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Abstract

In this paper, we define quasi-primary ideals in commutative semirings S
with 1 6= 0 which is a generalization of primary ideals. A proper ideal I of a
semiring S is said to be a quasi-primary ideal of S if ab ∈

√
I implies a ∈

√
I

or b ∈
√
I. We also introduce the concept of 2-absoring quasi-primary ideal

of a semiring S which is a generalization of quasi-primary ideal of S. A
proper ideal I of a semiring S is said to be a 2-absorbing quasi-primary
ideal if abc ∈

√
I implies ab ∈

√
I or bc ∈

√
I or ac ∈

√
I. Some basic results

related to 2-absorbing quasi-primary ideal have also been given.
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1. Introduction

The algebraic structure of semiring plays a prominent role in various branches of
mathematics as well as some other branches of applied science. The concept of
semiring was first introduced by Vandiver [11] in 1934 and has since then been
studied by many authors. The structure of prime ideals in semiring theory has
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gained importance and many mathematicians have exploited its usefulness in
algebraic systems over the decades.

A commutative semiring is a commutative semigroup (S, ·) and a commuta-
tive monoid (S,+, 0S) in which 0S is the additive identity and 0S ·x = x ·0S = 0S
for all x ∈ S, both are connected by ring like distributivity. A non-empty subset
I of a semiring S is called an ideal of S if a, b ∈ I and r ∈ S, a + b ∈ I and
ra, ar ∈ I. An ideal I of a semiring S is called subtractive if a, a+ b ∈ I, b ∈ S,
then b ∈ I. Let I be an ideal of S, then (I : x) = {a ∈ S : ax ∈ I}. Let I
be an ideal of S. Radical of I is defined as Rad(I) =

√
I = {a ∈ S : an ∈ I

for some positive integer n}. Annihilator of an element a of a semiring S is de-
fined as Ann(a) = {x ∈ S : ax = 0}. The notion of quasi-primary ideals in
commutative rings were introduced by Fuchs in [8]. An ideal I of a ring R is
called a quasi-primary ideal if

√
I is a prime ideal in R. In this paper, we intro-

duce quasi-primary ideals in commutative semirings and some properties of it.
A proper ideal I of a semiring S is said to be quasi-primary ideal of S if

√
I is

a prime ideal of S. We also introduce the concept of 2-absorbing quasi primary
ideal of a semiring S which is a generalization of quasi-primary ideal of S. A
proper ideal I of a semiring S is said to be a 2-absorbing quasi-primary ideal
if abc ∈

√
I implies ab ∈

√
I or bc ∈

√
I or ac ∈

√
I. Throughout this paper,

semiring S is considered as commutative with identity 1 6= 0.

2. Quasi-primary ideals

In this section, we introduce the concept of quasi-primary ideal of a semiring S
and prove some results related to it.

Definition 2.1. Let S be a commutative semiring and I be a proper ideal of S.
Then I is said to be quasi-primary ideal of S if

√
I is a prime ideal of S.

Example 2.2. Let n ≥ 2, n ∈ N and 0 ≤ i ≤ n and m = n − i. Then
B(n, i) = {0, 1, 2, . . . , n − 1} forms a semiring under the following operations:

x+B(n,i) y =















x+ y if x+ y ≤ n− 1
l if x+ y ≥ n

where l ≡ (x+ y) mod m
and i ≤ l ≤ n− 1

xB(n,i)y =















xy if xy ≤ n− 1
l if xy ≥ n

where l ≡ (xy) mod m
and i ≤ l ≤ n− 1.

If we take S = B(4, 3) = {0, 1, 2, 3} and I = {0, 3} be an ideal of S. Then its√
I = {0, 2, 3} is a prime ideal of S.
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Example 2.3. Consider a semiring S = Z+
0 under usual addition and multipli-

cation. Take an ideal I = 4Z+
0 = {0, 4, 8, 16, . . . } of S. Then

√
I is a prime ideal

of S.

Result 2.4. A proper ideal I of a semiring S is a quasi-primary ideal of S if and
only if whenever a, b ∈ S and ab ∈ I, then a ∈

√
I or b ∈

√
I.

Proof. Let I be a quasi-primary ideal of S and ab ∈ I ⊆
√
I. Since

√
I is a

prime ideal of S, we have a ∈
√
I or b ∈

√
I . Conversely, let I be a proper ideal

of S and ab ∈ I for some a, b ∈ S, then either a ∈
√
I or b ∈

√
I . Suppose

that ab ∈
√
I but a /∈

√
I . Since ab ∈

√
I, therefore for some positive integer

n, anbn ∈ I. Since an /∈
√
I, we have bn ∈

√
I, that is , b ∈

√
I. Hence I is a

quasi-primary ideal of S.

Theorem 2.5. Let f : S 7→ S′ be a homomorphism of commutative semirings.

Then, if I ′ is a quasi-primary ideal of S′, then f−1(I ′) is a quasi-primary ideal

of S.

Proof. Let ab ∈ f−1(
√
I ′) for some a, b ∈ S. Then f(ab) ∈

√
I ′, that is,

f(a)f(b) ∈
√
I ′. Since I ′ is a quasi-primary ideal of S′, therefore

√
I ′ is a prime

ideal of S′. Therefore, f(a) ∈
√
I ′ or f(b) ∈

√
I ′. Hence, a ∈ f−1(

√
I ′) or

b ∈ f−1(
√
I ′). Since f−1(

√
I ′) =

√

f−1(I ′), we have f−1(I ′) is a quasi-primary
ideal of S.

Definition 2.6 ([3], Definition 1(i)). A proper ideal I of a semiring S is said to
be strong ideal, if for each a ∈ I there exists b ∈ I such that a+ b = 0.

Proposition 2.7. Let S and S′ be semirings, f : S 7→ S′ be an epimorphism such
that f(0) = 0 and I be a subtractive and strong ideal of S. If I is a quasi-primary
ideal of S such that kerf ⊆ I, then f(I) is a quasi-primary ideal of S′.

Proof. Let a, b ∈ S′ be such that ab ∈ f(I). Then there exists an element
m ∈ I ⊆

√
I such that ab = f(m). Since f is an epimorphism, therefore there

exist p, q ∈ S such that f(p) = a, f(q) = b. Also, since I is a strong ideal of
S and m ∈ I, therefore there exists n ∈ I such that m + n = 0. This implies
f(n +m) = 0, that is, f(pq + n) = 0, implies pq + n ∈ kerf ⊆ I. Since, n ∈ I
and I is a subtractive ideal of S, we have pq ∈ I. Since

√
I is a prime ideal

of S, therefore either p ∈
√
I or q ∈

√
I . This gives, pn ∈ I or qm ∈ I for

some positive integers n,m. This gives, f(pn) ∈ f(I) or f(qm) ∈ f(I). Therefore,
f(p)n ∈ f(I) or f(q)m ∈ f(I) for some n,m ∈ Z+. Hence a = f(p) ∈

√

f(I) or
b = f(q) ∈

√

f(I). Thus, f(I) is a quasi-primary ideal of S′ (by Result 2.4).

Theorem 2.8. If I is a quasi-primary ideal of a semiring S, then the following

holds:

(i) (
√
I : x) is a quasi-primary ideal of S for all x ∈ S \

√
I.
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(ii) (
√
I : x) = (

√
I : x2) for all x ∈ S \

√
I.

Proof. (i) Let a, b ∈ S be such that ab ∈ (
√
I : x). Then abx ∈

√
I. Since I is

quasi-primary, therefore
√
I is a prime ideal of S. Therefore, either a ∈

√
I or

b ∈
√
I, since x /∈

√
I. This implies, ax ∈

√
I or bx ∈

√
I. Hence a ∈ (

√
I : x) ⊆

√

(
√
I : x) or a ∈ (

√
I : x) ⊆

√

(
√
I : x).

(ii) It is clear that (
√
I : x) ⊆ (

√
I : x2). Let y ∈ (

√
I : x2). Then x2y ∈

√
I.

Therefore, y ∈
√
I, since x /∈

√
I and

√
I is a prime ideal. Thus, xy ∈

√
I. Hence

y ∈ (
√
I : x) and we are done.

Consider S = S1×S2 where each Si, i = 1, 2 is a commutative semiring with
unity and (a1, a2)(b1, b2) = (a1b1, a2b2) for all a1, b1 ∈ S1 and a2, b2 ∈ S2.

Proposition 2.9. Let I be a proper ideal of a semiring S1. Then the following
statements are equivalent:

(i) I is a quasi-primary ideal of S1.

(ii) I × S2 is a quasi-primary ideal of S = S1 × S2.

Proof. (i)⇒(ii) Let (a1, a2), (b1, b2) ∈ S be such that (a1, a2)(b1, b2) ∈ I × S2.
Then (a1b1, a2b2) ∈ I × S2 implies a1b1 ∈ I ⊆

√
I. This gives, either a1 ∈

√
I

or b1 ∈
√
I, that is, either a1

l ∈ I or b1
m ∈ I for some positive integers l,m,

since I is quasi-primary ideal of S1. If a1
l ∈ I for some positive integer l, then

(a1
l, a2

l) ∈ I×S2. If b1
m ∈ I for some positive integer m, then (bm1 , b2

m) ∈ I×S2.
Hence, I × S2 is a quasi-primary ideal of S (by Result 2.4).

(ii)⇒(i) Let ab ∈ I for some a, b ∈ S1. Then for each r1, r2 ∈ S2, we
have (a, r1)(b, r2) ∈ I × S2. By Result 2.4, we have either (al, r1

l) ∈ I × S2 or
(bm, r2

m) ∈ I × S2 for some positive integers l,m, since I × S2 is quasi-primary
ideal of S. That is, either al ∈ I or bm ∈ I for some positive integers l,m. This
shows that I is a quasi-primary ideal of S1 (by Result 2.4).

Theorem 2.10. Let S be a regular semiring. Then every irreducible ideal I of

S is a quasi-primary ideal of S.

Proof. Let S be a regular semiring and I be an irreducible ideal of S. Let
ab ∈ I for some a, b ∈ S. We need to show that either a ∈

√
I or b ∈

√
I. On

contrary, we assume that am /∈ I and bn /∈ I for some positive integersm,n. Then,
H = (I+ < am >) andK = (I+ < bn >) are two ideals of S properly contained in
I. Since I is irreducible, therefore I 6= H ∩K. Thus, there exists p ∈ S such that
p ∈ (I+ < am >)∩(I+ < bn >)\I. Also, by regularity of S, we haveH∩K = HK,
therefore p ∈ (I+ < am >)(I+ < bn >) \ I. Then, there are p1, p2 ∈ I and
r1, r2 ∈ S such that p = (p1+r1a

m)(p2+r2b
n) = p1p2+r1a

mp2+p1r2b
n+r1r2a

mbn.
This implies that p ∈ I, which is a contradiction. Hence I is a quasi-primary ideal
of S.
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Theorem 2.11. Let S be a noetherian semiring and I be a proper ideal of S
such that

√
I is subtractive and irreducible. Then I is quasi-primary.

Proof. Let I be a proper ideal of S such that
√
I is subtractive and irreducible.

Let ab ∈
√
I and a /∈

√
I. Consider the ascending chain (

√
I : a) ⊆ (

√
I :

an) ⊆ · · · ⊆ · · · . Since S is noetherian, there exists an element n such that
(
√
I : an+1) = (

√
I : an). We show that

√
I = (

√
I : a) ∩ (

√
I + San). Let

r ∈ (
√
I : a)∩ (

√
I+San). This gives, r ∈ (

√
I : a) and r ∈

√
I+San. Therefore,

ar ∈
√
I and r = i+san where i ∈

√
I and s ∈ S. This gives, ra = ia+san+1 and

hence san+1 ∈
√
I , since

√
I is subtractive. Thus, s ∈ (

√
I : an+1) = (

√
I : an).

Now, r = i+san and hence r ∈
√
I. Thus,

√
I = (

√
I : a)∩(

√
I+San). Since

√
I

is irreducible and a /∈
√
I, we have

√
I 6=

√
I + San. This gives,

√
I = (

√
I : a).

Since ab ∈
√
I, therefore, b ∈

√
I.

Definition 2.12 ([1], Definition 4). An ideal I of a semiring S is called a Q-ideal
(partitioning ideal) if there exists a subset Q of S such that

(i) S = ∪{q + I : q ∈ Q}
(ii) If q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) 6= ∅ ⇔ q1 = q2.

Let I be a Q-ideal of a semiring S. Then S/IQ = {q + I : q ∈ Q} forms
a semiring under the following addition ‘⊕’ and multiplication ‘⊙ ’, ( q1 + I) ⊕
(q2 + I) = q3 + I, where q3 ∈ Q is unique such that q1 + q2 + I ⊆ q3 + I and
(q1+I)⊙(q2+I) = q4+I, where q4 ∈ Q is unique such that q1q2+I ⊆ q4+I. This
semiring S/IQ is called the quotient semiring of S and denoted by (S/IQ,⊕,⊙)
or S/IQ. By definition of Q-ideal, there exists a unique q0 ∈ Q such that 0+ I ⊆
q0 + I. Then q0 + I is a zero element of S/IQ. Clearly, if S is commutative, then
S/IQ is commutative.

Theorem 2.13. Let I be a Q-ideal of S and P a subtractive ideal of S such

that I ⊆ P . Then P is a quasi-primary ideal of S if and only if P/IQ∩P is a

quasi-primary ideal of S/IQ.

Proof. Let P be a quasi-primary ideal of S. Then
√
P is a prime ideal of S.

Suppose that q1 + I, q2 + I ∈ S/IQ are such that (q1 + I) ⊙ (q2 + I) ∈ P/IQ∩P .
Therefore, q1q2 + I ⊆ q3 + I ∈ P/IQ∩P where q3 ∈ Q∩P is a unique element. So
q1q2 = q3 + i for some i ∈ I. Since

√
P is a prime ideal of S and q1q2 ∈ P ⊆

√
P ,

therefore either q1 ∈
√
P or q2 ∈

√
P . Thus, either q1

l ∈ P or q2
m ∈ P for some

l,m ∈ Z+. First suppose that q1
l ∈ P. Suppose that q1

l + I = q + I with q such
that q1

l + I ⊆ q+ I, with q ∈ Q. Therefore, q1
l = q+ i ∈ P and P is subtractive,

it gives q ∈ P. Thus, Q∩P is non-empty. This gives q1
l+ I ∈ P/IQ∩P . Similarly,

q2
m + I ∈ P/IQ∩P . Thus, P/IQ∩P is a quasi-primary ideal of S/IQ.
Conversely, let P/IQ∩P be a quasi-primary ideal of S/IQ. Let ab ∈ P for

some a, b ∈ S. Since I is a Q-ideal of S, therefore there exist q1, q2, q3 ∈ Q such
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that a ∈ q1+I, b ∈ q2+I. Now, ab ∈ (q1+I)⊙(q2+I) = q3+I. So, ab = q3+i ∈ P
for some i ∈ I. Since P is a subtractive ideal of S and I ⊆ P, we have q3 ∈ P .
So, (q1 + I)⊙ (q2 + I) = q3 + I ∈ P/IQ∩P . This implies, q1 + I ∈

√

P/IQ∩P or
q2+I ∈

√

P/IQ∩P , that is, (q1+I)m1 ∈ P/IQ∩P or (q2+I)m2 ∈ P/IQ∩P for some
positive integer m1,m2. If q1

m1 + I ∈ P/IQ∩P , then am1 ∈ (q1
m1 + I) ∈ P/IQ∩P .

Thus am1 ∈ P . Similarly, bm2 ∈ P . Hence, P is a quasi-primary ideal of S.

Theorem 2.14. Let S be a semiring, I a Q-ideal of S and P a subtractive ideal

of S such that I ⊆ P . If I and P/IQ∩P are quasi-primary ideals of S and S/IQ
respectively, then P is a quasi-primary ideal of S.

Proof. Let a, b ∈ S be such that ab ∈ P . If ab ∈ I ⊆
√
I, then either a ∈

√
I ⊆√

P or b ∈
√
I ⊆

√
P , since I is a quasi-primary ideal of S. So, assume that ab /∈ I.

Then there are elements q1, q2 ∈ Q such that a ∈ q1 + I, b ∈ q2 + I. Therefore,
for some i1, i2 ∈ I, a = q1 + i1, b = q2 + i2. As ab = q1q2 + q1i2 + q2i1 + i1i2 ∈ P
and since P is subtractive, we have q1q2 ∈ P . Consider, ( q1 + I) ⊙ (q2 + I) =
q3 + I where q3 is the unique element such that q1q2 + I ⊆ q3 + I. Since P
is subtractive, we have q3 ∈ P ∩ Q, hence q1q2 + I ⊆ q3 + I ∈ P/IQ∩P , that
is, (q1 + I) ⊙ (q2 + I) ∈ P/IQ∩P . This gives, either q1 + I ∈

√

P/IQ∩P or
q2 + I ∈

√

P/IQ∩P , since P/IQ∩P is quasi-primary ideal of S/IQ. Thus, either
al ∈ q1

l + I ∈ P/IQ∩P or bm ∈ q2
m + I ∈ P/IQ∩P for some positive integers l,m.

Thus, either al ∈ P or bm ∈ P and hence P is a quasi-primary ideal of S (by
Result 2.4).

3. 2-absorbing quasi-primary ideals

In this section, we introduce the concept of 2-absorbing quasi-primary ideal of a
semiring and prove some results related to the same.

Definition 3.1. Let S be a commutative semiring and I be a proper ideal of S.
Then I is said to be a 2-absorbing quasi-primary ideal of S if

√
I is a 2-absorbing

ideal of S.

Taking n = 10 and i = 7 in Example 2.2, we get S = B(10, 7) = {0, 1, 2, 3, 4,
5, 6, 7, 8, 9}. Let I = {0, 3, 6, 9} be an ideal of S. Then it is easy to check that√
I = {0, 3, 6, 9} is a 2-absorbing ideal of S.

Proposition 3.2. A proper ideal I of S is a 2-absorbing quasi-primary ideal of
S if and only if whenever a, b, c ∈ S and abc ∈ I, then ab ∈

√
I or ac ∈

√
I or

bc ∈
√
I.

Proof. Let I be a proper ideal of S and let for some a, b, c ∈ S, abc ∈ I, we
have ab ∈

√
I or ac ∈

√
I or bc ∈

√
I. Let a, b, c ∈ S such that abc ∈

√
I,

ac /∈
√
I and bc /∈

√
I. Since abc ∈

√
I , there exists a positive integer l such
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that (abc)l = alblcl ∈ I. Since alcl /∈
√
I and blcl /∈

√
I, we conclude that

albl = (ab)l ∈
√
I and so ab ∈

√
I. Thus

√
I is a 2-absorbing ideal of S. Hence

I is a 2-absorbing quasi-primary ideal of S. Conversely, let I be a 2-absorbing
quasi-primary ideal of S and a, b, c ∈ S such that abc ∈ I. Since I ⊆

√
I and

√
I

is a 2-absorbing ideal of S, it is clear that ab ∈
√
I or ac ∈

√
I or bc ∈

√
I.

Proposition 3.3. If I is a quasi-primary ideal of S, then I is a 2-absorbing quasi
primary ideal of S.

Proof. Since I is a quasi-primary ideal of S, therefore
√
I is a prime ideal of S.

Hence
√
I is a 2-absorbing ideal of S.

Theorem 3.4. Let I be a 2-absorbing quasi-primary ideal of S and let P, P1, P2

are prime ideals of S.

(i) If
√
I = P, then (I : x) is a 2-absorbing quasi-primary ideal of S for all

x /∈ P .

(ii) If
√
I = P1 ∩ P2, then (I : x) is a 2-absorbing quasi-primary ideal of S for

all x /∈ P1 ∪ P2.

Proof. (i) Let x /∈ P . If
√
I = P , then it is easy to see that

√

(I : x) = P . Hence
(I : x) is a quasi-primary ideal and so 2-absorbing quasi-primary ideal of S.

(ii) Let x /∈ P1 ∪ P2 and a, b, c ∈ S such that abc ∈ (I : x), then (abc)x ∈
I ⊆

√
I = P1 ∩ P2. Since x /∈ P1 ∪ P2 and P1, P2 are prime ideals of S, then

abc ∈ P1 ∩ P2 =
√
I. Since

√
I is a 2-absorbing ideal of S, then we have ab ∈

√
I

or ac ∈
√
I or bc ∈

√
I. This gives, (ab)l ∈ I or (ac)m ∈ I or (bc)n ∈ I for some

positive integers l,m, n, thus (ab)lx ∈ I or (ac)mx ∈ I or (bc)nx ∈ I. It gives,
(ab)l ∈ (I : x) or (ac)m ∈ (I : x) or (bc)n ∈ (I : x). Hence (I : x) is a 2-absorbing
quasi-primary ideal of S.

Proposition 3.5. Let
√
I be a subtractive ideal of S and I be a 2-absorbing

quasi-primary ideal of S and suppose that abJ ⊆ I for some elements a, b ∈ S
and some ideal J of S. If aJ *

√
I and bJ *

√
I, then ab ∈

√
I.

Proof. Suppose that ab /∈
√
I. Since aJ *

√
I and bJ *

√
I , then aj1 /∈

√
I and

bj2 /∈
√
I for some j1, j2 ∈ J . Since abj1 ∈ I and ab /∈

√
I and aj1 /∈

√
I, we have

bj1 ∈
√
I. Since abj2 ∈ I and ab /∈

√
I and bj2 /∈

√
I, we have aj2 ∈

√
I. Since

ab(j1 + j2) ∈ I and ab /∈
√
I, then we have a(j1 + j2) ∈

√
I or b(j1 + j2) ∈

√
I.

Suppose that a(j1 + j2) = aj1 + aj2 ∈
√
I. Since aj2 ∈

√
I, we have aj1 ∈

√
I,

a contradiction. Suppose that b(j1 + j2) = bj1 + bj2 ∈
√
I. Again, bj1 ∈

√
I, we

have bj2 ∈
√
I, a contradiction again. Thus ab ∈

√
I.
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Theorem 3.6. Let I be a proper subtractive ideal of S and suppose that
√
I is

a subtractive ideal of S. Then I is a 2-absorbing quasi-primary ideal of S if and

only if whenever I1I2I3 ⊆ I for some ideals I1 I2, I3 of S, then either I1I2 ⊆
√
I

or I2I3 ⊆
√
I or I3I1 ⊆

√
I.

Proof. Proof is similar to the proof of (Theorem 3.4, [9]).

Theorem 3.7. Let I be a Q-ideal of S and P a subtractive ideal of S such that

I ⊆ P. Then P is a 2-absorbing quasi-primary ideal of S if and only if P/IQ∩P

is a 2-absorbing quasi-primary ideal of S/IQ.

Proof. Let P be a 2-absorbing quasi-primary ideal of S. Then
√
P is a 2-

absorbing ideal of S. Suppose that q1 + I, q2 + I, q3 + I ∈ S/IQ are such that
( q1 + I)⊙ (q2 + I)⊙ (q3 + I) ∈ P/IQ∩P such that q1q2q3 + I ⊆ q4 + I ∈ P/IQ∩P

where q4 ∈ Q ∩ P is a unique element. Let q1q2q3 = q4 + i for some i ∈ I. Since√
P is a 2-absorbing ideal of S and q1q2q3 ∈

√
P , therefore either q1q2 ∈

√
P or

q2q3 ∈
√
P or q1q3 ∈

√
P . Thus, either q1

lq2
l ∈ P or q2

mq3
m ∈ P or q3

rq1
r ∈ P

for some l,m, r ∈ Z+. If q1
lq2

l ∈ P , then (q1
l + I) ⊙ (q2

l + I) ∈ P/IQ∩P (as
explained in Theorem 2.13 ). Similarly, (q2

m + I) ⊙ (q3
m + I) ∈ P/IQ∩P or

(q3
r + I) ⊙ (q1

r + I) ∈ P/IQ∩P . Thus, P/IQ∩P is a 2-absorbing quasi-primary
ideal of S/IQ.

Conversely, let P/IQ∩P be a 2-absorbing quasi-primary ideal of S/IQ. Let
abc ∈ P for some a, b, c ∈ S. Since I is a Q-ideal of S, therefore there exist
q1, q2, q3, q4 ∈ Q such that a ∈ q1 + I, b ∈ q2 + I and c ∈ q3 + I. Now, abc ∈
(q1 + I)⊙ (q2 + I)⊙ (q3 + I) = q4 + I. So, abc = q4 + i ∈ P for some i ∈ I. Since
P is a subtractive ideal of S and I ⊆ P, we have q4 ∈ P . So, (q1 + I) ⊙ (q2 +
I) ⊙ (q3 + I) = q4 + I ∈ P/IQ∩P . This implies, (q1 + I) ⊙ (q2 + I) ∈

√

P/IQ∩P

or (q2 + I) ⊙ (q3 + I) ∈
√

P/IQ∩P or (q3 + I) ⊙ (q1 + I) ∈
√

P/IQ∩P , that
is, (q1 + I)m1 ⊙ (q2 + I)m1 ∈ P/IQ∩P or (q2 + I)m2 ⊙ (q3 + I)m2 ∈ P/IQ∩P

or (q3 + I)m3 ⊙ (q1 + I)m3 ∈ P/IQ∩P for some positive integers m1,m2,m3. If
(q1+I)m1⊙(q2+I)m1 ∈ P/IQ∩P , then am1bm1 ∈ (q1

m1+I)⊙(q2
m1+I) ∈ P/IQ∩P .

Thus am1bm1 ∈ P . Similarly, bm2cm2 ∈ P or am3cm3 ∈ P . Hence, P is a 2-
absorbing quasi-primary ideal of S.

Theorem 3.8. Let S be a semiring, I a Q-ideal of S and P a subtractive ideal

of S such that I ⊆ P. If I and P/IQ∩P are 2-absorbing quasi-primary ideals of S
and S/IQ respectively, then P is a 2-absorbing quasi-primary ideal of S.

Proof. Let a, b, c ∈ S be such that abc ∈ P . If abc ∈ I ⊆
√
I, then either

ab ∈
√
I ⊆

√
P or bc ∈

√
I ⊆

√
P or ac ∈

√
I ⊆

√
P , since I is a 2-absorbing

quasi-primary ideal of S. So, assume that abc /∈ I. Then there are elements
q1, q2, q3 ∈ Q such that a ∈ q1 + I, b ∈ q2 + I and c ∈ q3 + I. Therefore, for some
i1, i2, i3 ∈ I, a = q1 + i1, b = q2 + i2 and c = q3 + i3. As abc = q1q2q3 + q1q3i2 +
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q2q3i1 + q3i1i2 + q1q2i3 + q1i2i3 + q2i1i3 + i1i2i3 ∈ P and since P is subtractive,
we have q1q2q3 ∈ P . Consider, (q1 + I)⊙ (q2 + I)⊙ (q3 + I) = q4 + I where q4 is
the unique element such that q1q2q3+ I ⊆ q4+ I. Since P is subtractive, we have
q4 ∈ P∩Q, hence q1q2q3+I ⊆ q4+I ∈ P/IQ∩P , that is, ( q1+I)⊙(q2+I)⊙(q3+I) ∈
P/IQ∩P . This gives, either (q1+ I)⊙ (q2+ I) ∈

√

P/IQ∩P or (q2+ I)⊙ (q3+ I) ∈
√

P/IQ∩P or (q1 + I)⊙ (q3 + I) ∈
√

P/IQ∩P , since P/IQ∩P is 2-absorbing quasi-
primary ideal of S/IQ. Thus, either albl ∈ (q1

l + I) ⊙ (q2
l + I) ∈ P/IQ∩P or

bmcm ∈ (q2
m+ I)⊙ (q3

m+ I) ∈ P/IQ∩P or arcr ∈ (q1
r + I)⊙ (q3

r + I) ∈ P/IQ∩P

for some positive integers l,m, r. Thus, either albl ∈ P or bmcm ∈ P or arcr ∈ P
and hence P is a 2-absorbing quasi-primary ideal of S.
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