Discussiones Mathematicae General Algebra and Applications 43 (2023) 53–62 https://doi.org/10.7151/dmgaa.1406

STRONGLY REGULAR MODULES

Govindarajulu Narayanan Sudharshana

AND

DURAISAMY SIVAKUMAR

Department of Mathematics Annamalai University Chidambaram 608001, Tamil Nadu, India

e-mail: sudharshanasss3@gmail.com sivakumarmaths1965@gmail.com

Abstract

The notion of strongly regular modules over a ring which is not necessarily commutative is introduced. The relation between F-regular, GFregular and vn-regular modules that are defined over commutative rings and strongly regular module is obtained. We have shown that a remark that if R is a reduced ring, then the R-module M is F-regular if and only if M is GF-regular is false. We have obtained the necessary and sufficient condition under which the remark is true. We have shown that if R is a commutative ring and if M is finitely generated multiplication module then the notion of F-regular, GF-regular, vn-regular and strongly regular are equivalent.

Keywords: strong *M*-vn-regular element, strongly regular module, *F*-regular module, *GF*-regular module, *vn*-regular module, weak commutative module. 2020 Mathematics Subject Classification: 06F25.

1. INTRODUCTION

In this paper we introduce the notion of strongly regular modules over rings which are not necessarily commutative. Following [4], a module M is a Fieldhouse regular module, called F-regular if each submodule of M is pure [5]. Majid Ali [10] have demonstrated about pure submodules. Anderson and Fuller [1], Fieldhouse [6] described the submodule K a pure submodule of M if $AK = K \cap AM$ for every ideal A of R. Ribenboim [12] described K to be pure in M if $aM \cap K = aK$ for each a in R. If M is a module over a commutative ring R, then the first condition implies the second and these descriptions are not equivalent in general [9, p.158], also in [7] they have followed the second definition. In this paper, we imitate the definition of purity as in Ribenboim [12]. Recall that an R-module M is called a multiplication module if for every submodule K of M there exists an ideal A of R such that K = AM. For an R-module M, the annihilator of $m \in M$ in R is $(0:m) = \{a \in R : am = 0\}$ and thus (0:M) is the annihilator of M. A torsion free R-module M is expressed as, for any $r \in R$ and $m \in M$, if rm = 0, then either r = 0 or m = 0. A submodule K of M is called complimented submodule if there exists a submodule L of M such that K + L = M and $K \cap L = 0$.

Following [2], a module M is called GF-regular(generalised F-regular) if for each $m \in M$ and $r \in R$, there exists $t \in R$ and a positive integer n such that $r^n tr^n m = r^n m$. Jayaram and Tekir [7] introduced Von Neumann regular module (vn-regular module for short). For a module M over a ring R, an element aof R is called M-vn-regular if $aM = a^2M$. An R-module M is said to be vnregular module if for any m in M, Rm = aM for some a in R. All these three regularities namely, F-regular, GF-regular, vn-regular modules are defined over commutative rings. In [14], we introduced the notion of VN-regular module Mover a ring R which is not necessarily commutative. A module M over a ring Ris communicated as a strongly regular module if given $a \in R$ and $m \in M$, there exists $x \in R$ such that $am = xa^2m$. This is infact a generalization of strongly regular rings to strongly regular modules. We know that a ring R is strongly regular if for every $r \in R$, there exists some $r' \in R$ such that $r = r'r^2$ and a ring R is strongly regular iff R is a reduced regular ring, [3, 8].

In this paper we find necessary and sufficient condition for a module M to be strongly regular. We have shown that if M is a module over a commutative ring R, then the notions of strongly regular module and F-regular module coincide. We have given an example of a F-regular module which is not strongly regular. We have obtained necessary and sufficient condition for a GF-regular module to be strongly regular. We have also shown that if M is a finitely generated multiplication module over a commutative ring then all the four notions of regularities namely, F-regular, GF-regular, strongly regular and vn-regular coincide.

Abduldaim [2] made a remark (Remark 5(1)) that if R is a reduced ring, then the R-module M is F-regular iff M is a GF-regular R-module. We show by an example that the remark is not true. We have given an example of a GFregular module over a reduced ring R which is not F-regular. We have obtained condition under which the remark holds.

Throughout this paper, unless stated R stands for a ring with nonzero identity and all modules are nonzero unital left R-modules. If and only if is described as iff.

2. Characterizations of strongly regular modules

The upcoming section is a study about strongly regular modules. Initiated with the succeeding definition.

Definition 2.1. An element a of R is called strong M-vn-regular if for any given $m \in M$, there exists $x \in R$ such that $am = xa^2m$. An R-module M is called strongly regular module if every element of R is strong M-vn-regular.

We now give an example of strongly regular module.

Example 2.2. Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z}_2 \right\}$ be the ring with usual matrices addition and multiplication. Then the *R*-module $M = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ is a strongly regular module.

The succeeding theorem offers a depiction of strongly regular modules in connection with F-regular modules. In advance we recite the definitions of F-regular module as in [5] and a pure submodule as in [12, 7]. Also an R-module M is professed to be an IFP-module if for any $r \in R$ and $m \in M$, if rm = 0 then rRm = 0 [13]. If M is a module over a commutative ring, then M is clearly an IFP-module.

Theorem 2.3. Presuming R to be a commutative ring. Then an R-module M is strongly regular iff M is a F-regular R-module.

Proof. Grant M to be a strongly regular module. Let K be a submodule of M and let $a \in R$. Clearly $aK \subseteq aM \cap K$. Let $y \in aM \cap K$. Then y = k = am for some $k \in K$ and $m \in M$. As M is strongly regular, there exists $x \in R$ such that $am = xa^2m$. Then $y = xa^2m = xa(am) = axk \in aK$. Thus $aM \cap K \subseteq aK$. Hence M is F-regular.

Conversely, grant M to be a F-regular module. Let $a \in R$ and $m \in M$. Clearly $\langle a \rangle m$, a submodule of M. Then $aM \cap \langle a \rangle m = a(\langle a \rangle m)$. Clearly $am \in aM \cap \langle a \rangle m$. Then $am \in a \langle a \rangle m$. This implies $am = a(\sum_i r_i a)m$ for some $r_i \in R$, where the sum is finite. Subsequently $am = (\sum_i r_i)a^2m = xa^2m$ for some $x = \sum_i r_i \in R$. Consequently M is a strongly regular module.

The following example will show that the above statement need not hold for a ring R, which is not necessarily commutative.

Example 2.4. Let $R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a, b, c, d \in \mathbb{Z}_2 \right\}$ be the ring with usual matrices addition and multiplication. In both sense the *R*-module R_R is a *F*-regular module as the only ideal *J* in *R* is either $\{0\}$ or *R* and hence if $J = \{0\}$,

for any submodule K of M we have $\{0\} = JK = K \cap JM$. If J = R then $K = JK = K \cap JM$.

But, the element $a = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ of R is not a strong M-vn-regular element, as given $m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ there is no $x \in R$ such that $am = xa^2m$.

Proposition 2.5. Suppose M is an IFP-module and a F-regular module. Then the Prime radical of R/(0:m) is zero for each $0 \neq m \in M$.

Proof. Let $0 \neq m \in M$. Let $\bar{a} = a + (0:m) \in R/(0:m)$. Suppose that $\bar{a}^2 = \bar{0}$. Since M is F-regular, we hope $\langle a \rangle m \cap aM = a(\langle a \rangle m)$. Clearly $am \in \langle a \rangle m \cap aM$. Then $am \in a(\langle a \rangle m)$. It follows that $am = a(\sum_{i,j} r_i ar_j)m$ for some $r_i, r_j \in R$, where the sum is finite. Since $\bar{a}^2 = \bar{0}$, we have $a^2m = 0$ and as M is an IFP-module, accordingly am = 0. Hence $\bar{a} = \bar{0}$.

Another portrayal of a strongly regular module in connection with GF-regular modules is given in the next result. Before that we recall the definition of GF-regular modules as in [2].

Theorem 2.6. Presuming R to be a commutative ring and the Prime radical of R/(0:m) is zero for each $0 \neq m \in M$, then an R-module M is a strongly regular module iff M is a GF-regular module.

Proof. Grant M to be a strongly regular module. Followed by Theorem 2.3, M is a F-regular module. Since every F-regular module implies GF-regular. Accordingly M is a GF-regular module.

Conversely, grant M to be a GF-regular module. Let $a \in R$ and let K be any submodule of M. It is clear that $aK \subseteq aM \cap K$. Let $x \in aM \cap K$. Then x = am, where $m \in M$.

As M is GF-regular. For $a \in R$ and $m \in M$, there exist $t \in R$ and a positive integer n such that $a^n t a^n m = a^n m$. This implies that $a(a^{n-1}ta^n - a^{n-1}) \in (0:m)$. Since (0:m) is an ideal, we have

$$(a^{n-1}ta^{n-1})a(a^{n-1}ta^n - a^{n-1}) = a^{n-1}ta^n(a^{n-1}ta^n - a^{n-1}) \in (0:m).$$

Now,

$$a^{n-2}(a(a^{n-1}ta^n - a^{n-1})) = a^{n-1}(a^{n-1}ta^n - a^{n-1}) \in (0:m).$$

Then, $(a^{n-1}ta^n - a^{n-1})^2 \in (0:m)$. It follows that $\overline{(a^{n-1}ta^n - a^{n-1})}^2 = \overline{0}$.

Then by assumption, we have $\overline{(a^{n-1}ta^n - a^{n-1})} = \overline{0}$. This implies that $(a^{n-1}ta^n - a^{n-1})m = 0$. Similarly proceeding, we have $(ata^n - a)m = 0$. Then x = at'(am) where $t' = ta^{n-1} \in R$. Thus $x \in aK$. Hence $aM \cap K = aK$. Followed by Theorem 2.3, M is a strongly regular module.

Now, recall that an element $e' \in R$ is claimed to be weak idempotent if $e' - e'^2 \in (0:M)$ [7] and $\langle a \rangle$ denotes the principal ideal generated by $a \in R$. Also an *R*-module *M* is a colon distributive module if $(K_1:M) + (K_2:M) = (K_1 + K_2:M)$ for all submodules K_1, K_2 of *M* [7].

Hence we have the next result on colon distributive module. However, first we require Lemma 2.7 which is shown in [14].

Lemma 2.7. Assuming M an R-module. Taking the ideals A_1 , A_2 of R in such a way that $A_1 + A_2 = R$ and $A_1A_2 \subseteq (0:M)$. Then

- (i) $A_1 + (0:M) = \langle e' \rangle + (0:M)$ for some weak idempotent $e' \in A_1$
- (ii) $A_2 + (0:M) = <1-e'>+(0:M)$ for some weak idempotent $(1-e') \in A_2$
- (iii) $A_1M = \langle e' \rangle M$ and $A_2M = \langle 1 e' \rangle M$ for some weak idempotent elements e' and (1 e') such that $e' \in A_1$ and $(1 e') \in A_2$.

Proposition 2.8. Assuming M a colon distributive module. If K is a complemented submodule of M, then $K = \langle e' \rangle M$ for some weak idempotent element $e' \in R$.

Proof. Suppose K has a complement. Surely there exist a submodule K' in M such that K + K' = M and $K \cap K' = 0$. Now, R = (M : M) = (K + K' : M) = (K : M) + (K' : M). Also $(K : M) \cap (K' : M) = (K \cap K' : M) = (0 : M)$, and hence $(K : M)(K' : M) \subseteq (0 : M)$. Followed by Lemma 2.7(iii), $(K : M)M = \langle e' \rangle M$ for some weak idempotent element $e' \in R$. Again $K = K \cap M = K \cap ((K : M)M + K'))$ as $(K' : M)M \subseteq K'$ and (K : M)M + (K' : M)M = RM = M. By the modular law, we have $K = (K : M)M + (K \cap K') = (K : M)M + 0 = \langle e' \rangle M$ for some weak idempotent element $e' \in R$.

The succeeding Lemma gives a condition for an element of R to be M-vn-regular. In advance we recite the definitions of M-vn-regular element and vn-regular module as in[7].

Lemma 2.9. Suppose R is a commutative ring and an element $a \in R$ is strong M-vn-regular then $a \in R$ is a M-vn-regular element.

Proof. Let $a \in R$ be a strong *M*-vn-regular element. Because of this, for any $m \in M$ there exist $x \in R$ in such a way that $am = xa^2m = a^2xm \in a^2M$. This implies that $aM \subseteq a^2M$. Then clearly $aM = a^2M$. That being the case.

Now we can compile the characterizations of strongly regular modules with those of F-regular modules, GF-regular modules, vn-regular modules in the following.

Theorem 2.10. If R is a commutative ring and M is a finitely generated multiplication R-module. Then the axioms that follows are parallel to each other.

- (i) M is a strongly regular module.
- (ii) Every element of R is M-vn-regular.
- (iii) M is a F-regular module.
- (iv) M is a GF-regular module and the prime radical of R/(0:m) is zero foreach $0 \neq m \in M$.

Proof. (i) \Longrightarrow (ii). Emulates from Lemma 2.9.

(ii) \Longrightarrow (iii). Emulates from [7, Theorem 1].

 $(i) \iff (iii)$. Emulates from Theorem 2.3

(i) \Longrightarrow (iv). Let (i) holds. Then clearly M, a GF-regular module. Now let $0 \neq m \in M$. Let $\bar{a} = a + (0:m) \in R/(0:m)$ such that $\bar{a}^2 = \bar{0}$. As M is F-regular, $aM \cap am = aM \cap \langle a \rangle m = a(\langle a \rangle m)$ is clear. Since $am \in aM \cap \langle a \rangle m$, it follows that $am = a(\sum_i r_i a)m$ for some $r_i \in R$, where the sum is finite. Since $\bar{a}^2 = \bar{0}$, it follows that $a^2m = 0$ and then am = 0. Hence $\bar{a} = \bar{0}$.

 $(iv) \Longrightarrow (i)$. Emulates from Theorem 2.6. Hence concluded.

Theorem 2.11. If R is a commutative ring and M is a finitely generated R-module. Then the axioms that follows are parallel to each other.

- (i) M is a strongly regular module and a multiplication R-module.
- (ii) M is a vn-regular module.

Proof. (i) \Longrightarrow (ii) Theorem 2.10 induces every element of R is M-vn-regular. Then we conclude that M is a vn-regular module by [7, Theorem 2].

(ii) \Longrightarrow (i) [7, Theorem 2] induces M is a multiplication module and a F-regular module. Then (i) holds by Theorem 2.10.

Abduldaim [2] had a Remark 5 that if R is a reduced ring, then an R-module M is F-regular iff M is a GF-regular module. We show that the remark is not true. As Z, a reduced ring, the Z-module Z_4 is a GF-regular module, however Z_4 is not an F-regular Z-module. For the submodule $K = \{0, 2\}$ and for $2 \in Z$, $2Z_4 \cap K = \{0, 2\}$, where as $2K = \{0\}$ hence $2Z_4 \cap K \neq 2K$. Also $K \cap \langle 2 \rangle Z_4 = \{0, 2\}$ and $\langle 2 \rangle K = \{0\}$. Hence $K \cap IZ_4 \neq IK$. Thus K is not a pure submodule in the sense of [7, 12] and in the sense of [1, 6]. Now we find condition under which the remark is true.

Proposition 2.12. Presuming R as a commutative and a reduced ring and M as a torsion free R-module. Then M is a F-regular module iff M is a GF-regular module.

Proof. Consider M to be a F-regular module, then clearly M is a GF-regular module. Conversely, let M be a GF-regular module. Let $a \in R$ and $m \in M$. Then there exists t in R such that $a^n t a^n m = a^n m$ for some integer n. If m = 0, then $xa^2m = am$ for any $x \in R$. Suppose $m \neq 0$. Now $(a^n ta^n - a^n)m = 0$.

Since $m \neq 0$, we have $(a^n ta^n - a^n) = 0$. Then $(a^n ta^{n-1} - a^{n-1})a = 0$. Hence $(a^n ta^{n-1} - a^{n-1})a^{n-1} = 0$ and $(a^n ta^{n-1} - a^{n-1})a^{n-1}ata^{n-1} = 0$. Thus $(a^n ta^{n-1} - a^{n-1})a^n ta^{n-1} = 0$. Hence $(a^n ta^{n-1} - a^{n-1})^2 = 0$. Since R is reduced, we have $(a^n ta^{n-1} - a^{n-1}) = 0$. Similarly proceeding $(a^n ta - a) = 0$. Thus $a(a^{n-1}t)a - a = 0$. Let $a^{n-1}t = x$. Hence axa - a = 0 and this implies that axa = a and thus $a = xa^2$. Thus $am = xa^2m$. Because of this $a \in R$ is a strong M-vn-regular element and we conclude M is a strongly regular module. Thereby M is a F-regular module by Theorem 2.3.

Proposition 2.13. Presuming R as a reduced ring and M as a reduced R-module. Then an R-module M is F-regular iff M is a GF-regular module.

Proof. Grant M as a F-regular module. Because of this, M is a GF-regular module. Conversely, assume M, a GF-regular module. Let K be any submodule of M and let $a \in R$. Clearly $aK \subseteq aM \cap K$. Let $y \in aM \cap K$. Then y = am for some $m \in M$. Because of M, a GF-regular module, there exists $t \in R$ and a positive integer n such that $a^n ta^n m = a^n m$.

Then $0 = (a^n t a^n - a^n)m = a^2((a^{n-2}t a^n - a^{n-2})m)$. Because of M, a reduced module, we get $a((a^{n-2}t a^n - a^{n-2})m = 0$. Similarly proceeding we have $a(ta^n - 1)m = 0$. Thus $y = ata^n m = a(ta^{n-1})(am) \in aK$. Hence $aM \cap K = aK$. Hence the proof.

3. Main results on strongly regular modules

Lemma 3.1. Let M be an IFP-module. Then the axioms that follows are equivalent.

(i) M is a strongly regular module.

(ii) R/(0:m) is a strongly regular ring for each $0 \neq m \in M$.

Proof. (i) \Longrightarrow (ii) Let $0 \neq m \in M$. Let $\bar{a} = a + (0 : m) \in R/(0 : m)$. Since a is a strong *M*-vn-regular element, there exists x in R such that $am = xa^2m$. Then $a - xa^2 \in (0 : m)$. It follows that $\bar{a} = \bar{x}\bar{a}^2$. Hence (ii) holds.

(ii) \Longrightarrow (i) Let $a \in R$ and let $m \in M$. Then for $\bar{a} = a + (0 : m) \in R/(0 : m)$, there exist $\bar{x} \in R/(0 : m)$ in such a way that $\bar{a} = \bar{x}\bar{a}^2$. Then $a - xa^2 \in (0 : m)$. Thus $am = xa^2m$ and therefore $a \in R$ is strong *M*-vn-regular. Hence (i) holds.

Lemma 3.2. Let M be an R-module. If R/(0:M) is a strongly regular ring, then M is a strongly regular module.

Proof. Let R/(0:M) be a strongly regular ring. Let $a \in R$. For $\bar{a} = a + (0:M) \in R/(0:M)$, there exists $\bar{x} \in R/(0:M)$ such that $\bar{a} = \bar{x}\bar{a}^2$. It follows that $a - xa^2 \in (0:M)$. This implies that $a - xa^2 = x'$ for some $x' \in (0:M)$. Let m be an arbitrary element in M. Then $am = xa^2m$.

The upcoming Theorem offers parallel condition for M to be strongly regular.

Theorem 3.3. Take M, a finitely generated IFP-module. Here we get the following equivalent statements.

(i) R/(0:M) is strongly regular.

(ii) M is a strongly regular module.

Proof. (i) \Longrightarrow (ii). Emulates from Lemma 3.2.

(ii) \Longrightarrow (i). As M is finitely generated, let $\{m_1, m_2, \ldots, m_n\}$ be a finite set of generators of M. Then $(0:M) = \bigcap_i (0:m_i), 1 \le i \le n$.

Let $N' = \{a + (0 : m_1), a + (0 : m_2), \dots, a + (0 : m_n) : a \in R\}$. Clearly N'is a subring of the ring $\sum_{i=1}^n R/(0 : m_i)$. Now we define a mapping $\phi : R/(0 : M) \to N'$ by $\phi(a + (0 : M)) = (a + (0 : m_1), a + (0 : m_2), \dots, a + (0 : m_n))$ for each $a + (0 : M) \in R/(0 : M)$.

Clearly ϕ is an isomorphism. Now we claim that N' is strongly regular. By Lemma 3.1, $R/(0:m_i)$ is a strongly regular ring. Thus for each $a \in R$ and $1 \leq i \leq n$, there exist $x_i \in R$ such that $a + (0:m_i) = x_i a^2 + (0:m_i)$. Then $a - x_i a^2 \in (0:m_i)$. This implies $am_i = x_i a^2 m_i$ and hence $(1 - x_i a) am_i = 0$.

Define x by the relation $1 - xa = \prod_{i=1}^{n} (1 - x_i a)$. Then $(1 - xa)am_i = (\prod_{i=1}^{n} (1 - x_i a))am_i$. Now for i = 1, we have $(1 - xa)am_1 = (\prod_{i=1}^{n} (1 - x_i a))am_1$. Since $(1 - x_1 a)am_1 = 0$, we have $(1 - x_1 a)m' = 0$ for some $m' = am \in M$.

As *M* is an *IFP*-module, we have $(1 - x_1 a)Rm' = 0$. It follows that $(1 - x_1 a)[(1 - x_2 a)(1 - x_3 a) \cdots (1 - x_n a)]m' = 0$. Hence $(1 - x_1 a)(1 - x_2 a)(1 - x_3 a) \cdots (1 - x_n a)am_1 = 0$.

Similarly $(1 - xa)am_i = (\prod_{i=1}^n (1 - x_i a))am_i = 0$ for each *i*. Thus for any $(a + (0 : m_1), a + (0 : m_2), \dots, a + (0 : m_n)) \in N'$ we have, $(a + (0 : m_1), a + (0 : m_2), \dots, a + (0 : m_n)) = (x + (0 : m_1), x + (0 : m_2), \dots, x + (0 : m_n))(a^2 + (0 : m_1), a^2 + (0 : m_2), \dots, a^2 + (0 : m_n))$ where $x \in R$ is defined by the relation $(1 - xa) = \prod_{i=1}^n (1 - x_i a)$. Hence N' is a strongly regular ring and hence R/(0 : M) is strongly regular.

Proposition 3.4. Every homomorphic image of a strongly regular module is a strongly regular module.

Proof. Suppose M_1 is a strongly regular module and $\phi: M_1 \to M_2$ is an epimorphism. Let $a \in R$ and let $m_2 \in M_2$. Then $m_2 = \phi(m_1)$ for some $m_1 \in M_1$.

Thus clearly $am_1 = xa^2m_1$ for some $x \in R$ since M_1 is a strongly regular module. Now $am_2 = a\phi(m_1) = \phi(am_1) = \phi(xa^2m_1) = xa^2\phi(m_1) = xa^2m_2$. Hence M_2 is strongly regular.

The succeeding corollary is an instant outcome of Proposition 3.4.

Corollary 3.5. Suppose M is a strongly regular module and K is a submodule of M. Then M/K is a strongly regular module.

Definition 3.6. An *R*-module *M* is defined to be a weak commutative module if for any $a, b \in R, m \in M$ there exists $b' \in R$ such that abm = b'am.

Proposition 3.7. Take M, a finitely generated IFP R-module. Hereby we get the equivalent axioms.

- (i) M is a strongly regular module.
- (ii) For every left ideals L_1, L_2 and every submodule K of M, $(L_1 \cap L_2)K \subseteq L_1L_2K$ and M is weak commutative.
- (iii) For every left ideal L, every ideal I and every submodule K of M, $(I \cap L)K = ILK$ and M is weak commutative.
- (iv) For every ideals I_1, I_2 and every submodule K of M, $(I_1 \cap I_2)K = I_1I_2K$ and M is weak commutative.

Proof. (i) \Longrightarrow (ii) Let L_1, L_2 be the left ideals of R and let K be a submodule of M. Now let $x \in (L_1 \cap L_2)K$. Then $x = \sum_i l_i k_i$ where the sum is finite and for some $l_i \in L_1 \cap L_2$ and $k_i \in K$. For any $i, l_i k_i = y_i l_i^2 k_i$ for some $y_i \in R$. Then $x = \sum_i y_i l_i^2 k_i = \sum_i (y_i l_i)(l_i) k_i \in L_1 L_2 K$. Hence $(L_1 \cap L_2)K \subseteq L_1 L_2 K$.

Let $a, b \in R$ and $m \in M$. By Theorem 3.4, R/(0:M) is strongly regular. Then for $a \in R$ there exists $\bar{x} \in R/(0:M)$ such that $\bar{a} = \bar{x}\bar{a}^2$. It follows that $\bar{a} = \bar{a}\bar{x}\bar{a}$. Since $\bar{x}\bar{a}$ is central, we have $\bar{a}\bar{b} = (\bar{a}\bar{x}\bar{a})\bar{b} = \bar{a}\bar{b}(\bar{x}\bar{a}) = \bar{b}'\bar{a}$ for some $\bar{b}' = \bar{a}\bar{b}\bar{x} \in R/(0:M)$. Then abm = b'am for all $m \in M$. Hence M is weak commutative.

 $(ii) \Longrightarrow (iii) \Longrightarrow (iv)$ Are all obvious.

(iv) \Longrightarrow (i) Let $a \in R$ and $m \in M$. Since $am \in (\langle a \rangle \cap \langle a \rangle)(Rm)$, we have $am \in \langle a \rangle \langle a \rangle$ (Rm) by our assumption. Then $am = r'a^2m$ for some $r' \in R$ since M is a weak commutative module. This completed the proof.

Acknowledgment

I thank Dr. P. Dheena, Professor, Department of Mathematics, Annamalai University, for suggesting the problem and going through the proof.

References

- F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer-Verlag, 1974).
- M.A. Abduldaim and S. Chen, *GF-Regular modules*, J. Appl. Math., Article ID 630285 (2013), 7 pages. https://doi.org/10.1155/2013/630285

- R.F. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc. 63 (1948) 457–481. https://doi.org/10.2307/1990570
- [4] T. Cheatham and E. Enochs, Regular modules, Math. Japonica 26 (1) (1981) 9–12.
- [5] D.J. Fieldhouse, Purity and flatness, Ph.D. Thesis (McGill University, Montreal, Canada, 1967).
- [6] D.J. Fieldhouse, Pure theories, Math. Ann. 184 (1969) 1–18.
- [7] C. Jayaraman and U. Tekir, Von Neumann regular modules, Comm. Alg. 46 (5) (2018) 2205–2217. https://doi.org/10.1080/00927872.2017.1372460
- [8] T. Kando, Strong regularity in arbitrary rings, Nagoya Math. J. 4 (1952) 51–53.
- [9] T.Y. Lam, Lectures on Modules and Rings (Springer, 1999).
- [10] M. Majid Ali and J. David Smith, Pure submodules of multiplication modules, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry 45 (10 (2004) 61–74.
- [11] N.H. Mc Coy, The Theory of Rings (Chelsca Publishing Company, 1973).
- [12] P. Ribenboim, Algebraic Numbers (Wiley, 1972).
- [13] D. Ssevviiri, On completely prime submodules, Int. Electronic J. Alg. 19 (2016) 77-90. https://doi.org/10.24330/ieja.266194
- [14] G.N. Sudharshana and D. Sivakumar, On Von Neumann regular Modules, Adv. Math. Sci. J. 9 (4) (2020) 1921–1931. https://doi.org/10.37418/amsj.9.4.51

Received 9 April 2021 Revised 23 June 2021 Accepted 28 June 2021