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Abstract

A planar semimodular lattice K is slim if M3 is not a sublattice of K. In
a recent paper, G. Czédli found four new properties of congruence lattices of
slim, planar, semimodular lattices, including the No Child Property : Let P

be the ordered set of join-irreducible congruences of K. Let x, y, z ∈ P and
let z be a maximal element of P. If x 6= y and x, y ≺ z in P, then there is
no element u of P such that u ≺ x, y in P.

The Swing Lemma and a standardized diagram type are used to give
direct proofs of Czédli’s four properties.

Keywords: rectangular lattice, slim planar semimodular lattice, congruence
lattice.
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1. Introduction

Let K be a planar semimodular lattice. We call the lattice K slim if M3 is
not a sublattice of K. In the paper [19, Theorem 1.5], I found a property of
congruence lattices of slim, planar, semimodular lattices. In the same paper (see
also Problem 24.1 in Grätzer [18]), I proposed the following.

Problem. Characterize the congruence lattices of slim, planar, semimodular
lattices.

Czédli [4, Corollaries 3.4, 3.5, Theorem 4.3] found four new properties of
congruence lattices of slim, planar, semimodular lattices.

https://doi.org/10.7151/dmgaa.1410
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Theorem. Let K be a slim, planar, semimodular lattice with at least three ele-
ments and let P be the ordered set of join-irreducible congruences of K.

(i) Partition Property: The set of maximal elements of P can be divided into a
disjoint union of two nonempty subsets such that no two distinct elements
in the same subset have a common lower cover.

(ii) Maximal Cover Property: If v ∈ P is covered by a maximal element u of P,
then u is not the only cover of v.

(iii) No Child Property: Let x 6= y ∈ P and let u be a maximal element of P. If
x, y ≺ u in P, then there is no element z ∈ P such that z ≺ x, y in P.

(iv) Four-Cown Two-pendant Property: There is no cover-preserving embedding
of the ordered set R in Figure 1 into P satisfying the property : any maximal
element of R is a maximal element of P.

In this note, we will provide a short and direct proof of this theorem using
only the Swing Lemma and C1-diagrams, see Section 3.

Czédli [4] uses different names for three of the four properties of the Theorem.

Czédli [4]: Our terminology:

Forbidden Marriage Property No Child Property
Dioecious Maximal Elements Property Maximal Cover Property
Bipartite Maximal Elements Property Partition Property
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Figure 1. The Four-crown Two-pendant ordered set R with notation; the covering S7
sublattice with edge and element notation.

Outline

Section 2 provides the motivation for Czédli’s Theorem. Section 3 provides the
tools we need: the Swing Lemma, C1-diagrams, and forks.

Section 4 proves the Partition Property, Section 5 does the Maximal Cover
Property, while Section 6 verifies the No Child Property.

Finally, The Four-Crown Two-pendant Property is proved in Section 7.
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2. Motivation

In my paper [29] with Lakser and Schmidt, we proved that every finite distributive
lattice D can be represented as the congruence lattice of a semimodular lattice
L. To our surprise, the semimodular lattice K we constructed was planar.

Grätzer and Knapp [24]–[28] started the study of planar semimodular lattices.
I continued it with my “Notes on planar semimodular lattices” series (started with
Knapp): [30] (with Wares), [6, 14] (with Czédli), [21, 23]. See also Czédli and
Schmidt [10] and Czédli [1]–[5].

A major subchapter of the theory of planar semimodular lattices started
with the observation that in the construction of the lattice K, as in the first
paragraph of this section, M3 sublattices play a crucial role. It was natural
to raise the question what can be said about congruence lattices of slim, pla-
nar, semimodular (SPS) lattices (see [CFL2, Problem 24.1], originally raised in
Grätzer [19]). In [19], I found the first necessary condition and Czédli [2] proved
that this condition is not sufficient (see also my related papers [17] and [21]).

A number of papers developed tools to tackle this problem: the Swing Lemma
(Grätzer [16]), trajectory coloring (Czédli [1]), special diagrams (Czédli [3]),
lamps (Czédli [4]). Some of these results require long proofs. The proof of
the trajectory coloring theorem is just shy of 20 pages, while the basic theory of
lamps and its application to Theorem 1 is 23 pages.

There are a number of surveys of this field, see the book chapters Czédli and
Grätzer [7] and Grätzer [13] in Grätzer and Wehrung, eds. [31]. My presentation
[22] provides a gentle review for the background of this topic.

There is an approach to congruences of SPS lattices that is very different
from what we are doing in this note. This started in McKenzie [33], Nation [34],
Jónsson and Nation [33] and Day [11], viewing SPS lattices as upper bounded ho-
momorphic images of free lattices. Thus the meet-prime elements of a rectangular
SPS lattice are along the upper boundaries, so the edges on the upper boundary
of a rectangular SPS lattice correspond to maximal join-irreducible congruences,
providing a background for the Swing Lemma and its corollaries in Section 3.1.
This topic is covered in detail in the book Freese, Ježek and Nation [12, Chapter
II], see also the lecture notes of Nation [35, Chapter 10]. The referee informs me
that the Maximal Cover Property holds for all finite upper bounded lattices.

3. The tools we need

Most basic concepts and notation not defined in this paper are available in Part I
of the book [18], see

https://www.researchgate.net/publication/299594715
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It is available to the reader and will be referenced as [CFL2].

In particular, we use the notation C ∼ D, C
up∼ D, and C

dn∼ D for perspectiv-
ity, up-perspectivity, and down-perspectivity, respectively. As usual, for planar
lattices, a prime interval (or covering interval) is called an edge. For a finite
lattice K and a finite ordered set S, a cover-preserving embedding ε : S → K is
an embedding ε mapping edges of S to edges of K. We define a cover-preserving
sublattice similarly. For the lattice S7 of Figure 1, we need a variant: an S7
sublattice S (a sublattice isomorphic to S7) is a peak sublattice if the three top
edges (L, M , and R in Figure 1) are edges in K.

By Grätzer and Knapp [27], every slim, planar, semimodular lattice K has
a congruence-preserving extension (see [CFL2, page 43]) K̂ to a slim rectangular
lattice. Any of the properties (i)–(iv) holds for K iff it holds for K̂. Therefore,
in the rest of this paper, we can assume that K is a slim rectangular lattice,
simplifying the discussion.

3.1. Swing Lemma

For an edge E of an SPS lattice K, let E = [0E , 1E ] and define col(E), the color
of E, as con(E), the (join-irreducible) congruence generated by collapsing E (see
[CFL2, Section 3.2]). We write P for Ji ConK, the ordered set of join-irreducible
congruences of K.

As in my paper [16], for the edges U, V of an SPS lattice K, we define a
binary relation: U swings to V , in formula, U xV , if 1U = 1V , the element
1U = 1V of K covers at least three elements, and 0V is neither the left-most nor
the right-most element covered by 1U = 1V ; if also 0U is such, then the swing is

interior, otherwise, it is exterior, denoted by U
in xV and U

exxV , respectively;
see Figure 2.

U
UV

V

Figure 2. Two swings, U xV ; the first U
exxV , the second U

inxV .

Swing Lemma (Grätzer [16]). Let K be an SPS lattice and let U and V be
edges in K. Then col(V ) ≤ col(U) iff there exists an edge R such that U is



The Swing Lemma and C1-diagrams 67

up-perspective to R and there exists a sequence of edges and a sequence of binary
relations

R = R0 %1 R1 %2 · · · %n Rn = V,

where each relation %i is
dn∼ (down-perspective) or x(swing). In addition, this

sequence also satisfies
1R0 ≥ 1R1 ≥ · · · ≥ 1Rn .

The following statements are immediate consequences of the Swing Lemma,
see my papers [16] and [20].

Corollary 1. We use the assumptions of the Swing Lemma.

(i) The equality col(U) = col(V ) holds in P iff there exist edges S and T in K,
such that

U
up∼ S, S

in xT, T
dn∼ V.

(ii) Let us further assume that the element 0U is meet-irreducible. Then the
equality col(U) = col(V ) holds in P iff there exists an edge T such that

U
in xT dn∼ V .

(iii) If the lattice K is rectangular and U is on the upper boundary of K, then

the equality col(U) = col(V ) holds in P iff U
dn∼ V .

Note that in (i) the edges S, T, U, V need not be distinct, so we have as special
cases U = V , U ∼ V , S = T , and others.

Corollary 2. We use the assumptions of the Swing Lemma.

(i) The covering col(V ) ≺ col(U) holds in P iff there exist edges R1, . . . , R4

in K, such that

U
up∼ R1, R1

in xR2, R2
dn∼ R3, R3

exxR4, R4
dn∼ V.

(ii) If the element 0U is meet-irreducible, then the covering col(V ) ≺ col(U) holds
in P iff there exist edges S, T in K, so that

U
dn∼ S

exxT dn∼ V.

Corollary 3. Let K be a slim rectangular lattice, let U and V be edges in K,
and let U be in the upper-left boundary of K.

(i) The covering col(V ) ≺ col(U) holds in P iff there exist edges S, T in K, such
that

(1) U
dn∼ S

exxT dn∼ V.

(ii) Define the element t = 1S = 1T ∈ K and let S = E1, E2, . . . , En = W
enumerate, from left to right, all the edges E of K with 1E = t. Then
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col(S) 6= col(W ),(2)

col(E2) = · · · = col(En−1) = col(T ),(3)

col(T ) ≺ col(S), col(W ).(4)

Corollary 4. Let the edge U be on the upper edge of the rectangular lattice K.
Then col(U) is a maximal element of P.

The converse of this statement is stated in Corollary 8.

3.2. C1-diagrams

In the diagram of a planar lattice K, a normal edge (line) has a slope of 45◦ or
135◦. If it is the first, we call it a normal-up edge (line), otherwise, a normal-down
edge (line). Any edge of slope strictly between 45◦ and 135◦ is steep (Czédli [3]
calls these edges precipitous). In Figure 3, for instance, the edges A and D are
normal, while the edge S is steep.

A

C

D

B

R P

Q

S

U

Figure 3. Illustrating the proof of The Four-Crown Two-pendant Property.

Definition 5. A diagram of a rectangular lattice K is a C1-diagram if the middle
edge of any covering S7 is steep and all other edges are normal.

This concept was introduced in G. Czédli [3, Definition 5.3], see also Czédli
[4, Definition 2.1] and Czédli and Grätzer [8, Definition 3.1]. The following is the
existence theorem of C1-diagrams in Czédli [3, Theorem 5.5].

Theorem 6. Every rectangular lattice lattice K has a C1-diagram.

See Figure 3 for a C1-diagram of a rectangular lattice. For a short and direct
proof for the existence of C1-diagrams, see my paper [23].

In this paper, K denotes a slim rectangular lattice with a fixed C1-diagram
and P is the ordered set of join-irreducible congruences of K.
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Let C and D be maximal chains in an interval [a, b] of K such that C ∩D =
{a, b}. If there is no element of K between C and D, then we call C ∪D a cell.
A four-element cell is a 4-cell . Opposite edges of a 4-cell are called consecutive.
Planar semimodular lattices are 4-cell lattices, that is, all of its cells are 4-cells,
see Grätzer and Knapp [24, Lemmas 4, 5] and [CFL2, Section 4.1] for more detail.

The following statement illustrates the use of C1-diagrams.

Lemma 7. Let K be a slim rectangular lattice K with a fixed C1-diagram and
let X be a normal-up edge of K. Then X is up-perspective either to an edge in
the upper-left boundary of K or to a steep edge.

Proof. If X is not steep nor it is in the upper-left boundary of K, then there is
a 4-cell C whose lower-right edge is X. If the upper-left edge is steep or it is in
the upper-left boundary, then we are done. Otherwise, we proceed the same way
until we reach a steep edge or an edge the upper-left boundary.

Corollary 8. Let the edge U be on the upper boundary of K. Then col(U) is a
maximal element of P. Conversely, if u is a maximal element of P, then there is
an edge U on the upper boundary of K so that col(U) = u.

3.3. Trajectories

Czédli and Schmidt [9] introduced a trajectory in K as a maximal sequence of
consecutive edges, see also [CFL2, Section 4.1]. The top edge T of a trajectory
is either in the upper boundary of K or it is steep by Lemma 7. For such an
edge T , we denote by traj(T ) the trajectory with top edge T .

By Grätzer and Knapp [24, Lemma 8], an element a in an SPS lattice K has
at most two covers. Therefore, a trajectory has at most one top edge and at most
one steep edge. So we conclude the following statement.

Lemma 9. Let K be a slim rectangular lattice K with a fixed C1-diagram. Let
X and Y be distinct steep edges of K. Then traj(X) and traj(Y ) are disjoint.

4. The Partition Property

First, we verify the Partition Property for the slim rectangular lattice K with
a fixed C1-diagram. Let us start with a lemma.

Lemma 10. Let X and Y be distinct edges on the upper-left boundary of K.
Then there is no edge Z of K such that col(Z) ≺ col(X), col(Y ).

Proof. By way of contradiction, let Z be an edge such that col(Z) ≺ col(X), col(Y ).
Since X and Y are on the upper-left boundary, Corollary 3(i) applies. Therefore,
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there exist normal-up edges SX , SY and steep edges TX , TY such that

X
dn∼ SX

exxTX , Y
dn∼ SY

exxTY , Z ∈ traj(TX) ∩ traj(TY ).

By Lemma 9, the third formula implies that TX = TY . Since SX , SY are normal-
up, it follows that X = Y , contradicting the assumption that X 6= Y .

By Corollary 8, the set of maximal elements of P is the same as the set
of colors of edges in the upper boundaries, which we can partition into the set
of edges L in the upper-left boundary and the set of edges R in the upper-right
boundary. Let X and Y be distinct edges in L. By Lemma 10, there is no edge Z
of K such that col(Z) ≺ col(X), col(Y ). By symmetry, this verifies the Partition
Property.

5. The Maximal Cover Property

Next, we verify the Maximal Cover Property for the slim rectangular lattice K
and with a fixed C1-diagram.

Let x ∈ P be covered by a maximal element u of P in K. By Corollary 8,
we can choose an edge U of color u on the upper boundary of K, by symmetry,
on the upper-left boundary of K. By Corollary 3(ii), we can choose the edges

S, T in K so that U
dn∼ S

exxT , col(S) = u, and col(T ) = x. By Corollary 3(ii),
specifically, by equations (2) and (4), we have x ≺ u, col(W ) and u 6= col(W ),
verifying the Maximal Cover Property.

6. The No Child Property

In this section, we verify the No Child Property for the slim rectangular lattice K
and with a fixed C1-diagram.

Let x, y, z, u ∈ P with x 6= y ∈ P, let u be a maximal element of P, and let
x, y ≺ u in P. By way of contradiction, let us assume that there is an element
z ∈ P such that z ≺ x, y in P.

By Corollary 8, the element u colors an edge U on the upper boundary of K,
say, in the upper-left boundary. By Corollary 2(i), for z ≺ x ∈ P, we get a peak
sublattice S7 in which the middle edge Z is colored by z and upper-left edge X
is colored by x, or symmetrically. The upper-right edge Y must have color y.

Now we apply Corollary 3(ii) to the edge U and middle edge Z of the peak

sublattice S7, obtaining that U
dn∼ Y xZ, in particular, U

dn∼ Y . This is a
contradiction, since U is normal-up and Y is normal-down.
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7. The Four-Crown Two-pendant Property

Finally, we verify the Four-Crown Two-pendant Property for the slim rectangular
lattice K and with a fixed C1-diagram.

By way of contradiction, assume that the ordered set R of Figure 1 is a
cover-preserving ordered subset of P, where a, b, c, d are maximal elements of P.
By Corollary 8, there are edges A,B,C,D on the upper boundary of K, so that
col(A) = a, col(B) = b, col(C) = c, col(D) = d. By left-right symmetry, we can
assume that the edge A is on the upper-left boundary of K. Since p ≺ a, b in P,
it follows from Lemma 10 that the edge B is on the upper-right boundary of K,
and so is D. Similarly, C is on the upper-left boundary of K.

Because of the automorphisms of the ordered set R, it is sufficient to deal
with one case only: C is below A and B is below D.

By Corollary 2(ii), there is a peak sublattice S7 with middle edge P (as in the
first diagram of Figure 3 so that A and B are down-perspective to the upper-left
edge and the upper-right edge of this peak sublattice, respectively. We define,
similarly, the edge Q for C and B, the edge S for A and D, the edge R for C
and D, and the edge U for R and P . Finally, v ≺ q, s in R, therefore, there is
a peak sublattice S7 with middle edge V with upper-left edge Vl and the upper-

right edge Vr so that S
dn∼ Vl and Q

dn∼ Vr, or symmetrically. Then V is in both
traj(S) and traj(Q), contradicting Lemma 9. This concludes the proof of the
Four-Crown Two-pendant Property and of Czédli’s Theorem.

Of course, the diagram in Figure 3 is only an illustration. The grid could
be much larger, the edges A,C and B,D may not be adjacent, and there maybe
lots of other elements in K.
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