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Abstract

Let R be a commutative ring with identity which is not an integral
domain. Let Z(R) denote the set of all zero-divisors of R. Recall from
[1] that the Armendariz graph of R denoted by A(R) is an undirected graph
whose vertex set is Z(R[X])\{0} and distinct vertices f(X) = > 1 ;a; X’
and g(X) = 327" b; X7 are adjacent in A(R) if and only if a;b; = 0 for
all i € {0,...,n} and j € {0,...,m}. The aim of this article is to study
the interplay between the graph-theoretic properties of the complement of
A(R), that is, (A(R))¢ and the ring-theoretic properties of R.
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1. INTRODUCTION

The rings considered in this article are commutative with identity which are not
integral domains. Let R be a ring. Let us denote the set of all non-zero zero-
divisors of R, that is, Z(R)\{0} by Z(R)*. The study of interplay between ring
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theory and graph theory began with the research work of Beck [8]. Recall from
[2] that the zero-divisor graph of R, denoted by I'(R) is an undirected graph
whose vertex set is Z(R)* and distinct vertices z,y are adjacent in I'(R) if and
only if zy = 0. For an inspiring and excellent survey on the zero-divisor graphs
of commutative rings, the reader is referred to [3].

This article is motivated by the interesting results proved on the Armendariz
graph of a commutative ring in [1]. For a ring R, we denote the polynomial ring
in one variable X over R by R[X]. Recall from [1] that the Armendariz graph of a
ring R, denoted by A(R) is an undirected graph whose vertex set is Z(R[X])* and
distinet vertices f(X) = Y1 ja; X" and g(X) = >0, b; X7 are adjacent in A(R)
if and only if a;b; = 0 for all i € {0,...,n} and j € {0,...,m}. Recall from [17]
that a ring R is said to be Armendarizif f(X) = 3" ja; X%, g(X) = > 0o b; X7 €
R[X] are such that f(X)g(X) = 0, then a;b; =0 for all i € {0,...,n} and j €
{0,...,m}. It was already observed in [1, Example 1] that if R is an Armendariz
ring, then A(R) = I'(R[X]). A ring R is said to be reduced if R has no non-zero
nilpotent element. It is clear that any reduced ring is Armendariz and so, for
a reduced ring R, A(R) = I'(R[X]). In Section 2 of [1], several Examples of
A(R) were given and in [1, Theorem 1] necessary and sufficient conditions were
determined for A(R) to be complete. It was proved in [1, Theorem 2] that there
exists f(X) € Z(R[X])* such that f(X) is adjacent in A(R) to every other vertex
of A(R) if and only if Z(R) is an annihilator ideal of R.

The graphs considered in this article are undirected and simple. Let G =
(V,E) be a simple graph. As in [7], we denote the complement of G by G°.
Let R be a ring such that Z(R)* # (. For a graph G, we denote the vertex
set of G by V(G) and the edge set of G by E(G). Notice that V((A(R))¢) =
V(T(RIX])) = Z(RIX])*. Let f(X) = SgaiX’ and g(X) = 370 ;X0 €
Z(R[X])* be distinct. Observe that if f(X) and g(X) are adjacent in (I'(R[X]))¢,
then f(X)g(X) # 0 and so, a;b; # 0 for some i € {0,...,n} and j € {0,...,m}.
Hence, f(X) and g(X) are adjacent in (A(R))°. The above observations im-
ply that (I'(R[X]))¢ is a spanning subgraph of (A(R))¢. In [18, 19], the graph-
theoretic properties of (I'(R))¢ were studied.

We denote the set of all prime ideals of a ring R by Spec(R) and the set of
all maximal ideals of R by Maz(R). Let I be an ideal of R with I # R. Recall
from [13] that p € Spec(R) is said to be a mazimal N-prime of I if p is maximal
with respect to the property of being contained in ZR(%) ={reR|rzel
for some x € R\I}. Hence, p € Spec(R) is a maximal N-prime of (0) if p is
maximal with respect to the property of being contained in Z(R). Let x € Z(R).
Then the multiplicatively closed subset S = R\Z(R) of R is such that RzNS = ().
Hence, we obtain from Zorn’s lemma and [14, Theorem 1] that there exists a
maximal N-prime p of (0) in R such that z € p. It now follows that if {ps}aeca
is the set of all maximal N-primes of (0) in R, then Z(R) = U,cp Pa. It is now
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clear that R has a unique maximal N-prime of (0) if and only if Z(R) is an ideal
of R. Let I be an ideal of R with I # R. Recall from [12] that p € Spec(R) is
said to be an associated prime of I in the sense of Bourbaki if p = (I :r x) for
some x € R. In such a case, we say that p is a B-prime of I. For basic definitions
and concepts from graph theory that are used in this article, one can refer any
standard textbook in Graph Theory (for example, see [7, 9]).

This article consists of three sections including the introduction. In Section
2 of this paper, for a ring R with |Z(R)*| > 1, we discuss some results on the
connectedness of (A(R))¢. In Propositions 2.3 and 2.5, necessary and sufficient
conditions are determined in order that (A(R))¢ to be connected. If (A(R))®
is connected, then the diameter and the radius of (A(R))¢ are determined (see
Propositions 2.3, 2.6, 2.7, and 2.8). Let R be a ring such that (A(R))¢ is con-
nected. It is proved in Theorem 2.12 that for any finite non-empty subset S of
(Z(R[X)))*, (T(R[X]))¢ — S is connected and so, (A(R))¢ — S is connected and
it is deduced in Corollary 2.13 that (I'(R[X]))¢ (respectively, (A(R))¢) does not
admit any cut vertex.

In Section 3 of this paper, some more properties of (A(R))¢ are proved. For
a graph G, we denote the girth of G by gr(G). We set gr(G) = oo if G does
not contain any cycle. It is proved in Proposition 3.5 that gr((I'(R[X]))¢) =
gr((A(R))¢) € {3,000} and moreover, necessary and sufficient conditions are de-
termined such that (A(R))¢ does not contain any cycle. Some results on the
domination number of (I'(R[X]))¢ (respectively, (A(R))¢) are also proved in Sec-
tion 3 (see Proposition 3.9 and Theorem 3.10). We denote the clique number
of a graph G by w(G). Section 3 also contains some results on w((A(R))) (see
Corollary 3.17 and Proposition 3.18). In Corollary 3.19, it is proved that (A(R))©
is planar if and only if (A(R))¢ has no edges.

For any n > 2, we denote the ring of integers modulo n by Z,,. The cardinality
of a set A is denoted by |A|. For sets A, B, if A is a proper subset of B, then we
denote it by A C B. The group of units of a ring R is denoted by U(R). We use
the abbreviation f.g. for finitely generated.

2. ON THE CONNECTEDNESS OF (A(R))®

For a connected graph G, we denote the diameter of G by diam/(G) and the radius
of G by 7(G). Let R be a ring with |Z(R)*| > 1. In this section, we discuss some
results on the connectedness of (A(R))¢ and we determine diam((A(R))¢) and
r((A(R))¢) in the case when (A(R))¢ is connected.

Lemma 2.1. Let R be a ring such that |Z(R)*| > 1. Then Z(R[X])* is infinite.

Proof. As R[X] is infinite and is not an integral domain, it follows from [10,
Theorem 1] that Z(R[X])* is infinite. |
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Let R be a ring. In Proposition 2.3 with the assumption that Z(R) is an
ideal of R, we determine necessary and sufficient conditions in order that (A(R))¢
to be connected. We use Lemma 2.2 in the proof of the moreover part of Propo-
sition 2.3.

Lemma 2.2. Let G = (V, E) be a simple graph with |V| > 2. If both G and G°
are connected, then r(G°) > 2 and r(G) > 2.

Proof. Notice that V(G) = V(G°) = V. As G is connected and |V| > 2 by
hypothesis, we obtain from [19, Lemma 2.1] that e(a) > 2 in G¢ for each a €
V. Hence, r(G°) > 2. As G is the complement of G¢ and G¢ is connected by
hypothesis, it follows that r(G) > 2. [

Proposition 2.3. Let R be a ring such that |Z(R)*| > 1. Let p be the unique
mazximal N-prime of (0) in R. The following statements are equivalent:

(1) (A(R))¢ is connected.

(2) p is not a B-prime of (0) in R.

(3) (D(R[X]))¢ is connected.

Moreover, if the statement (1) holds, then

diam((A(R))%) = diam((T(R[X]))%) = r((A(R))%) = r(T'(R[X]))) = 2.

Proof. (1) = (2) Suppose that p is a B-prime of (0) in R. Then there exists
r € R\{0} such that p = ((0) :g ). It is clear that r € p and p[X] = ((0) :gx) 7)-
We know from the proof of [18, Proposition 2.2(ii)] that Z(R[X]) = p[X]. Let
g(X) =r. Let h(X) = Y1 ja; X' € Z(R[X))* with h(X) # g(X). As a; € p
for each i € {0,...,n}, it follows that a;g(X) = a;r = 0 for each ¢ € {0,...,n}.
This shows that g(X) is an isolated vertex of (A(R))¢. As Z(R[X])* is infinite
and (A(R))¢ admits an isolated vertex, we obtain that (A(R))¢ is not connected.
This is in contradiction to the assumption that (A(R))¢ is connected. Therefore,
p is not a B-prime of (0) in R.

(2) = (3) Let a € Z(R)*. As Z(R) = p is not a B-prime of (0) in R
and ((0) :g a) € Z(R), we get that p € ((0) :gr a). Let b € p such that
ab # 0. If a = ab, then from a(l —b) = 0, it follows that 1 — b € p. In such
acase, 1 =b+1—>b € p. This is a contradiction. Therefore, a # ab and so,
|Z(R)*| > 2. Since p is not a B-prime of (0) in R, it follows from [18, Lemma
1.5] that (I'(R[X]))¢ is connected and diam((I'(R[X]))¢) < 2.

(3) = (1) As (I'(R[X]))¢ is a spanning subgraph of (A(R))¢ and (I'(R[X]))¢
is connected by assumption, we get that (A(R))¢ is connected.

Assume that the statement (1) holds. We know from the proof of (2) = (3)
of this proposition that diam((I'(R[X]))¢) < 2. Hence, diam((A(R))¢) < 2. It
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follows from [1, Theorem 4] (respectively, [2, Theorem 2.3]) and Lemma 2.2 that
r((A(R))¢) > 2 (respectively, r((I'(R[X]))¢) > 2). Therefore, we obtain that
diam((A(R))¢) = diam((T'(R[X]))?) = r((A(R))%) = r(F(R[X]))*) = 2. u

A ring R is said to be quasi-local if |Max(R)| = 1. A Noetherian quasi-local
ring is referred to as a local ring. The Krull dimension of a ring R is simply
referred to as the dimension of R and is denoted by dimR. FExample 2.4 is
provided to illustrate Proposition 2.3.

Example 2.4. Let (V,m) be a rank one Valuation domain which is not discrete.
Let m € m\{0}. Let R = . Let p = . Let T = R(+)R be the ring obtained
by using Nagata’s prlnmple of 1deahzat10n Then the following statements hold:

(1) p(+)R is the unique maximal N-prime of the zero ideal in T but it is not a
B-prime of the zero ideal in T'.

(2) (A(T))¢ is connected and diam((A(T"))¢) = r((A(T))¢) = 2.
(3) (A(T))® # (I(T[X]))".

Proof. (1) We know from the proof of [18, Example 3.1(ii)] that p is the unique
maximal N-prime of the zero ideal in R and p is not a B-prime of the zero
ideal in R. As R is quasi-local with p as its unique maximal ideal, it follows that
T = R(+)R is quasi-local with p(+)R as its unique maximal ideal. Hence, Z(T") C
p(+)R. Let (r,s) € p(+)R. Notice that r € p = Z(R) and so, (r,0+Vm) € Z(T).
Now, (r,5) = (1,0 + Vm) + (0 + Vm,s) and (0 + Vm,s)? = (0 +Vm,0 + Vm).
From [15, Lemma 2.3], we get that (r,s) € Z(T). Therefore, p(+)R C Z(T') and
so, Z(T) = p(+)R. This shows that p(+)R is the unique maximal N-prime of
the zero ideal in T. From p is not a B-prime of zero ideal in R, it follows that
p(+)R is not a B-prime of the zero ideal in T.

(2) It follows from (1) of this example and (2) = (1) of Proposition 2.3 that
(A(T))€ is connected and from the moreover part of Proposition 2.3, we get that
(A

diam((A(T))) = r((A(T))%) = 2.

(3) As Spec(V') = {(0),m}, it follows from [5, Proposition 1.14] that for each
a € m\{0}, vVVa = m. Since m is not principal, it follows that m # Vm. Let
a € m\Vm. Since the set of ideals of V is linearly ordered by inclusion, we get that
m € Va. Therefore, m = av for some v € m. Notice that VVa =+vVVm =m.
Let n > 2 be least with the property that ™ € Vm. Then a"~! ¢ Vm but
(@™ 12 € Vm. Let f(X),g9(X) € T[X] be given by f(X) = (a" ! + Vm,v +
Vm) + (a1 4+ Vm, 1+ Vm)X and g(X) = (a1 +Vm,0+ Vm) + (a" ! +
Vm,—1+Vm)X. Since a ¢ U(V), it follows that v ¢ Vm and so, f(X) # g(X).
Using the facts that (¢ 1)2 € Vm and a" 'v € Vm, it can be verified that
f(X)g(X) = (04+ Vm,0 + Vm). Hence, f(X) and ¢g(X) are not adjacent in
(I(T[X]))c. It can be verified that the product of the constant term of f(X) and
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the coefficient of X in g(X) equals (0 4+ Vm,—a""1 +Vm) # (0 +Vm,0 + Vm)
and so, f(X) and g(X) are adjacent in (A(T"))°. Therefore, we obtain that
(A(T))* # (L(T]X]))*" u

Let R be a ring such that R has exactly two maximal N-primes of (0). In
Proposition 2.5, we determine necessary and sufficient conditions for (A(R))° to
be connected.

Proposition 2.5. Let R be a ring such that {p; | i € {1,2}} is the set of all
mazimal N-primes of (0) in R. The following statements are equivalent:

(1) (A(R))¢ is connected.

(2) NiZipi # (0).
(3) (T(R[X]))¢ is connected.

Proof. (1) = (2) Suppose that ()_,p; = (0). Then R is reduced. Hence,
A(R) = T'(R[X]) and so, (A(R))¢ = (I'(R[X]))¢. From (I'(R[X]))¢ is connected,
we obtain from [18, Proposition 2. 6( )] that (I'(R))¢ is connected. It now follows
from [18, Proposition 1.7(i)] that ﬂ _1 Pi # (0). This is a contradiction and so,
Ny i 7 (0).

(2) = (3) As N, pi # (0) by assumption, it follows from [18, Proposition
1.7(1)] that (I'(R))¢ is connected and we know from [18, Proposition 2.6(i)] that
(D(R[X]))¢ is connected.

(3) = (1) We are assuming that (I'(R[X]))¢ is connected. As (I'(R[X]))¢ is
a spanning subgraph of (A(R))¢, we obtain that (A(R))¢ is connected. ]

Proposition 2.6. Let R,p1,ps be as in the statement of Proposition 2.5. If
(A(R))¢ is connected, then the following statements hold:

(1) 2 <diam((A(R))¢) < diam((T'(R[X]))¢) < 3. If diam((T'(R[X]))¢) = 2, then
diam((A(R))¢) = 2.

(2) diam((A(R))¢) = 3 if and only if p; is a B-prime of (0) in R for each i €
{1,2}.

Proof. We are assuming that (A(R))¢ is connected.

(1) From the proof of (2) = (3) of Proposition 2.5, we get that (I'(R))¢ is
connected and (I'(R[X]))¢ is connected. We know from [18, Proposition 1.7(ii)]
that 2 < diam((T'(R))¢) < 3 and diam((T'(R))¢) = 3 if and only if p; is a B-
prime of (0) in R for each i € {1,2}. Moreover, we obtain from [18, Proposition
2.6(77)] that diam((I'(R[X]))¢) = diam((T'(R))¢) € {2,3}. It follows from [1,
Theorem 4] and Lemma 2.2 that r((A(R))¢) > 2 and so, 2 < diam((A(R))¢). As
(I'(R[X]))¢ is a spanning subgraph of (A(R))¢, it follows that diam((A(R))°) <
diam((T'(R[X]))¢). Therefore, we get that
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2 < diam((A(R))¢) < diam((T'(R[X]))¢) < 3. If diam((T'(R[X]))¢) = 2, then it
is clear that diam((A(R))¢) = 2.

(2) If diam((A(R))¢) = 3, then diam((I'(R[X]))¢) = 3. Hence, it follows from
the proof of (1) that p; is a B-prime of (0) in R for each i € {1,2}. Conversely,
assume that p; is a B-prime of (0) in R for each i € {1,2}. Let u,v € R\{0} be
such that p1 = ((0) :r u) and pa = ((0) :g v). It is clear that p1[X] = ((0) :gx] u)
and pa[X] = ((0) :gix] v). We know from the proof of [18, Proposition 2.6
(i1)(b)] that Z(R[X]) = U, pi[X]. We claim that d(u,v) > 3 in (A(R))".
From [8, Lemma 3.6], we get that wv = 0. Hence, u and v are not adjacent
in (A(R))¢. Let h(X) € Z(R[X])*\{u,v}. Either h(X) € p1[X] or h(X) € p2[X].
If h(X) € p1[X], then A(X)u = 0 and so, v and h(X) are not adjacent in
(A(R))¢. If h(X) € po[X], then h(X)v = 0 and so, h(X) and v are not adjacent
in (A(R))¢. This shows that there exists no path of length two between u and
v in (A(R))¢. Therefore, d(u,v) > 3 in (A(R))¢ and hence, diam((A(R))¢) > 3.
From diam((A(R))¢) < 3, we obtain that diam((A(R))¢) = 3. ]

Proposition 2.7. Let R be a ring such that R admits at least three mazi-
mal N-primes of (0). Then both (I'(R[X]))¢ and (A(R))¢ are connected and
diam((A(R))¢) = diam((T(R[X]))¢) = 2.

Proof. By hypothesis, R has at least three maximal N-primes of (0). It follows
from [18, Proposition 2.8] that (I'(R[X]))¢ is connected with diam((I'(R[X]))¢) =
2. Since (I'(R[X]))¢ is a spanning subgraph of (A(R))¢, we obtain that (A(R))¢
is connected and diam((A(R))¢) < 2. It follows from [1, Theorem 4] and Lemma
2.2 that r((A(R))¢) > 2 and so, 2 < diam((A(R))¢). Therefore, both (I'(R[X]))¢
and (A(R))¢ are connected with diam((A(R))¢) = diam((T'(R[X]))¢) = 2. |

Proposition 2.8. Let R be a ring such that R has at least two maximal N-primes
of (0). If (A(R))¢ is connected, then r((A(R))¢) = r((T'(R[X]))¢) = 2.

Proof. Suppose that (A(R))¢ is connected. It is already noted in the proof of
Proposition 2.6(1) and Proposition 2.7 that (I'(R[X]))¢ is connected and
r((A(R))¢) > 2. We know from [19, Theorem 2.5] that r((I'(R[X]))¢) = 2. Since
(T(R[X]))¢ is a spanning subgraph of (A(R))¢, it follows that r((A(R))¢) < 2 and
so, r((A(R))%) = r((T(RIX])°) = 2. .

We provide Examples 2.9, 2.10, and 2.11 to illustrate Propositions 2.5, 2.6,
2.7, and 2.8.

Example 2.9. Let T be as in Example 2.4 and let S = T x Zg be the direct
product of rings T" and Zg. Then the following statements hold:

(1) S has exactly two maximal N-primes of its zero ideal.
(2) (A(S))¢ is connected with diam((A(S))¢) = r((A(S))¢) = 2.
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(3) (A(S))® # (L(S[X]))°.

Proof. In the notation of Example 2.4, T = R(+)R is quasi-local with Z(T) =
p(+)R as its unique maximal ideal.

(1) Notice that Z(S) = (Z(T)xZs)JI(T x Z(Zs)) = ((p(+)R) x Zsg)U(T x 2Zs).
Let p; = (p(+)R) x Zg and let po = T' x 2Zg. Observe that p; € Maz(S) for each
i€ {1,2}, p1 # p2, and Z(S) = J2_, p;. Therefore, we get that {p; | i € {1,2}}
is the set of all maximal N-primes of the zero ideal in S.

(2) As ﬂ?zl pi = (p(+)R) x 2Zg is not the zero ideal of S, we obtain from
(2) = (1) of Proposition 2.5 that (A(S))¢ is connected. It is already observed
in the proof of Example 2.4 that p(+)R is not a B-prime of the zero ideal in T
and hence, we obtain that p; is not a B-prime of the zero ideal in S. Therefore,
it follows from Proposition 2.6(1) and (2) that diam((A(S))¢) = 2 and from
Proposition 2.8, we obtain that r((A(S))¢) = 2.

(3) In the notation of Example 2.4, recall that f(X),g(X) € T[X] are such
that f(X) = (a" 1+ Vm,o+Vm)+ (@ +Vm,1+Vm)X and g(X) = (a"* +
Vm,0+Vm)+ (a1 +Vm,—1+Vm)X. Let f1(X),91(X) € S[X] be given by
f(X) = (@t +Vm,v+Vm),0) + ((a" 1+ Vm,1+Vm),0)X and ¢;(X) =
(@™ +Vm,04+Vm),0) + ((a" ' +Vm,—1+ Vm),0)X. From the choice of a
and v, it follows as in the proof of Example 2.4 that f1(X) # g1(X), f1(X)g1(X)
is the zero polynomial, and the product of the constant term of fi(X) and the
coefficient of X in g¢1(X) is not the zero element of S. Therefore, f1(X) and
91(X) are not adjacent in (I'(S[X]))¢ but they are adjacent in (A(S))°. Hence,

(A(S))° # (T(S[X]))*". m

Example 2.10. Let R = Zg(+)Zs be the ring obtained by using Nagata’s prin-
ciple of idealization. Let T' = R x R be the direct product of rings R and R.
Then the following statements hold.

(1) T has exactly two maximal N-primes of its zero ideal and both are B-primes
of the zero ideal in T

(2) (A(T))¢ is connected with diam((A(T))¢) =3 and r((A(T))¢) = 2.
(3) (A(T))® # ((T[X]))".

Proof. Notice that R = Zg(+)Zs is local with p = 2Zg(+)Zs as its unique
maximal ideal. Observe that Z(R) = p = ((0,0) :g (0,4)) is a B-prime of the
zero ideal in R.
(1) AsT = Rx R, we get that Z(T) = (Z(R)xR)U(RxZ(R)) = (px R)U(Rx
p). Let py = px R and let po = Rxp. Notice that p; € Maz(T) for each i € {1,2},
p1 # pa, and Z(T) = J2, pi. Hence, it follows that {p; | i € {1,2}} is the set
of all maximal N-primes of the zero ideal in 7. Let u = ((0,4),(0,0)) and let
= ((0,0),(0,4)). It is clear that p; = ((Or,0g) :7 u) and pa = ((Og,0R) :7 v),
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where Or = (0,0) is the zero element of R. Therefore, p; is a B-prime of the zero
ideal in T for each i € {1,2}.

(2) As (2_, pi = p X p is not the zero ideal of T, we obtain from (2) = (1) of
Proposition 2.5 that (A(T"))¢ is connected. Since p; is a B-prime of the zero ideal
in T for each ¢ € {1, 2}, it follows from Proposition 2.6(2) that diam((A(T))¢) =3
and from Proposition 2.8, we obtain that r((A(T"))¢) = 2.

(3) Let f(X),9(X) € Z(R[X])* be given by f(X) = (4,2) + (4,1)X and
9(X) = (4,0) + (4,1)X. It was already noted in the proof of [1, Example
2] that f(X)g(X) is the zero polynomial but f(X) and g(X) are not adja-
cent in A(R). Hence, f(X) and g(X) are not adjacent in (I'(R[X]))¢ but they
are adjacent in (A(R))¢. Let fi1(X) = ((4,2),(0,0)) + ((4,1),(0,0))X and let
91(X) = ((4,0),(0,0)) + ((4,1),(0,0))X. It can be shown as in the proof of Ex-
ample 2.9(3) that f1(X) and g1(X) are not adjacent in (I'(T'[X]))¢ but they are
adjacent in (A(T))¢. Therefore, (A(T))¢ # (T'(T[X]))". |

Example 2.11. Let T be as in Example 2.4 and let S = T x Zg X Zg be the
direct product of rings T, Zg, and Zg. Then the following statements hold:

(1) S has exactly three maximal N-primes of its zero ideal.
(2) (A(S))¢ is connected with diam((A(S))¢) = r((A(S))°) = 2.
(3) (A(S))e # (F(S[X]))“.

Proof. In the notation of Example 2.4, T' is quasi-local with Z(T) = p(+)R as
its unique maximal ideal.

(1) It follows as in the proof of (1) of Example 2.10 that Z(S) = (Z(T') x
Zg X Zg) U (T X 278 X Zg) U (T X Z.g X 228)- Let p; = (p(+)R) X Zg X Zsg,
po =T X 2Zg x Zg, and p3 = T x Zg X 2Zsg. 1t is clear that p; € Max(S) for each
i€ {1,2,3}, p; # p; for all distinct i,5 € {1,2,3}, and Z(S) = U>_, p;. Hence,
it follows that {p; | i € {1,2,3}} is the set of all maximal N-primes of the zero
ideal in S.

(2) As S has more than two maximal N-primes of its zero ideal, it follows
from Proposition 2.7 that (A(S))¢ is connected and diam((A(S))¢) = 2 and we
know from Proposition 2.8 that r((A(S5))¢) = 2.

(3) Using the fact that (A(T"))¢ # (I'(T'[X]))¢ (see Example 2.4(3)), it can be
shown as in the proof of Example 2.9(3) that (A(S))¢ # (I'(S[X]))°. |

In [20, Theorem 5.1}, rings R with |Z(R)*| > 1 and (I'(R))¢ is connected were
characterized in order that (I'(R)) to admit a cut vertex. If (A(R))¢ is connected,
then we prove in Theorem 2.12 that (A(R))¢ does not admit any finite vertex cut.

Theorem 2.12. Let R be a ring such that (A(R))¢ is connected. Let S be any
finite non-empty subset of Z(R[X])*. Then (I'(R[X]))¢ — S is connected and so,
(A(R))¢ — S is connected.
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Proof. We are assuming that (A(R))¢ is connected. Hence, it follows from (1) =
(3) of Proposition 2.3 (respectively, Proposition 2.5) and Proposition 2.7 that
(T(R[X]))¢ is connected. Moreover, we obtain from [18, Propositions 2.2, 2.6,
and 2.8] that diam((I'(R[X]))¢) € {2,3}. Let S be a finite non-empty subset
of Z(R[X])*. Let f(X),9(X) € Z(R[X])*\S be such that f(X) # g(X). Let
S ={fi(X)|ie{1,...,k}}. Let deg(fi(X)) = n; for each i € {1,... k}.
If f(X)g(X) # 0, then f(X) — ¢g(X) is a path in (I'(R[X])) — S. Suppose
that f(X)g(X) = 0. Notice that d(f(X),g(X)) = 2 or 3 in (I'(R[X]))¢. Let
F(X) = hi(X) = = hp(X) — g(X) be a path of shortest length between f(X)
and ¢g(X) in (T'(R[X]))¢. It is clear that m € {1,2}. Let n € N be such that
n > n; for each i € {1,...,k}. Let ¢ € {1,...,m}. Observe that X"h;(X) ¢ S
and from the fact that X™ ¢ Z(R[X])*, it follows that X"h;(X) € Z(R[X])*. It
is clear that X"h;(X) # X"h;(X) for all distinct 4,5 € {1,...,m} and f(X) —
X"h(X) =+ — X"hp,(X) — g(X) is a path in (I'(R[X]))¢ — S.

From the above discussion, it is clear that (I'(R[X]))¢ — S is connected. Since
(I'(R[X]))¢— S is a spanning subgraph of (A(R))¢—S, we obtain that (A(R))¢—S

is connected. []

Corollary 2.13. Let R be a ring such that |Z(R)*| > 1 and (A(R))¢ is connected.
Then (I'(R[X]))¢ and (A(R))¢ do not admit any cut verte.

Proof. Let f(X) € Z(R[X])*. We know from Theorem 2.12 that both
(T(R[X]))¢ — f(X) and (A(R))¢ — f(X) are connected. This proves that both
the graphs (I'(R[X]))¢ and (A(R))¢ do not admit any cut vertex. |

3. SOME MORE RESULTS ON (A(R))°

Let R be a ring such that |Z(R)*| > 1. The aim of this section is to discuss some
more properties of (A(R))¢. First, we prove some results on gr((A(R))°).

Lemma 3.1. Let R be a ring such that |Z(R)*| > 1. The following statements
are equivalent:
(1) (A(R))¢ has no edges.
(2) (D(R[X]))¢ has no edges.
(3) Z(R) is an ideal of R with Z(R)? = (0).
Proof. (1) = (2) This is clear, since (I'(R[X]))¢ is a spanning subgraph of
(A(R))*.

(2) = (3) Suppose that R = Zg X Zs as rings. Let us denote Zg X Zg by T'. It
was already noted in [6, page 2045] that f(X) = (1,0) 4+ (1,0)X,¢9(X) = (1,0) +
(1,0)X2 € Z(T[X])* are such that f(X)— g(X) is an edge of (I'(T[X]))¢. So, we
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get that (I'(R[X])) has at least one edge. Therefore, if (2) holds, then R % ZyxZs
as rings. As (2) holds, it follows that (I'(R))¢ has no edges (equivalently, I'(R) is
complete). In such a case, we obtain from [2, Theorem 2.8] that Z(R) is an ideal
of R with Z(R)? = (0).

(3) = (1) Let f(X),g(X) € Z(R[X])* be distinct. Let f(X) = > ,a; X"
and let g(X) = >, b;X7. It follows from McCoy’s Theorem [16, Theorem
2] that a;,b; € Z(R) for all ¢ € {0,...,n} and j € {0,...,m}. By (3), Z(R)
is an ideal of R with Z(R)? = (0) and so, a;b; = 0 for all i € {0,...,n} and
j €40,...,m}. Hence, f(X) and g(X) are not adjacent in (A(R))¢. Therefore,
(A(R))¢ has no edges. |

Proposition 3.2. Let R be a ring and let f(X),g(X) € Z(R[X])* be such that
f(X) —g(X) is an edge of (A(R))¢. Then there exists h(X) € Z(R[X])* such
that f(X) — h(X) — g(X) — f(X) is a cycle of length three in (A(R))® with
FOOR(X) £0 and h(X)g(X) £ 0.

Proof. Let f(X),g9(X) € Z(R[X])* be such that f(X) — g(X) is an edge of
(A(R))¢. Let deg(f(X)) = m and let deg(g(X)) = k. Let f(X) = Y I"ga; X"
and let g(X) = Z?:o b; X7 Tt follows from f(X) — g(X) is an edge of (A(R))®
that asb; # 0 for some s € {0,...,m} and ¢t € {0,...,k}. Let n € N be such that
n > max(m, k). We consider the following cases.

Case (1). a? = 0 = b7. Notice that as + b; is nilpotent and from a? = 0
and agby # 0, it follows that as + by # 0. It is clear that f(X)(as + b;) # 0 and
g(X)(as +b;) # 0. Let h(X) = (as + b)) X™. As X" ¢ Z(R[X]) and as + b; €
Z(R)*, it follows that X" (as + b:) € Z(R[X])*, f(X)h(X) # 0,h(X)g(X) # 0,
and by the choice of n, we get that h(X) ¢ {f(X),g(X)}. Therefore, h(X) is
adjacent to both f(X) and ¢g(X) in (I'(R[X]))¢ and so, in (A(R))¢. Hence, we
obtain that f(X)—h(X)—g(X)— f(X) is a cycle of length three in (A(R))¢ with
FX)W(X) # 0 and h(X)g(X) # 0.

Case (2). At least one between a? and b? is not equal to 0. Without loss
of generality, we can assume that a2 # 0. Let h(X) = asX". It follows from
[16, Theorem 2] that as € Z(R)*. From X" ¢ Z(R[X]), it follows that h(X) €
Z(R[X])*. As a2 # 0, asb; # 0, we obtain that f(X)h(X) # 0 and h(X)g(X) # 0.
By the choice of n, it is clear that h(X) ¢ {f(X),¢(X)}. Thus f(X) — h(X) —
g(X) — f(X) is a cycle of length three in (A(R))¢ with f(X)h(X) # 0 and
B(X)g(X) #0.

This completes the proof. [ |

Corollary 3.3. Let R be a ring such that (I'(R[X]))¢ admits at least one edge.
Then any edge of (I'(R[X]))¢ is an edge of a triangle in (I'(R[X]))°.
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Proof. Let f(X),g9(X) € Z(R[X])* be such that f(X) — ¢g(X) is an edge of
(I(R[X]))¢. Then f(X) — ¢g(X) is also an edge of (A(R))¢. Hence, we obtain
from Proposition 3.2 that there exists h(X) € Z(R[X])* such that f(X)—h(X)—
g(X) — f(X) is a cycle of length three in (I'(R[X]))¢. This proves that any edge
of (T(R[X]))¢ is an edge of a triangle in (I'(R[X]))°. |

Corollary 3.4. Let R be a ring such that (T'(R[X]))¢ admits at least one edge.
Then gr((T(R[X]))¢) = gr((A(R))°) = 3.

Proof. We know from Corollary 3.3 that any edge of (I'(R[X]))¢ is an edge
of a triangle in (I'(R[X]))¢. Therefore, we get that gr((I'(R[X]))¢) = 3. Since
(T(R[X]))¢ is a spanning subgraph of (A(R))¢, it follows that gr((A(R))°) =3. =

Proposition 3.5. Let R be a ring such that |Z(R)*| > 1. Then the following
statements hold:

(1) gr((T(R[X])9) = gr((A(R))%) € {3,00}.

(2) g ((()( [)((])))C) gr((A(R))¢) = oo if and only if Z(R) is an ideal of R with
0

Proof. (1) If (T'(R[X ]c)

¢ admits at least one edge, then we know from Corollary

)
3.4 that gr((I'(R[X]))¢) = gr((A(R))¢) = 3. Suppose that (I'(R[X]))¢ contains
no cycle. Then (I'(R[X]))¢ has no edges and hence, we obtain from (2) = (1) of
Lemma 3.1 that (A(R))¢ has no edges. Therefore, gr((A(R)) ) = oo. If (A(R))°
does not contain any cycle, then as (I'(R[X]))¢ being a spanning subgraph of
(A(R))¢, it follows that gr((I'(R[X]))¢) = oo. This proves that gr((I'(R[X]))¢) =
gr((A(R))°) € {3, 00}

(2) It follows from the proof of (1) that gr((I'(R[X]))¢) = gr((A(R))¢) =
oo if and only if (I'(R[X]))¢ has no edges and we obtain from (2) < (3) of
Lemma 3.1 that (I'(R[X]))¢ has no edges if and only if Z(R) is an ideal of R with
Z(R)* = (0). n

Let G = (V, E) be a graph. Recall from [4] that two distinct vertices u,v of
G are said to be orthogonal, written v L v if u and v are adjacent in G and there
is no vertex w of G which is adjacent to both v and v in G. A vertex v of G is
said to be a complement of v if uw L v [4]. Moreover, recall from [4] that G is
complemented if each vertex of G admits a complement in G. In Section 3 of [4]
Anderson et al. determined rings R for which the zero-divisor graphs I'(R) are
complemented. For a ring R with |Z(R)*| > 1, we verify in Corollary 3.6 that
no vertex of (A(R))¢ (respectively, (I'(R[X]))¢) admits a complement in (A(R))¢
(respectively, (I'(R[X]))¢).
Corollary 3.6. Let R be a ring such that |Z(R)*| > 1. Then no vertex of
(A(R))¢ (respectively, (I'(R[X]))¢) admits a complement in (A(R))¢ (respectively,
(D(RIX]))°).
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Proof. Let f(X) € Z(R[X])* = V((I'(R[X]))¢) = V((A(R))¢). Since any edge
of (A(R))¢ (respectively, (I'(R[X]))¢) is an edge of a triangle in (A(R))° (respec-
tively, (I'(R[X]))¢) by Proposition 3.2 (respectively, Corollary 3.3), it follows that
f(X) does not admit any complement in (A(R))° (respectively, (I'(R[X]))¢). m

Let R be a ring such that |Z(R)*| > 1. We next discuss some results

on the dominating sets and the domination number of (A(R))¢ (respectively,
(T'(R[X]))¢). For a graph G, we denote the domination number of G by v(G).

Lemma 3.7. Let G = (V,E) be a simple graph such that |V| > 2. If G is
connected, then v(G¢) > 2.

Proof. Let v e V. As |V| > 2 and G is connected, we can find u € V such that
v and u are adjacent in G. Therefore, u is not adjacent to v in G°. This implies
that {v} is not a dominating set of G¢ for any v € V. Therefore, v(G°) > 2. =

Corollary 3.8. Let R be a ring such that |Z(R)*| > 1. Then v((A(R))¢) > 2
(respectively, y((T'(R[X]))¢) = 2).

Proof. We know from Lemma 2.1 that Z(R[X])* is infinite. It follows from [1,
Theorem 4] (respectively, [2, Theorem 2.3]) and Lemma 3.7 that v((A(R))¢) > 2
(respectively, v((I'(R[X]))¢) > 2). ]

Proposition 3.9. Let R be a ring such that Z(R) is not an ideal of R. Then
Y(A(R))) = v ((N(R[X]))) = 2.

Proof. Notice that Z(R[X]) N R = Z(R). As Z(R) is not an ideal of R by
hypothesis, it follows that Z(R[X]) is not an ideal of R[X]. Hence, we obtain
from [21, Lemma 2.3] that v((I'(R[X]))¢) = 2. Since (I'(R[X]))¢ is a spanning
subgraph of (A(R))¢, we get that y((A(R))¢) < 2. It now follows from Corollary

3.8 that v((A(R))%) = v((F(R[X]))%) = 2. u

Let R be a ring such that |Z(R)*| > 1 and Z(R) is an ideal of R. We
next discuss some results on the dominating sets and the domination number
of (A(R))¢ (respectively, (I'(R[X]))¢). We prove in Theorem 3.10 that (A(R))¢
admits a finite dominating set if and only if Z(R[X]) is not an ideal of R[X].

Theorem 3.10. Let R be a ring such that |Z(R)*| > 1 and Z(R) is an ideal of
R. The following statements are equivalent:

(1) (A(R))¢ admits a finite dominating set.

(2) Z(R[X]) is not an ideal of R[X].

(3) (D(R[X]))¢ admits a finite dominating set.

Moreover, if the statement (1) holds, then v((A(R))¢) = v((T'(R[X]))¢) = 2.
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Proof. (1) = (2) Let D be a finite dominating set of (A(R)). Notice that
D C Z(R[X])*. Let D = {fi(X) | © € {1,...,n}}. It follows from Corollary
3.8 that n > 2. Observe that {X f;(X) | i € {1,2,...,n}} is also a dominating
set of (A(R))¢. Hence, on replacing f;(X) by X fi;(X) (if necessary) for each
i € {1,2,...,n}, we can assume without loss of generality that deg(f;(X)) > 0
for each i € {1,2,...,n}. For each i € {1,2,...,n}, let Ay, denote the ideal of
R generated by the coefficients of f;(X) and it follows from [16, Theorem 2] that
Ay C Z(R). We assert that Z(R[X]) is not an ideal of R[X]. Suppose that
Z(R[X]) is an ideal of R[X]. Notice that A = >"" | Ay, is a f.g. ideal of R and
A C Z(R). Hence, we obtain from [15, Theorem 3.3] that there exists r € R\{0}
such that rAy, = (0) for each ¢ € {1,2,...,n}. Observe that r € Z(R)* C
Z(R[X])*. Tt is clear that r ¢ D. Since D is a dominating set of (A(R))¢, we
obtain that there exists ¢t € {1,2,...,n} such that r and f;(X) are adjacent in
(A(R))¢. This implies that r f;(X) # 0. This is a contradiction and so, Z(R[X])
is not an ideal of R[X].

(2) = (3) As Z(R[X]) is not an ideal of R[X] by assumption, we obtain from
[21, Lemma 2.3] that v((I'(R[X]))¢) = 2. If f(X),g(X) € Z(R[X])* are such
that f(X)+ g(X) ¢ Z(R[X]), then we know from the proof of [21, Lemma 2.3]
that {f(X),g(X)} is a dominating set of (I'(R[X]))¢.

(3) = (1) Since (I'(R[X]))¢ is a spanning subgraph of (A(R))¢, any domi-
nating set of (I'(R[X]))¢ is a dominating set of (A(R))¢. As (I'(R[X]))¢ admits
a finite dominating set by assumption, we obtain that (A(R))¢ admits a finite
dominating set.

Assume that (1) holds. It is noted in the proof of (2) = (3) of this the-
orem that v((I'(R[X]))¢) = 2. Hence, we obtain that v((A(R))¢) < 2. It
now follows from Corollary 3.8 that v((A(R))¢) = 2. Therefore, v((A(R))¢) =
V(T (RIX]))%) = 2. u

Let R be a ring such that |Z(R)*| > 1. If Z(R) is a f.g. ideal of R and is
not a B-prime of (0) in R, then we verify in Corollary 3.11 that y((A(R))¢) =

V(T (RIX]))®) = 2.

Corollary 3.11. Let R be a ring such that |Z(R)*| > 1 and suppose that R
admits p as its unique mazximal N-prime of (0). If there exists a f.g. ideal I of
R with I C p such that I is not annihilated by any non-zero element of R, then
Y((A(R))?) = v((T(R[X)))¢) = 2. In particular, if p is a f.g. ideal of R and is
not a B-prime of (0) in R, then v((A(R))¢) = v((T'(R[X]))¢) = 2.

Proof. By hypothesis, Z(R) is an ideal of R and there exists a f.g. ideal I of R
with I C Z(R) such that Ir # (0) for any non-zero r € R. Hence, we obtain from
[15, Theorem 3.3] that Z(R[X]) is not an ideal of R[X]. Therefore, we obtain
from the moreover part of Theorem 3.10 that v((A(R))¢) = v((T'(R[X]))¢) = 2.
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Suppose that p = Z(R) is a f.g. ideal of R with p is not a B-prime of (0) in
R. Hence, pr # (0) for any » € R\{0}. Therefore, we obtain using the arguments
given in the previous paragraph of this proof that v((A(R))¢) = v((I'(R[X])))
= 2. |

We provide Example 3.12 to illustrate Corollary 3.11.

Example 3.12. Let S = K[X,Y] be the polynomial ring in two variables X,Y
over a field K. Let m = SX + SY. Let T = S,. Let M be the T-module
given by M = @, where K(X,Y) is the field of rational functions in two
variables X,Y over K. Let R = T(+)M be the ring obtained by using Nagata’s
principle of idealization. Let p = mT'(+)M. Then R has p as its unique maximal
N-prime of its zero ideal, p is not a B-prime of the zero ideal in R, v((A(R))¢) =
v(T'(R[Z]))¢) = 2, where R[Z] is the polynomial ring in one variable Z over R.

Proof. Tt is clear that m € Max(S). It follows from [5, Example 1, page 3§]
that 7" has mT as its unique maximal ideal. We know from [5, Corollary 7.6 and
Proposition 7.3] that T is Noetherian. Notice that K(X,Y") is the quotient field
of T. Asm = SX + SY, it follows that mT = TX + TY. We claim that Z(R) =
m7T'(4+)M. Since mT is the unique maximal ideal of T', we obtain that mT'(+)M is
the unique maximal ideal of R. Hence, Z(R) C mT(+)M. Let (t,m) € mT(+)M.
It is clear that (t,m) = (t,0+7)+(0,m). From (0,m)? = (0,0+7), in view of [15,
Lemma 2.3] to prove (t,m) € Z(R), it is enough to show that (¢,0 +7T) € Z(R).
If t = 0, then it is clear that (0,04+7") € Z(R). Suppose that t # 0. From t € mT,
it follows that + € K(X,Y)\T. Notice that + + T is a non-zero element of M
and (¢,0 +T7)(0,+ +T) = (0,0 + T) is the zero element of R. This shows that
(t,m) € Z(R) for any (t,m) € mT(+)M. Therefore, mT'(+)M C Z(R) and so,
Z(R) = mT'(+)M. This proves that p = mT'(+)M is the unique maximal N-prime
of the zero ideal in R. We verify that p = R(X,0+T)+R(Y,0+T). It is clear that
R(X,04+T)+ R(Y,0+T) Cp. Let (t,m) € p. Notice that ¢t € mT and m € M
and (t,m) = (t,0 +T) + (0,m). Now, t = t; X + t2Y for some ¢;,ts € T. Hence,
L0+ T) = (WX + 6Y,0+T) = (1,0 + T)(X,0+ T) + (t2,0 + T)(Y,0 + T) €

R(X,0+T)+ R(Y,0+T). Since M = M, m = % + T for some

f(X,Y),9(X,Y) € § = K[X,Y]. Therefore, (0,m) = (X,0+T)(0, &% +
T) € R(X,0+ T). Hence, (t,m) € R(X,0+T)+ R(Y,0+ T). This proves
that p C R(X,0 + T) + R(Y,0 + T) and so, p = R(X,0+ T) + R(Y,0 + T).
Thus p is a f.g. ideal of R. Suppose that p is a B-prime of the zero ideal in R.
Then there exists (t,m) € p\{(0,0 + T)} such that p = ((0,0 +T') :r (t,m)).
This implies that (X,0 + T')(t,m) = (0,0 + T) and so, tX = 0. Hence, t = 0.
Therefore, m # 0+ T. Since K[X,Y] is a unique factorization domain (UFD),
it follows from [5, Proposition 3.11(iv)] and [14, Theorem 5| that 7" is a UFD.
Notice that K(X,Y) is the quotient field of T. It is possible to find t1,ty € T




20 S. VISWESWARAN AND H.D. PATEL

such that ¢; and ¢y are relatively prime in T" and m = % +T. Fromm #0+ 1T,
it follows that % ¢ T. Now, (X,0)(0,m) = (Y,0)(0,m) = (0,0 + T'). Hence,
Xt) = totg and Yt; = toty for some t3,t4 € T. Notice that TX € Spec(T') and
from % ¢ T, Xt1 = tots, we get that to € TX. From Y, = toty, it follows that
Yt € TX. AsY ¢ TX, we obtain that ¢; € TX. This is impossible, as t; and
to are relatively prime in T'. This shows that there exists no non-zero r € R such
that p = ((0,0+T) :g r) and so, p is not a B-prime of the zero ideal in R. Thus
the ring R satisfies the hypotheses of Corollary 3.11 and hence, it follows from

Corollary 3.11 that v((A(R))¢) = v((I'(R[Z]))°) = 2. |

We provide Example 3.13 to illustrate that the in particular part of Corollary
3.11 can fail to hold if the ideal Z(R) is f.g. is omitted. The example of the
reduced ring R given in Example 3.13 is due to Gilmer and Heinzer [11, Example,
page 16].

Example 3.13. Let {X;}2; be a set of indeterminates over a field K. Let
D =2, K[[X1,...,X,]], where for each n € N, K[[Xy,...,X,]] is the power
series ring in Xi,..., X, over K. Let I be the ideal of D generated by {X;X; |
i,j € Nyi # j}. Let R = 2. Then (A(R))® = (I'(R[X]))® and moreover,
(D(R[X]))¢ does not admit any finite dominating set.

Proof. For each i € N, let us denote X; + I by x;. It was already noted in [11,
Example, page 16] that R is reduced and it is quasi-local with m =Y >° | Rz, as
its unique maximal ideal. It was observed in [21, Example 2.4] that Z(R) = m
and so, m is the unique maximal N-prime of the zero ideal in R. As R is reduced,
we get that m is not a B-prime of the zero ideal in R. By [16, Theorem 2],
we obtain that Z(R[X]) C Z(R)[X] = m[X]. It was verified in the proof of
[21, Example 2.4] that any f.g. proper ideal of R is annihilated by a non-zero
element of R. Let f(X) € m[X] with f(X) # 0. Let C be the ideal of R
generated by the coefficients of f(X). Then C' is a non-zero f.g. proper ideal of
R. If r € R\{0 + I} is such that Cr = (0 + I), then f(X)r = 0+ I. Hence,
f(X) € Z(R[X]). This shows that m[X] C Z(R[X]). Therefore, Z(R[X]) = m[X]
is an ideal of R[X]. Hence, we obtain from (1) = (2) of Theorem 3.10 that
(A(R))¢ does not admit any finite dominating set. Since R is reduced, it follows
that (A(R))¢ = (I'(R[X]))¢. Therefore, we obtain that (A(R))¢ = (I'(R[X]))¢
does not admit any finite dominating set. [ |

Proposition 3.14. Let R be a ring such that |Z(R)*| > 1. If (I'(R[X]))¢ (re-
spectively, (A(R))¢) admits a finite dominating set, then so does (I'(R))¢.

Proof. Suppose that (A(R))¢ (respectively, (I'(R[X]))¢) admits a finite domi-
nating set. In such a case, we know from (1) = (2) (respectively, (3) = (2)) of
Theorem 3.10 that Z(R[X]) is not an ideal of R[X]. If f1(X), fo(X) € Z(R[X))*
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are such that f1(X) + fa(X) ¢ Z(R[X]), then A = {f1(X), fo(X)} is a dominat-
ing set of (I'(R[X]))¢ (respectively, (A(R))¢). Notice that {X f;(X) | ¢ € {1,2}}is
a dominating set of (I'(R[X]))¢ (respectively, (A(R))¢). Hence on replacing f;(X)
by X fi(X) (if necessary) for each ¢ € {1,2}, we can assume without loss of gener-
ality that deg(f;(X)) > 0 for each ¢ € {1,2}. It is clear that A C Z(R[X])*. Let
i € {1,2} and let C; be the set consisting of distinct non-zero coefficients of f;(X).
As fi(X) € Z(R[X])*, it follows from [16, Theorem 2] that C; C Z(R)*. Let
C = J?_, Ci. Then C is a finite non-empty subset of Z(R)*. Let a € Z(R)*\C.
Notice that a € Z(R[X])*\A. Since A is a dominating set of (I'(R[X]))¢ (respec-
tively, (A(R))¢), there exists i € {1,2} such that a and f;(X) are adjacent in
(T(R[X]))¢ (respectively, (A(R))¢). Hence, there exists ¢ € C; such that ac # 0
and so, a and ¢ are adjacent in (I'(R))¢. This shows that C' is a dominating set
of ('(R))¢. Hence, we obtain that (I'(R))¢ admits a finite dominating set. ]

In Example 3.15, we mention an example of a ring R such that
Y((T'(R))¢) = 1 but (A(R)) (respectively, (I'(R[X]))¢) does not admit any finite

dominating set.

Example 3.15. Let R = Z4. Then v((I'(R))¢) = 1 but (A(R))¢ (respectively,
(T(R[X]))¢) does not admit any finite dominating set.

Proof. Notice that R is local with 2R as its unique maximal ideal and Z(R) =
2R. As Z(R)* = {2}, it follows that v((I'(R))¢) = 1. Observe that Z(R[X]) =
2R[X] is an ideal of R[X]. From Z(R[X])? = (0), it follows from (3) = (1)
(respectively, (3) = (2)) of Lemma 3.1 that (A(R))¢ (respectively, (I'(R[X])))
has no edges. Hence, (A(R))¢ = (I'(R[X]))¢ and Z(R[X])* is the only dominating
set of (A(R))¢. As Z(R[X])* is infinite, we get that (A(R))¢ = (I'(R[X]))¢ does
not admit any finite dominating set. [ |

Let R be a ring such that |Z(R)*| > 1. We next discuss some results on
w((A(R))) (respectively, w((I'(R[X]))))-

Lemma 3.16. Let R be a ring such that |Z(R)*| > 1. If there exists a € Z(R)*
such that a® # 0, then (T(R[X]))¢ admits an infinite clique.

Proof. Notice that for any n € N, a X" € Z(R[X])* and for any distinct m,n €
N, aX™ # aX™. From a? # 0 and X ¢ Z(R[X])*, it follows that (aX™)(aX") =
a?X™+" £ 0. Therefore, the subgraph of (I'(R[X]))¢ induced by {aX™ | n € N}
is an infinite clique. n

Corollary 3.17. Let R be a ring such that R has at least two mazximal N-primes
of (0). Then (T'(R[X]))¢ admits an infinite clique.
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Proof. By hypothesis, R has at least two maximal N-primes of (0). Let py, po
be distinct maximal N-primes of (0) in R. Then p; Z ps. Let a € p1\p2. Then
a € Z(R)* and a® # 0. Hence, we obtain from Lemma 3.16 that (T'(R[X]))¢

admits an infinite clique. [ |

Proposition 3.18. Let R be a ring such that |Z(R)*| > 1. Suppose that R
has p as its unique mazimal N-prime of (0). Then the following statements are
equivalent:

(1) w((A(R))) < oo.

(2) w(T(R[X]))) <
(3) (T(R[X]))¢ does not admit any infinite clique.
)

(r
(4) p? = (0).

Proof. (1) = (2) This is clear, since (I'((R[X]))¢ is a spanning subgraph of
(A(R))".

(2) = (3) This is clear.

(3) = (4) As (I'(R[X]))¢ does not admit any infinite clique by assumption,
it follows from Lemma 3.16 that a®> = 0 for each a € Z(R) = p. Suppose
that p? # (0). Then there exist a,b € Z(R)* = p\{0} such that ab # 0. Let
n € N. From a?> = b? = 0, it follows that a + bX" is a nilpotent element of
R[X] and hence, a + bX"™ € Z(R[X])*. Let us denote a + bX"™ by fn(X). It is
clear that f,,(X) # fn(X) for all distinct m,n € N. Let m,n € N with m # n.
Observe that ab is the coefficient of X" in f,,,(X) fn(X). From ab # 0, we get that
fm(X) fn(X) # 0 and so, the subgraph of (I'(R[X]))¢ induced by {f.(X) | n € N}
is an infinite clique. This is a contradiction and so, we obtain that p? = (0).

(4) = (1) By hypothesis, Z(R) = p is an ideal of R. We are assuming that
p? = (0). Hence, we obtain from (3) = (1) of Lemma 3.1 that (A(R))¢ has no
edges. Therefore, w((A(R))¢) =1 < oc. |

Corollary 3.19. Let R be a ring such that |Z(R)*| > 1. Then the following
statements are equivalent:

(1) (A(R))¢ is planar.

(2) (I(R[X]))® is planar.

(3) Z(R) is an ideal of R with Z(R)? = (0).

(4) (A(R))¢ has no edges.

Proof. (1) = (2) As (I'(R[X]))¢ is a spanning subgraph of (A(R))¢ and (A(R))¢
is planar, we obtain that (I'(R[X]))¢ is planar.

(2) = (3) We are assuming that (I'(R[X]))¢ is planar. As K} is non-planar
by Kuratowski’s Theorem [9, Theorem 5.9] we obtain that w((I'(R[X]))¢) < 4.
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Therefore, it follows from Corollary 3.17 that Z(R) is necessarily an ideal of R.
It now follows from (2) = (4) of Proposition 3.18 that Z(R)? = (0).

(3) = (4) We are assuming that Z(R) is an ideal of R with Z(R)? = (0).
Hence, we obtain from (3) = (1) of Lemma 3.1 that (A(R))¢ has no edges.

(4) = (1) This is clear. ]
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