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Abstract

The notion of strongly regular modules over a ring which is not nec-
essarily commutative is introduced. The relation between F-regular, GF-
regular and vn-regular modules that are defined over commutative rings and
strongly regular module is obtained. We have shown that a remark that if
R is a reduced ring, then the R-module M is F-regular if and only if M is
G F-regular is false. We have obtained the necessary and sufficient condition
under which the remark is true. We have shown that if R is a commutative
ring and if M is finitely generated multiplication module then the notion of
F-regular, GF-regular, vn-regular and strongly regular are equivalent.
Keywords: strong M-vn-regular element, strongly regular module, F-regular
module, GF-reguar module, vn-regular module, weak commutative module.
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1. INTRODUCTION

In this paper we introduce the notion of strongly regular modules over rings
which are not necessarily commutative. Following [4], a module M is a Fieldhouse
regular module, called F-regular if each submodule of M is pure [5]. Majid Ali [10]
have demonstrated about pure submodules. Anderson and Fuller [1], Fieldhouse
[6] described the submodule K a pure submodule of M if AK = KNAM for every
ideal A of R. Ribenboim [12] described K to be pure in M if aM N K = aK for
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each a in R. If M is a module over a commutative ring R, then the first condition
implies the second and these descriptions are not equivalent in general [9, p.158],
also in [7] they have followed the second definition. In this paper, we imitate the
definition of purity as in Ribenboim [12]. Recall that an R-module M is called a
multiplication module if for every submodule K of M there exists an ideal A of
R such that K = AM. For an R-module M, the annihilator of m € M in R is
(0:m) ={a € R:am =0} and thus (0 : M) is the annihilator of M. A torsion
free R-module M is expressed as, for any r € R and m € M, if rm = 0, then
either r = 0 or m = 0. A submodule K of M is called complimented submodule
if there exists a submodule L of M such that K + L =M and KN L = 0.

Following [2], a module M is called GF-regular(generalised F-regular) if for
each m € M and r € R, there exists ¢ € R and a positive integer n such that
r™r"m = r"m. Jayaram and Tekir [7] introduced Von Neumann regular module
(vn-regular module for short). For a module M over a ring R, an element a
of R is called M-vn-regular if aM = a?M. An R-module M is said to be vn-
regular module if for any m in M, Rm = aM for some a in R. All these three
regularities namely, F-regular, G F-regular, vn-regular modules are defined over
commutative rings. In [14], we introduced the notion of V N-regular module M
over a ring R which is not necessarily commutative. A module M over a ring R
is communicated as a strongly regular module if given ¢ € R and m € M, there
exists € R such that am = xza?m. This is infact a generalization of strongly
regular rings to strongly regular modules. We know that a ring R is strongly
regular if for every r € R, there exists some r’ € R such that r» = 7/r? and a ring
R is strongly regular iff R is a reduced regular ring, [3, 8].

In this paper we find necessary and sufficient condition for a module M to be
strongly regular. We have shown that if M is a module over a commutative ring
R, then the notions of strongly regular module and F-regular module coincide.
We have given an example of a F-regular module which is not strongly regular.
We have obtained necessary and sufficient condition for a G F-regular module to
be strongly regular. We have also shown that if M is a finitely generated multi-
plication module over a commutative ring then all the four notions of regularities
namely, F-regular, GF-regular, strongly regular and vn-regular coincide.

Abduldaim [2] made a remark (Remark 5(1)) that if R is a reduced ring,
then the R-module M is F-regular iff M is a GF-regular R-module. We show
by an example that the remark is not true. We have given an example of a GF-
regular module over a reduced ring R which is not F-regular. We have obtained
condition under which the remark holds.

Throughout this paper, unless stated R stands for a ring with nonzero iden-
tity and all modules are nonzero unital left R-modules. If and only if is described
as iff.
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2. CHARACTERIZATIONS OF STRONGLY REGULAR MODULES

The upcoming section is a study about strongly regular modules. Initiated with
the succeeding definition.

Definition 2.1. An element a of R is called strong M-vn-regular if for any given
m € M, there exists € R such that am = za’m. An R-module M is called
strongly regular module if every element of R is strong M-vn-regular.

We now give an example of strongly regular module.

a b

Example 2.2. Let R = { <0

a,b,ce Zg} be the ring with usual matrices

addition and multiplication. Then the R-module M = { (8 8) <8 (1)> } is a

strongly regular module.

The succeeding theorem offers a depiction of strongly regular modules in
connection with F-regular modules. In advance we recite the definitions of F-
regular module as in [5] and a pure submodule as in [12, 7]. Also an R-module
M is professed to be an IF P-module if for any r € R and m € M, if rm = 0
then rRm = 0 [13]. If M is a module over a commutative ring, then M is clearly
an [ FP-module.

Theorem 2.3. Presuming R to be a commutative ring. Then an R-module M
is strongly reqular iff M is a F-regqular R-module.

Proof. Grant M to be a strongly regular module. Let K be a submodule of M
and let a € R. Clearly aK CaM NK. Let y € aM NK. Then y = k = am
for some k € K and m € M. As M is strongly regular, there exists x € R such
that am = xa?m. Then y = za?m = za(am) = axk € aK. Thus aM N K C aK.
Hence M is F-regular.

Conversly, grant M to be a F-regular module. Let a € R and m € M. Clearly
< a > m, a submodule of M. Then aMN < a > m = a(< a > m). Clearly
am € aMN < a > m. Then am € a < a > m. This implies am = a(zi rl-a)mfor
some 1; € R, where the sum is finite. Subsequently am = (ZZ ri)a2m = za’m
for some x = ), 7, € R. Consequently M is a strongly regular module.

The following example will show that the above statement need not hold for
a ring R, which is not necessarily commutative. [ |

Example 2.4. Let R = {<Z Z

matrices addition and multiplication. In both sense the R-module Rp is a F-
regular module as the only ideal J in R is either {0} or R and hence if J = {0},

>/a, b,c,d € Zg} be the ring with usual
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for any submodule K of M we have {0} = JK = KNJM. If J = R then
K=JK=KnJM.

But, the element a = (1 !

1 1) of R is not a strong M-vn-regular element, as

given m = <(1) (1)> there is no = € R such that am = za’m.

Proposition 2.5. Suppose M is an IF P-module and a F-regular module. Then
the Prime radical of R/(0: m) is zero for each 0 #m € M.

Proof. Let 0 #m € M. Let a =a+ (0:m) € R/(0: m). Suppose that a? = 0.
Since M is F-regular, we hope < a > mNaM = a(< a > m). Clearly am €<

a>mnNaM. Then am € a(< a > m). It follows that am = a( Y, ; rsar;)m for
2

7/7
some 7;,7; € R, where the sum is finite. Since a’ =0, we have a Tr]L =0 and as
M is an IF P-module, accordingly am = 0. Hence a = 0.

Another portrayal of a strongly regular module in connection with GF-
regular modules is given in the next result. Before that we recall the definition

of GF-regular modules as in [2]. ]

Theorem 2.6. Presuming R to be a commutative ring and the Prime radical of
R/(0:m) is zero for each 0 # m € M, then an R-module M is a strongly regular
module iff M is a GF-reqular module.

Proof. Grant M to be a strongly regular module. Followed by Theorem 2.3,
M is a F-regular module. Since every F-regular module implies GF-regular.
Accordingly M is a GF-regular module.

Conversly, grant M to be a GF-regular module. Let a € R and let K be any
submodule of M. It is clear that aK C aM NK. Let x € aM N K. Then x = am,
where m € M.

As M is GF-regular. For a € R and m € M, there exist t € R and a positive
integer n such that a™ta™m = a™m. This implies that a(a" 'ta"—a""1) € (0 : m).
Since (0 : m) is an ideal, we have

(a"iltanfl)a(anflta" - a"fl) =" ta" (a"ilta" — a"il) € (0:m).

Now,
a2 (a(a"ilta" - a"il)) = a"il(anflta" — a"fl) € (0:m).

Then, (a” 'a™ —a" )2 € (0 : m). It follows that (a"1ta™ — (1"_1)2 =0.

Then by assumption, we have (a"~1ta™ —a”~1) = 0. This implies that
(@™ a™ — a™')m = 0. Similarly proceeding, we have (ata™ — a)m = 0. Then
z = at'(am) where t = ta”' € R. Thus z € aK. Hence aM N K = aK.
Followed by Theorem 2.3, M is a strongly regular module.
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Now, recall that an element ¢/ € R is claimed to be weak idempotent if
e —¢e? € (0: M) [7] and < a > denotes the principal ideal generated by a € R.
Also an R-module M is a colon distributive module if (K : M) + (Ko : M) =
(K1 + Ky : M) for all submodules K7, Ky of M [7].

Hence we have the next result on colon distributive module. However, first
we require Lemma 2.7 which is shown in [14]. |

Lemma 2.7. Assuming M an R-module. Taking the ideals A1, Ao of R in such
a way that Ay + Ay = R and AyAs C (0: M). Then

(i) A1+ (0: M)=<¢€>+(0: M) for some weak idempotent e’ € A;
(ii) Ao+ (0: M) =<1—¢ >+(0: M) for some weak idempotent (1 —e’) € Az
(i) AiM =< € > M and AsM =< 1—¢ > M for some weak idempotent
elements € and (1 — €') such that ¢’ € Ay and (1 —¢€') € As.

Proposition 2.8. Assuming M a colon distributive module. If K is a comple-
mented submodule of M, then K =< e’ > M for some weak idempotent element
¢ € R.

Proof. Suppose K has a complement. Surely there exist a submodule K’ in M
such that K + K'= M and KNK'=0. Now, R=(M:M)=(K+K': M) =
(K: M)+ (K':M). Also (K : M)N(K': M)=(KNK'":M)=(0: M), and
hence (K : M)(K': M) C (0 : M). Followed by Lemma 2.7(iii), (K : M)M =<
¢/ > M for some weak idempotent element ¢/ € R. Again K = KNM = KN
(K:M)M+K')as (K': M)M C K"and (K : M)M+(K': M)M = RM = M.
By the modular law, we have K = (K : M)M + (KN K') = (K : M\)M + 0 =<
e/ > M for some weak idempotent element ¢’ € R.

The succeeding Lemma gives a condition for an element of R to be M-
vn-regular. In advance we recite the definitions of M-vn-regular element and
vn-regular module as in[7]. |

Lemma 2.9. Suppose R is a commutative ring and an element a € R is strong
M -vn-regular then a € R is a M -vn-regular element.

Proof. Let a € R be a strong M-vn-regular element. Because of this, for any
m € M there exist x € R in such a way that am = za’m = a’xm € a®>M. This
implies that aM C a?M. Then clearly aM = a?M. That being the case.

Now we can compile the characterizations of strongly regular modules with
those of F-regular modules, G F-regular modules, vn-regular modules in the fol-
lowing. [ |

Theorem 2.10. If R is a commutative Ting and M is a finitely generated mul-
tiplication R-module. Then the axioms that follows are parallel to each other.
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(i

i)
(ii) Ewery element of R is M-vn-regular.

)
)

M is a strongly reqular module.
(iii)) M is a F-regular module.

M is a GF -regular module and the prime radical of R/(0 : m) is zero foreach
0£#me M.

(iv

Proof. (i)=(ii). Emulates from Lemma 2.9.

(ii)==(iii). Emulates from [7, Theorem 1].

(i)«<=(iii). Emulates from Theorem 2.3

(i)=>(iv). Let (i) holds. Then clearly M, a GF-regular module. Now let
0#mée M. Leta = a+(0: m) € R/(0: m) such that @®> = 0. As M is F-regular,
aM Nam =aMN < a>m=a(< a>m)is clear. Since am € aMN < a > m,
it follows that am = a( > ria)m for some r; € R, where the sum is finite. Since
a’® = 0, it follows that a?m = 0 and then am = 0. Hence @ = 0.

(iv)==(i). Emulates from Theorem 2.6. Hence concluded. ]

Theorem 2.11. If R is a commutative ring and M 1is a finitely generated R-
module. Then the axioms that follows are parallel to each other.

(i) M is a strongly regular module and a multiplication R-module.

(il) M is a vn-regular module.

Proof. (i)==(ii) Theorem 2.10 induces every element of R is M-vn-regular.
Then we conclude that M is a vn-regular module by [7, Theorem 2].

(i))==(i) [7, Theorem 2] induces M is a multiplication module and a F-
regular module. Then (i) holds by Theorem 2.10.

Abduldaim [2] had a Remark 5 that if R is a reduced ring, then an R-
module M is F-regular iff M is a GF-regular module. We show that the remark
is not true. As Z, a reduced ring, the Z-module Z; is a GF-regular module,
however Z; is not an F-regular Z-module. For the submodule K = {0,2} and
for 2 € Z, 2Z, N K = {0,2}, where as 2K = {0} hence 2Z, N K # 2K. Also
Kn<2>2Z,={0,2} and < 2> K = {0}. Hence K NIZ; # IK. Thus K is
not a pure submodule in the sense of [7, 12] and in the sense of [1, 6]. Now we
find condition under which the remark is true. |

Proposition 2.12. Presuming R as a commutative and a reduced ring and M
as a torsion free R-module. Then M is a F-regular module iff M is a GF -regular
module.

Proof. Consider M to be a F-regular module, then clearly M is a GF-regular
module. Conversly, let M be a GF-regular module. Let a € R and m € M.
Then there exists ¢t in R such that a"ta™m = a™m for some integer n. If m =0,
then za?m = am for any x € R. Suppose m # 0. Now (a"ta" — a™)m = 0.
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Since m # 0, we have (a"ta™ — a") = 0. Then (a"ta® ! — a"!)a = 0. Hence
(a"ta™ ' —a"1)a" ! = 0and (a™ta™ ' —a""1)a" tata” ' = 0. Thus (a"ta" ! —
a" Ya"ta" ! = 0. Hence (a"ta" ! —a" )2 = 0. Since R is reduced, we have
(a"ta™ ' —a"" 1) = 0. Similarly proceeding (a"ta—a) = 0. Thus a(a™ 't)a—a =
0. Let a® 't = 2. Hence axa — a = 0 and this implies that aza = a and thus
a = za®. Thus am = za®’m. Because of this a € R is a strong M-vn-regular
element and we conclude M is a strongly regular module. Thereby M is a F-

regular module by Theorem 2.3. [ |

Proposition 2.13. Presuming R as a reduced ring and M as a reduced R-module.
Then an R-module M is F-regular iff M is a GF-regular module.

Proof. Grant M as a F-regular module. Because of this, M is a GF-regular
module. Conversely, assume M, a GF-regular module. Let K be any submodule
of M and let a € R. Clearly aK CaM NK. Let y € aM N K. Then y = am
for some m € M. Because of M, a GF-regular module, there exists t € R and a
positive integer n such that a"ta>m = a"m.

Then 0 = (a™ta" —a™)m = a®((a"2ta™ — a™2)m). Because of M, a reduced
module, we get a((a" ?ta™ — a" 2)m = 0. Similarly proceeding we have a(ta™ —
1)m = 0. Thus y = ata™m = a(ta” ')(am) € aK. Hence aM N K = aK. Hence
the proof. [ |

3. MAIN RESULTS ON STRONGLY REGULAR MODULES

Lemma 3.1. Let M be an IFP-module. Then the axioms that follows are equiv-
alent.

(i) M is a strongly regular module.
(i1) R/(0:m) is a strongly regular ring for each 0 #m € M.

Proof. (i)=(ii) Let 0 #m € M. Let a=a+ (0: m) € R/(0: m). Since a is
a strong M-vn-regular element, there exists = in R such that am = xza?m. Then
a—za® € (0:m). It follows that @ = za®. Hence (ii) holds.

(i))==(i) Let a € R and let m € M. Then for a =a+ (0: m) € R/(0: m),
there exist £ € R/(0 : m) in such a way that a = za®. Then a — za® € (0 : m).
Thus am = wa?m and therefore a € R is strong M-vn-regular. Hence (i) holds. =

Lemma 3.2. Let M be an R-module. If R/(0 : M) is a strongly reqular ring,
then M 1is a strongly reqular module.

Proof. Let R/(0 : M) be a strongly regular ring. Let a € R. For a = a+ (0 :
M) € R/(0 : M), there exists Z € R/(0 : M) such that a = za®. It follows that
a —za? € (0: M). This implies that a — za? = & for some = € (0: M). Let m

be an arbitrary element in M. Then am = za’m. [ |
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The upcoming Theorem offers parallel condition for M to be strongly regular.

Theorem 3.3. Take M, a finitely generated I F'P-module. Here we get the fol-
lowing equivalent statements.

(i) R/(0: M) is strongly reqular.

(ii) M is a strongly regular module.

Proof. (i)=(ii). Emulates from Lemma 3.2.

(il)==(i). As M is finitely generated, let {my, ma,...,m,} be a finite set of
generators of M. Then (0: M) =(),(0:m;), 1 <i<mn.

Let N' = {a+(0:m1),a+ (0:my),...,a+(0:m,):ac R} Clearly N’
is a subring of the ring Y i ; R/(0 : m;). Now we define a mapping ¢: R/(0 :
M) — N by ¢(a+(0: M) = (a+(0:m1),a+(0:my),...,a+ (0:m,)) for
each a+ (0: M) € R/(0: M).

Clearly ¢ is an isomorphism. Now we claim that N’ is strongly regular. By
Lemma 3.1, R/(0 : m;) is a strongly regular ring. Thus for each a € R and
1 < i < n, there exist z; € R such that a + (0 : m;) = z;a®> + (0 : m;). Then
a — z;a% € (0 : m;). This implies am; = x;a?m; and hence (1 — z;a)am; = 0.

Define x by the relation 1 — za = [[;,(1 — 2;a). Then (1 — za)am; =
(TT72;(1—=ia))am;. Now for i = 1, we have (1—za)am; = ([}, (1—z;a))am,.
Since (1 — z1a)am; = 0, we have (1 — z1a)m’ = 0 for some m' = am € M.

As M is an IFP-module, we have (1 — z1a)Rm’ = 0. It follows that (1 —
z1a)[(1 — z0a)(1 — x3a)--- (1 — zpa)]m’ = 0. Hence (1 — z1a)(1 — x2a)(1 —
zza) - (1 —zpa)amy = 0. Thus (1 — za)am; = 0.

Similarly (1 — za)am; = ([]'-,(1 — @a))am; = 0 for each i. Thus for
any (a4 (0 : m1),a + (0 : ma),...,a+ (0 : my)) € N we have, (a + (0 :
mi),a+ (0 :ma),...,a+(0:my)) = (x+(0:m),z+ (0:ma),...,z+ (0:
my))(a® + (0 : my),a® + (0 : ma),...,a® + (0 : my,)) where x € R is defined by
the relation (1 — za) = [, (1 — x;a). Hence N’ is a strongly regular ring and
hence R/(0 : M) is strongly regular. ]

Proposition 3.4. Fvery homomorphic image of a strongly reqular module is a
strongly reqular module.

Proof. Suppose M is a strongly regular module and ¢: M; — M, is an epimor-

phism. Let a € R and let mgy € M. Then my = ¢(mq) for some m; € M.
Thus clearly am; = za’m; for some z € R since M is a strongly regular

module. Now amg = ag(m1) = ¢lami) = ¢(za*my) = za’p(m1) = xa®ms.

Hence M, is strongly regular. [ |

The succeeding corollary is an instant outcome of Proposition 3.4.
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Corollary 3.5. Suppose M is a strongly reqular module and K is a submodule
of M. Then M/K is a strongly reqular module.

Definition 3.6. An R-module M is defined to be a weak commutative module
if for any a, b € R, m € M there exists b’ € R such that abm = V'am.

Proposition 3.7. Toke M, a finitely generated IFP R-module. Hereby we get
the equivalent axioms.

(i) M is a strongly regular module.

(ii) For every left ideals Ly,Lo and every submodule K of M, (L1 N Lo)K C
L1LoK and M is weak commutative.

(iii) For every left ideal L, every ideal I and every submodule K of M, (INL)K =
ILK and M is weak commutative.
(iv) For every ideals I1,Is and every submodule K of M, (I; N I))K = L [LK

and M is weak commutative.

Proof. (i)=>(ii) Let L1,Ls be the left ideals of R and let K be a submodule of
M. Now let € (L1 N Ly)K. Then x = ), l;k; where the sum is finite and for
some l; € L1 N Ly and k; € K. For any 1, [;k; = yilgki for some y; € R. Then
xr = ZZ yzl?kl = Zl(yzlz)(lz)kz € L1LyK. Hence (L1 N LQ)K C L1LoK.

Let a, b € R and m € M. By Theorem 3.4, R/(0 : M) is strongly regular.
Then for a € R there exists £ € R/(0 : M) such that @ = za®. It follows that
a = aza. Since Ta is central, we have ab = (aza)b = ab(za) = Va for some
vV =abz € R/(0: M). Then abm = Vtam for all m € M. Hence M is weak
commutative.

(ii)==(iii))==(iv) Are all obvious.

(iv)=>(i) Let « € R and m € M. Since am € (< a > N < a >)(Rm), we
have am €< a >< a > (Rm) by our assumption. Then am = r’a?m for some
r" € R since M is a weak commutative module. This completed the proof. [ |
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