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Abstract

The notion of a pre-preriod of a finite bounded distributive lattice (BDL)
A is defined by means of the notion of a pre-period of a finite connected
monounary algebra: it is the maximum value of the pre-period of an endo-
morphism and 0-fixing connected mapping of A to A. The main result is
that the pre-period of any finite BDL is less than or equal to the length of
the lattice; also, necessary and sufficient conditions under which it is equal
to the length of the lattice, are shown.
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1. Introduction

The aim of the paper is to study some properties of endomorphism of bounded
lattices.

An endomorphism f of a structure A can be considered as a unary operation
and 〈A; f〉 is a monounary algebra.
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The importance of theory of unary and monounary algebras is pointed out
for example in the monographs [7, 9, 10, 11]. The advantage of monounary
algebras is their relatively easy visualization as they can be represented as planar
directed graphs. Endomorphism of monounary algebras were investigated, e.g.,
in [4, 5, 8, 12, 13].

The results of the present paper can be considered as a modest contribution
in the direction of studying finite distributive lattices, by applying theory of
monounary algebras.

Let f : A → A be a unary operation on a set A. Let f0 be the identity
map on A and Im(f) := {f(a) | a ∈ A}. A pre-period (or stabilizer) of f is the
least nonnegative integer n satisfying Imfn = Imfn+1 and denoted by λ(f) (see
e.g.[16]). Let us remark that the notion of λ(f) was defined for finite monounary
algebras only. However, λ(f) exists also for some infinite algebras, so we will
always mention whether we deal with a finite or an infinite case. An operation f
on A is connected if for each a, b ∈ A, there exist nonnegative integers n,m such
that fn(a) = fm(b). The results from [14] and [3] imply that λ(f) ≤ |A| − 1 and
if λ(f) = |A| − 1 then f is connected.

A Boolean algebra is a bounded distributive lattice 〈A;∨,∧, 0, 1〉 equipped
with an onto operation f : A→ A which maps x to the complement of x satisfying
x∨f(x) = 0 and x∧f(x) = 0 for all x ∈ A. Since f is onto, λ(f) = 0; furthermore,
f is not connected if |A| > 2.

Clearly, all constant functions are connected endomorphisms of 〈A;∨,∧〉.
Several authors focus specially on connected monounary algebras (see e.g., [6,
15]). It will be shown (Lemma 1), that any connected order-preserving mapping
f of a bounded poset A has an (obviously, unique) fix-point and also, that λ(f)
is defined, even in the case when A is infinite.

We are going to investigate bounded distributive lattices (shortly, BDL) Â =
〈A;∨,∧, 0, 1〉 and connected endomorphisms of 〈A;∨,∧〉. Moreover, with respect
to Lemma 1, let us consider only the endomorphisms fixing the least element 0.
If there is an n such that n is the maximum of all λ(f), then we set

λ(Â) := n.

It is interesting whether for each positive number k, can we find a connected
endomorphism f with λ(f) = k.

Applying some results of [1, 2] we will show that if a BDL is finite, then λ(Â)
is less or equal to the length of the lattice. Also, we prove necessary and suficient
conditions under which

λ(Â) = length(Â).
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2. Preliminaries

Lemma 1. Let A be a bounded poset and let f be a connected order-preserving

mapping of A. Then f has a unique fix-point α and λ(f) is the greater number

of min {n ∈ N ∪ {0} | fn(1) = α} and min {m ∈ N ∪ {0} | fm(0) = α}.

Proof. Suppose that f is connected and preserves ≤. Then there exist the least
nonnegative integers m and n such that fm(0) = fn(1) = α and fm(0) ≤ fm+1(0)
and fn+1(1) ≤ fn(1) which imply that f(α) = α.

Let k be the considered greater number. If x ∈ A, then 0 < x < 1 yields
α = fk(0) ≤ fk(x) ≤ fk(1) = α, hence λ(f) ≤ k. The equality follows from the
definition of k.

An algebra 〈A;∨,∧, f, 0, 1〉 is called a BDLC-algebra if 〈A;∨,∧, 0, 1〉 is a BDL
and f is a connected endomorphism on 〈A;∨,∧〉 fixed 0. For each n ∈ N ∪ {0},
let Mn be the class of all BDLC-algebras 〈A;∨,∧, f, 0, 1〉 whose λ(f) ≤ n and it
is shown in [1] that Mn is the variety satisfying the following identities:

• f(a ∨ b) ≈ f(a) ∨ f(b),

• f(a ∧ b) ≈ f(a) ∧ f(b),

• f(0) ≈ 0,

• fn(1) ≈ 0.

For each positive integer n and BDL Â = 〈A;∨,∧, 0, 1〉, define A∗n :=
〈An;∨,∧, f,0,1〉 whose 〈An;∨,∧,0,1〉 is the usual direct product of Â and
f : An → An is defined by f(a1, a2, . . . , an) = (a2, . . . , an, 0) for all ai ∈ A

and 1 ≤ i ≤ n. Denote 0 := (0, . . . , 0︸ ︷︷ ︸
n

), 1 := (1, . . . , 1︸ ︷︷ ︸
n

) and A∗0 to be the trivial

BDLC-algebra. In particular, if Â is the 2-element chain then we call it that
an n-cube BDLC-algebra, denoted by 2∗n. In [2], Charoenpol and Ratanaprasert
proved the following facts.

Theorem 2 [2]. Let A = 〈A;∨,∧, f, 0, 1〉 be a BDLC-algebra with λ(f) = n. The

following are equivalent:

1. A is a subdirectly irreducible algebra,

2. 0 = fn(1) ≺ fn−1(1) ≺ . . . ≺ f(1) ≺ 1,

3. A ≤ 2∗n.

Theorem 3 [2]. For each n ∈ N, Mn is a variety generated by 2∗n.
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3. A Representation of a BDLC-Algebra

For each BDLC-algebra A, there is a natural number n such that A ∈ Mn which
implies that A is a homomorphic image of subalgebra of direct product of 2∗n.

Lemma 4. For each n ∈ N, (2∗n)I ∼= (2I)∗n.

Proof. Define a function ψ : (2∗n)I → (2I)∗n by ψ(a) = (π1 ◦a, π2 ◦a, . . . , πn ◦a)
for all a ∈ (2∗n)I where πi : {0, 1}

n → {0, 1} is the i−projection for all 1 ≤ i ≤ n.
It is routine to show that the mapping ψ is an isomorphism.

This theorem implies that for each A ∈ Mn, there exist B ≤ (2I)∗n and
homomorphism h : B → A such that A = h(B). So for a, b ∈ A, one can see that
a = h(ā1, . . . , ān) and b = h(b̄1, . . . , b̄n) for some āi, b̄i ∈ 2I (that is, āi, b̄i : I → 2);
and hence,

a ∨ b = h(ā1 ∨ b̄1, . . . , ān ∨ b̄n)

and

a ∧ b = h(ā1 ∧ b̄1, . . . , ān ∧ b̄n).

Moreover,

f(a) = h(ā2, . . . , ān, 0̄), 1A = h(1̄, . . . , 1̄) and 0A = h(0̄, . . . , 0̄)

where 0̄ and 1̄ are the constant function 0 and 1, respectively. Since h pre-
serves ≤, we have h(1̄, . . . , 1̄︸ ︷︷ ︸

n−j

, 0̄, . . . , 0̄︸ ︷︷ ︸
j

) ≤ h(1̄, . . . , 1̄︸ ︷︷ ︸
n−j+1

, 0̄, . . . , 0̄︸ ︷︷ ︸
j−1

) for all 1 ≤ j ≤ n.

The following theorem shows the classification of j with h(1̄, . . . , 1̄︸ ︷︷ ︸
n−j

, 0̄, . . . , 0̄︸ ︷︷ ︸
j

) =

h(1̄, . . . , 1̄︸ ︷︷ ︸
n−j+1

, 0̄, . . . , 0̄︸ ︷︷ ︸
j−1

).

Theorem 5. For each BDLC-algebra A with λ(f) = m, if h : B → A is a homo-

morphism for some B ≤ (2I)∗n, then h(1̄, . . . , 1̄︸ ︷︷ ︸
n−m+i

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−i

) < h( 1̄, . . . , 1̄︸ ︷︷ ︸
n−m+(i+1)

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−(i+1)

)

for all 0 ≤ i ≤ m− 1 and h(1̄, . . . , 1̄︸ ︷︷ ︸
n−i

, 0̄, . . . , 0̄︸ ︷︷ ︸
i

) = 0A for all m ≤ i ≤ n.

Proof. Let h : B → A be a homomorphism for some B ≤ (2I)∗n and 0 ≤
i ≤ m − 1. Suppose that h(1̄, . . . , 1̄︸ ︷︷ ︸

n−m+i

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−i

) = h( 1̄, . . . , 1̄︸ ︷︷ ︸
n−m+(i+1)

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−(i+1)

). Since h

preserves f , we get h( 1̄, . . . , 1̄︸ ︷︷ ︸
n−m+i−1

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−i+1

) = h(1̄, . . . , 1̄︸ ︷︷ ︸
n−m+i

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−i

). By continuity
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in this way, this implies that h( 1̄, . . . , 1̄︸ ︷︷ ︸
n−m+(i+1)

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−(i+1)

) = 0A. So, fm−(i+1)(1A) =

fm−(i+1)(h(1̄, . . . , 1̄︸ ︷︷ ︸
n

)) = h(fm−(i+1)(1̄, . . . , 1̄︸ ︷︷ ︸
n

)) = h( 1̄, . . . , 1̄︸ ︷︷ ︸
n−m+(i+1)

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−(i+1)

) = 0A, a

contradict with λ(f) = m. Therefore, h(1̄, . . . , 1̄︸ ︷︷ ︸
n−m+i

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−i

) < h( 1̄, . . . , 1̄︸ ︷︷ ︸
n−m+(i+1)

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−(i+1)

).

Let m ≤ i ≤ n. Since λ(f) = m, we have 0A ≤ h(1̄, . . . , 1̄︸ ︷︷ ︸
n−i

, 0̄, . . . , 0̄︸ ︷︷ ︸
i

) ≤

h(1̄, . . . , 1̄︸ ︷︷ ︸
n−m

, 0̄, . . . , 0̄︸ ︷︷ ︸
m

) = 0A which implies that h(1̄, . . . , 1̄︸ ︷︷ ︸
n−i

, 0̄, . . . , 0̄︸ ︷︷ ︸
i

) = 0A.

Corollary 6. For each BDLC-algebra A with λ(f) = m, there exists an (m+1)-
element chain as a sublattice of Â. Moreover, the chain is

0 = h(1̄, . . . , 1̄︸ ︷︷ ︸
n−m

, 0̄, . . . , 0̄︸ ︷︷ ︸
m

) < h(1̄, . . . , 1̄︸ ︷︷ ︸
n−m+1

, 0̄, . . . , 0̄︸ ︷︷ ︸
m−1

) < · · · < h(1̄, . . . , 1̄) = 1.

4. A Pre-Period of a Finite Bounded Distributive Lattice

Now, our tools are ready to investigate λ(Â) for any finite BDL Â. Since the
constant mapping f(x) = 0 is a connected endomorphism fixing 0 with λ(f) = 1,
we obtain λ(Â) ≥ 1.

Theorem 7. For each finite BDL Â = 〈A;∨,∧, 0, 1〉 and k ≤ λ(Â), there is

a unary operation fk on A such that 〈A;∨,∧, fk, 0, 1〉 is a BDLC-algebra with

λ(fk) = k.

Proof. Suppose that λ(Â) = m. Then there is a unary operation f such that
A = 〈A;∨,∧, f, 0, 1〉 is a BDLC-algebra with λ(f) = m. So, A = h(B) for some
B ≤ (2I)∗m and homomorphism h. Let k ≤ m, define fk : A→ A by

fk(h(ā1, . . . , ām)) = h(ā2, . . . , āk, 0̄, . . . , 0̄)

for all (ā1, . . . , ām) ∈ B. Since B ≤ (2I)∗m, we get

(ā2, . . . , āk, 0̄, . . . , 0̄) = (ā2, . . . , ām, 0̄) ∧ (1̄, . . . , 1̄︸ ︷︷ ︸
k−1

, 0̄, . . . , 0̄)

= fB(ā1, . . . , ām) ∧ fm−k+1
B (1̄, . . . , 1̄) ∈ B

for all (ā1, . . . , ām) ∈ B. So, fk is well-defined. It is clear that 〈A;∨,∧, fk, 0, 1〉
is a BDLC-algebra with λ(fk) = k.
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Theorem 8. Let Â be a finite BDL. Then

λ(Â) ≤ length(Â).

Proof. The assertion follows from Corollary 6.

Example 9. Let Â = 〈A;∨,∧, 0, 1〉 be a BDL which is shown as Figure 1.
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Figure 1. A bounded distributive lattice.

Due to Theorem 8, λ(Â) ≤ 4.

Suppose that λ(Â) = 4. Then we can define f such that 〈A;∨,∧, f, 0, 1〉 is a
BDLC-algebra with λ(f) = 4. We may assume that f(1) = a, f(a) = c, f(c) = d

and f(d) = 0. Since a = f(1) = f(a∨ b) = f(a)∨ f(b) = c∨ f(b), we get f(b) = a

which implies that d = f(c) = f(a∧ b) = f(a)∧ f(b) = c∧ a = c, a contradiction.
So, λ(Â) ≤ 3.

Define f : A → A by f(1) = f(b) = c, f(a) = f(c) = f(e) = d and
f(d) = f(0) = 0. One can see that f preserves ∧, ∨ and 0. Hence, 〈A;∨,∧, f, 0, 1〉
is a BDLC-algebra with λ(f) = 3. So, λ(Â) = 3.

Theorem 10. Let Â be a finite BDL. Then

λ(Â) = length(Â) if and only if 0 = fλ(f)(1) ≺ fλ(f)−1(1) ≺ · · · ≺ f(1) ≺ 1

for some connected endomorphism f on 〈A;∨,∧〉 fixing 0.

Proof. Suppose that λ(Â) = n and we choose a connected endomorphism f on
〈A;∨,∧〉 fixing 0 with λ(f) = n. Hence, n is the smallest natural number with
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fn(1) = 0. Furthermore, C =
{
1 > f(1) > · · · > fn−1 > fn(1) = 0

}
is a chain

with |C| = n+ 1. Since Â is distributive,

n = length(Â) ⇔ C is a maximal chain

⇔ 0 = fn(1) ≺ fn−1(1) ≺ · · · ≺ f(1) ≺ 1.

Corollary 11. The pre-period of the directed product 2̂n of the 2-element chain

2̂ is equal to n for all n ∈ N; that is, λ0(2̂
n) = n.
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