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Abstract

The concept of σ-filters is introduced in commutative BE-algebras and
some properties of these classes of filters are studied. Some equivalent con-
ditions are derived for every filter of a commutative BE-algebra to become a
σ-filter. Some necessary and sufficient conditions are given for every regular
filter of a commutative BE-algebra to become a σ-filter. A set of equivalent
conditions is given for the class of all σ-filters of a commutative BE-algebra
to become a sublattice to the lattice of all filters.
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Introduction

The notion of BE-algebras was introduced and extensively studied by Kim and
Kim in [5]. These classes of BE-algebras were introduced as a generalization of
the class of BCK-algebras of Iseki and Tanaka [4]. Some properties of filters of
BE-algebras were studied by Ahn and Kim in [1] and by Meng in [6]. In [12], Wal-
endziak discussed some significant properties of commutative BE-algebras. He
also investigated the relationship between BE-algebras, implicative algebras and
J-algebras. In [6], Meng introduced the notion of prime filters in BCK-algebras,
and then gave a description of the filter generated by a set, and obtained some
of fundamental properties of prime filters. In [4], some properties of prime ideals
are investigated in BCK-algebras. In [8], the author studied some properties of
prime filters in BE-algebras. In this paper, the author extensively studied the
algebraic as well as the topological properties of prime filters of commutative
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BE-algebras. In [9], the authors introduced the notion of dual annihilators of
commutative BE-algebra and studied extensively the properties of these dual
annihilators. In 2020, the authors introduced the notions of regular filters [10]
and O-filters [11] in commutative BE-algebras and the interconnection between
those two special classes of filters is studied.

In this paper, the concept of σ-filters is introduced in commutative BE-
algebras and their properties are studied analogous to that in a distributive lat-
tice [3]. A set of equivalent conditions is given for every filter of a commutative
BE-algebra to become a σ-filter. It is observed that every σ-filter of a commu-
tative BE-algebra is a regular filter but not the converse in general. However,
some equivalent conditions are proved for every regular filter of a commutative
BE-algebra to become a σ-filter. It is also observed that every O-filter of a com-
mutative BE-algebra is a σ-filter but not the converse in general. Some necessary
and sufficient conditions are given for every σ-filter of a commutative BE-algebra
to become an O-filter. Some equivalent conditions are given to prove that the
class of all σ-filters of a commutative BE-algebra to become a sublattice to the
lattice of all filters of a commutative BE-algebra.

1. Preliminaries

In this section, we present certain definitions and results which are taken mostly
from the papers [1, 5, 9, 10], and [11] for the ready reference of the reader.

Definition 1.1 [5]. An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if
it satisfies the following properties:

(1) x ∗ x = 1,

(2) x ∗ 1 = 1,

(3) 1 ∗ x = x,

(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for
all x, y, z ∈ X. A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for
all x, y, z ∈ X. A BE-algebra X is called commutative if (x ∗ y) ∗ y = (y ∗ x) ∗ x
for all x, y ∈ X. Every commutative BE-algebra is transitive. For any x, y ∈ X,
define x ∨ y = (y ∗ x) ∗ x. If X is commutative then (X,∨) is a semilattice [12].
We introduce a relation ≤ on a BE-algebra X by x ≤ y if and only if x ∗ y = 1
for all x, y ∈ X. Clearly ≤ is reflexive. If X is commutative, then ≤ is transitive,
anti-symmetric and hence a partial order on X.

Theorem 1.2 [5]. Let X be a transitive BE-algebra and x, y, z ∈ X. Then

(1) 1 ≤ x implies x = 1,
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(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 1.3 [1]. A non-empty subset F of a BE-algebra X is called a filter
of X if, for all x, y ∈ X, it satisfies the following properties:

(1) 1 ∈ F ,

(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

For any non-empty subset A of a transitive BE-algebraX, the set 〈A〉 = {x ∈
X | a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · ·)) = 1 for some a1, a2, . . . an ∈ A} is the smallest
filter containing A. For any a ∈ X, 〈a〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N},
where an ∗x = a∗(a∗(· · · ∗(a∗x) · · ·)) with the repetition of a is n times, is called
the principal filter generated a. Let F be a filter of a transitive BE-algebra and
a ∈ X, then 〈F ∪ {a}〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N}. A proper filter P
of a BE-algebra is called prime [8] if F ∩G ⊆ P implies F ∈ P or G ∈ P for any
two proper filters F,G of X. A proper filter P of a BE-algebra is called prime [8]
if 〈x〉 ∩ 〈y〉 ⊆ P implies x ∈ P or y ∈ P for any x, y ∈ X. A proper filter M of a
transitive BE-algebra X is called maximal if there exist no proper filters Q such
that M ⊂ Q. “Every maximal filter of a commutative BE-algebra is prime”.

Theorem 1.4 [8]. Let F and G be two filters of a transitive BE-algebra X. Then

F ∨G = {x ∈ X | a ∗ (b ∗ x) = 1 for some a ∈ F, b ∈ G}

is the supremum of F and G. Hence the set F(X) of all filters of X is a lattice.

Lemma 1.5 [9]. Let X be a commutative BE-algebra. Then for any x, y, a ∈ X

(1) y ∗ z ≤ (z ∗ x) ∗ (y ∗ x),

(2) (x ∗ y) ∨ a ≤ (x ∨ a) ∗ (y ∨ a).

For any non-empty subset A of a BE-algebra X, the dual annihilator [9] of
A is defined as A+ = {x ∈ X | x ∨ a = 1 for all a ∈ A}. In a commutative
BE-algebra X, the set A+ forms a filter of X such that A∩A+ = {1}. In case of
A = {a}, we have (a)+ = {x ∈ X | a ∨ x = 1}. For a ∈ X, the set (a)+ is called
the dual annulet of a. Clearly X+ = {1} and {1}+ = X.

Proposition 1.6 [9]. Let X be a commutative BE-algebra and ∅ 6= A,B ⊆ X.

Then

(1) if A ⊆ B, then B+ ⊆ A+,

(2) A ⊆ A++,

(3) A+ = A+++.

Proposition 1.7 [9]. Let F and G be two filters of a commutative BE-algebra

X. Then
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(1) F ∩G = {1} if and only if F ⊆ G+,

(2) (F ∨G)+ = F+ ∩G+,

(3) (F ∩G)++ = F++ ∩G++.

Proposition 1.8 [9]. Let X be a commutative BE-algebra and a, b ∈ X. Then

we have

(1) 〈a〉 ⊆ (a)++,

(2) a ≤ b implies (a)+ ⊆ (b)+,

(3) a ∈ (b)++ implies (b)+ ⊆ (a)+.

A filter F of a commutative BE-algebra X is called a dual annihilator filter

[9] if F = F++. A filter F of a commutative BE-algebra X is called a regular

filter [10] if (x)++ ⊆ F whenever x ∈ F . A filter F of a commutative BE-algebra
X is called an O-filter [11] if F = O(S) for some ∨-closed subset S of X, where
O(S) = {x ∈ X | x ∨ s = 1 for some s ∈ S}. Every O-filter of a commutative
BE-algebra is a regular filter.

2. σ-filters of BE-algebras

In this section, the concept of σ-filters is introduced in commutative BE-algebras.
Some properties of σ-filters are proved. A set of equivalent conditions is given
for every prime filter of a commutative BE-algebra to become a σ-filter. Inter-
connections among σ-filters, regular filters, O-filters of commutative BE-algebras
are established.

Lemma 2.1. Let X be a commutative BE-algebra. For any x, y ∈ X, we have

(1) (x)+ ∩ (x ∗ y)+ ⊆ (y)+,

(2) (x ∨ y)++ = (x)++ ∩ (y)++,

(3) (x)+ ∩ (y)+ = {1} if and only if (x)+ ⊆ (y)++,

(4) x ∈ (y)+ if and only if (x)++ ⊆ (y)+.

Proof. (1) Let a ∈ (x)+ ∩ (x ∗ y)+. Then x ∨ a = 1 and (x ∗ y) ∨ a = 1. Hence

1 = (x ∗ y) ∨ a

≤ (x ∨ a) ∗ (y ∨ a) by Lemma 1.5(2)

= 1 ∗ (y ∨ a)

= y ∨ a

which means y ∨ a = 1. Hence a ∈ (y)+. Therefore (x)+ ∩ (x ∗ y) ⊆ (y)+.
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(2) Let x, y ∈ X. Since x, y ≤ x ∨ y, we get (x)+, (y)+ ⊆ (x ∨ y)+. Hence
(x ∨ y)++ ⊆ (x)++, (y)++. Thus (x ∨ y)++ ⊆ (x)++ ∩ (y)++. Conversely, let a ∈
(x)++∩ (y)++. Suppose b ∈ (x∨ y)+ be an arbitrary element. Since b ∈ (x∨ y)+,
we get

b ∨ (x ∨ y) = 1 ⇒ b ∨ x ∈ (y)+

⇒ a ∨ b ∨ x = 1 since a ∈ (y)++

⇒ a ∨ b ∈ (x)+

⇒ a ∨ (a ∨ b) = 1 since a ∈ (x)++

⇒ a ∨ b = 1 for all b ∈ (x ∨ y)+

which means that a ∈ (x ∨ y)++. Therefore (x)++ ∩ (y)++ ⊆ (x ∨ y)++.

(3) Let x, y ∈ X. Assume that (x)+∩(y)+ = {1}. Let a ∈ (x)+. Let b ∈ (y)+

be any element. Then, we get that a∨ b ∈ (x)+ ∩ (y)+ = {1}. Hence a ∈ (b)+ for
all b ∈ (y)+. Therefore a ∈ (y)++, which gives that (x)+ ⊆ (y)++. Conversely,
suppose that (x)+ ⊆ (y)++. Then (x)+ ∩ (y)+ ⊆ (y)++ ∩ (y)+ = {1}. Therefore
(x)+ ∩ (y)+ = {1}.

(4) Let x, y ∈ X. Suppose x ∈ (y)+. Then x∨y = 1. Hence (x)++∩(y)++ =
(x∨y)++ = (1)++ = {1}. Thus by (3), we get (x)++ ⊆ (y)+++ = (y)+. Converse
is clear.

Definition 2.2. For any prime filter P of a commutative BE-algebra X, define
O(P ) = {x ∈ X | (x)+ * P}.

Proposition 2.3. For any prime filter P of a commutative BE-algebra X, the

set O(P ) is a filter of X such that O(P ) ⊆ P .

Proof. Clearly 1 ∈ O(P ). Suppose x, x ∗ y ∈ O(P ). Then (x)+ * P and
(x ∗ y)+ * P . Since P is prime, we get (x)+ ∩ (x ∗ y)+ * P . By Lemma 2.1(1),
we get (y)+ * P . Hence y ∈ O(P ). Therefore O(P ) is a filter of X. Again, let
x ∈ O(P ). Then (x)+ * P . Then there exists y ∈ (x)+ such that y /∈ P . Since
y ∈ (x)+, we get x∨y = 1. Hence (x)++∩(y)++ = (x∨y)++ = {1}++ = {1} ⊆ P .
Since P is prime, we get (x)++ ⊆ P or (y)++ ⊆ P . Suppose (y)++ ⊆ P . Since
y ∈ (y)++, we get y ∈ P which is a contradiction. Hence (x)++ ⊆ P , which
means x ∈ P . Therefore O(P ) ⊆ P .

Definition 2.4. Let X be a commutative BE-algebra. For any filter F of X,
define

σ(F ) = {x ∈ X | (x)+ ∨ F = X}.

Clearly σ(X) = X. For F = {1}, obviously we get σ({1}) = {1}.
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Lemma 2.5. For any filter F of a commutative BE-algebra X, σ(F ) is a filter

of X.

Proof. Clearly 1 ∈ σ(F ). Let x, x ∗ y ∈ σ(F ). Then (x)+ ∨ F = X and
(x ∗ y)+ ∨ F = X. Hence

X = X ∩X

= {(x)+ ∨ F} ∩ {(x ∗ y)+ ∨ F}

= {(x)+ ∩ (x ∗ y)+} ∨ F

⊆ (y)+ ∨ F.

which gives (y)+ ∨ F = X. Hence y ∈ σ(F ). Therefore σ(F ) is a filter of X.

In the following result, some elementary properties of σ(F ) are derived.

Lemma 2.6. For any two filters F,G of a commutative BE-algebra X, we have

(1) σ(F ) ⊆ F ,

(2) F ⊆ G implies σ(F ) ⊆ σ(G),

(3) σ(F ∩G) = σ(F ) ∩ σ(G),

(4) σ(F ) ∨ σ(G) ⊆ σ(F ∨G).

Proof. (1) Let x ∈ σ(F ). Then (x)+ ∨ F = X. Hence a ∗ (b ∗ x) = 1 for some
a ∈ (x)+ and b ∈ F . Since a ∈ (x)+, we get (a ∗ x) ∗ x = a ∨ x = 1. Since X is
commutative, we get 1 = a∗(b∗x) = b∗(a∗x) ≤ ((a∗x)∗x)∗(b∗x) = 1∗(b∗x) = b∗x.
Hence b ∗ x = 1, which gives b ≤ x. Since b ∈ F and F is a filter, it concludes
that x ∈ F . Therefore σ(F ) ⊆ F .

(2) Suppose F ⊆ G. Let x ∈ σ(F ). Then X = (x)+ ∨ F ⊆ (x)+ ∨ G.
Therefore x ∈ σ(G).

(3) Clearly σ(F ∩G) ⊆ σ(F )∩ σ(G). Conversely, let x ∈ σ(F )∩ σ(G). Then
(x)+ ∨ F = (x)+ ∨ G = X. Now (x)+ ∨ (F ∩ G) = {(x)+ ∨ F} ∩ {(x)+ ∨ G} =
X ∩ X = X. Hence x ∈ σ(F ∩ G). Thus σ(F ) ∩ σ(G) ⊆ σ(F ∩ G). Therefore
σ(F ∩G) = σ(F ) ∩ σ(G).

(4) By (2), it is obvious.

Proposition 2.7. Let P be a proper filter of a commutative BE-algebra X. Then

(1) if P is prime, then σ(P ) ⊆ O(P ),

(2) if P is maximal, then σ(P ) = O(P ).

Proof. (1) Let x ∈ σ(P ). Then (x)+ ∨ P = X. Suppose that (x)+ ⊆ P . Then
we get P = X, which is a contradiction. Hence (x)+ * P . Thus x ∈ O(P ).
Therefore σ(P ) ⊆ O(P ).
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(2) Since every maximal filter is prime, we get σ(P ) ⊆ O(P ). Conversely, let
x ∈ O(P ). Then a∨x = 1 for some a /∈ P . Thus there exists a ∈ (x)+ and a /∈ P .
Hence (x)+ * P . Since P is maximal, we get (x)+ ∨ P = X. Thus x ∈ σ(P ).
Therefore σ(P ) = O(P ).

Definition 2.8. A filter F of a BE-algebra X is called a σ - filter if F = σ(F ).

Clearly the improper filters {1} and X are trivial σ-filters of X. In the
following, we observe a non-trivial example for σ-filters of a BE-algebra.

Example 2.9. Let X = {a, b, c, d, 1} be a set. Define a binary operation ∗ on X
as

∗ 1 a b c d

1 1 a b c d
a 1 1 1 1 d
b 1 c 1 c d
c 1 b b 1 d
d 1 a b c 1

∨ 1 a b c d

1 1 1 1 1 1
a 1 a b c 1
b 1 b b 1 1
c 1 c 1 c 1
d 1 1 1 c 1

Clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the filter F = {1, a,
b, c}. It can be easily verified that (a)+ = {1, d}, (b)+ = {1, c, d}, (c)+ = {1, b, d}
and (d)+ = {1, a, b, c}. Clearly (1)+∨F = X. Observe that (a)+∨F = (b)+∨F =
(c)+ ∨ F = X. Thus σ(F ) = {1, a, b, c} = F . Therefore F is a σ-filter of X.

It is observed that a proper σ-filter of a commutative BE-algebra contains
no dual dense elements (an element x of a commutative BE-algebra is called dual

dense if (x)+ = {1}) and the converse is not true. For this, consider the following
example.

Example 2.10. Let X = {1, a, b, c, d} be a set. Define a binary operation ∗ on
X as

∗ 1 a b c d

1 1 a b c d
a 1 1 a c d
b 1 1 1 c d
c 1 a b 1 d
d 1 a b c 1

∗ 1 a b c d

1 1 1 1 1 1
a 1 a a 1 1
b 1 a b 1 1
c 1 1 1 c 1
d 1 1 1 1 d

Clearly (X, ∗,∨, 1) is a commutative BE-algebra. Now (a)+ = {1, c, d}; (b)+ =
{1, c, d}; (c)+ = {1, a, b, d} and (d)+ = {1, a, b, d}. Consider the filter F = {1, d}
of X which is not containing dual dense elements. Hence (a)+ ∨F = (b)+ ∨F =
{1, c, d}, (c)+ ∨ F = F and (d)+ ∨ F = F . Thus σ(F ) = {1}. Therefore F is not
a σ-filter of X.
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Theorem 2.11. Following assertions are equivalent in a commutative BE-al-

gebra X:

(1) every filter is a σ-filter;

(2) every prime filter is a σ-filter;

(3) for every prime filter P , O(P ) = P .

Proof. (1) ⇒ (2): It is clear.
(2) ⇒ (3): Assume that every prime filter is a σ-filter. Let P be a prime

filter of X. Since P is proper, there exists c ∈ X such that c /∈ P . Since by
(2), P is a σ-filter of X, we have σ(P ) = P . Clearly O(P ) ⊆ P . Conversely, let
x ∈ P = σ(P ). Then (x)+ ∨ P = X. Since c ∈ X, we get c ∈ (x)+ ∨ P . Then
a ∗ (b ∗ c) = 1 for some a ∈ (x)+ and b ∈ P . Hence a ≤ b ∗ c. Suppose a ∈ P .
Then b ∗ c ∈ P . Since b ∈ P , we get c ∈ P , which is a contradiction. Thus
a /∈ P . Hence a ∨ x = 1 for some a /∈ P . Therefore x ∈ O(P ), which gives that
P = O(P ).

(3) ⇒ (1): Assume that O(P ) = P for every prime filter of X. Let F be
an arbitrary filter of X. By Lemma 2.6(1), σ(F ) ⊆ F . Conversely, let x ∈ F .
Suppose (x)+∨F 6= X. Then there exists a maximal filter P such that (x)+∨F ⊆
P . Since every maximal filter is prime, we get that P is prime. Hence (x)+ ⊆ P
and F ⊆ P . Since (x)+ ⊆ P , we get that x /∈ O(P ) = P . Since x ∈ F , we get
x ∈ P which is a contradiction. Hence (x)+ ∨ F = X. Therefore F is a σ-filter
of X.

In [10], the class of all regular filters of a commutative BE-algebra X is
characterized in terms of dual annihilators. In the following theorem, it is proved
that the class of all regular filters of X contains properly the class of all σ-filters
of X.

Proposition 2.12. Every σ-filter of a commutative BE-algebra is a regular filter.

Proof. Let F be a σ-filter of a commutative BE-algebra X. Then σ(F ) = F .
Let x ∈ F . Then (x)+ ∨ F = X. Now, let t ∈ (x)++. Then, by Proposition
1.8(3), (x)+ ⊆ (t)+. Hence X = (x)+ ∨ F ⊆ (t)+ ∨ F . Thus t ∈ σ(F ) = F . Thus
(x)++ ⊆ F . Therefore F is a regular filter of X.

The converse of the above proposition is not true, i.e., every regular filter of
a commutative BE-algebra need not be a σ-filter. Indeed, consider Example 2.9.
Here, F = {1, d} is clearly a regular filter, because (d)++ ⊆ F . But F is not a
σ-filter of X, because of (d)+ ∨F 6= X. However, some equivalent conditions are
given for every regular filter of a commutative BE-algebra to become a σ-filter.

Theorem 2.13. Following assertions are equivalent in a commutative BE-al-

gebra X:
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(1) every regular filter is a σ-filter;

(2) every dual annihilator filter is a σ-filter;

(3) for each x ∈ X, (x)++ is a σ-filter;

(4) for each x ∈ X, (x)+ ∨ (x)++ = X.

Proof. (1) ⇒ (2): Since every dual annihilator filter is a regular filter, it is clear.
(2) ⇒ (3): Since each (x)++ is a dual annihilator filter, it is clear.
(3) ⇒ (4): Assume the statement (3). Let x ∈ X. Since (x)++ is a σ-

filter of X, we get (x)++ = σ((x)++). Clearly x ∈ (x)++ = σ((x)++). Hence
(x)+ ∨ (x)++ = X.

(4) ⇒ (1): Assume that (x)+ ∨ (x)++ = X for each x ∈ X. Let F be a
regular filter of X. Clearly σ(F ) ⊆ F . Conversely, let x ∈ F . Since F is a regular
filter, we get (x)++ ⊆ F . Hence X = (x)+ ∨ (x)++ ⊆ (x)+ ∨ F . Thus x ∈ σ(F ).
Therefore F is a σ-filter of X.

Recall that a filter F of a commutative BE-algebra X is called an O-filter if
F = O(S) for some ∨-closed subset S ofX. In [11], authors studied the properties
of O-filters and proved that every O-filter of a self-distributive and commutative
BE-algebra is the intersection of all minimal prime filters containing it. In the
following result, it is proved that the class of all σ-filters of a commutative BE-
algebra X is properly contained in the class of all O-filters of X.

Theorem 2.14. Suppose X is a commutative BE-algebra with a dual-dense el-

ement (i.e., (x)+ = {1}). Then every σ-filter of X is an O-filter.

Proof. Let F be a σ-filter of X. Then σ(F ) = F . Consider the set S = { x ∈
X | (x)++ ∨ F = X }. It can be easily verified, by using Lemma 2.1(2), that S
is a ∨-closed subset of X. We now show that F = O(S). Let x ∈ O(S). Then
x ∨ y = 1 for some y ∈ S. Now

x ∨ y = 1 ⇒ y ∈ (x)+

⇒ (y)++ ⊆ (x)+ by Lemma 2.1(4)

⇒ X = (y)++ ∨ F ⊆ (x)+ ∨ F since y ∈ S

⇒ x ∈ σ(F ) = F since F is a σ-filter

which concludes that O(S) ⊆ F . Conversely, let x ∈ F = σ(F ) and d a dual-
dense element of X. Then (x)+ ∨ σ(F ) = X. Therefore d ∈ (x)+ ∨ σ(F ). Hence
a∗ (b∗d) = 1 for some a ∈ (x)+ and b ∈ σ(F ). Thus a∨x = 1 and (b)+∨F = X.
Now

a ∗ (b ∗ d) = 1 ⇒ a ≤ b ∗ d

⇒ (a)+ ⊆ (b ∗ d)+
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⇒ (a)+ ∩ (b)+ ⊆ (b)+ ∩ (b ∗ d)+

⇒ (a)+ ∩ (b)+ ⊆ (d)+ = {1} by Lemma 2.1(1)

⇒ (b)+ ⊆ (a)++ by Lemma 2.1(3)

⇒ X = (b)+ ∨ F ⊆ (a)++ ∨ F since b ∈ σ(F )

⇒ a ∈ S and a ∨ x = 1

⇒ x ∈ O(S)

which gives F = σ(F ) ⊆ O(S). Hence F = O(S). Therefore F is an O-filter
of X.

The converse of the above theorem is not true, i.e., every O-filter of a com-
mutative BE-algebra need not be a σ-filter. For, consider the following example.

Example 2.15. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X
as

∗ 1 a b c

1 1 a b c
a 1 1 a c
b 1 1 1 c
c 1 a b 1

∨ 1 a b c

1 1 1 1 1
a 1 a a 1
b 1 a b 1
c 1 1 1 c

It can be routinely verified that (X, ∗,∨, 1) is a commutative BE-algebra. Ob-
serve that (a)+ = (b)+ = {1, c}, and (c)+ = {1, a, b}. Consider the filter
F = {1, c} of X. Clearly S = {a, b} is a ∨-closed subset of X. It is easy to
observe that F = O(S). Hence F is an O-filter of X. Now σ(F ) = {1} ⊂ F .
Therefore F is not a σ-filter of X.

Lemma 2.16. In a commutative BE-algebra, every dual annulet is an O-filter.

Proof. Let X be a commutative BE-algebra and a ∈ X. Consider [a] = {x ∈
X | x ≤ a}. Let x, y ∈ [a]. Then x ≤ a and y ≤ a. Since X is commutative,
it is partially ordered. Hence x ∨ y ≤ a, which gives that x ∨ y ∈ [a]. Therefore
[a] is a ∨-closed subset of X. We now show that (a)+ = O([a]). Let x ∈ (a)+.
Then a ∨ x = 1 and a ∈ [a]. Hence x ∈ O([a]), which gives that (a)+ ⊆ O([a]).
Conversely, let x ∈ O([a]). Then x∨ y = 1 for some y ∈ [a]. Since y ∈ [a], we get
y ≤ a. Hence 1 = x∨ y ≤ x∨ a. Thus x ∈ (a)+. Hence O([a]) ⊆ (a)+. Therefore
(a)+ is an O-filter of X.

Theorem 2.17. Following assertions are equivalent in a commutative BE-al-

gebra X:

(1) every O-filter is a σ-filter;

(2) each dual annulet is a σ-filter;
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(3) for any x, y ∈ X, x ∨ y = 1 implies (x)+ ∨ (y)+ = X.

Proof. (1) ⇒ (2): Since each dual annulet is an O-filter, it is clear.
(2) ⇒ (3): Assume that each dual annulet is a σ-filter of X. Let x, y ∈ X be

such that x ∨ y = 1. Hence x ∈ (y)+. By (2), we get that (y)+ is a σ-filter of X.
Hence x ∈ (y)+ = σ((y)+). Thus we get (x)+ ∨ (y)+ = X. Therefore, condition
(3) is proved.

(3) ⇒ (1): Assume that condition (3) holds. Let F be an O-filter of X. Then
F = O(S) for some ∨-closed subset S of X. Clearly σ(F ) ⊆ F . We claim that
O(S) ⊆ σ(F ). Now

x ∈ O(S) ⇒ x ∨ y = 1 for some y ∈ S

⇒ (x)+ ∨ (y)+ = X by (3)

⇒ X = (x)+ ∨ (y)+ ⊆ (x)+ ∨O(S) since y ∈ S

⇒ x ∈ σ(O(S)) = σ(F )

Hence O(S) ⊆ σ(F ), which gives F = O(S) = σ(F ). Therefore F is a σ-filter
of X.

Theorem 2.18. Let P be a prime filter of a commutative BE-algebra X such

that P = O(P ). If X satisfies any one assertions of the above theorem, then P
is a σ-filter.

Proof. Assume that X satisfies condition (3) of the above theorem. Let P
be a prime filter of X such that P = O(P ). By Proposition 2.7(1), we have
σ(P ) ⊆ O(P ) = P . Conversely, let x ∈ O(P ). Then there exists y /∈ P such that
x ∨ y = 1. Since y /∈ O(P ), we get (y)+ ⊆ P . By (3) of the above theorem, we
get that (x)+ ∨ (y)+ = X. Hence X = (x)+ ∨ (y)+ ⊆ (x)+ ∨ P . Thus x ∈ σ(P ).
Hence P is a σ-filter of X.

Let us denote by µ the set of all maximal filters of a BE-algebra X. For any
filter F of a BE-algebra X, we also denote µ(F ) = {M ∈ µ | F ⊆ M}. Since
every maximal filter of a commutative BE-algebra is prime, by Proposition 2.3,
we conclude that O(M) is a filter such that O(M) ⊆ M for every M ∈ µ. Then
we have the following result.

Theorem 2.19. For any filter F of a commutative BE-algebra X,σ(F ) =⋂
M∈µ(F )O(M).

Proof. Let x ∈ σ(F ) and F ⊆ M where M ∈ µ. Then X = (x)+ ∨ F ⊆
(x)+ ∨ M . Suppose (x)+ ⊆ M , then M = X, which is a contradiction. Hence
(x)+ * M . Thus x ∈ O(M) for all M ∈ µ(F ). Therefore σ(F ) ⊆

⋂
M∈µ(F )O(M).

Conversely, let x ∈
⋂

M∈µ(F )O(M). Then x ∈ O(M) for all M ∈ µ(F ). Suppose
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(x)+ ∨ F 6= X. Then there exists a maximal filter M0 such that (x)+ ∨ F ⊆ M0.
Hence (x)+ ⊆ M0 and F ⊆ M . Since F ⊆ M0, by hypothesis, we get x ∈ O(M0).
Hence (x)+ * M0, which is a contradiction. Therefore (x)+ ∨ F = X. Thus
x ∈ σ(F ). Hence

⋂
M∈µ(F )O(M) ⊆ σ(F ).

From the above theorem, it can be easily observed that σ(F ) ⊆ O(M) for
every M ∈ µ(F ). Now, in the following, a set of equivalent conditions is given
for the class of all σ-filters of a commutative BE-algebra to become a sublattice
to the lattice F(X) of all filters of the commutative BE-algebra X.

Theorem 2.20. The following assertions are equivalent in a commutative BE-

algebra X:

(1) for any M ∈ µ, O(M) is maximal;

(2) for any F,G ∈ F(X), F ∨G = X implies σ(F ) ∨ σ(G) = X;

(3) for any F,G ∈ F(X), σ(F ) ∨ σ(G) = σ(F ∨G);

(4) for any two distinct maximal filters M and N , O(M) ∨O(N) = X;

(5) for any M ∈ µ, M is the unique member of µ such that O(M) ⊆ M .

Proof. (1) ⇒ (2): Assume the condition (1). Then clearly O(M) = M for all
M ∈ µ. Let F,G ∈ F(X) be such that F ∨ G = X. Suppose σ(F ) ∨ σ(G) 6= X.
Then there exists a maximal filter M such that σ(F ) ∨ σ(G) ⊆ M . Hence
σ(F ) ⊆ M and σ(G) ⊆ M . Now

σ(F ) ⊆ M ⇒
⋂

Mi∈µ(F )

O(Mi) ⊆ M

⇒ O(Mi) ⊆ M for some Mi ∈ µ(F ) (since M is prime)

⇒ Mi ⊆ M by condition (1)

⇒ F ⊆ M since F ⊆ Mi.

Similarly, we can obtain that G ⊆ M . Hence X = F ∨ G ⊆ M , which is a
contradiction to the maximality of M . Therefore σ(F ) ∨ σ(G) = X.

(2) ⇒ (3): Assume the condition (2). Let F,G ∈ F(X). Clearly σ(F ) ∨
σ(G) ⊆ σ(F∨G). Let x ∈ σ(F∨G). Then {(x)+∨F}∨{(x)+∨G} = (x)+∨F∨G =
X. Hence by condition (2), we get σ((x)+ ∨ F ) ∨ σ((x)+ ∨ G) = X. Thus
x ∈ σ((x)+ ∨ F ) ∨ σ((x)+ ∨ G). Hence r ∗ (s ∗ x) = 1 for some r ∈ σ((x)+ ∨ F )
and s ∈ σ((x)+ ∨G). Now

r ∈ σ((x)+ ∨ F ) ⇒ (r)+ ∨ {(x)+ ∨ F} = X

⇒ X = {(r)+ ∨ (x)+} ∨ F ⊆ (r ∨ x)+ ∨ F

⇒ (r ∨ x)+ ∨ F = X

⇒ r ∨ x ∈ σ(F ).
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Similarly, we can get s ∨ x ∈ σ(G). Now, we have the following consequence:

r ∗ (s ∗ x) = 1 ⇒ r ≤ s ∗ x

⇒ r ∨ x ≤ (s ∗ x) ∨ x ≤ (s ∨ x) ∗ (x ∨ x)

⇒ r ∨ x ≤ (s ∨ x) ∗ (x ∨ x)

⇒ r ∨ x ≤ (s ∨ x) ∗ x

⇒ (r ∨ x) ∗ ((s ∨ x) ∗ x) = 1

where r ∨x ∈ σ(F ) and s∨ x ∈ σ(G). Hence x ∈ σ(F )∨ σ(G). Thus σ(F ∨G) ⊆
σ(F ) ∨ σ(G). Therefore σ(F ) ∨ σ(G) = σ(F ∨G).

(3) ⇒ (4): Assume the condition (3). Let M,N be two distinct maximal
filters of X. Choose x ∈ M − N and y ∈ N − M . Since x /∈ N , we get
N ∨ 〈x〉 = X. Since y /∈ M , we get M ∨ 〈y〉 = X. Now

X = σ(X)

= σ(X ∨X)

= σ({N ∨ 〈x〉} ∨ {M ∨ 〈y〉})

= σ({M ∨ 〈x〉} ∨ {N ∨ 〈y〉})

= σ(M ∨N) since x ∈ M and y ∈ N

= σ(M) ∨ σ(N) by condition (3)

⊆ O(M) ∨O(N) by Proposition 2.7(1).

Therefore O(M) ∨O(N) = X.

(4) ⇒ (5): Assume condition (4). Let M ∈ µ. Suppose N ∈ µ such that
N 6= M and O(N) ⊆ M . Since O(M) ⊆ M , by hypothesis, we get X = O(M) ∨
O(N) = M , which is a contradiction. Hence M is the unique maximal filter such
that O(M) ⊆ M .

(5) ⇒ (1): Let M ∈ µ. Suppose O(M) is not maximal. Let M0 be a
maximal filter of X such that O(M) ⊆ M0. We have always O(M0) ⊆ M0, which
is a contradiction.
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