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Abstract

The notion of strongly regular modules over a ring which is not nec-
essarily commutative is introduced. The relation between F -regular, GF -
regular and vn-regular modules that are defined over commutative rings and
strongly regular module is obtained. We have shown that a remark that if
R is a reduced ring, then the R-module M is F -regular if and only if M is
GF -regular is false. We have obtained the necessary and sufficient condition
under which the remark is true. We have shown that if R is a commutative
ring and if M is finitely generated multiplication module then the notion of
F -regular, GF -regular, vn-regular and strongly regular are equivalent.
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1. Introduction

In this paper we introduce the notion of strongly regular modules over rings
which are not necessarily commutative. Following [4], a moduleM is a Fieldhouse
regular module, called F -regular if each submodule ofM is pure [5]. Majid Ali [10]
have demonstrated about pure submodules. Anderson and Fuller [1], Fieldhouse
[6] described the submoduleK a pure submodule of M if AK = K∩AM for every
ideal A of R. Ribenboim [12] described K to be pure in M if aM ∩K = aK for
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each a in R. If M is a module over a commutative ring R, then the first condition
implies the second and these descriptions are not equivalent in general [9, p.158],
also in [7] they have followed the second definition. In this paper, we imitate the
definition of purity as in Ribenboim [12]. Recall that an R-module M is called a
multiplication module if for every submodule K of M there exists an ideal A of
R such that K = AM . For an R-module M , the annihilator of m ∈ M in R is
(0 : m) = {a ∈ R : am = 0} and thus (0 : M) is the annihilator of M . A torsion
free R-module M is expressed as, for any r ∈ R and m ∈ M , if rm = 0, then
either r = 0 or m = 0. A submodule K of M is called complimented submodule
if there exists a submodule L of M such that K + L = M and K ∩ L = 0.

Following [2], a module M is called GF -regular(generalised F -regular) if for
each m ∈ M and r ∈ R, there exists t ∈ R and a positive integer n such that
rntrnm = rnm. Jayaram and Tekir [7] introduced Von Neumann regular module
(vn-regular module for short). For a module M over a ring R, an element a
of R is called M -vn-regular if aM = a2M . An R-module M is said to be vn-
regular module if for any m in M , Rm = aM for some a in R. All these three
regularities namely, F -regular, GF -regular, vn-regular modules are defined over
commutative rings. In [14], we introduced the notion of V N -regular module M
over a ring R which is not necessarily commutative. A module M over a ring R
is communicated as a strongly regular module if given a ∈ R and m ∈ M , there
exists x ∈ R such that am = xa2m. This is infact a generalization of strongly
regular rings to strongly regular modules. We know that a ring R is strongly
regular if for every r ∈ R, there exists some r′ ∈ R such that r = r′r2 and a ring
R is strongly regular iff R is a reduced regular ring, [3, 8].

In this paper we find necessary and sufficient condition for a module M to be
strongly regular. We have shown that if M is a module over a commutative ring
R, then the notions of strongly regular module and F -regular module coincide.
We have given an example of a F -regular module which is not strongly regular.
We have obtained necessary and sufficient condition for a GF -regular module to
be strongly regular. We have also shown that if M is a finitely generated multi-
plication module over a commutative ring then all the four notions of regularities
namely, F -regular, GF -regular, strongly regular and vn-regular coincide.

Abduldaim [2] made a remark (Remark 5(1)) that if R is a reduced ring,
then the R-module M is F -regular iff M is a GF -regular R-module. We show
by an example that the remark is not true. We have given an example of a GF -
regular module over a reduced ring R which is not F -regular. We have obtained
condition under which the remark holds.

Throughout this paper, unless stated R stands for a ring with nonzero iden-
tity and all modules are nonzero unital left R-modules. If and only if is described
as iff.
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2. Characterizations of strongly regular modules

The upcoming section is a study about strongly regular modules. Initiated with
the succeeding definition.

Definition 2.1. An element a of R is called strong M -vn-regular if for any given
m ∈ M , there exists x ∈ R such that am = xa2m. An R-module M is called
strongly regular module if every element of R is strong M -vn-regular.

We now give an example of strongly regular module.

Example 2.2. Let R =

{(

a b
0 c

)/

a, b, c ∈ Z2

}

be the ring with usual matrices

addition and multiplication. Then the R-module M =

{(

0 0
0 0

)(

0 1
0 0

)}

is a

strongly regular module.

The succeeding theorem offers a depiction of strongly regular modules in
connection with F -regular modules. In advance we recite the definitions of F -
regular module as in [5] and a pure submodule as in [12, 7]. Also an R-module
M is professed to be an IFP -module if for any r ∈ R and m ∈ M , if rm = 0
then rRm = 0 [13]. If M is a module over a commutative ring, then M is clearly
an IFP -module.

Theorem 2.3. Presuming R to be a commutative ring. Then an R-module M
is strongly regular iff M is a F -regular R-module.

Proof. Grant M to be a strongly regular module. Let K be a submodule of M
and let a ∈ R. Clearly aK ⊆ aM ∩ K. Let y ∈ aM ∩ K. Then y = k = am
for some k ∈ K and m ∈ M . As M is strongly regular, there exists x ∈ R such
that am = xa2m. Then y = xa2m = xa(am) = axk ∈ aK. Thus aM ∩K ⊆ aK.
Hence M is F -regular.

Conversly, grantM to be a F -regular module. Let a ∈ R andm ∈ M . Clearly
< a > m, a submodule of M . Then aM∩ < a > m = a(< a > m). Clearly
am ∈ aM∩ < a > m. Then am ∈ a < a > m. This implies am = a

(
∑

i ria
)

m for
some ri ∈ R, where the sum is finite. Subsequently am =

(
∑

i ri
)

a2m = xa2m
for some x =

∑

i ri ∈ R. Consequently M is a strongly regular module.

The following example will show that the above statement need not hold for
a ring R, which is not necessarily commutative.

Example 2.4. Let R =

{(

a b
c d

)/

a, b, c, d ∈ Z2

}

be the ring with usual

matrices addition and multiplication. In both sense the R-module RR is a F -
regular module as the only ideal J in R is either {0} or R and hence if J = {0},
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for any submodule K of M we have {0} = JK = K ∩ JM . If J = R then
K = JK = K ∩ JM .

But, the element a =

(

1 1
1 1

)

of R is not a strong M -vn-regular element, as

given m =

(

1 0
0 1

)

there is no x ∈ R such that am = xa2m.

Proposition 2.5. Suppose M is an IFP -module and a F -regular module. Then

the Prime radical of R/(0 : m) is zero for each 0 6= m ∈ M .

Proof. Let 0 6= m ∈ M . Let ā = a+ (0 : m) ∈ R/(0 : m). Suppose that ā2 = 0̄.
Since M is F -regular, we hope < a > m ∩ aM = a(< a > m). Clearly am ∈<
a > m ∩ aM . Then am ∈ a(< a > m). It follows that am = a

(
∑

i,j riarj
)

m for

some ri, rj ∈ R, where the sum is finite. Since ā2 = 0̄, we have a2m = 0 and as
M is an IFP -module, accordingly am = 0. Hence ā = 0̄.

Another portrayal of a strongly regular module in connection with GF -
regular modules is given in the next result. Before that we recall the definition
of GF -regular modules as in [2].

Theorem 2.6. Presuming R to be a commutative ring and the Prime radical of

R/(0 : m) is zero for each 0 6= m ∈ M , then an R-module M is a strongly regular

module iff M is a GF -regular module.

Proof. Grant M to be a strongly regular module. Followed by Theorem 2.3,
M is a F -regular module. Since every F -regular module implies GF -regular.
Accordingly M is a GF -regular module.

Conversly, grant M to be a GF -regular module. Let a ∈ R and let K be any
submodule of M . It is clear that aK ⊆ aM ∩K. Let x ∈ aM ∩K. Then x = am,
where m ∈ M .

As M is GF -regular. For a ∈ R and m ∈ M , there exist t ∈ R and a positive
integer n such that antanm = anm. This implies that a(an−1tan−an−1) ∈ (0 : m).
Since (0 : m) is an ideal, we have

(

an−1tan−1
)

a
(

an−1tan − an−1
)

= an−1tan
(

an−1tan − an−1
)

∈ (0 : m).

Now,

an−2
(

a
(

an−1tan − an−1
))

= an−1
(

an−1tan − an−1
)

∈ (0 : m).

Then, (an−1tan − an−1)2 ∈ (0 : m). It follows that (an−1tan − an−1)
2

= 0̄.

Then by assumption, we have (an−1tan − an−1) = 0̄. This implies that
(an−1tan − an−1)m = 0. Similarly proceeding, we have (atan − a)m = 0. Then
x = at

′

(am) where t
′

= tan−1 ∈ R. Thus x ∈ aK. Hence aM ∩ K = aK.
Followed by Theorem 2.3, M is a strongly regular module.
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Now, recall that an element e′ ∈ R is claimed to be weak idempotent if
e′ − e′2 ∈ (0 : M) [7] and < a > denotes the principal ideal generated by a ∈ R.
Also an R-module M is a colon distributive module if (K1 : M) + (K2 : M) =
(K1 +K2 : M) for all submodules K1, K2 of M [7].

Hence we have the next result on colon distributive module. However, first
we require Lemma 2.7 which is shown in [14].

Lemma 2.7. Assuming M an R-module. Taking the ideals A1, A2 of R in such

a way that A1 +A2 = R and A1A2 ⊆ (0 : M). Then

(i) A1 + (0 : M) =< e′ > +(0 : M) for some weak idempotent e′ ∈ A1

(ii) A2 + (0 : M) =< 1− e′ > +(0 : M) for some weak idempotent (1− e′) ∈ A2

(iii) A1M =< e′ > M and A2M =< 1 − e′ > M for some weak idempotent

elements e′ and (1− e′) such that e′ ∈ A1 and (1− e′) ∈ A2.

Proposition 2.8. Assuming M a colon distributive module. If K is a comple-

mented submodule of M , then K =< e′ > M for some weak idempotent element

e′ ∈ R.

Proof. Suppose K has a complement. Surely there exist a submodule K ′ in M
such that K +K ′ = M and K ∩K ′ = 0. Now, R = (M : M) = (K +K ′ : M) =
(K : M) + (K ′ : M). Also (K : M) ∩ (K ′ : M) = (K ∩K ′ : M) = (0 : M), and
hence (K : M)(K ′ : M) ⊆ (0 : M). Followed by Lemma 2.7(iii), (K : M)M =<
e′ > M for some weak idempotent element e′ ∈ R. Again K = K ∩ M = K∩
((K : M)M+K ′) as (K ′ : M)M ⊆ K ′ and (K : M)M+(K ′ : M)M = RM = M .
By the modular law, we have K = (K : M)M + (K ∩K ′) = (K : M)M + 0 =<
e′ > M for some weak idempotent element e′ ∈ R.

The succeeding Lemma gives a condition for an element of R to be M -
vn-regular. In advance we recite the definitions of M -vn-regular element and
vn-regular module as in[7].

Lemma 2.9. Suppose R is a commutative ring and an element a ∈ R is strong

M -vn-regular then a ∈ R is a M -vn-regular element.

Proof. Let a ∈ R be a strong M -vn-regular element. Because of this, for any
m ∈ M there exist x ∈ R in such a way that am = xa2m = a2xm ∈ a2M . This
implies that aM ⊆ a2M . Then clearly aM = a2M . That being the case.

Now we can compile the characterizations of strongly regular modules with
those of F -regular modules, GF -regular modules, vn-regular modules in the fol-
lowing.

Theorem 2.10. If R is a commutative ring and M is a finitely generated mul-

tiplication R-module. Then the axioms that follows are parallel to each other.
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(i) M is a strongly regular module.

(ii) Every element of R is M -vn-regular.

(iii) M is a F -regular module.

(iv) M is a GF -regular module and the prime radical of R/(0 : m) is zero foreach

0 6= m ∈ M .

Proof. (i)=⇒(ii). Emulates from Lemma 2.9.
(ii)=⇒(iii). Emulates from [7, Theorem 1].
(i)⇐⇒(iii). Emulates from Theorem 2.3
(i)=⇒(iv). Let (i) holds. Then clearly M , a GF -regular module. Now let

0 6= m ∈ M . Let ā = a+(0 : m) ∈ R/(0 : m) such that ā2 = 0̄. AsM is F -regular,
aM ∩ am = aM∩ < a > m = a(< a > m) is clear. Since am ∈ aM∩ < a > m,
it follows that am = a

(
∑

i ria
)

m for some ri ∈ R, where the sum is finite. Since
ā2 = 0̄, it follows that a2m = 0 and then am = 0. Hence ā = 0̄.

(iv)=⇒(i). Emulates from Theorem 2.6. Hence concluded.

Theorem 2.11. If R is a commutative ring and M is a finitely generated R-

module. Then the axioms that follows are parallel to each other.

(i) M is a strongly regular module and a multiplication R-module.

(ii) M is a vn-regular module.

Proof. (i)=⇒(ii) Theorem 2.10 induces every element of R is M -vn-regular.
Then we conclude that M is a vn-regular module by [7, Theorem 2].

(ii)=⇒(i) [7, Theorem 2] induces M is a multiplication module and a F -
regular module. Then (i) holds by Theorem 2.10.

Abduldaim [2] had a Remark 5 that if R is a reduced ring, then an R-
module M is F -regular iff M is a GF -regular module. We show that the remark
is not true. As Z, a reduced ring, the Z-module Z4 is a GF -regular module,
however Z4 is not an F -regular Z-module. For the submodule K = {0, 2} and
for 2 ∈ Z, 2Z4 ∩ K = {0, 2}, where as 2K = {0} hence 2Z4 ∩ K 6= 2K. Also
K∩ < 2 > Z4 = {0, 2} and < 2 > K = {0}. Hence K ∩ IZ4 6= IK. Thus K is
not a pure submodule in the sense of [7, 12] and in the sense of [1, 6]. Now we
find condition under which the remark is true.

Proposition 2.12. Presuming R as a commutative and a reduced ring and M
as a torsion free R-module. Then M is a F -regular module iff M is a GF -regular

module.

Proof. Consider M to be a F -regular module, then clearly M is a GF -regular
module. Conversly, let M be a GF -regular module. Let a ∈ R and m ∈ M .
Then there exists t in R such that antanm = anm for some integer n. If m = 0,
then xa2m = am for any x ∈ R. Suppose m 6= 0. Now (antan − an)m = 0.
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Since m 6= 0, we have (antan − an) = 0. Then (antan−1 − an−1)a = 0. Hence
(antan−1−an−1)an−1 = 0 and (antan−1−an−1)an−1atan−1 = 0. Thus (antan−1−
an−1)antan−1 = 0. Hence (antan−1 − an−1)2 = 0. Since R is reduced, we have
(antan−1−an−1) = 0. Similarly proceeding (anta−a) = 0. Thus a(an−1t)a−a =
0. Let an−1t = x. Hence axa − a = 0 and this implies that axa = a and thus
a = xa2. Thus am = xa2m. Because of this a ∈ R is a strong M -vn-regular
element and we conclude M is a strongly regular module. Thereby M is a F -
regular module by Theorem 2.3.

Proposition 2.13. Presuming R as a reduced ring and M as a reduced R-module.

Then an R-module M is F -regular iff M is a GF -regular module.

Proof. Grant M as a F -regular module. Because of this, M is a GF -regular
module. Conversely, assume M , a GF -regular module. Let K be any submodule
of M and let a ∈ R. Clearly aK ⊆ aM ∩K. Let y ∈ aM ∩ K. Then y = am
for some m ∈ M . Because of M , a GF -regular module, there exists t ∈ R and a
positive integer n such that antanm = anm.

Then 0 = (antan−an)m = a2((an−2tan−an−2)m). Because of M , a reduced
module, we get a((an−2tan − an−2)m = 0. Similarly proceeding we have a(tan −
1)m = 0. Thus y = atanm = a(tan−1)(am) ∈ aK. Hence aM ∩K = aK. Hence
the proof.

3. Main results on strongly regular modules

Lemma 3.1. Let M be an IFP -module. Then the axioms that follows are equiv-

alent.

(i) M is a strongly regular module.

(ii) R/(0 : m) is a strongly regular ring for each 0 6= m ∈ M .

Proof. (i)=⇒(ii) Let 0 6= m ∈ M . Let ā = a + (0 : m) ∈ R/(0 : m). Since a is
a strong M -vn-regular element, there exists x in R such that am = xa2m. Then
a− xa2 ∈ (0 : m). It follows that ā = x̄ā2. Hence (ii) holds.

(ii)=⇒(i) Let a ∈ R and let m ∈ M . Then for ā = a+ (0 : m) ∈ R/(0 : m),
there exist x̄ ∈ R/(0 : m) in such a way that ā = x̄ā2. Then a − xa2 ∈ (0 : m).
Thus am = xa2m and therefore a ∈ R is strongM -vn-regular. Hence (i) holds.

Lemma 3.2. Let M be an R-module. If R/(0 : M) is a strongly regular ring,

then M is a strongly regular module.

Proof. Let R/(0 : M) be a strongly regular ring. Let a ∈ R. For ā = a + (0 :
M) ∈ R/(0 : M), there exists x̄ ∈ R/(0 : M) such that ā = x̄ā2. It follows that
a− xa2 ∈ (0 : M). This implies that a− xa2 = x

′

for some x
′

∈ (0 : M). Let m
be an arbitrary element in M . Then am = xa2m.
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The upcoming Theorem offers parallel condition forM to be strongly regular.

Theorem 3.3. Take M , a finitely generated IFP -module. Here we get the fol-

lowing equivalent statements.

(i) R/(0 : M) is strongly regular.

(ii) M is a strongly regular module.

Proof. (i)=⇒(ii). Emulates from Lemma 3.2.

(ii)=⇒(i). As M is finitely generated, let {m1,m2, . . . ,mn} be a finite set of
generators of M . Then (0 : M) =

⋂

i(0 : mi), 1 ≤ i ≤ n.

Let N
′

= {a + (0 : m1), a + (0 : m2), . . . , a + (0 : mn) : a ∈ R}. Clearly N ′

is a subring of the ring
∑n

i=1
R/(0 : mi). Now we define a mapping φ : R/(0 :

M) → N
′

by φ(a + (0 : M)) = (a + (0 : m1), a + (0 : m2), . . . , a + (0 : mn)) for
each a+ (0 : M) ∈ R/(0 : M).

Clearly φ is an isomorphism. Now we claim that N
′

is strongly regular. By
Lemma 3.1, R/(0 : mi) is a strongly regular ring. Thus for each a ∈ R and
1 ≤ i ≤ n, there exist xi ∈ R such that a + (0 : mi) = xia

2 + (0 : mi). Then
a− xia

2 ∈ (0 : mi). This implies ami = xia
2mi and hence (1− xia)ami = 0.

Define x by the relation 1 − xa =
∏n

i=1
(1 − xia). Then (1 − xa)ami =

(
∏n

i=1
(1−xia)

)

ami. Now for i = 1, we have (1−xa)am1 =
(
∏n

i=1
(1−xia)

)

am1.

Since (1− x1a)am1 = 0, we have (1− x1a)m
′

= 0 for some m
′

= am ∈ M .

As M is an IFP -module, we have (1 − x1a)Rm
′

= 0. It follows that (1 −
x1a)[(1 − x2a)(1 − x3a) · · · (1 − xna)]m

′

= 0. Hence (1 − x1a)(1 − x2a)(1 −
x3a) · · · (1− xna)am1 = 0. Thus (1− xa)am1 = 0.

Similarly (1 − xa)ami =
(
∏n

i=1
(1 − xia)

)

ami = 0 for each i. Thus for

any (a + (0 : m1), a + (0 : m2), . . . , a + (0 : mn)) ∈ N
′

we have, (a + (0 :
m1), a + (0 : m2), . . . , a + (0 : mn)) = (x + (0 : m1), x + (0 : m2), . . . , x + (0 :
mn))(a

2 + (0 : m1), a
2 + (0 : m2), . . . , a

2 + (0 : mn)) where x ∈ R is defined by
the relation (1 − xa) =

∏n
i=1

(1 − xia). Hence N
′

is a strongly regular ring and
hence R/(0 : M) is strongly regular.

Proposition 3.4. Every homomorphic image of a strongly regular module is a

strongly regular module.

Proof. Suppose M1 is a strongly regular module and φ : M1 → M2 is an epimor-
phism. Let a ∈ R and let m2 ∈ M2. Then m2 = φ(m1) for some m1 ∈ M1.

Thus clearly am1 = xa2m1 for some x ∈ R since M1 is a strongly regular
module. Now am2 = aφ(m1) = φ(am1) = φ(xa2m1) = xa2φ(m1) = xa2m2.
Hence M2 is strongly regular.

The succeeding corollary is an instant outcome of Proposition 3.4.
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Corollary 3.5. Suppose M is a strongly regular module and K is a submodule

of M . Then M/K is a strongly regular module.

Definition 3.6. An R-module M is defined to be a weak commutative module
if for any a, b ∈ R, m ∈ M there exists b′ ∈ R such that abm = b′am.

Proposition 3.7. Take M , a finitely generated IFP R-module. Hereby we get

the equivalent axioms.

(i) M is a strongly regular module.

(ii) For every left ideals L1,L2 and every submodule K of M , (L1 ∩ L2)K ⊆
L1L2K and M is weak commutative.

(iii) For every left ideal L, every ideal I and every submodule K of M , (I∩L)K =
ILK and M is weak commutative.

(iv) For every ideals I1,I2 and every submodule K of M , (I1 ∩ I2)K = I1I2K
and M is weak commutative.

Proof. (i)=⇒(ii) Let L1,L2 be the left ideals of R and let K be a submodule of
M . Now let x ∈ (L1 ∩ L2)K. Then x =

∑

i liki where the sum is finite and for
some li ∈ L1 ∩ L2 and ki ∈ K. For any i, liki = yil

2

i ki for some yi ∈ R. Then
x =

∑

i yil
2

i ki =
∑

i(yili)(li)ki ∈ L1L2K. Hence (L1 ∩ L2)K ⊆ L1L2K.

Let a, b ∈ R and m ∈ M . By Theorem 3.4, R/(0 : M) is strongly regular.
Then for a ∈ R there exists x̄ ∈ R/(0 : M) such that ā = x̄ā2. It follows that
ā = āx̄ā. Since x̄ā is central, we have āb̄ = (āx̄ā)b̄ = āb̄(x̄ā) = b̄′ā for some
b̄′ = āb̄x̄ ∈ R/(0 : M). Then abm = b′am for all m ∈ M . Hence M is weak
commutative.

(ii)=⇒(iii)=⇒(iv) Are all obvious.

(iv)=⇒(i) Let a ∈ R and m ∈ M . Since am ∈ (< a > ∩ < a >)(Rm), we
have am ∈< a >< a > (Rm) by our assumption. Then am = r′a2m for some
r′ ∈ R since M is a weak commutative module. This completed the proof.
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