STRONGLY REGULAR MODULES

Govindarajulu Narayanan Sudharshana

AND
Duraisamy Sivakumar
Department of Mathematics
Annamalai University
Chidambaram 608001, Tamil Nadu, India
e-mail: sudharshanasss3@gmail.com
sivakumarmaths1965@gmail.com

Abstract

The notion of strongly regular modules over a ring which is not necessarily commutative is introduced. The relation between F-regular, $G F$ regular and $v n$-regular modules that are defined over commutative rings and strongly regular module is obtained. We have shown that a remark that if R is a reduced ring, then the R-module M is F-regular if and only if M is $G F$-regular is false. We have obtained the necessary and sufficient condition under which the remark is true. We have shown that if R is a commutative ring and if M is finitely generated multiplication module then the notion of F-regular, $G F$-regular, $v n$-regular and strongly regular are equivalent.

Keywords: strong M-vn-regular element, strongly regular module, F-regular module, $G F$-reguar module, vn-regular module, weak commutative module.
2020 Mathematics Subject Classification: 06F25.

1. Introduction

In this paper we introduce the notion of strongly regular modules over rings which are not necessarily commutative. Following [4], a module M is a Fieldhouse regular module, called F-regular if each submodule of M is pure [5]. Majid Ali [10] have demonstrated about pure submodules. Anderson and Fuller [1], Fieldhouse [6] described the submodule K a pure submodule of M if $A K=K \cap A M$ for every ideal A of R. Ribenboim [12] described K to be pure in M if $a M \cap K=a K$ for
each a in R. If M is a module over a commutative ring R, then the first condition implies the second and these descriptions are not equivalent in general [9, p.158], also in [7] they have followed the second definition. In this paper, we imitate the definition of purity as in Ribenboim [12]. Recall that an R-module M is called a multiplication module if for every submodule K of M there exists an ideal A of R such that $K=A M$. For an R-module M, the annihilator of $m \in M$ in R is $(0: m)=\{a \in R: a m=0\}$ and thus $(0: M)$ is the annihilator of M. A torsion free R-module M is expressed as, for any $r \in R$ and $m \in M$, if $r m=0$, then either $r=0$ or $m=0$. A submodule K of M is called complimented submodule if there exists a submodule L of M such that $K+L=M$ and $K \cap L=0$.

Following [2], a module M is called $G F$-regular(generalised F-regular) if for each $m \in M$ and $r \in R$, there exists $t \in R$ and a positive integer n such that $r^{n} t r^{n} m=r^{n} m$. Jayaram and Tekir [7] introduced Von Neumann regular module (vn-regular module for short). For a module M over a ring R, an element a of R is called M - $v n$-regular if $a M=a^{2} M$. An R-module M is said to be $v n$ regular module if for any m in $M, R m=a M$ for some a in R. All these three regularities namely, F-regular, $G F$-regular, $v n$-regular modules are defined over commutative rings. In [14], we introduced the notion of $V N$-regular module M over a ring R which is not necessarily commutative. A module M over a ring R is communicated as a strongly regular module if given $a \in R$ and $m \in M$, there exists $x \in R$ such that $a m=x a^{2} m$. This is infact a generalization of strongly regular rings to strongly regular modules. We know that a ring R is strongly regular if for every $r \in R$, there exists some $r^{\prime} \in R$ such that $r=r^{\prime} r^{2}$ and a ring R is strongly regular iff R is a reduced regular ring, [3, 8].

In this paper we find necessary and sufficient condition for a module M to be strongly regular. We have shown that if M is a module over a commutative ring R, then the notions of strongly regular module and F-regular module coincide. We have given an example of a F-regular module which is not strongly regular. We have obtained necessary and sufficient condition for a $G F$-regular module to be strongly regular. We have also shown that if M is a finitely generated multiplication module over a commutative ring then all the four notions of regularities namely, F-regular, $G F$-regular, strongly regular and $v n$-regular coincide.

Abduldaim [2] made a remark (Remark 5(1)) that if R is a reduced ring, then the R-module M is F-regular iff M is a $G F$-regular R-module. We show by an example that the remark is not true. We have given an example of a $G F$ regular module over a reduced ring R which is not F-regular. We have obtained condition under which the remark holds.

Throughout this paper, unless stated R stands for a ring with nonzero identity and all modules are nonzero unital left R-modules. If and only if is described as iff.

2. Characterizations of strongly regular modules

The upcoming section is a study about strongly regular modules. Initiated with the succeeding definition.

Definition 2.1. An element a of R is called strong M - $v n$-regular if for any given $m \in M$, there exists $x \in R$ such that $a m=x a^{2} m$. An R-module M is called strongly regular module if every element of R is strong M-vn-regular.

We now give an example of strongly regular module.
Example 2.2. Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) / a, b, c \in Z_{2}\right\}$ be the ring with usual matrices addition and multiplication. Then the R-module $M=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\}$ is a strongly regular module.

The succeeding theorem offers a depiction of strongly regular modules in connection with F-regular modules. In advance we recite the definitions of F regular module as in [5] and a pure submodule as in [12, 7]. Also an R-module M is professed to be an $I F P$-module if for any $r \in R$ and $m \in M$, if $r m=0$ then $r R m=0$ [13]. If M is a module over a commutative ring, then M is clearly an $I F P$-module.

Theorem 2.3. Presuming R to be a commutative ring. Then an R-module M is strongly regular iff M is a F-regular R-module.

Proof. Grant M to be a strongly regular module. Let K be a submodule of M and let $a \in R$. Clearly $a K \subseteq a M \cap K$. Let $y \in a M \cap K$. Then $y=k=a m$ for some $k \in K$ and $m \in M$. As M is strongly regular, there exists $x \in R$ such that $a m=x a^{2} m$. Then $y=x a^{2} m=x a(a m)=a x k \in a K$. Thus $a M \cap K \subseteq a K$. Hence M is F-regular.

Conversly, grant M to be a F-regular module. Let $a \in R$ and $m \in M$. Clearly $<a>m$, a submodule of M. Then $a M \cap<a>m=a(<a>m)$. Clearly $a m \in a M \cap<a>m$. Then $a m \in a<a>m$. This implies $a m=a\left(\sum_{i} r_{i} a\right) m$ for some $r_{i} \in R$, where the sum is finite. Subsequently $a m=\left(\sum_{i} r_{i}\right) a^{2} m=x a^{2} m$ for some $x=\sum_{i} r_{i} \in R$. Consequently M is a strongly regular module.

The following example will show that the above statement need not hold for a ring R, which is not necessarily commutative.
Example 2.4. Let $R=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) / a, b, c, d \in Z_{2}\right\}$ be the ring with usual matrices addition and multiplication. In both sense the R-module R_{R} is a F regular module as the only ideal J in R is either $\{0\}$ or R and hence if $J=\{0\}$,
for any submodule K of M we have $\{0\}=J K=K \cap J M$. If $J=R$ then $K=J K=K \cap J M$.

But, the element $a=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ of R is not a strong M-vn-regular element, as given $m=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ there is no $x \in R$ such that $a m=x a^{2} m$.

Proposition 2.5. Suppose M is an IF P-module and a F-regular module. Then the Prime radical of $R /(0: m)$ is zero for each $0 \neq m \in M$.

Proof. Let $0 \neq m \in M$. Let $\bar{a}=a+(0: m) \in R /(0: m)$. Suppose that $\bar{a}^{2}=\overline{0}$. Since M is F-regular, we hope $<a>m \cap a M=a(<a>m)$. Clearly $a m \in<$ $a>m \cap a M$. Then $a m \in a(<a>m)$. It follows that $a m=a\left(\sum_{i, j} r_{i} a r_{j}\right) m$ for some $r_{i}, r_{j} \in R$, where the sum is finite. Since $\bar{a}^{2}=\overline{0}$, we have $a^{2} m=0$ and as M is an $I F P$-module, accordingly $a m=0$. Hence $\bar{a}=\overline{0}$.

Another portrayal of a strongly regular module in connection with GFregular modules is given in the next result. Before that we recall the definition of $G F$-regular modules as in [2].

Theorem 2.6. Presuming R to be a commutative ring and the Prime radical of $R /(0: m)$ is zero for each $0 \neq m \in M$, then an R-module M is a strongly regular module iff M is a GF-regular module.

Proof. Grant M to be a strongly regular module. Followed by Theorem 2.3, M is a F-regular module. Since every F-regular module implies $G F$-regular. Accordingly M is a $G F$-regular module.

Conversly, grant M to be a $G F$-regular module. Let $a \in R$ and let K be any submodule of M. It is clear that $a K \subseteq a M \cap K$. Let $x \in a M \cap K$. Then $x=a m$, where $m \in M$.

As M is $G F$-regular. For $a \in R$ and $m \in M$, there exist $t \in R$ and a positive integer n such that $a^{n} t a^{n} m=a^{n} m$. This implies that $a\left(a^{n-1} t a^{n}-a^{n-1}\right) \in(0: m)$. Since $(0: m)$ is an ideal, we have

$$
\left(a^{n-1} t a^{n-1}\right) a\left(a^{n-1} t a^{n}-a^{n-1}\right)=a^{n-1} t a^{n}\left(a^{n-1} t a^{n}-a^{n-1}\right) \in(0: m) .
$$

Now,

$$
a^{n-2}\left(a\left(a^{n-1} t a^{n}-a^{n-1}\right)\right)=a^{n-1}\left(a^{n-1} t a^{n}-a^{n-1}\right) \in(0: m) .
$$

Then, $\left(a^{n-1} t a^{n}-a^{n-1}\right)^{2} \in(0: m)$. It follows that ${\overline{\left(a^{n-1} t a^{n}-a^{n-1}\right)}}^{2}=\overline{0}$.
Then by assumption, we have $\overline{\left(a^{n-1} t a^{n}-a^{n-1}\right)}=\overline{0}$. This implies that $\left(a^{n-1} t a^{n}-a^{n-1}\right) m=0$. Similarly proceeding, we have $\left(a^{2} a^{n}-a\right) m=0$. Then $x=a t^{\prime}(a m)$ where $t^{\prime}=t a^{n-1} \in R$. Thus $x \in a K$. Hence $a M \cap K=a K$. Followed by Theorem 2.3, M is a strongly regular module.

Now, recall that an element $e^{\prime} \in R$ is claimed to be weak idempotent if $e^{\prime}-e^{\prime 2} \in(0: M)[7]$ and $\langle a\rangle$ denotes the principal ideal generated by $a \in R$. Also an R-module M is a colon distributive module if $\left(K_{1}: M\right)+\left(K_{2}: M\right)=$ $\left(K_{1}+K_{2}: M\right)$ for all submodules K_{1}, K_{2} of $M[7]$.

Hence we have the next result on colon distributive module. However, first we require Lemma 2.7 which is shown in [14].

Lemma 2.7. Assuming M an R-module. Taking the ideals A_{1}, A_{2} of R in such a way that $A_{1}+A_{2}=R$ and $A_{1} A_{2} \subseteq(0: M)$. Then
(i) $A_{1}+(0: M)=<e^{\prime}>+(0: M)$ for some weak idempotent $e^{\prime} \in A_{1}$
(ii) $A_{2}+(0: M)=<1-e^{\prime}>+(0: M)$ for some weak idempotent $\left(1-e^{\prime}\right) \in A_{2}$
(iii) $A_{1} M=<e^{\prime}>M$ and $A_{2} M=<1-e^{\prime}>M$ for some weak idempotent elements e^{\prime} and $\left(1-e^{\prime}\right)$ such that $e^{\prime} \in A_{1}$ and $\left(1-e^{\prime}\right) \in A_{2}$.

Proposition 2.8. Assuming M a colon distributive module. If K is a complemented submodule of M, then $K=\left\langle e^{\prime}\right\rangle M$ for some weak idempotent element $e^{\prime} \in R$.

Proof. Suppose K has a complement. Surely there exist a submodule K^{\prime} in M such that $K+K^{\prime}=M$ and $K \cap K^{\prime}=0$. Now, $R=(M: M)=\left(K+K^{\prime}: M\right)=$ $(K: M)+\left(K^{\prime}: M\right)$. Also $(K: M) \cap\left(K^{\prime}: M\right)=\left(K \cap K^{\prime}: M\right)=(0: M)$, and hence $(K: M)\left(K^{\prime}: M\right) \subseteq(0: M)$. Followed by Lemma 2.7(iii), $(K: M) M=<$ $e^{\prime}>M$ for some weak idempotent element $e^{\prime} \in R$. Again $K=K \cap M=K \cap$ $\left((K: M) M+K^{\prime}\right)$ as $\left(K^{\prime}: M\right) M \subseteq K^{\prime}$ and $(K: M) M+\left(K^{\prime}: M\right) M=R M=M$. By the modular law, we have $K=(K: M) M+\left(K \cap K^{\prime}\right)=(K: M) M+0=<$ $e^{\prime}>M$ for some weak idempotent element $e^{\prime} \in R$.

The succeeding Lemma gives a condition for an element of R to be M $v n$-regular. In advance we recite the definitions of M-vn-regular element and $v n$-regular module as in $[7]$.

Lemma 2.9. Suppose R is a commutative ring and an element $a \in R$ is strong M-vn-regular then $a \in R$ is a M-vn-regular element.

Proof. Let $a \in R$ be a strong M-vn-regular element. Because of this, for any $m \in M$ there exist $x \in R$ in such a way that $a m=x a^{2} m=a^{2} x m \in a^{2} M$. This implies that $a M \subseteq a^{2} M$. Then clearly $a M=a^{2} M$. That being the case.

Now we can compile the characterizations of strongly regular modules with those of F-regular modules, $G F$-regular modules, $v n$-regular modules in the following.

Theorem 2.10. If R is a commutative ring and M is a finitely generated multiplication R-module. Then the axioms that follows are parallel to each other.
(i) M is a strongly regular module.
(ii) Every element of R is M-vn-regular.
(iii) M is a F-regular module.
(iv) M is a $G F$-regular module and the prime radical of $R /(0: m)$ is zero foreach $0 \neq m \in M$.

Proof. (i) \Longrightarrow (ii). Emulates from Lemma 2.9.
(ii) \Longrightarrow (iii). Emulates from [7, Theorem 1].
(i) \Longleftrightarrow (iii). Emulates from Theorem 2.3
(i) \Longrightarrow (iv). Let (i) holds. Then clearly M, a $G F$-regular module. Now let $0 \neq m \in M$. Let $\bar{a}=a+(0: m) \in R /(0: m)$ such that $\bar{a}^{2}=\overline{0}$. As M is F-regular, $a M \cap a m=a M \cap<a>m=a(<a>m)$ is clear. Since $a m \in a M \cap<a>m$, it follows that $a m=a\left(\sum_{i} r_{i} a\right) m$ for some $r_{i} \in R$, where the sum is finite. Since $\bar{a}^{2}=\overline{0}$, it follows that $a^{2} m=0$ and then $a m=0$. Hence $\bar{a}=\overline{0}$.
(iv) $\Longrightarrow($ i). Emulates from Theorem 2.6. Hence concluded.

Theorem 2.11. If R is a commutative ring and M is a finitely generated R module. Then the axioms that follows are parallel to each other.
(i) M is a strongly regular module and a multiplication R-module.
(ii) M is a vn-regular module.

Proof. (i) \Longrightarrow (ii) Theorem 2.10 induces every element of R is M-vn-regular. Then we conclude that M is a $v n$-regular module by [7, Theorem 2].
(ii) \Longrightarrow (i) $[7$, Theorem 2] induces M is a multiplication module and a F regular module. Then (i) holds by Theorem 2.10.

Abduldaim [2] had a Remark 5 that if R is a reduced ring, then an R module M is F-regular iff M is a $G F$-regular module. We show that the remark is not true. As Z, a reduced ring, the Z-module Z_{4} is a $G F$-regular module, however Z_{4} is not an F-regular Z-module. For the submodule $K=\{0,2\}$ and for $2 \in Z, 2 Z_{4} \cap K=\{0,2\}$, where as $2 K=\{0\}$ hence $2 Z_{4} \cap K \neq 2 K$. Also $K \cap<2>Z_{4}=\{0,2\}$ and $<2>K=\{0\}$. Hence $K \cap I Z_{4} \neq I K$. Thus K is not a pure submodule in the sense of $[7,12]$ and in the sense of $[1,6]$. Now we find condition under which the remark is true.

Proposition 2.12. Presuming R as a commutative and a reduced ring and M as a torsion free R-module. Then M is a F-regular module iff M is a $G F$-regular module.

Proof. Consider M to be a F-regular module, then clearly M is a $G F$-regular module. Conversly, let M be a $G F$-regular module. Let $a \in R$ and $m \in M$. Then there exists t in R such that $a^{n} t a^{n} m=a^{n} m$ for some integer n. If $m=0$, then $x a^{2} m=a m$ for any $x \in R$. Suppose $m \neq 0$. Now $\left(a^{n} t a^{n}-a^{n}\right) m=0$.

Since $m \neq 0$, we have $\left(a^{n} t a^{n}-a^{n}\right)=0$. Then $\left(a^{n} t a^{n-1}-a^{n-1}\right) a=0$. Hence $\left(a^{n} t a^{n-1}-a^{n-1}\right) a^{n-1}=0$ and $\left(a^{n} t a^{n-1}-a^{n-1}\right) a^{n-1} a t a^{n-1}=0$. Thus $\left(a^{n} t a^{n-1}-\right.$ $\left.a^{n-1}\right) a^{n} t a^{n-1}=0$. Hence $\left(a^{n} t a^{n-1}-a^{n-1}\right)^{2}=0$. Since R is reduced, we have $\left(a^{n} t a^{n-1}-a^{n-1}\right)=0$. Similarly proceeding $\left(a^{n} t a-a\right)=0$. Thus $a\left(a^{n-1} t\right) a-a=$ 0 . Let $a^{n-1} t=x$. Hence $a x a-a=0$ and this implies that $a x a=a$ and thus $a=x a^{2}$. Thus $a m=x a^{2} m$. Because of this $a \in R$ is a strong M-vn-regular element and we conclude M is a strongly regular module. Thereby M is a F regular module by Theorem 2.3.

Proposition 2.13. Presuming R as a reduced ring and M as a reduced R-module. Then an R-module M is F-regular iff M is a $G F$-regular module.
Proof. Grant M as a F-regular module. Because of this, M is a $G F$-regular module. Conversely, assume M, a $G F$-regular module. Let K be any submodule of M and let $a \in R$. Clearly $a K \subseteq a M \cap K$. Let $y \in a M \cap K$. Then $y=a m$ for some $m \in M$. Because of M, a $G F$-regular module, there exists $t \in R$ and a positive integer n such that $a^{n} t a^{n} m=a^{n} m$.

Then $0=\left(a^{n} t a^{n}-a^{n}\right) m=a^{2}\left(\left(a^{n-2} t a^{n}-a^{n-2}\right) m\right)$. Because of M, a reduced module, we get $a\left(\left(a^{n-2} t a^{n}-a^{n-2}\right) m=0\right.$. Similarly proceeding we have $a\left(t a^{n}-\right.$ 1) $m=0$. Thus $y=a t a^{n} m=a\left(t a^{n-1}\right)(a m) \in a K$. Hence $a M \cap K=a K$. Hence the proof.

3. Main results on strongly regular modules

Lemma 3.1. Let M be an IF P-module. Then the axioms that follows are equivalent.
(i) M is a strongly regular module.
(ii) $R /(0: m)$ is a strongly regular ring for each $0 \neq m \in M$.

Proof. (i) \Longrightarrow (ii) Let $0 \neq m \in M$. Let $\bar{a}=a+(0: m) \in R /(0: m)$. Since a is a strong M-vn-regular element, there exists x in R such that $a m=x a^{2} m$. Then $a-x a^{2} \in(0: m)$. It follows that $\bar{a}=\bar{x} \bar{a}^{2}$. Hence (ii) holds.
(ii) \Longrightarrow (i) Let $a \in R$ and let $m \in M$. Then for $\bar{a}=a+(0: m) \in R /(0: m)$, there exist $\bar{x} \in R /(0: m)$ in such a way that $\bar{a}=\bar{x} \bar{a}^{2}$. Then $a-x a^{2} \in(0: m)$. Thus $a m=x a^{2} m$ and therefore $a \in R$ is strong M-vn-regular. Hence (i) holds.

Lemma 3.2. Let M be an R-module. If $R /(0: M)$ is a strongly regular ring, then M is a strongly regular module.
Proof. Let $R /(0: M)$ be a strongly regular ring. Let $a \in R$. For $\bar{a}=a+(0$: $M) \in R /(0: M)$, there exists $\bar{x} \in R /(0: M)$ such that $\bar{a}=\bar{x} \bar{a}^{2}$. It follows that $a-x a^{2} \in(0: M)$. This implies that $a-x a^{2}=x^{\prime}$ for some $x^{\prime} \in(0: M)$. Let m be an arbitrary element in M. Then $a m=x a^{2} m$.

The upcoming Theorem offers parallel condition for M to be strongly regular.
Theorem 3.3. Take M, a finitely generated IFP-module. Here we get the following equivalent statements.
(i) $R /(0: M)$ is strongly regular.
(ii) M is a strongly regular module.

Proof. (i) \Longrightarrow (ii). Emulates from Lemma 3.2.
(ii) $\Longrightarrow(\mathrm{i})$. As M is finitely generated, let $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ be a finite set of generators of M. Then $(0: M)=\bigcap_{i}\left(0: m_{i}\right), 1 \leq i \leq n$.

Let $N^{\prime}=\left\{a+\left(0: m_{1}\right), a+\left(0: m_{2}\right), \ldots, a+\left(0: m_{n}\right): a \in R\right\}$. Clearly N^{\prime} is a subring of the ring $\sum_{i=1}^{n} R /\left(0: m_{i}\right)$. Now we define a mapping $\phi: R /(0:$ $M) \rightarrow N^{\prime}$ by $\phi(a+(0: M))=\left(a+\left(0: m_{1}\right), a+\left(0: m_{2}\right), \ldots, a+\left(0: m_{n}\right)\right)$ for each $a+(0: M) \in R /(0: M)$.

Clearly ϕ is an isomorphism. Now we claim that N^{\prime} is strongly regular. By Lemma 3.1, $R /\left(0: m_{i}\right)$ is a strongly regular ring. Thus for each $a \in R$ and $1 \leq i \leq n$, there exist $x_{i} \in R$ such that $a+\left(0: m_{i}\right)=x_{i} a^{2}+\left(0: m_{i}\right)$. Then $a-x_{i} a^{2} \in\left(0: m_{i}\right)$. This implies $a m_{i}=x_{i} a^{2} m_{i}$ and hence $\left(1-x_{i} a\right) a m_{i}=0$.

Define x by the relation $1-x a=\prod_{i=1}^{n}\left(1-x_{i} a\right)$. Then $(1-x a) a m_{i}=$ $\left(\prod_{i=1}^{n}\left(1-x_{i} a\right)\right) a m_{i}$. Now for $i=1$, we have $(1-x a) a m_{1}=\left(\prod_{i=1}^{n}\left(1-x_{i} a\right)\right) a m_{1}$. Since $\left(1-x_{1} a\right) a m_{1}=0$, we have $\left(1-x_{1} a\right) m^{\prime}=0$ for some $m^{\prime}=a m \in M$.

As M is an $I F P$-module, we have $\left(1-x_{1} a\right) R m^{\prime}=0$. It follows that $(1-$ $\left.x_{1} a\right)\left[\left(1-x_{2} a\right)\left(1-x_{3} a\right) \cdots\left(1-x_{n} a\right)\right] m^{\prime}=0$. Hence $\left(1-x_{1} a\right)\left(1-x_{2} a\right)(1-$ $\left.x_{3} a\right) \cdots\left(1-x_{n} a\right) a m_{1}=0$. Thus $(1-x a) a m_{1}=0$.

Similarly $(1-x a) a m_{i}=\left(\prod_{i=1}^{n}\left(1-x_{i} a\right)\right) a m_{i}=0$ for each i. Thus for any $\left(a+\left(0: m_{1}\right), a+\left(0: m_{2}\right), \ldots, a+\left(0: m_{n}\right)\right) \in N^{\prime}$ we have, $(a+(0:$ $\left.\left.m_{1}\right), a+\left(0: m_{2}\right), \ldots, a+\left(0: m_{n}\right)\right)=\left(x+\left(0: m_{1}\right), x+\left(0: m_{2}\right), \ldots, x+(0:\right.$ $\left.\left.m_{n}\right)\right)\left(a^{2}+\left(0: m_{1}\right), a^{2}+\left(0: m_{2}\right), \ldots, a^{2}+\left(0: m_{n}\right)\right)$ where $x \in R$ is defined by the relation $(1-x a)=\prod_{i=1}^{n}\left(1-x_{i} a\right)$. Hence N^{\prime} is a strongly regular ring and hence $R /(0: M)$ is strongly regular.

Proposition 3.4. Every homomorphic image of a strongly regular module is a strongly regular module.

Proof. Suppose M_{1} is a strongly regular module and $\phi: M_{1} \rightarrow M_{2}$ is an epimorphism. Let $a \in R$ and let $m_{2} \in M_{2}$. Then $m_{2}=\phi\left(m_{1}\right)$ for some $m_{1} \in M_{1}$.

Thus clearly $a m_{1}=x a^{2} m_{1}$ for some $x \in R$ since M_{1} is a strongly regular module. Now $a m_{2}=a \phi\left(m_{1}\right)=\phi\left(a m_{1}\right)=\phi\left(x a^{2} m_{1}\right)=x a^{2} \phi\left(m_{1}\right)=x a^{2} m_{2}$. Hence M_{2} is strongly regular.

The succeeding corollary is an instant outcome of Proposition 3.4.

Corollary 3.5. Suppose M is a strongly regular module and K is a submodule of M. Then M / K is a strongly regular module.

Definition 3.6. An R-module M is defined to be a weak commutative module if for any $a, b \in R, m \in M$ there exists $b^{\prime} \in R$ such that $a b m=b^{\prime} a m$.

Proposition 3.7. Take M, a finitely generated IFP R-module. Hereby we get the equivalent axioms.
(i) M is a strongly regular module.
(ii) For every left ideals L_{1}, L_{2} and every submodule K of M, $\left(L_{1} \cap L_{2}\right) K \subseteq$ $L_{1} L_{2} K$ and M is weak commutative.
(iii) For every left ideal L, every ideal I and every submodule K of $M,(I \cap L) K=$ $I L K$ and M is weak commutative.
(iv) For every ideals I_{1}, I_{2} and every submodule K of M, $\left(I_{1} \cap I_{2}\right) K=I_{1} I_{2} K$ and M is weak commutative.

Proof. (i) $\Longrightarrow(i i)$ Let L_{1}, L_{2} be the left ideals of R and let K be a submodule of M. Now let $x \in\left(L_{1} \cap L_{2}\right) K$. Then $x=\sum_{i} l_{i} k_{i}$ where the sum is finite and for some $l_{i} \in L_{1} \cap L_{2}$ and $k_{i} \in K$. For any $i, l_{i} k_{i}=y_{i} l_{i}^{2} k_{i}$ for some $y_{i} \in R$. Then $x=\sum_{i} y_{i} i_{i}^{2} k_{i}=\sum_{i}\left(y_{i} l_{i}\right)\left(l_{i}\right) k_{i} \in L_{1} L_{2} K$. Hence $\left(L_{1} \cap L_{2}\right) K \subseteq L_{1} L_{2} K$.

Let $a, b \in R$ and $m \in M$. By Theorem 3.4, $R /(0: M)$ is strongly regular. Then for $a \in R$ there exists $\bar{x} \in R /(0: M)$ such that $\bar{a}=\bar{x} \bar{a}^{2}$. It follows that $\bar{a}=\bar{a} \bar{x} \bar{a}$. Since $\bar{x} \bar{a}$ is central, we have $\bar{a} \bar{b}=(\bar{a} \bar{x} \bar{a}) \bar{b}=\bar{a} \bar{b}(\bar{x} \bar{a})=\bar{b}^{\prime} \bar{a}$ for some $\overline{b^{\prime}}=\bar{a} \bar{b} \bar{x} \in R /(0: M)$. Then $a b m=b^{\prime} a m$ for all $m \in M$. Hence M is weak commutative.
(ii) \Longrightarrow (iii) \Longrightarrow (iv) Are all obvious.
(iv) \Longrightarrow (i) Let $a \in R$ and $m \in M$. Since $a m \in(<a>\cap<a>)(R m)$, we have $a m \in<a><a\rangle(R m)$ by our assumption. Then $a m=r^{\prime} a^{2} m$ for some $r^{\prime} \in R$ since M is a weak commutative module. This completed the proof.

Acknowledgment

I thank Dr. P. Dheena, Professor, Department of Mathematics, Annamalai University, for suggesting the problem and going through the proof.

References

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer-Verlag, 1974).
[2] M.A. Abduldaim and S. Chen, GF-Regular modules, J. Appl. Math., Article ID 630285 (2013), 7 pages.
https://doi.org/10.1155/2013/630285
[3] R.F. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc. 63 (1948) 457-481. https://doi.org/10.2307/1990570
[4] T. Cheatham and E. Enochs, Regular modules, Math. Japonica 26 (1) (1981) 9-12.
[5] D.J. Fieldhouse, Purity and flatness, Ph.D. Thesis (McGill University, Montreal, Canada, 1967).
[6] D.J. Fieldhouse, Pure theories, Math. Ann. 184 (1969) 1-18.
[7] C. Jayaraman and U. Tekir, Von Neumann regular modules, Comm. Alg. 46 (5) (2018) 2205-2217.
https://doi.org/10.1080/00927872.2017.1372460
[8] T. Kando, Strong regularity in arbitrary rings, Nagoya Math. J. 4 (1952) 51-53.
[9] T.Y. Lam, Lectures on Modules and Rings (Springer, 1999).
[10] M. Majid Ali and J. David Smith, Pure submodules of multiplication modules, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry 45 (10 (2004) 61-74.
[11] N.H. Mc Coy, The Theory of Rings (Chelsca Publishing Company, 1973).
[12] P. Ribenboim, Algebraic Numbers (Wiley, 1972).
[13] D. Ssevviiri, On completely prime submodules, Int. Electronic J. Alg. 19 (2016) 77-90. https://doi.org/10.24330/ieja. 266194
[14] G.N. Sudharshana and D. Sivakumar, On Von Neumann regular Modules, Adv. Math. Sci. J. 9 (4) (2020) 1921-1931. https://doi.org/10.37418/amsj.9.4.51

