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Abstract

It is well known that Menger algebras, sometime called superassociative
algebras, play a major role in both mathematical sciences and related areas.
The notion of fuzzy sets was initiated by L.A. Zadeh as a general mathe-
matical machinery of classical sets. The present paper establishes a strong
interaction between fuzzy sets and Menger algebras. We show that the set
of all fuzzy subsets on G together with one (n + 1)-ary operation forms a
Menger algebra. The concepts of several kinds of fuzzy ideals in Menger
algebras are introduced and some related properties are investigated. Fur-
thermore, we provide a construction of quotient Menger algebras via fuzzy
congruence relations. Finally, homomorphism theorems in terms of fuzzy
congruences are studied. Our results can be considered as a generalization
in the study of semigroup theory too.
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1. Introduction and preliminaries

The algebraic properties of the composition of multiplace functions were intro-
duced and studied by Menger [20] in 1964. The multiplace function is one of
the major concepts in the investigation of mathematics. It also has various ap-
plications in numerous areas of sciences, for instance, in automata theory and
programming, theory of multi-valued logics, cybernetics, and multivariable cal-
culas. The essential property of composition, which is called superassociative
law was investigated in both elementary and advanced methods. Following the
suggestion of Menger, the notion of superassociative systems is provided. Recall
from [5, 14] that a Menger algebra of rank n (Menger algebra, for short) for a
fixed positive integer n is a pair of a nonempty set G with an (n+1)-ary operation
◦ satisfying the superassociative law:

◦(◦(x, y1, . . . , yn), z1, . . . , zn) = ◦(x, ◦(y1, z1, . . . , zn), . . . , ◦(yn, z1, . . . , zn)),
for all x, y1, . . . , yn, z1, . . . , zn ∈ G. Structural properties of this algebra and
applications in other areas can be found in the work of Dudek and others [5].

Example 1 [5]. Some fundamental examples of Menger algebras are presented.

(1) The set R+ of all positive real numbers with the operation ∗ : (R+)n+1 → R
+,

defined by
∗(x0, . . . , xn) = x0 n

√
x1 · · · xn,

forms a Menger algebra.

(2) Let An be the n-th Cartesian product of a nonempty set A. Any mapping
from An to A is called a full n-ary function or an n-ary operation if it is defined
for all elements of An. The set of all such mappings is denoted by T (An, A). One
can consider the Menger’s superposition on the set T (An, A), i.e., an (n+1)-ary
operation O : T (An, A)n+1 → T (An, A) defined by

(1) O(f, g1, . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),

where f, g1, . . . , gn ∈ T (An, A), a1, . . . , an ∈ A. A Menger algebra of all full n-ary
functions or a Menger algebra of all n-ary operations is a pair of the set T (An, A)
of all full n-ary functions defined on A and the Menger composition of full n-ary
functions satisfying the superassociative law.

We can remark here that Example 1 collects two powerful examples of Menger
algebras that can be reduced to well-known concrete examples in studying of
semigroup theory. Namely, if we set n = 1, then Example 1 (1) is a semigroup of
positive real numbers with the usual multiplication and Example 1 (2) is a full
transformation semigroup.

If there exist elements e1, . . . , en ∈ G, called selectors, such that
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◦(x, e1, . . . , en) = x and ◦(ei, x1 . . . , xn) = xi

for all x, x1, . . . , xn ∈ G, i = 1, . . . , n, then a Menger algebra (G, ◦) is called
unitary. It is obviously evident that the definition of selectors is an extension of
an identity element in general semigroups by considering n = 1 so that e1 ∈ G
and hence ◦(x, e1) = x and ◦(e1, x1) = x1. Thus e1 acts as a right identity and a
left identity, respectively.

One of the reasons for our interest in Menger algebras is their extensive con-
nection with the notion of semigroup theory. Obviously, a semigroup is a Menger
algebra of rank n if and only if n = 1. In a study concerning Menger algebras, the
following two interesting questions arise. Firstly, which algebraic properties of
arbitrary semigroups can be generalized to abstract Menger algebras? Secondly,
how these properties can be described in the case of n > 1? Descriptions of basic
relations between functions and of (2, n)-semigroups of functions are given in [5]
and [6], respectively. In addition, a superassociative system of n-ary operation
is one of the popular subject for studying the algebraic structural properties of
n-ary functions in this recently decade. For further results on this direction, see
[7, 15, 26].

Characterizations of different kinds of ideals of Menger algebras can be found
in [5]. Actually, a nonempty subsetH of a Menger algebra (G, ◦) is called a v-ideal
if for all g, h1, . . . , hn ∈ G, form h1, . . . , hn ∈ H, it follows that ◦(g, h1, . . . , hn) ∈
H. On the other hand, a nonempty subsetH of a Menger algebra (G, ◦) is called a
s-ideal if for all h, g1, . . . , gn ∈ G, from h ∈ H, it follows that ◦(h, g1, . . . , gn) ∈ H.
If A is both v-ideal and s-ideal, then A is called a vs-ideal of G. It is observed
that, in the study of Menger algebras, the concept of v-ideals, s-ideals and vs-
ideals are natural generalizations of left ideals, right ideals and ideals in semigroup
theory, respectively, if n = 1.

The theory of fuzzy set was initiated by Zadeh in 1965. It is a powerful
mathematical concept having several applications in numerous scientific areas,
for instance, artificial intelligence and machine learning. Fuzzy set theory is also
connected with many other computing models, for example, soft sets and rough
sets. From a classical algebra viewpoint, fuzzy sets have been extensively ap-
plied to study the fundamental properties. The investigation of fuzzy algebraic
structures successfully began with the work of Rosenfeld [22] in 1971 for intro-
ducing the notion of fuzzy subgroup. Nowadays, fuzzy algebras play a significant
role in the combinations of two framwork, algebras and fuzzy theory. There are
several algebraic structures to investigate fuzzy sets such as groups, rings, mod-
oles. Kuroki [16] has studied the fuzzy ideals in semigroups. Due to the great
importance of fuzzy equivalence relations, there are many researchers focused
in this flow, see [12, 17]. Fuzzy congruences in semigroups were developed by
Kuroki [16] and Tan [24]. Kim and his colleagues studied fuzzy congruences in
groups [10]. While fuzzy isomorphism theorems of soft rings were explored by
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Lie and his groups [18, 19]. A strong connection of fuzzy congruence relations
with quotient rings can be found in [28]. In 2000, Dudek [4] was first combined
the theory of fuzzy sets in n-ary systems, espectially in n-ary semigroups. In
particular, Davvaz and Dudek [3] defined fuzzy n-ary groups and provided their
properties. In recent years, Zhou et al. [27] applied fuzzy congruences to the
study of n-ary semigroups. For more significant results about fuzzy sets in other
algebraic structures, the reader is refered to [1, 2, 8, 9, 11, 13, 23, 25].

The main purpose of this paper is two folds. Firstly, to introduce a novel
concept of various types of fuzzy ideals in Menger algebras based on fuzzy ideals
in classical algebraic structures, to study some of their related properties and
a strong connection between these notions and the original ideal one and then
to present a characterization of fuzzy Menger subalgebras and fuzzy ideals via
some specific sets. Secondly, to propose the idea of fuzzy congruences on Menger
algebras and to establish homomorphism theorems for Menger algebras based on
fuzzy congruence relations.

2. Fuzzy ideals in Menger algebras

We assume that the reader is familiar with the fundamental of fuzzy ideals in
semigroup theory. Formally, a fuzzy set in a nonempty set G (sometimes called
a fuzzy subset of G) is an arbitrary function µ from G into [0, 1]. By F (G) we
denote the family of all fuzzy subsets in G. For A ⊆ G, the symbol CA we mean
the characteristic function of G. The complement of µ in A is denoted by µ. For
any two fuzzy subsets µ and ν of G, µ ⊆ ν if µ(x) ≤ ν(x) for every x ∈ G.

We begin this section with defining the (n + 1)-ary operation on the set of
all fuzzy subsets in G.

Definition. Let ◦ be an (n + 1)-ary operation on G, and µ1, . . . , µn+1 fuzzy
subsets of G. The (n+ 1)-ary operation O on the set of all fuzzy subsets of G is
defined by

(1) O(µ1, . . . , µn+1)(x) = sup
x=◦(y1,...,yn+1)

(min(µ1(x1), . . . , µn+1(xn+1))) if x can be

expressed as x = ◦(y1, . . . , yn+1) for any y1, . . . , yn+1 ∈ G,

(2) in all other cases, O(µ1, . . . , µn+1)(x) = 0.

The first theorem of this study concerning a construction of Menger algebras
of all fuzzy subsets.

Theorem 2. The (n + 1)-ary operation O on F (G) is superassociative if the
(n + 1)-ary operation ◦ on G is superassociative.



Fuzzy ideals and fuzzy congruences on Menger algebras 193

Proof. Let µ, ν1, . . . , νn, ρ1, . . . , ρn be fuzzy setsets on G and let x be an arbitrary
element in G. Clearly, the case when x can not expressible as product of n + 1
elements in G. Otherwise, by the superassociativity of ◦ on G, we obtain

O(O(µ, ν1, . . . , νn), ρ1, . . . , ρn)(x)

= sup
x=◦(d,c1...,cn)

(min(O(µ, ν1, . . . , νn)(d), ρ1(c1), . . . , ρn(cn)))

= sup
x=◦(d,c1...,cn)

(min( sup
d=◦(a,b1...,bn)

(min(µ(a), ν1(b1), . . . , νn(bn))), ρ1(c1), . . . , ρn(cn)))

= sup
x=◦(d,c1...,cn)

( sup
d=◦(a,b1...,bn)

(min(µ(a), ν1(b1), . . . , νn(bn), ρ1(c1), . . . , ρn(cn))))

= sup
x=◦(◦(a,b1...,bn),c1...,cn)

(min(µ(a), ν1(b1), . . . , νn(bn), ρ1(c1), . . . , ρn(cn)))

= sup
x=◦(a,◦(b1,c1...,cn),...,◦(bn,c1...,cn))

(min(µ(a), ν1(b1), . . . , νn(bn), ρ1(c1), . . . , ρn(cn)))

= sup
x=◦(a,f1,...,fn)

( sup
fi=◦(bi,c1,...,cn)

i∈{1,...,n}

(min(µ(a), ν1(b1), . . . , νn(bn), ρ1(c1), . . . , ρn(cn))))

= sup
x=◦(a,f1,...,fn)

(min(µ(a), sup
f1=◦(b1,c1,...,cn)

(min(ν1(b1), ρ1(c1), . . . , ρn(cn))), . . . ,

sup
fn=◦(bn,c1,...,cn)

(min(ν1(b1), ρ1(c1), . . . , ρn(cn)))))

= sup
x=◦(a,f1,...,fn)

(min(µ(a),O(ν1, ρ1, . . . , ρn)(f1), . . . ,O(νn, ρ1, . . . , ρn)(fn)))

= O(µ,O(ν1, ρ1, . . . , ρn), . . . ,O(νn, ρ1, . . . , ρn))(x).

As a consequence of Theorem 2, we have that the set F (G) of all fuzzy
subsets on G forms a Menger algebra with respect to the (n + 1)-ary operation
O. Further, it can be considered as a canonical generalization of the semigroup
of fuzzy subsets under the compisition of fuzzy subsets if we put n = 1.

Following the suggestion of Liu [17], an identity for a fuzzy subsets with
respect to the binary composition was given. In a Menger algebra, we also have
the following.

Theorem 3. If an (n + 1)-ary operation ◦ on G has selectors, then the fuzzy
singleton e1, . . . , en ∈ F (G) are selectors of an (n+ 1)-ary operation O, i.e.,

O(µ, e1, . . . , en) = µ and O(ei, µ1, . . . , µn) = µi

for all µ, µ1, . . . , µn ∈ F (G) and 1 ≤ i ≤ n.

Proof. The statement follows immediately from Definition 2.

By Theorem 2, we can establish a strong relationship between the (n+1)-ary
operation O on F (G) and the (n+1)-ary operation ◦ on G via the characteristic
function in the following theorem.
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Theorem 4. Let A1, . . . , An+1 be nonempty subsets of a Menger algebra (G, ◦).
Then

O(CA1
, . . . , CAn+1

) = C◦(A1,...,An+1).

Now we define fuzzy Menger subalgebras, fuzzy v-ideals, fuzzy s-ideals and
fuzzy vs-ideals of Menger algebras.

Definition. Let (G, ◦) be a Menger algebra. A fuzzy subset µ of G is called

(1) a fuzzy Menger subalgebra of G if

µ(◦(g1, . . . , gn+1)) ≥ min{µ(g1), . . . , µ(gn+1)}

for all g1, . . . , gn+1 ∈ G,

(2) a fuzzy v-ideal of G if

µ(◦(g, h1, . . . , hn)) ≥ min{µ(h1), . . . , µ(hn)}

for all g, h1, . . . , hn ∈ G,

(3) a fuzzy s-ideal of G if

µ(◦(h, g1, . . . , gn)) ≥ µ(h)

for all h, g1, . . . , gn ∈ G,

(4) a fuzzy vs-ideal of G it is both a fuzzy v-ideal and fuzzy s-ideal of G.

The following theorem provides a characterization of Menger subalgebras,
v-ideals, s-ideals and vs-ideals using Definition 2.

Theorem 5. Let (G, ◦) be a Menger algebra and ∅ 6= A ⊆ G. Then the following
assertions hold.

(1) A is a Menger subalgebra of G if and only if the characteristic function µA

is a fuzzy Menger subalgebra of G.

(2) A is a v-ideal (s-ideal, vs-ideal) of G if and only if the characteristic function
µA is a fuzzy v-ideal (fuzzy s-ideal, fuzzy vs-ideal) of G.

Proof. (1) Assume that A is a Menger subalgebra of G. Let g1, . . . , gn+1 be
elements in G. We consider the case when g1, . . . , gn+1 ∈ A. Then µA(◦(g1, . . . ,
gn+1)) = 1 ≥ min{µA(g1), . . . , µA(gn+1)}. If there exists 1 ≤ j ≤ n+ 1 such that
gj /∈ A, then we have min{µA(g1), . . . , µA(gn+1)} = 1 ≤ µA(◦(g1, . . . , gn+1)). For
the converse, let g1, . . . , gn+1 ∈ A. Then µA(gj) = 1 for all 1 ≤ j ≤ n+ 1. It fol-
lows from the hypothesis that µA(◦(g1, . . . , gn+1)) ≥ min{µA(g1), . . . , µA(gn+1)}
= 1. So, ◦(g1, . . . , gn+1) ∈ A and thus A is a Menger subalgebra of G.

To prove (2) holds, suppose first that A is a v-ideal of G and g, h1, . . . , hn ∈
G. If h1, . . . , hn ∈ A, then we have ◦(g, h1, . . . , hn) ∈ A by the assumption.
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This implies that µA(◦(g, h1, . . . , hn)) = 1 ≥ min{µ(h1), . . . , µ(hn)}. Thus, µA

is a fuzzy v-ideal of G. For the case hj /∈ A for some 1 ≤ j ≤ n, we have
min{µ(h1), . . . , µ(hn)} = 0, and so µA(◦(g, h1, . . . , hn)) ≥ min{µ(h1), . . . , µ(hn)}.
Conversely, let h1, . . . , hn ∈ A and g ∈ G. Then µA(hj) = 1 for all 1 ≤ j ≤ n
and thus µA(◦(g, h1, . . . , hn)) ≥ min{µA(h1), . . . , µA(hn)} = 1 since µA is a fuzzy
v-ideal of G. This shows that A is a v-ideal of G.

Necessary and sufficient conditions for a fuzzy subset to be a fuzzy Menger
subalgebra and a fuzzy v-ideal, fuzzy s-ideal and fuzzy vs-ideal through the (n+
1)-ary operation O on F (G) are presented below.

Theorem 6. Let µ and ν be two fuzzy subsets of a Menger algebra (G, ◦). Then

(1) µ is a fuzzy Menger subalgebra of G if and only if O(µ, µ, . . . , µ
︸ ︷︷ ︸

n times

) ⊆ µ.

(2) µ is a fuzzy s-ideal of G if and only if O(µ,G, . . . , G
︸ ︷︷ ︸

n times

) ⊆ µ.

(3) µ is a fuzzy v-ideal of G if and only if O(G,µ, . . . , µ
︸ ︷︷ ︸

n times

) ⊆ µ.

(4) µ is a fuzzy vs-ideal of G if and only if O(G,µ, . . . , µ
︸ ︷︷ ︸

n times

) ⊆ µ and

O(µ,G, . . . , G
︸ ︷︷ ︸

n times

) ⊆ µ.

Proof. Firstly, we prove (1). Let µ be a fuzzy Menger subalgebra of G and a ∈ G.
If a can not be expressed in the form ◦(x, y1, . . . , yn) for any x, y1 . . . , yn ∈ G,
then O(µ,G, . . . , G)(a) = 0 ≤ µ(a). If there exist elelments x, y1, . . . , yn ∈ G such
that a = ◦(x, y1, . . . , yn), then, according to defining the (n+1)-ary operation O
and the fact that µ is a fuzzy Menger subalgebra of G, we have

O(µ, µ, . . . , µ)(a) = sup
a=◦(x,y1...,yn)

[min{µ(x), µ(y1), . . . , µ(yn)}]

≤ sup
a=◦(x,y1...,yn)

[min{µ(◦(x, y1, . . . , yn))}]

= µ(a).

It implies that O(µ, µ, . . . , µ) ⊆ µ. For the opposite inclusion, assume that
O(µ,G, . . . , G) ⊆ µ. Let x, y1, . . . , yn be elements in G. Then ◦(x, y1, . . . , yn) ∈ G.
Let a = ◦(x, y1, . . . , yn). Our assumption implies that

µ(◦(x, y1, . . . , yn)) = µ(a) ≥ O(µ, µ, . . . , µ)(a)

= sup
a=◦(b,c1...,cn)

[min{µ(b), µ(c1), . . . , µ(cn)}]

≥ min{µ(x), µ(y1), . . . , µ(yn)}.
Similarly, we can prove the other statements.
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In order to give another characterization for a fuzzy subset µ to be a fuzzy
Menger subalgebra, fuzzy s-ideal, fuzzy v-ideal and fuzzy vs-ideal, we propose
the following essential sets.

Let µ be a fuzzy subset of a Menger algebra (G, ◦). For any t ∈ [0, 1], the
sets U(µ; t) = {x ∈ G | µ(x) ≥ t} and L(µ; t) = {x ∈ G | µ(x) ≤ t} are called an
upper t-level subset of µ and an lower t-level subset of µ, respectively.

Example 7. On the Menger algebra R
+ of all positive real numbers under the

(n + 1)-ary operation, defined by ∗(x0, . . . , xn) = x0 n
√
x1 · · · xn, define a fuzzy

subset µ on (R+, ∗) by

µ(x) =







0 if 0 < x ≤ 100,

0.75 if 100 < x ≤ 1000,

1 otherwise.

Then U(µ; 0.75) = [100,∞) and L(µ; 0.75) = (0, 100].

We can use these sets to characterize a fuzzification as follows.

Theorem 8. Let µ be a fuzzy subset of a Menger algebra (G, ◦). Then

(1) µ is a fuzzy Menger subalgebra of G if and only if for all 0 ≤ t ≤ 1, if each
its nonempty upper t-level subset is a Menger subalgebra of G.

(2) µ is a fuzzy v-ideal (fuzzy s-ideal, fuzzy vs-ideal) of G if and only if for all
0 ≤ t ≤ 1, if each its nonempty upper t-level subset is a v-ideal (s-ideal,
vs-ideal) of G.

Proof. To prove (1), assume that µ is a fuzzy Menger subalgebra of G Let t ∈
[0, 1] be such that U(µ; t) 6= ∅. If x1, . . . , xn+1 ∈ G, then µ(xj) ≥ t for all 1 ≤ j ≤
n + 1. By the assumption, we have µ(◦(x1, . . . , xn+1)) ≥ min1≤j≤n+1(µ(xj)) ≥ t
and then ◦(x1, . . . , xn+1) ∈ U(µ; t). Conversely, let x1, . . . , xn+1 ∈ G. Choose
t = min1≤j≤n+1(µ(xj)). Then for each 1 ≤ j ≤ n + 1, we obtain µ(xj) ≥
t, which implies that xj ∈ U(µ; t) for all 1 ≤ j ≤ n + 1. Since U(µ; t) is a
Menger subalgebra of G, ◦(x1, . . . , xn+1) ∈ U(µ; t). So µ(◦(x1, . . . , xn+1)) ≥ t =
min1≤j≤n+1(µ(xj)). As a result, µ is a fuzzy Menger subalgebra of G. The proof
of statement (2) is omitted.

To present sufficient and necessary conditions for the complement of a fuzzy
subset µ to be a fuzzy Menger subalgebra of G and other fuzzy ideals, we need
the following lemma.

Lemma 9. Let µ be a fuzzy subset in a Menger algebra (G, ◦). For any positive
integer 1 ≤ i ≤ n+ 1, the following assertions are valid.

(1) 1− min
1≤i≤n+1

(µ(xi)) = max
1≤i≤n+1

(1− µ(xi)).
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(2) 1− max
1≤i≤n+1

(µ(xi)) = min
1≤i≤n+1

(1− µ(xi)).

Proof. We first show that (1) holds. Assume that min1≤i≤n+1(µ(xi)) = µ(xj) for
some 1 ≤ j ≤ n+1. Then µ(xj) ≤ µ(xk) for all 1 ≤ k ≤ n+1. Thus 1−µ(xj) ≥ 1−
µ(xk). So max1≤i≤n+1(1−µ(xi)) = 1−µ(xj) = 1−min1≤i≤n+1(µ(xi)). In order to
prove (2), we suppose that there is 1 ≤ j ≤ n+1 such that max1≤i≤n+1(µ(xi)) =
µ(xj). Then we have µ(xk) ≤ µ(xj) for all 1 ≤ k ≤ n + 1. Hence 1 − µ(xk) ≥
1− µ(xj). So min1≤i≤n+1(1 − µ(xi)) = 1− µ(xj) = 1−max1≤i≤n+1(µ(xi)). The
proof is actually finished.

Theorem 10. Let µ be a fuzzy subset of a Menger algebra (G, ◦). Then µ is a
fuzzy Menger subalgebra of G if and only if for all t ∈ [0, 1], L(µ; t) is a Menger
subalgebra of G, if L(µ; t) 6= ∅.

Proof. The proof follows immediately from Lemma 9.

Theorem 11. Let µ be a fuzzy subset of a Menger algebra (G, ◦). Then µ is a
fuzzy v-ideal (fuzzy s-ideal, fuzzy vs-ideal) of G if and only if for all t ∈ [0, 1],
L(µ; t) is a v-ideal (s-ideal, vs-ideal) of G, if L(µ; t) 6= ∅.

Proof. Applying Lemma 9, the proof is obtained.

3. Fuzzy congruences on Menger Algebras

In this section the notion of a fuzzy congruence relation on Menger algebras is
introduced and their properties are dealt with in detail.

Before we begin the results, we will use the following notation: for nonneg-
ative integers i, j, the sequence xi, . . . , xj is well defined if i < j. Otherwise, if

i > j, xi, . . . , xj is the empty symbol. For convention, we sometime write xji
instead of a sequence of the form xi, . . . , xj .

A fuzzy subset µ of G×G is called a fuzzy relation on G. A fuzzy equivalence
relation is a fuzzy relation satisfying the conditions:

(1) (fuzzy reflexive) µ(x, x) = 1 for all x ∈ G,

(2) (fuzzy symmetric) µ(x, y) = µ(y, x),

(3) (fuzzy transitive) µ(x, y) ≥ sup
z∈G

(min(µ(x, z), µ(z, y))),

for all x, y ∈ G. We note that µ is fuzzy transitive if and only if µ ◦ µ ⊆ µ.

Definition. A fuzzy relation on a Menger algebra (G, ◦) is called a fuzzy i-
compatible relation where 1 ≤ i ≤ n+ 1 if

µ
(
◦
(
xi−1
1 , a, xn+1

i+1

)
, ◦

(
xi−1
1 , b, xn+1

i+1

))
≥ µ(a, b)



198 T. Kumduang and R. Chinram

for all xi−1
1 , xn+1

i+1 , a, b ∈ G. A fuzzy relation on G is called a fuzzy compatible
relation if it is a fuzzy i-compatible relation for every 1 ≤ i ≤ n+ 1.

Definition. A fuzzy i-congruence relation on a Menger algebra (G, ◦) is a fuzzy
equivalence relation on G and a fuzzy i-compatible where 1 ≤ i ≤ n + 1. A
fuzzy equivalence relation on G which is compatible is called a fuzzy congruence
relation on G.

Example 12. The set R of all real numbers is a Menger algebra with respect
to the (n+ 1)-ary operation ◦ defined by ◦(a, b1, . . . , bn) = a+ b1+···+bn

n where +
is the usual addition. The fuzzy relation µ on R defined by

µ(a, b) =







1 if a = b,

0.5 if a 6= b and |a| = |b|,
0 in all other cases,

is a fuzzy congruence relation on R.

Applying the result of Corollary 3.4 in [21], a characterization of a fuzzy
congruence relation on a Menger algebra is presented as follows.

Theorem 13. A fuzzy equivalence relation µ on a Menger algebra (G, ◦) is a
fuzzy congruence relation on G if and only if

µ
(
◦
(
xn+1
1

)
, ◦

(
yn+1
1

))
≥ min (µ(x1, y1), . . . , µ (xn+1, yn+1)) .

There are several possibilities to provide a characterization of a fuzzy con-
gruence relation on a Menger algebra. For these, we present the following two
binary relations.

Let µ be a fuzzy relation on a Menger algebra (G, ◦). For each λ ∈ [0, 1], the
upper λ-level set of µ is a relation

Ũ(µ;λ) = {(a, b) ∈ G×G | µ(a, b) ≥ λ}.

Similarly, the lower λ-level set of µ is a relation

L̃(µ;λ) = {(a, b) ∈ G×G | µ(a, b) ≤ λ}.

Now, a charaterization of fuzzy congruences using the upper λ-level set is
proposed.

Theorem 14. A fuzzy relation µ is fuzzy congruence on a Menger algebra (G, ◦)
if and only if for each λ ∈ [0, 1], Ũ(µ;λ) is congruence on G.
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Proof. It is not difficult to show that Ũ(µ;λ) is congruence on G. For the
converse, let λ ∈ [0, 1]. Suppose that Ũ(µ;λ) is congruence on G. Since, Ũ(µ;λ)
is reflexive, µ(x, x) ≥ λ for all x ∈ G and thus µ(x, x) = 1. For each x, y ∈ G,
suppose, to the contrary, that µ(x, y) 6= µ(y, x). Let µ(x, y) = λ1 and µ(y, x) =
λ2. If λ1 > λ2, then (y, x) /∈ Ũ(µ;λ). Since (x, y) ∈ Ũ(µ;λ) and Ũ(µ;λ) is
symmetric, we have (y, x) ∈ Ũ(µ;λ), which is a contradiction. Similarly, in
the case when λ1 < λ2. Hence, µ is fuzzy symmetric. For any x, y, z ∈ G,
let µ(x, z) = β1 and µ(z, y) = β2. We consider the first case when β1 ≤ β2,
then (x, z) and (z, y) belong to Ũ(µ;λ) and so (x, y) ∈ Ũ(µ;λ). It follows that
µ(x, y) ≥ β1 = supz∈G(min(µ(x, z), µ(z, y))). Thus µ is a fuzzy transitive. We
can prove in the same manner if β1 > β2. Hence, µ is a fuzzy equivalence
relation on G. For each 1 ≤ i ≤ n + 1, let xi and yi be elements in G such
that (xi, yi) ∈ Ũ(µ;λ). Assume that µ(xi, yi) = βi for all 1 ≤ i ≤ n + 1. Put
ǫ = min1≤i≤n+1(βi). Then we have µ(xi, yi) ≥ ǫ and so (xi, yi) ∈ Ũ(µ;λ). This
implies that µ(◦(xn+1

1 ), ◦(yn+1
1 )) ≥ ǫ = min1≤i≤n+1(βi) = min1≤i≤n+1((xi, yi)).

Consequently, µ is a fuzzy congruence on G.

Let µ be a fuzzy relation on G. The fuzzy relation µ defined by, for all
x, y ∈ G, µ(x, y) = 1− µ(x, y) is called the complement of µ in G.

Theorem 15. A fuzzy relation µ is fuzzy congruence on a Menger algebra (G, ◦)
if and only if for each λ ∈ [0, 1], L̃(µ;λ) is congruence on G.

Proof. We can prove in the same manner as in Theorem 14.

4. Quotient Menger algebras induced by fuzzy congruences

The main aim of this section is to apply a fuzzy congruence relation which given in
Section 3 for a construction of quotient Menger algebras in a natural way. We will
supplement these results by establishing further properties of their corresponding
homomorphisms.

Let µ be a fuzzy congruence of a Menger algebra (G, ◦). For any x, y ∈ G,
we define a binary relation on G by

x ∼ y if and only if µ(x, y) = 1.

Proposition 16. A binary relation ∼ is congruence on G.

For every x ∈ G, we associate the set µx = {y ∈ G | y ∼ x}. Then µx is a
congruence class that contains x. We now construct a quotient set G/µ for some
fuzzy congruence µ as follow G/µ := G/ ∼= {µx | x ∈ G}.

Remark 17. µx = µy if and only if µ(x, y) = 1.
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Definition. On the quotient set G/µ for some fuzzy congruence µ on a Menger
algebra (G, ◦), an (n+ 1)-ary operation ◦G/µ is defined by

◦G/µ
(
µx1

, . . . , µxn+1

)
= µ◦(x1,...,xn+1).

Theorem 18. Let µ be a fuzzy congruence relation on a Menger algebra (G, ◦).
The quotient set G/µ is a Menger algebra under the (n+1)-ary operation defined
in Definition 4.

Proof. It follows directly from Remark 17 that the (n + 1)-ary operation ◦G/µ

on G/µ is well-defined. The superassociativity of the fundamental operation ◦
on G implies that the operation ◦G/µ also satisfies superassociative law too.

This Menger algebra (G/µ, ◦G/µ) is called the quotient of the Menger alge-
bra by the fuzzy congruence µ. To present several extensive connections between
fuzzy congruence relations and homomorphisms on Menger algebras, some po-
tential preparations are needed.

Definition. Let α be a mapping from a Menger algebra (G, ◦) to a Menger
algebra (K, ∗). Let µ and µ′ be fuzzy relations of G and K, respectively. Then,
the inverse image f−1(λ) of λ is a fuzzy subset on G defined by

α−1(µ′)(x, y) = µ′(α(x), α(y)),

for all x ∈ X. The image α(µ) of µ is a fuzzy relation on K defined by

α(µ)(x, y) =







sup
(xi,yi)

(µ(xi, yi)) if α−1(x, y) 6= ∅,

0 in all other cases,

for all x, y ∈ K,xi, yi ∈ G and 1 ≤ i ≤ n+ 1.

It is easy to see that for any fuzzy congruence µ on a Menger algebra (G, ◦)
satisfying µ ⊆ α−1(α(µ)), then µ = α−1(α(µ)) if α is injective.

Theorem 19. Let α be a homomorphism from a Menger algebra (G, ◦) to a
Menger algebra (K, ∗). If µ′ is a fuzzy congruence on K, then the inverse image
α−1(µ′) of µ′ is a fuzzy congruence on G.

Proof. For any elements x1, . . . , xn+1, y1, . . . , yn+1 of G, it follows from Theorem
13 that

α−1(µ′)
(
◦
(
xn+1
1

)
, ◦
(
yn+1
1

))
=

(
α
(
◦
(
xn+1
1

))
, α

(
◦
(
yn+1
1

)))

= (∗(α(x1), . . . , α(xn+1)), ∗(α(y1), . . . , α(yn+1)))

≥ min(µ′(α(x1), α(y1)), . . . , µ
′(α(xn+1), α(yn+1)))

= min(α−1(µ′)(x1, y1), . . . , α
−1(µ′)(xn+1, yn+1)).
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This shows that the relation α−1(µ′) is a fuzzy congruence relation on G.

Theorem 20. Let (G, ◦) and (K, ∗) be two Menger algebras, α an epimorphism
from G to K and µ′ a fuzzy congruence relation on K. Then

G/α−1(µ′) ∼= K/µ′.

Proof. Clearly, the sets G/α−1(µ′) and K/µ′ are both Menger algebras by The-
orems 18 and 19. On these two sets, we denote the (n + 1)-ary operations by
◦G/α−1(µ′) and ∗K/µ′

, respectively. A mapping β from G/α−1(µ′) to K/µ′ can be
defined by

β(α−1(µ′)x) = µ′
α(x)

for all x ∈ G. Firstly, we show that this defining is well-defined. To do this,
assume that α−1(µ′)x = α−1(µ′)y. Then, according to Remark 17, we have
α−1(µ′)(x, y) = 1. By the definition of inverse image, we obtain µ′(α(x), α(y)) =
1, which means that µ′

α(x) = µ′
α(y). To show that β is a homomorphism, let

x1, . . . , xn+1 be any elements of G. Then we have

β
(

◦G/α−1(µ′)(α−1(µ′)x1
, . . . , α−1(µ′)xn+1

)
)

= β
(
α−1(µ′)◦(x1,...,xn+1)

)

= µ′
α(◦(x1,...,xn+1))

= µ′
∗(α(x1),...,α(xn+1))

= ∗K/µ′

(

µ′
α(x1)

, . . . , µ′
α(xn+1)

)

= ∗K/µ′
(
β(α−1(µ′)x1

), . . . , β(α−1(µ′)xn+1
)
)
.

It is not difficult to prove that β is surjective. In fact, for any µ′
y ∈ K/µ′, since

α is surjective, then there exits x ∈ G such that α(x) = y. Thus β(α−1(µ′)x) =
µ′
α(x) = µ′

y. It is actually injective, since, for all x, y ∈ G, suppose that β(α−1(µ′)x)

= β(α−1(µ′)y). Then µ′
α(x) = µ′

α(y), which implies that µ′(α(x), α(y)) = 1. By

Remark 17, we have α−1(µ′)(x, y) = 1. So, α−1(µ′)x = α−1(µ′)y. Therefore, β
is an injection. We finally conclude that a mapping β is an isomorphism from
G/α−1(µ′) to K/µ′.

The image of a fuzzy congruence relation under a homomorphism is investi-
gated in the next theorem.

Theorem 21. Let α be a homomorphism from a Menger algebra (G, ◦) to a
Menger algebra (K, ∗). If µ is a fuzzy congruence relation on G, then the image
α(µ) of µ is also a fuzzy congruence relation on K.
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Proof. Let h1, . . . , hn+1, k1, . . . , kn+1 ∈ K. Since α is an epimorphism, there
exists f1, . . . , fn+1, g1, . . . , gn+1 ∈ G such that α(fi) = hi and α(gi) = ki for every
1 ≤ i ≤ n+1. Thus α(◦(f1, . . . , fn+1)) = ∗(α(f1), . . . , α(fn+1)) = ∗(h1, . . . , hn+1)
and α(◦(g1, . . . , gn+1)) = ∗(α(g1), . . . , α(gn+1)) = ∗(k1, . . . , kn+1). Hence,

{
(fi, gi)(i = 1, . . . , n+ 1) | (fi, gi) ∈ α−1(∗(h1, . . . , hn+1), ∗(k1, . . . , kn+1))

}

⊇
{
(◦(f1, . . . , fn+1), ◦(g1, . . . , gn+1)) | (fi, gi) ∈ α−1(hi, ki)(i = 1, . . . , n + 1)

}
.

It implies that

α(µ)(∗(h1, . . . , hn+1), ∗(k1, . . . , kn+1))

= sup
(fi,gi)∈α−1(∗(h1,...,hn+1),∗(k1,...,kn+1))

(µ(fi, gi))

≥ sup
(f1,g1)∈α−1(h1,k1),...,(fn+1,gn+1)∈α−1(hn+1,kn+1)

(µ(◦(f1, . . . , fn+1), ◦(g1, . . . , gn+1)))

≥ sup
(f1,g1)∈α−1(h1,k1),...,(fn+1,gn+1)∈α−1(hn+1,kn+1)

( min
1≤i≤n+1

(µ(fi, gi)))

= min
1≤i≤n+1

( sup
(fi,gi)∈α−1(hi,ki)

(µ(fi, gi)))

= min
1≤i≤n+1

(α(µ)(hi, ki)).

This completes the proof.

Theorem 22. Let (G, ◦) and (K, ∗) be two Menger algebras, α an isomorphism
from G to K and µ a fuzzy congruence relation on G. Then

G/µ ∼= K/α(µ).

Proof. We first obtian immediately from Theorems 18 and 21 that G/µ and
K/α(µ) are Menger algebras. Suppose that ◦G/µ and ∗K/α(µ) are (n + 1)-ary
superassociative operations on G/µ and K/α(µ), respectively. We define a map-
ping γ : G/µ → K/α(µ) by γ(µx) = α(µ)α(x) for all x ∈ G. Obviously, γ is
well-defined. In fact, let x, y ∈ G. Assume that µx = µy. Then µ(x, y) = 1. By
Definition 4, we have α(µ)(α(x), α(y)) = sup

(x,y)∈α−1(α(x),α(y))

(µ(x, y)) = 1, which

implies that α(µ)α(x) = α(µ)α(y) and thus γ(µx) = γ(µy). In order to prove the
homomorphism property, let g1, . . . , gn ∈ G. Then we have

γ(◦G/µ(µg1 , . . . , µgn+1
)) = γ(µ◦(gn+1

1
))

= α(µ)α(◦(gn+1

1
))

= α(µ)∗(α(g1),...,α(gn+1))

= ∗K/α(µ)(α(µ)α(g1), . . . , α(µ)α(gn+1))

= ∗K/α(µ)(γ(µg1), . . . , γ(µgn+1
)).
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Hence, γ is a homomorphism. To show that γ is surjective, let α(µ)y ∈ K/α(µ)
and y ∈ K. Since α is surjective, there exists x ∈ G such that α(x) = y. So
γ(µx) = α(µ)α(x) = α(µ)y . Finally, let x, y be two elements in G. Assume that
α(µ)α(x) = α(µ)α(y). By the injectivity of α, we have µ = α−1(α(µ)). Then
µ(x, y) = α−1(α(µ))(x, y) = α(µ)(α(x), α(y)) = 1. It follows that µx = µy and
so γ is injective. Therefore γ is an isomorphism from G/µ to K/α(µ). This
completes the proof.

Example 23. It is not difficult to prove that a Menger algebra (R, ◦) where the
(n+1)-ary operation ◦ is defined by ◦(a, b1, . . . , bn) = a+ b1+···bn

n and a Menger al-
gebra (R+, ∗) where the operation ◦ : (R+)n+1 → R

+ is defined by ◦(x0, . . . , xn) =
x0 n

√
x1 · · · xn are isomorphic under a mapping α : (R, ◦) → (R+, ∗) defined by

α(x) = 2x for every real number a. Applying the fuzzy congruence relation µ on
R which given already in Example 12 and Theorem 22, we immediately obtain
R/µ ∼= R

+/α(µ).

One interesting application of homomorphisms is to the situation where µ1

and µ2 are two fuzzy congruences on G with µ1 ⊆ µ2.

Theorem 24. Let µ1 and µ2 be two fuzzy congruences on a Menger algebra (G, ◦)
with µ1 ⊆ µ2. Then the fuzzy relation µ2/µ1 on G, given by

(µ2/µ1)((µ1)x, (µ1)y) = µ2(x, y),

is a fuzzy congruence on G.

Proof. First of all, the fact that µ2/µ1 is well-defined follows immediately from
Theorem 3.3 in [27]. It is obviously clear that µ2/µ1 is fuzzy equivalence of G.
It is not hard to prove that µ2/µ1 is a fuzzy compatible relation on G.

Theorem 25. Let µ1 and µ2 be two fuzzy congruences on a Menger algebra (G, ◦)
with µ1 ⊆ µ2. Then

(G/µ1)/(µ2/µ1) ∼= G/µ2.

Proof. The fact that µ2/µ1 is a fuzzy relation on G has been shown in the proof
of Theorem 24. Then, by Theorem 18, (G/µ1)/(µ2/µ1) and G/µ2 form Menger
algebras. Denote the (n + 1)-ary superassociative operation on (G/µ1)/(µ2/µ1)
and G/µ2 by ◦(G/µ1)/(µ2/µ1) and ◦G/µ2 , respectively. Now define a mapping

α : (G/µ1)/(µ2/µ1) → G/µ2

by α((µ2/µ1)(µ1)x) = (µ2)x for all x ∈ G. Then α is both well-defined and
injective, since
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(µ2/µ1)(µ1)x = (µ2/µ1)(µ1)y ⇔ (µ2/µ1)((µ1)x, (µ1)y) = 1

⇔ µ2(x, y) = 1

⇔ (µ2)x = (µ2)y

⇔ α
(
(µ2/µ1)(µ1)x

)
= α

(
(µ2/µ1)(µ1)y

)
.

Moreover, it is not hard to show that α is surjective. In fact, for any (µ2)x ∈ G/µ2,
there exists µ1 = µ2 such that α((µ2/µ1)(µ2)x) = α((µ2/µ1)(µ1)x) = (µ2)x. It is
actually a homomorphism. Therefore, a mapping α is an isomorphism from
(G/µ1)/(µ2/µ1) to G/µ2.

The following generalization is a consequence of Theorems 24 and 25.

Theorem 26. Let G be a Menger algebra and let µ1, µ2, . . . , µm+1 be fuzzy con-
gruences on G such that µ1 ⊆ µ2 ⊆ . . . ⊆ µm+1. Then for each i = 1, . . . ,m, the
fuzzy relation µi+1/µi defined by

(µi+1/µi)((µi)x, (µi)y) = (µi+1)(x, y)

is a fuzzy congruence on G/µi and

(G/µi)/(µi+1/µi) ∼= G/µi+1.

5. Conclusion

This paper was contributed to the discussion of the combination among fuzzy sets
and Menger algebras. We defined the concepts of various types of fuzzy ideals in
Menger algebras. Some fundamental notions, the (n + 1)-ary superasscociative
operation on the set of all fuzzy subsets, characterizations and related properties
concerning fuzzy Menger subalgebras, fuzzy v-ideals, fuzzy s-ideals and fuzzy vs-
ideals were given. We further proposed fuzzy congruence relations over Menger
algebras and obtained certain quotient structures related to them. Finally, we
established several homomorphism and isomorphism theorems via fuzzy congru-
ence relations. It turned out that our results are also noticeable extensions of
semigroups if we set an arbitrary fixed natural number n = 1.

There are two potential types of continuation of this research. Firstly, it
is possible to change the kind of ideals in Menger algebras to which fuzzy ide-
als are considered, for example, l-ideals and i-ideals. Secondly, hyperideals in
hypercompositional algebras can be applied to study in this direction.
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