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Abstract

It is well known that the problem of characterizing the automorphisms,
in the category of abelian groups, with the extension property is resolved [1].
But in other categories, it is a very difficult problem. This paper extends the
result in [1] to a category of modules. Let A be a unique factorization integral
domain (UFD). Consider M a direct finite sum of cyclic modules over A
where AnnA(M) = {0} and α an automorphism of M . We give a necessary
and sufficient condition such that α satisfies the extension property.
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1. Introduction

Let A be a unique factorization integral domain (UFD) and M be a module over
A. We say that α, an automorphism of M , satisfies the extension property if for
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all monomorphisms λ : M −→ N there exists α̃ such that:

M
λ

−→ N
α ↓ ↓ α̃

M
λ

−→ N

is commutative, i.e., λ ◦ α = α̃ ◦ λ.

It is known that all automorphisms of a vector space satisfy the extension
property. However, it is not always true for other categories. But there are
some very important results in the category of groups. Schupp [7] proved that
the automorphisms having the property of extension in the category of groups
characterize the inner automorphisms. Pettet [6] provided a simpler proof of
Schupp’s result. Then, Ben Yacoub [4] proved that this result is not true in the
algebra category. In order to generalize the result of Schupp, Abdelalim et al. [1]
gave the characterization of the automorphisms having the property of extension
in the category of abelian groups.

In another work [2], the authors considered the category that contains abelian
groups. They proved that if a module M is a direct sum of cyclic torsion-free
modules over a BFD, the automorphisms of M that satisfy the property of the
extension are none other than the homotheties of invertible ratio.

Certainly, one of the generalizations of [1] other than [2] is the case where
all or some of the co-generators of M are not torsion-free. To do this, consider
the following example which illustrates where the problem of the extension’s
ownership lies. We know that Z[i] is a UFD. Let n ∈ N : n > 2. For all
s ∈ {2, 3, . . . , n}, we will denote by ps the (s−1)e prime number. (p2 = 2 < p3 =
3 < p4 = 5 < · · · < pn).

Consider, in the Z[i]-module N = C/Z[i], the sub-module M =
⊕s=n

s=1
Z[i]xs

where x1 ∈ C/Z[i] − Q[i]/Z[i] any torsion-free element and the torsion element

xs = 1 + i · 1

ps
for all s ∈ {2, . . . , n}. We can prove that, for all s ∈ {2, . . . , n},

there exists as in Z[i] such that α(xs) = as ·xs. Without using that α satisfies the
extension property, we cannot conclude that a2,. . . ,an are units in Z[i] neither
(∗∗)α(x1) ∈ Z[i]x1. The key idea is to prove (∗∗).

In this paper, we are interested in the extension property of a special category
of modules over A which is a unique factorization integral domain (not a field).

Let n be a non-zero natural integer and M = Ax1⊕Ax2⊕· · ·⊕Axn a direct
finite sum of cyclic modules over A, such that AnnA(M) = {0A}.

Our paper is organized as follows. In the first section, we will briefly give
necessarly importants results. In the second part, all the generators of M are
torsion-free elements. We will prove that an automorphism α : M −→ M sat-
isfies the extension property, if and only if there exists a unit k in A such that
α = k · 1M . And in the last part, M is no longer considered as a torsion-free
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module. Again with much more advanced techniques, we will prove that the
homotheties of invertible ratio are the only automorphisms of M satisfying the
extension property.

2. Preliminaries and notations

Definition. Let A be an integral domain, M an A-module x an element of M .
The annihilator of x is the ideal AnnA(x) = {a ∈ A/a ·x = 0M}. The annihilator
of M , is the ideal AnnA(M) = {a ∈ A/∀y ∈ M : a · y = 0M}.

Definition [5].

• Let x be an element of M . x is a torsion-free element if AnnA(x) = {0A} and
x is a torsion element if AnnA(x) 6= {0A}.

• We say that M is a torsion-free module if all its elements are torsion free.

• We say that M is a torsion module if all its elements are torsion.

Lemma 1. Let M = Ax1 ⊕ Ax2 ⊕ · · · ⊕ Axn be a direct finite sum of cyclic

modules over A.
M is a torsion module if and only if AnnA(M) 6= {0A}.

Proof. The proof is easy.

Lemma 2. For an irreducible element p in A, the set Ip = {pn/n ∈ N} is infinite.

Proof. Suppose that Ip is finite, then necessarily ∃ (n,m) ∈ N2 such that n < m
and pn = pm. So pn(1−pm−n) = 1A =⇒ pm−n = 1A (integral domain). Therefore
p is a unit in A, which is not true.

Notations. Let Ep(M) denote the set of all A-automorphisms of M satisfying
the extension property. For i ∈ {1, 2, . . . , n}, Ei will denote an injective envelope
of Axi, µi : Axi −→ Ei a monomorphism of A-modules and

Mi = Ei +
k=n∑

k=1,k 6=i

A · xk.

Lemma 3. If α satisfies the extension property then α−1 also satisfies the exten-

sion property.

Proof. Let M
λ
→ N a monomorphism of A-modules, then there exists N

α̃
→

N an automorphism of A-modules such that λoα = α̃oλ. We define α̃−1 =

α̃−1, it’s clear that α̃−1 ∈ Aut (N). Let x ∈ M , so ∃ y ∈ M : x = α(y) then
λ
[
α−1 (x)

]
= λ (y). On the other hand, if we put α̃−1 [λ (x)] = t. We will have

λ (x) = α̃ (t) =⇒ α̃ (t) = λ [α (y)], then α̃ (t) = α̃ [λ (y)] =⇒ t = λ (y). From

where, λoα−1 = α̃−1oλ hence the lemma.
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3. Finite sum of torsion free cyclic A-modules

In this section, we suppose that xi is a torsion-free element for all i in {1, 2, . . . , n}.
Let µi : Axi −→ Ei be a monomorphism of A-modules.

Lemma 4. For all i ∈ {1, 2, . . . , n}, we have

Mi = Ei

⊕ k=n⊕

k=1,k 6=i

A · xk

and

Ei =
⋂

a∈A∗

a ·Mi.

Proof. We know that E1⊕E2⊕· · ·⊕En is an injective envelope of Ax1+Ax2+
· · · +Axn (see [3]). Then

Mi = Ei +
k=n∑

k=1,k 6=i

A · xk = Ei

⊕ k=n⊕

k=1,k 6=i

Axk.

As Ei is an injective envelope of Axi then a divisible module. For all a ∈ A∗,

Ei = a ·Ei ⊂ a ·Mi =⇒ Ei ⊂
⋂

a∈A∗

a ·Mi.

Reciprocally:
Let

t = e+

j=n∑

j=1,j 6=i

mj · xj ∈
⋂

a∈A∗

a ·Mi ⊂
⋂

k∈N

pk ·Mi where e ∈ Ei and mj ∈ A.

Then (∀ k ∈ N) (∃ ek ∈ Ei) (∃ (mj,k)j=1,j 6=i,j=n ∈ An−1) such that

t = pk


ek +

j=n∑

j=1,j 6=i

mj,k · xj


 .

Moreover, as Mi is a direct sum of A-modules, by identification, we have

e = pkek and

j=n∑

j=1,j 6=i

mj · xj = pk ·




j=n∑

j=1,j 6=i

mj,k · xj


 .

If
∑j=n

j=1,j 6=imj ·xj 6= 0M then there exists j 6= i ∈ {1, 2, . . . , n} such that mj 6= 0A

andmj = pk ·mj,k. So, p
k | mj for all integer k, which is false in a factorial integral

domain by Lemma 2.
Hence t = pkek ∈ E1, that concludes the proof.
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Under the previous notations, we have the following lemma.

Lemma 5. If α ∈ Ep(M), then α̃ (Ei) = Ei.

Proof. We have

Ei =
⋂

a∈A∗

aMi then α̃(Ei) =
⋂

a∈A∗

aα̃(Mi) ⊂ Ei.

Let now y in the divisible module Ei, then ∀a ∈ A∗,∃ ya ∈ Mi such that y = a·ya.
As α̃ ∈ Aut (Mi) then there exists xa ∈ Mi: ya = α̃(xa), so

y = α̃ (a · xa) =⇒ y ∈ α̃(
⋂

a∈A∗

a ·Mi) = α̃ (Ei)

Therefore α̃ (Ei) = Ei.

Lemma 6. For all i and j in {1, 2, . . . , n}. If i 6= j, then
M = A (xi + xj)

⊕⊕k=n
k=1,k 6=iA · xk.

Proof. Let i and j in {1, 2, . . . , n} such that i 6= j. Consider (a1, a2, . . . , an) ∈ An

and suppose that ai(xi + xj) +
∑k=n

k=1,k 6=i akxk = 0M .

Then aixi + (ai + aj)xj +
∑k=n

k=1,k 6=i,k 6=j akxk = 0M . As {x1, x2, . . . , xn} is A
free, then ai = ai + aj = ak = 0A for all k ∈ {1, 2, . . . , n}/{i, j}. So, a1 = a2 =
· · · = an = 0A. It’s clear that A (xi + xj)⊕Axj ⊂ Axi⊕Axj . Let x ∈ Axi⊕Axj
then x = axi + bxj where a and b are in A. So, x = b(xi + xj) + (a − b)xi ∈
A(xi + xj)⊕Axi. Then the lemma follows.

Theorem 7. If α ∈ Ep(M) then (∀i ∈ {1, 2, . . . , n}) (∃ ki ∈ A∗) (α (xi) = ki ·xi).

Proof. Let λ : M −→ Mi defined by If x =
∑j=n

j=1
mj · xj, where mj ∈ A for all

j ∈ {1, 2, . . . , n}, λ (x) = mi · µi (xi) +
∑j=n

j=1,j 6=imj · xj.

As defined λ is a morphism of A-modules and we have

λ(x) = mi·µi (xi)+

j=n∑

j=1,j 6=i

mj ·xj = 0M =⇒ mi·µi (xi) = 0M and

j=n∑

j=1,j 6=i

mj·xj= 0M .

However µi is injective then mi = 0A. As {x1, x2, . . . , xn}\ {xi} is A-free, then
mj = 0A for all j ∈ {1, 2, . . . , n}/ {i}. Then, x = 0M . Therefore λ is a monomor-
phism of A-modules. We know that

α (xi) = ki · xi +

j=n∑

j=1,j 6=i

kj · xj where k1, k2, . . . , kn−1 and kn are in A.
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As λoα = α̃oλ and by Lemma 5 we have

λ [α (xi)] = ki·µ (xi)+

j=n∑

j=1,j 6=i

kj ·λ (xj) = ki·µi (xi)+

j=n∑

j=1,j 6=i

kj ·xj = α̃ [λ (xi)] ∈ Ei.

And since Ei is a direct factor in Mi, λ(α(xi)) = kixi =⇒
∑j=n

j=1,j 6=i kjxj = 0M .
So α(xi) = ki · xi.

Corollary 8. We have Ep(M) = {kidM/ k ∈ A×}, where A× is the group of

units in A.

Proof. Applying the Theorem 7 for all i ∈ {1, 2, . . . , n} there exists ki ∈ A∗

such that α (xi) = ki · xi. We must find ki = kj , for all i and j in {1, 2, . . . , n}
such that i 6= j. Applying now the Theorem 7, to M as asserted in Lemma 6,
there exists ki,j ∈ A∗ such that α (xi + xj) = ki,j. (xi + xj) = ki,j · xi + ki,j · xj =
ki · xi + kj · xj =⇒ ki,j = ki = kj since {xi, xj} is A-free. Then, there is k ∈ A∗

such that for all i ∈ {1, 2, . . . , n}, α (xi) = k · xi. Therefore α = k · idM .
We must proved that k is a unit in A. As α satisfies the extension property

then α−1 also satisfies the extension property by Lemma 3. Then there exists
r ∈ A∗ such that α−1 = r · idM . As α ◦α−1 = α−1 ◦α = k · r · idM then r · k = 1A
which proved that k is a unit in A.

4. Direct finite sum of torsion free and torsion cyclics

A-modules

Let n′ ∈ N∗ such that n′ 6 n− 1. In this section, we assume that x1, x2, . . . , xn′

are the torsion-free co-generators and xn′+1, xn′+2, . . . , xn are the torsions co-
generators.

For all i ∈ {1, 2, . . . , n′}, Ei will denote an injective envelope of A · xi and
µi : A · xi −→ Ei a monomorphism of A-modules. Same as the Theorem 7 and
corollary 8, we have the same result, but with a demonstration using the notion
of a torsion element.

Lemma 9. For all i ∈ {1, . . . , n′},we have, Ei =
⋂

a∈A∗ a ·Mi.

Proof. It’s clear that E1 is a divisible A-module, so E1 ⊂ a ·E1 ⊂ a ·M1 for all a
in A∗ =⇒ E1 ⊂

⋂
a∈A∗ a ·M1. Reciprocally, let x ∈ M1 then (∃ (f, c2, c3, . . . , cn) ∈

E1 × (A∗)n−1) (x = f + c2 · x2 + c3 · x3 + · · ·+ cn · xn).
We know that (∀i ∈ {n′ + 1, n′ + 2, . . . , n}) (∃ bi ∈ A∗ : bi · xi = 0M ). Let

b = bn′+1bn′+2 · · · bn ∈ A∗. Therefore, for all i ∈ {n′ + 1, n′ + 2, . . . , n}, b · xi = 0.
Suppose that for all a ∈ A∗, x ∈ a ·M1, then for all m a nonzero naturel integer
x ∈ bm ·M1, consequently.
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If n′ = 1, then x ∈ E1. If n
′ 6= 1, then

∃ (em, a2,m, a3,m, . . . , an,m) ∈ E1 × (A∗)n−1 :

x = bmem +

j=n∑

j=2

aj,mb
mxj = f +

j=n′∑

j=2

cjxj.

Let is suppose that c2x2+c3x3+· · ·+cn′xn′ 6= 0, then there exists j ∈ {2, 3, . . . , n′}
such that cj 6= 0A and cj = aj,mb

m. So, there is an infinity divisors of cj , which is
false (because A is UFD). Therefore, c2 ·x2+c3 ·x3+ · · ·+cn′ ·xn′ = 0 =⇒ x ∈ E1.
For any i ∈ {2, 3, . . . , n′} with the simple transposition (i, 1), we find the first
case. Then the lemma follows.

Lemma 10. If α ∈ Ep(M), then (∀ i ∈ {1, 2, . . . , n′}) (∃ ki ∈ A∗ : α (xi) = kixi).

Proof. Let λ : M −→ M1 be the morphism defined by λ(a1x1 + a2x2 + · · · +
anxn) = a1µ1(x1) + a2x2 + · · ·+ anxn. It’s clear that λ is a monomorphism of A
modules.

As α satisfies the extension property, there exists α̃ ∈ Aut(M1) such that
λ ◦ α = α̃ ◦ λ. As α(x1) ∈ M then α(x1) = d1 · x1 + d2 · x2 + · · ·+ dn · xn, where
(d1, d2, . . . , dn) ∈ An. So λ [α (x1)] = d1 ·µ1(x1)+

∑j=n
j=2

dj ·xj = α̃ [λ (x1)]. And as

we know that α̃ [λ (x1)] ∈ E1, which is a direct factor in M1, then
∑j=n

j=2
dj · xj =

0M =⇒ α(x1) = d1 ·x1. Same proof for all i in {2, 3, . . . , n′}, hence α(xi) = di ·xi
(ki = di).

Lemma 11. If n′ 6= 1, let i0 ∈ {2, 3, . . . , n′}. We have

• x1 + xi0 is a torsion-free element.

• M = A(x1 + xi0)
⊕⊕i=n′

i=1,i 6=i0
Axi

⊕⊕i=n
j=n′+1

Axj (∗).

Proof.

• We have xi0 = x1 + xi0 − x1 ∈ A(x1 + xi0)
⊕⊕i=n′

i=1,i 6=i0
Axi

⊕⊕i=n
j=n′+1

Axj.
Let a ∈ A such that a(x1 + xi0) = 0M then ax1 + axi0 = 0M =⇒ a = 0A.
({x1, xi0} is A free). Therefore, {x1 + xi0} is a A-free.

• Let (a1, a2, . . . , an) ∈ An and suppose that

ai0(x1 + xi0) +
i=n∑

i=1,i 6=i0

aixi = 0M .

Then

(ai0 + a1)x1 +

i=n∑

i=2

aixi = 0M =⇒ a1 = a2 = · · · = an′ = 0A
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and an′+1xn′+1 = an′+2xn′+2 = · · · = anxn = 0M (M =
⊕i=n

i=1
Axi and {x1,

. . . , xn′} is A free). So M = A(x1+xi0)
⊕⊕i=n′

i=1,i 6=i0
Axi

⊕⊕i=n
j=n′+1

Axj (∗).

Then the lemma follows.

Corollary 12. For all i ∈ {1, 2, . . . , n′}, ki = k1.

Proof. By Lemma 10 we have for all i in {1, 2, . . . , n′}, there exists an ki ∈ A∗

such that α(xi) = ki · xi.

LetM be defined as in Lemma 11, then by Lemma 10, there exists an ri0 ∈ A∗

such that α(x1 +xi0) = ri0(x1+xi0). So ri0 = ki0 = k1, and this for all i0 a fixed
element in {2, . . . , n′}. Hence the corollary.

Lemma 13. For all i ∈ {1, 2, . . . , n′}, xi + xn′+1 is a torsion-free element and

M =
i=n′⊕

i=1

A(xi + xn′+1)
⊕ j=n⊕

j=n′+1

Axj.

Proof. We have xi = xi + xn′+1 − xn′+1 for all i ∈ {1, 2, . . . , n′}, then M =
A(x1+xn′+1)+A(x2+xn′+1)+ · · ·+A(xn′+xn′+1)+Axn′+1+Axn′+2+ · · ·+Axn.
Let (a1, a2, . . . , an) ∈ An such that:

x =
i=n′∑

i=1

ai(xi + xn′+1) +
i=n∑

j=n′+1

ajxj = 0M .

Then

i=n′∑

i=1

ai · xi +

((
i=n′∑

i=1

ai

)
+ an′+1

)
· xn′+1 +

i=n∑

j=n′+2

aj · xj = 0M .

So,

i=n′∑

i=1

ai · xi = 0M ,

((
i=n′∑

i=1

ai

)
+ an′+1

)
· xn′+1 = 0M and

i=n∑

j=n′+2

aj · xj = 0M .

And as x1, x2, . . . , xn′ are a torsion-free elements, then ai = 0A for all i ∈
{1, 2, . . . , n′} and aj·xj = 0M for all j ∈ {n′+1, n′+2, . . . , n}. Let i ∈ {1, 2, . . . , n′}
and suppose that ai · (xi + xn′+1) = 0M . Then ai · xi + ai · xn′+1 = 0M =⇒ ai =
0A =⇒ xi + xn′+1 is a torsion-free element.

Theorem 14. We have Ep(M) = {kidM/ k ∈ A×}.
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Proof. Let b ∈ AnnA(xn′+1)\{0A}, so b · xn+1 = 0M . As α(xn′+1) ∈ M , then
α(xn′+1) =

∑j=n
j=1

ajxj , where (a1, a2, . . . , an) ∈ An. Then

α(bxn′+1) = ba1x1 + ba2x2 + · · ·+ banxn = 0M

=⇒ ba1x1 = ba2x2 = · · · = ban′xn′ = 0M =⇒ a1 = a2 = · · · = an′ = 0A

=⇒ α(xn′+1) = an′+1xn′+1 + an′+2xn′+2 + · · ·+ anxn.

By applying the result of Lemma 10 to M =
⊕i=n′

i=1
A(xi+xn′+1)

⊕⊕j=n
j=n′+1

Axj
there exists kn′+1 ∈ A∗ such that α(xi + xn′+1) = kn′+1xi + kn′+1xn′+1 = k1xi +
α(xn′+1). Then (kn′+1−k1)xi+kn′+1xn′+1 = an′+1xn′+1+an′+2xn′+2+· · ·+anxn.

Also, M =
⊕k=n

k=1
Axk and xi is a torsion free element, then kn′+1 = k1 and∑j=n

j=n′+2
ajxj = 0M =⇒ α(xn′+1) = k1xn′+1. The same proof for α(xn′+j) =

k1xn′+j for j ∈ {2, 3, . . . , n − n′}, so α = k1idM . As we know α−1 satisfies the
extension property, then there exists r ∈ A∗such that α−1 = ridM . Consequently,
r · k1 = 1A. Which completes the proof of the theorem.
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