimΩ(K), (Corollary 3.2)

= (dimΩ(K1)− dimΩ(K)) + (dimΩ(K2)− dimΩ(K)) + dimΩ(K)

= dimΩ(K1) + dimΩ(K2)− dimΩ(K)
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4. Conclusion

We have obtained Ω-dimension of sum of two ideals of an R-group, which is a
generalization of sum of two subspaces of a finite dimensional vector space. This
has been a significant attempt due to non-linearity in R-group. One can obtain
spanning (or dualizing) dimensional aspects of R-groups. As an application,
further one can extend the possible results on finite Goldie dimension in terms of
join independent sets in a lattice, as defined by the authors in [17].
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