SOME REMARKS ON THE COMPLEMENT OF THE ARMENDARIZ GRAPH OF A COMMUTATIVE RING

Subramanian Visweswaran
Department of Mathematics
Saurashtra University
Rajkot, 360005, India
e-mail: s_visweswaran2006@yahoo.co.in
AND
Hiren D. Patel
Faculty, Government Polytechnic
Bhuj-370001, Gujarat, India
e-mail: hdp12376@gmail.com

Abstract

Let R be a commutative ring with identity which is not an integral domain. Let $Z(R)$ denote the set of all zero-divisors of R. Recall from [1] that the Armendariz graph of R denoted by $A(R)$ is an undirected graph whose vertex set is $Z(R[X]) \backslash\{0\}$ and distinct vertices $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ and $g(X)=\sum_{j=0}^{m} b_{j} X^{j}$ are adjacent in $A(R)$ if and only if $a_{i} b_{j}=0$ for all $i \in\{0, \ldots, n\}$ and $j \in\{0, \ldots, m\}$. The aim of this article is to study the interplay between the graph-theoretic properties of the complement of $A(R)$, that is, $(A(R))^{c}$ and the ring-theoretic properties of R.

Keywords: B-prime of (0), complement of the zero-divisor graph, diameter, domination number, maximal N -prime of (0), radius.
2020 Mathematics Subject Classification: Primary: 13A15, 13B25; Secondary: 05C25.

1. Introduction

The rings considered in this article are commutative with identity which are not integral domains. Let R be a ring. Let us denote the set of all non-zero zerodivisors of R, that is, $Z(R) \backslash\{0\}$ by $Z(R)^{*}$. The study of interplay between ring
theory and graph theory began with the research work of Beck [8]. Recall from [2] that the zero-divisor graph of R, denoted by $\Gamma(R)$ is an undirected graph whose vertex set is $Z(R)^{*}$ and distinct vertices x, y are adjacent in $\Gamma(R)$ if and only if $x y=0$. For an inspiring and excellent survey on the zero-divisor graphs of commutative rings, the reader is referred to [3].

This article is motivated by the interesting results proved on the Armendariz graph of a commutative ring in [1]. For a ring R, we denote the polynomial ring in one variable X over R by $R[X]$. Recall from [1] that the Armendariz graph of a ring R, denoted by $A(R)$ is an undirected graph whose vertex set is $Z(R[X])^{*}$ and distinct vertices $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ and $g(X)=\sum_{j=0}^{m} b_{j} X^{j}$ are adjacent in $A(R)$ if and only if $a_{i} b_{j}=0$ for all $i \in\{0, \ldots, n\}$ and $j \in\{0, \ldots, m\}$. Recall from [17] that a ring R is said to be Armendariz if $f(X)=\sum_{i=0}^{n} a_{i} X^{i}, g(X)=\sum_{j=0}^{m} b_{j} X^{j} \in$ $R[X]$ are such that $f(X) g(X)=0$, then $a_{i} b_{j}=0$ for all $i \in\{0, \ldots, n\}$ and $j \in$ $\{0, \ldots, m\}$. It was already observed in [1, Example 1] that if R is an Armendariz ring, then $A(R)=\Gamma(R[X])$. A ring R is said to be reduced if R has no non-zero nilpotent element. It is clear that any reduced ring is Armendariz and so, for a reduced ring $R, A(R)=\Gamma(R[X])$. In Section 2 of [1], several Examples of $A(R)$ were given and in $[1$, Theorem 1] necessary and sufficient conditions were determined for $A(R)$ to be complete. It was proved in [1, Theorem 2] that there exists $f(X) \in Z(R[X])^{*}$ such that $f(X)$ is adjacent in $A(R)$ to every other vertex of $A(R)$ if and only if $Z(R)$ is an annihilator ideal of R.

The graphs considered in this article are undirected and simple. Let $G=$ (V, E) be a simple graph. As in [7], we denote the complement of G by G^{c}. Let R be a ring such that $Z(R)^{*} \neq \emptyset$. For a graph G, we denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. Notice that $V\left((A(R))^{c}\right)=$ $V\left((\Gamma(R[X]))^{c}\right)=Z(R[X])^{*}$. Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ and $g(X)=\sum_{j=0}^{m} b_{j} X^{j} \in$ $Z(R[X])^{*}$ be distinct. Observe that if $f(X)$ and $g(X)$ are adjacent in $(\Gamma(R[X]))^{c}$, then $f(X) g(X) \neq 0$ and so, $a_{i} b_{j} \neq 0$ for some $i \in\{0, \ldots, n\}$ and $j \in\{0, \ldots, m\}$. Hence, $f(X)$ and $g(X)$ are adjacent in $(A(R))^{c}$. The above observations imply that $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$. In [18, 19], the graphtheoretic properties of $(\Gamma(R))^{c}$ were studied.

We denote the set of all prime ideals of a ring R by $\operatorname{Spec}(R)$ and the set of all maximal ideals of R by $\operatorname{Max}(R)$. Let I be an ideal of R with $I \neq R$. Recall from [13] that $\mathfrak{p} \in \operatorname{Spec}(R)$ is said to be a maximal N-prime of I if \mathfrak{p} is maximal with respect to the property of being contained in $Z_{R}\left(\frac{R}{I}\right)=\{r \in R \mid r x \in I$ for some $x \in R \backslash I\}$. Hence, $\mathfrak{p} \in \operatorname{Spec}(R)$ is a maximal N -prime of (0) if \mathfrak{p} is maximal with respect to the property of being contained in $Z(R)$. Let $x \in Z(R)$. Then the multiplicatively closed subset $S=R \backslash Z(R)$ of R is such that $R x \cap S=\emptyset$. Hence, we obtain from Zorn's lemma and [14, Theorem 1] that there exists a maximal N-prime \mathfrak{p} of (0) in R such that $x \in \mathfrak{p}$. It now follows that if $\left\{\mathfrak{p}_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of all maximal N -primes of (0) in R, then $Z(R)=\bigcup_{\alpha \in \Lambda} \mathfrak{p}_{\alpha}$. It is now
clear that R has a unique maximal N -prime of (0) if and only if $Z(R)$ is an ideal of R. Let I be an ideal of R with $I \neq R$. Recall from [12] that $\mathfrak{p} \in \operatorname{Spec}(R)$ is said to be an associated prime of I in the sense of Bourbaki if $\mathfrak{p}=\left(I:_{R} x\right)$ for some $x \in R$. In such a case, we say that \mathfrak{p} is a B-prime of I. For basic definitions and concepts from graph theory that are used in this article, one can refer any standard textbook in Graph Theory (for example, see [7, 9]).

This article consists of three sections including the introduction. In Section 2 of this paper, for a ring R with $\left|Z(R)^{*}\right| \geq 1$, we discuss some results on the connectedness of $(A(R))^{c}$. In Propositions 2.3 and 2.5, necessary and sufficient conditions are determined in order that $(A(R))^{c}$ to be connected. If $(A(R))^{c}$ is connected, then the diameter and the radius of $(A(R))^{c}$ are determined (see Propositions 2.3, 2.6, 2.7, and 2.8). Let R be a ring such that $(A(R))^{c}$ is connected. It is proved in Theorem 2.12 that for any finite non-empty subset S of $(Z(R[X]))^{*},(\Gamma(R[X]))^{c}-S$ is connected and so, $(A(R))^{c}-S$ is connected and it is deduced in Corollary 2.13 that $(\Gamma(R[X]))^{c}\left(\right.$ respectively, $\left.(A(R))^{c}\right)$ does not admit any cut vertex.

In Section 3 of this paper, some more properties of $(A(R))^{c}$ are proved. For a graph G, we denote the girth of G by $\operatorname{gr}(G)$. We set $\operatorname{gr}(G)=\infty$ if G does not contain any cycle. It is proved in Proposition 3.5 that $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=$ $\operatorname{gr}\left((A(R))^{c}\right) \in\{3, \infty\}$ and moreover, necessary and sufficient conditions are determined such that $(A(R))^{c}$ does not contain any cycle. Some results on the domination number of $(\Gamma(R[X]))^{c}\left(\right.$ respectively, $\left.(A(R))^{c}\right)$ are also proved in Section 3 (see Proposition 3.9 and Theorem 3.10). We denote the clique number of a graph G by $\omega(G)$. Section 3 also contains some results on $\omega\left((A(R))^{c}\right)$ (see Corollary 3.17 and Proposition 3.18). In Corollary 3.19, it is proved that $(A(R))^{c}$ is planar if and only if $(A(R))^{c}$ has no edges.

For any $n \geq 2$, we denote the ring of integers modulo n by \mathbb{Z}_{n}. The cardinality of a set A is denoted by $|A|$. For sets A, B, if A is a proper subset of B, then we denote it by $A \subset B$. The group of units of a ring R is denoted by $U(R)$. We use the abbreviation f.g. for finitely generated.

2. On the connectedness of $(A(R))^{c}$

For a connected graph G, we denote the diameter of G by $\operatorname{diam}(G)$ and the radius of G by $r(G)$. Let R be a ring with $\left|Z(R)^{*}\right| \geq 1$. In this section, we discuss some results on the connectedness of $(A(R))^{c}$ and we determine $\operatorname{diam}\left((A(R))^{c}\right)$ and $r\left((A(R))^{c}\right)$ in the case when $(A(R))^{c}$ is connected.
Lemma 2.1. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Then $Z(R[X])^{*}$ is infinite.
Proof. As $R[X]$ is infinite and is not an integral domain, it follows from [10, Theorem 1] that $Z(R[X])^{*}$ is infinite.

Let R be a ring. In Proposition 2.3 with the assumption that $Z(R)$ is an ideal of R, we determine necessary and sufficient conditions in order that $(A(R))^{c}$ to be connected. We use Lemma 2.2 in the proof of the moreover part of Proposition 2.3.

Lemma 2.2. Let $G=(V, E)$ be a simple graph with $|V| \geq 2$. If both G and G^{c} are connected, then $r\left(G^{c}\right) \geq 2$ and $r(G) \geq 2$.

Proof. Notice that $V(G)=V\left(G^{c}\right)=V$. As G is connected and $|V| \geq 2$ by hypothesis, we obtain from [19, Lemma 2.1] that $e(a) \geq 2$ in G^{c} for each $a \in$ V. Hence, $r\left(G^{c}\right) \geq 2$. As G is the complement of G^{c} and G^{c} is connected by hypothesis, it follows that $r(G) \geq 2$.

Proposition 2.3. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Let \mathfrak{p} be the unique maximal N-prime of (0) in R. The following statements are equivalent:
(1) $(A(R))^{c}$ is connected.
(2) \mathfrak{p} is not a B-prime of (0) in R.
(3) $(\Gamma(R[X]))^{c}$ is connected.

Moreover, if the statement (1) holds, then

$$
\operatorname{diam}\left((A(R))^{c}\right)=\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=r\left((A(R))^{c}\right)=r\left((\Gamma(R[X]))^{c}\right)=2 .
$$

Proof. (1) $\Rightarrow(2)$ Suppose that \mathfrak{p} is a B-prime of (0) in R. Then there exists $r \in R \backslash\{0\}$ such that $\mathfrak{p}=\left((0):_{R} r\right)$. It is clear that $r \in \mathfrak{p}$ and $\mathfrak{p}[X]=\left((0):_{R[X]} r\right)$. We know from the proof of [18, Proposition 2.2(ii)] that $Z(R[X])=\mathfrak{p}[X]$. Let $g(X)=r$. Let $h(X)=\sum_{i=0}^{n} a_{i} X^{i} \in Z(R[X])^{*}$ with $h(X) \neq g(X)$. As $a_{i} \in \mathfrak{p}$ for each $i \in\{0, \ldots, n\}$, it follows that $a_{i} g(X)=a_{i} r=0$ for each $i \in\{0, \ldots, n\}$. This shows that $g(X)$ is an isolated vertex of $(A(R))^{c}$. As $Z(R[X])^{*}$ is infinite and $(A(R))^{c}$ admits an isolated vertex, we obtain that $(A(R))^{c}$ is not connected. This is in contradiction to the assumption that $(A(R))^{c}$ is connected. Therefore, \mathfrak{p} is not a B-prime of (0) in R.
(2) \Rightarrow (3) Let $a \in Z(R)^{*}$. As $Z(R)=\mathfrak{p}$ is not a B-prime of (0) in R and $\left((0):_{R} a\right) \subseteq Z(R)$, we get that $\mathfrak{p} \nsubseteq\left((0):_{R} a\right)$. Let $b \in \mathfrak{p}$ such that $a b \neq 0$. If $a=a b$, then from $a(1-b)=0$, it follows that $1-b \in \mathfrak{p}$. In such a case, $1=b+1-b \in \mathfrak{p}$. This is a contradiction. Therefore, $a \neq a b$ and so, $\left|Z(R)^{*}\right| \geq 2$. Since \mathfrak{p} is not a B-prime of (0) in R, it follows from [18, Lemma 1.5] that $(\Gamma(R[X]))^{c}$ is connected and $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right) \leq 2$.
$(3) \Rightarrow(1)$ As $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$ and $(\Gamma(R[X]))^{c}$ is connected by assumption, we get that $(A(R))^{c}$ is connected.

Assume that the statement (1) holds. We know from the proof of $(2) \Rightarrow(3)$ of this proposition that $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right) \leq 2$. Hence, $\operatorname{diam}\left((A(R))^{c}\right) \leq 2$. It
follows from [1, Theorem 4] (respectively, [2, Theorem 2.3]) and Lemma 2.2 that $r\left((A(R))^{c}\right) \geq 2$ (respectively, $\left.r\left((\Gamma(R[X]))^{c}\right) \geq 2\right)$. Therefore, we obtain that $\operatorname{diam}\left((A(R))^{c}\right)=\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=r\left((A(R))^{c}\right)=r\left((\Gamma(R[X]))^{c}\right)=2$.

A ring R is said to be quasi-local if $|\operatorname{Max}(R)|=1$. A Noetherian quasi-local ring is referred to as a local ring. The Krull dimension of a ring R is simply referred to as the dimension of R and is denoted by $\operatorname{dim} R$. Example 2.4 is provided to illustrate Proposition 2.3.

Example 2.4. Let (V, \mathfrak{m}) be a rank one valuation domain which is not discrete. Let $m \in \mathfrak{m} \backslash\{0\}$. Let $R=\frac{V}{V m}$. Let $\mathfrak{p}=\frac{\mathfrak{m}}{V m}$. Let $T=R(+) R$ be the ring obtained by using Nagata's principle of idealization. Then the following statements hold:
(1) $\mathfrak{p}(+) R$ is the unique maximal N-prime of the zero ideal in T but it is not a B-prime of the zero ideal in T.
(2) $(A(T))^{c}$ is connected and $\operatorname{diam}\left((A(T))^{c}\right)=r\left((A(T))^{c}\right)=2$.
(3) $(A(T))^{c} \neq(\Gamma(T[X]))^{c}$.

Proof. (1) We know from the proof of [18, Example 3.1(ii)] that \mathfrak{p} is the unique maximal N-prime of the zero ideal in R and \mathfrak{p} is not a B-prime of the zero ideal in R. As R is quasi-local with \mathfrak{p} as its unique maximal ideal, it follows that $T=R(+) R$ is quasi-local with $\mathfrak{p}(+) R$ as its unique maximal ideal. Hence, $Z(T) \subseteq$ $\mathfrak{p}(+) R$. Let $(r, s) \in \mathfrak{p}(+) R$. Notice that $r \in \mathfrak{p}=Z(R)$ and so, $(r, 0+V m) \in Z(T)$. Now, $(r, s)=(r, 0+V m)+(0+V m, s)$ and $(0+V m, s)^{2}=(0+V m, 0+V m)$. From [15, Lemma 2.3], we get that $(r, s) \in Z(T)$. Therefore, $\mathfrak{p}(+) R \subseteq Z(T)$ and so, $Z(T)=\mathfrak{p}(+) R$. This shows that $\mathfrak{p}(+) R$ is the unique maximal N-prime of the zero ideal in T. From \mathfrak{p} is not a B-prime of zero ideal in R, it follows that $\mathfrak{p}(+) R$ is not a B-prime of the zero ideal in T.
(2) It follows from (1) of this example and $(2) \Rightarrow(1)$ of Proposition 2.3 that $(A(T))^{c}$ is connected and from the moreover part of Proposition 2.3, we get that $\operatorname{diam}\left((A(T))^{c}\right)=r\left((A(T))^{c}\right)=2$.
(3) As $\operatorname{Spec}(V)=\{(0), \mathfrak{m}\}$, it follows from [5, Proposition 1.14] that for each $a \in \mathfrak{m} \backslash\{0\}, \sqrt{V a}=\mathfrak{m}$. Since \mathfrak{m} is not principal, it follows that $\mathfrak{m} \neq V m$. Let $a \in \mathfrak{m} \backslash V m$. Since the set of ideals of V is linearly ordered by inclusion, we get that $m \in V a$. Therefore, $m=a v$ for some $v \in \mathfrak{m}$. Notice that $\sqrt{V a}=\sqrt{V m}=\mathfrak{m}$. Let $n \geq 2$ be least with the property that $a^{n} \in V m$. Then $a^{n-1} \notin V m$ but $\left(a^{n-1}\right)^{2} \in V m$. Let $f(X), g(X) \in T[X]$ be given by $f(X)=\left(a^{n-1}+V m, v+\right.$ $V m)+\left(a^{n-1}+V m, 1+V m\right) X$ and $g(X)=\left(a^{n-1}+V m, 0+V m\right)+\left(a^{n-1}+\right.$ $V m,-1+V m) X$. Since $a \notin U(V)$, it follows that $v \notin V m$ and so, $f(X) \neq g(X)$. Using the facts that $\left(a^{n-1}\right)^{2} \in V m$ and $a^{n-1} v \in V m$, it can be verified that $f(X) g(X)=(0+V m, 0+V m)$. Hence, $f(X)$ and $g(X)$ are not adjacent in $(\Gamma(T[X]))^{c}$. It can be verified that the product of the constant term of $f(X)$ and
the coefficient of X in $g(X)$ equals $\left(0+V m,-a^{n-1}+V m\right) \neq(0+V m, 0+V m)$ and so, $f(X)$ and $g(X)$ are adjacent in $(A(T))^{c}$. Therefore, we obtain that $(A(T))^{c} \neq(\Gamma(T[X]))^{c}$.

Let R be a ring such that R has exactly two maximal N-primes of (0). In Proposition 2.5, we determine necessary and sufficient conditions for $(A(R))^{c}$ to be connected.

Proposition 2.5. Let R be a ring such that $\left\{\mathfrak{p}_{i} \mid i \in\{1,2\}\right\}$ is the set of all maximal N-primes of (0) in R. The following statements are equivalent:
(1) $(A(R))^{c}$ is connected.
(2) $\bigcap_{i=1}^{2} \mathfrak{p}_{i} \neq(0)$.
(3) $(\Gamma(R[X]))^{c}$ is connected.

Proof. (1) \Rightarrow (2) Suppose that $\bigcap_{i=1}^{2} \mathfrak{p}_{i}=(0)$. Then R is reduced. Hence, $A(R)=\Gamma(R[X])$ and so, $(A(R))^{c}=(\Gamma(R[X]))^{c}$. From $(\Gamma(R[X]))^{c}$ is connected, we obtain from [18, Proposition 2.6(i)] that $(\Gamma(R))^{c}$ is connected. It now follows from [18, Proposition $1.7(\mathrm{i})]$ that $\bigcap_{i=1}^{2} \mathfrak{p}_{i} \neq(0)$. This is a contradiction and so, $\bigcap_{i=1}^{2} \mathfrak{p}_{i} \neq(0)$.
$(2) \Rightarrow(3)$ As $\bigcap_{i=1}^{2} \mathfrak{p}_{i} \neq(0)$ by assumption, it follows from [18, Proposition 1.7(i)] that $(\Gamma(R))^{c}$ is connected and we know from [18, Proposition 2.6(i)] that $(\Gamma(R[X]))^{c}$ is connected.
$(3) \Rightarrow(1)$ We are assuming that $(\Gamma(R[X]))^{c}$ is connected. As $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, we obtain that $(A(R))^{c}$ is connected.

Proposition 2.6. Let $R, \mathfrak{p}_{1}, \mathfrak{p}_{2}$ be as in the statement of Proposition 2.5. If $(A(R))^{c}$ is connected, then the following statements hold:
(1) $2 \leq \operatorname{diam}\left((A(R))^{c}\right) \leq \operatorname{diam}\left((\Gamma(R[X]))^{c}\right) \leq 3$. If diam $\left((\Gamma(R[X]))^{c}\right)=2$, then $\operatorname{diam}\left((A(R))^{c}\right)=2$.
(2) $\operatorname{diam}\left((A(R))^{c}\right)=3$ if and only if \mathfrak{p}_{i} is a B-prime of (0) in R for each $i \in$ $\{1,2\}$.

Proof. We are assuming that $(A(R))^{c}$ is connected.
(1) From the proof of $(2) \Rightarrow(3)$ of Proposition 2.5 , we get that $(\Gamma(R))^{c}$ is connected and $(\Gamma(R[X]))^{c}$ is connected. We know from [18, Proposition 1.7(ii)] that $2 \leq \operatorname{diam}\left((\Gamma(R))^{c}\right) \leq 3$ and $\operatorname{diam}\left((\Gamma(R))^{c}\right)=3$ if and only if \mathfrak{p}_{i} is a Bprime of (0) in R for each $i \in\{1,2\}$. Moreover, we obtain from [18, Proposition $2.6(i i)]$ that $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=\operatorname{diam}\left((\Gamma(R))^{c}\right) \in\{2,3\}$. It follows from [1, Theorem 4] and Lemma 2.2 that $r\left((A(R))^{c}\right) \geq 2$ and so, $2 \leq \operatorname{diam}\left((A(R))^{c}\right)$. As $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, it follows that $\operatorname{diam}\left((A(R))^{c}\right) \leq$ $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)$. Therefore, we get that
$2 \leq \operatorname{diam}\left((A(R))^{c}\right) \leq \operatorname{diam}\left((\Gamma(R[X]))^{c}\right) \leq 3$. If $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=2$, then it is clear that $\operatorname{diam}\left((A(R))^{c}\right)=2$.
(2) If $\operatorname{diam}\left((A(R))^{c}\right)=3$, then $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=3$. Hence, it follows from the proof of (1) that \mathfrak{p}_{i} is a B-prime of (0) in R for each $i \in\{1,2\}$. Conversely, assume that \mathfrak{p}_{i} is a B-prime of (0) in R for each $i \in\{1,2\}$. Let $u, v \in R \backslash\{0\}$ be such that $\mathfrak{p}_{1}=\left((0):_{R} u\right)$ and $\mathfrak{p}_{2}=\left((0):_{R} v\right)$. It is clear that $\mathfrak{p}_{1}[X]=\left((0):_{R[X]} u\right)$ and $\mathfrak{p}_{2}[X]=\left((0):_{R[X]} v\right)$. We know from the proof of [18, Proposition 2.6 $(i i)(b)]$ that $Z(R[X])=\bigcup_{i=1}^{2} \mathfrak{p}_{i}[X]$. We claim that $d(u, v) \geq 3$ in $(A(R))^{c}$. From [8, Lemma 3.6], we get that $u v=0$. Hence, u and v are not adjacent in $(A(R))^{c}$. Let $h(X) \in Z(R[X])^{*} \backslash\{u, v\}$. Either $h(X) \in \mathfrak{p}_{1}[X]$ or $h(X) \in \mathfrak{p}_{2}[X]$. If $h(X) \in \mathfrak{p}_{1}[X]$, then $h(X) u=0$ and so, u and $h(X)$ are not adjacent in $(A(R))^{c}$. If $h(X) \in \mathfrak{p}_{2}[X]$, then $h(X) v=0$ and so, $h(X)$ and v are not adjacent in $(A(R))^{c}$. This shows that there exists no path of length two between u and v in $(A(R))^{c}$. Therefore, $d(u, v) \geq 3$ in $(A(R))^{c}$ and hence, $\operatorname{diam}\left((A(R))^{c}\right) \geq 3$. From $\operatorname{diam}\left((A(R))^{c}\right) \leq 3$, we obtain that $\operatorname{diam}\left((A(R))^{c}\right)=3$.

Proposition 2.7. Let R be a ring such that R admits at least three maximal N-primes of (0). Then both $(\Gamma(R[X]))^{c}$ and $(A(R))^{c}$ are connected and $\operatorname{diam}\left((A(R))^{c}\right)=\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=2$.

Proof. By hypothesis, R has at least three maximal N-primes of (0). It follows from $\left[18\right.$, Proposition 2.8] that $(\Gamma(R[X]))^{c}$ is connected with $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=$ 2. Since $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, we obtain that $(A(R))^{c}$ is connected and $\operatorname{diam}\left((A(R))^{c}\right) \leq 2$. It follows from [1, Theorem 4] and Lemma 2.2 that $r\left((A(R))^{c}\right) \geq 2$ and so, $2 \leq \operatorname{diam}\left((A(R))^{c}\right)$. Therefore, both $(\Gamma(R[X]))^{c}$ and $(A(R))^{c}$ are connected with $\operatorname{diam}\left((A(R))^{c}\right)=\operatorname{diam}\left((\Gamma(R[X]))^{c}\right)=2$.

Proposition 2.8. Let R be a ring such that R has at least two maximal N-primes of (0). If $(A(R))^{c}$ is connected, then $r\left((A(R))^{c}\right)=r\left((\Gamma(R[X]))^{c}\right)=2$.

Proof. Suppose that $(A(R))^{c}$ is connected. It is already noted in the proof of Proposition 2.6(1) and Proposition 2.7 that $(\Gamma(R[X]))^{c}$ is connected and $r\left((A(R))^{c}\right) \geq 2$. We know from [19, Theorem 2.5] that $r\left((\Gamma(R[X]))^{c}\right)=2$. Since $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, it follows that $r\left((A(R))^{c}\right) \leq 2$ and so, $r\left((A(R))^{c}\right)=r\left((\Gamma(R[X]))^{c}\right)=2$.

We provide Examples 2.9, 2.10, and 2.11 to illustrate Propositions 2.5, 2.6, 2.7, and 2.8.

Example 2.9. Let T be as in Example 2.4 and let $S=T \times \mathbb{Z}_{8}$ be the direct product of rings T and \mathbb{Z}_{8}. Then the following statements hold:
(1) S has exactly two maximal N-primes of its zero ideal.
(2) $(A(S))^{c}$ is connected with $\operatorname{diam}\left((A(S))^{c}\right)=r\left((A(S))^{c}\right)=2$.
(3) $(A(S))^{c} \neq(\Gamma(S[X]))^{c}$.

Proof. In the notation of Example 2.4, $T=R(+) R$ is quasi-local with $Z(T)=$ $\mathfrak{p}(+) R$ as its unique maximal ideal.
(1) Notice that $Z(S)=\left(Z(T) \times \mathbb{Z}_{8}\right) \cup\left(T \times Z\left(\mathbb{Z}_{8}\right)\right)=\left((\mathfrak{p}(+) R) \times \mathbb{Z}_{8}\right) \cup\left(T \times 2 \mathbb{Z}_{8}\right)$. Let $\mathfrak{p}_{1}=(\mathfrak{p}(+) R) \times \mathbb{Z}_{8}$ and let $\mathfrak{p}_{2}=T \times 2 \mathbb{Z}_{8}$. Observe that $\mathfrak{p}_{i} \in \operatorname{Max}(S)$ for each $i \in\{1,2\}, \mathfrak{p}_{1} \neq \mathfrak{p}_{2}$, and $Z(S)=\bigcup_{i=1}^{2} \mathfrak{p}_{i}$. Therefore, we get that $\left\{\mathfrak{p}_{i} \mid i \in\{1,2\}\right\}$ is the set of all maximal N -primes of the zero ideal in S.
(2) As $\bigcap_{i=1}^{2} \mathfrak{p}_{i}=(\mathfrak{p}(+) R) \times 2 \mathbb{Z}_{8}$ is not the zero ideal of S, we obtain from $(2) \Rightarrow(1)$ of Proposition 2.5 that $(A(S))^{c}$ is connected. It is already observed in the proof of Example 2.4 that $\mathfrak{p}(+) R$ is not a B-prime of the zero ideal in T and hence, we obtain that \mathfrak{p}_{1} is not a B-prime of the zero ideal in S. Therefore, it follows from Proposition 2.6(1) and (2) that $\operatorname{diam}\left((A(S))^{c}\right)=2$ and from Proposition 2.8, we obtain that $r\left((A(S))^{c}\right)=2$.
(3) In the notation of Example 2.4, recall that $f(X), g(X) \in T[X]$ are such that $f(X)=\left(a^{n-1}+V m, v+V m\right)+\left(a^{n-1}+V m, 1+V m\right) X$ and $g(X)=\left(a^{n-1}+\right.$ $V m, 0+V m)+\left(a^{n-1}+V m,-1+V m\right) X$. Let $f_{1}(X), g_{1}(X) \in S[X]$ be given by $f_{1}(X)=\left(\left(a^{n-1}+V m, v+V m\right), 0\right)+\left(\left(a^{n-1}+V m, 1+V m\right), 0\right) X$ and $g_{1}(X)=$ $\left(\left(a^{n-1}+V m, 0+V m\right), 0\right)+\left(\left(a^{n-1}+V m,-1+V m\right), 0\right) X$. From the choice of a and v, it follows as in the proof of Example 2.4 that $f_{1}(X) \neq g_{1}(X), f_{1}(X) g_{1}(X)$ is the zero polynomial, and the product of the constant term of $f_{1}(X)$ and the coefficient of X in $g_{1}(X)$ is not the zero element of S. Therefore, $f_{1}(X)$ and $g_{1}(X)$ are not adjacent in $(\Gamma(S[X]))^{c}$ but they are adjacent in $(A(S))^{c}$. Hence, $(A(S))^{c} \neq(\Gamma(S[X]))^{c}$.

Example 2.10. Let $R=\mathbb{Z}_{8}(+) \mathbb{Z}_{8}$ be the ring obtained by using Nagata's principle of idealization. Let $T=R \times R$ be the direct product of rings R and R. Then the following statements hold.
(1) T has exactly two maximal N-primes of its zero ideal and both are B-primes of the zero ideal in T.
(2) $(A(T))^{c}$ is connected with $\operatorname{diam}\left((A(T))^{c}\right)=3$ and $r\left((A(T))^{c}\right)=2$.
(3) $(A(T))^{c} \neq(\Gamma(T[X]))^{c}$.

Proof. Notice that $R=\mathbb{Z}_{8}(+) \mathbb{Z}_{8}$ is local with $\mathfrak{p}=2 \mathbb{Z}_{8}(+) \mathbb{Z}_{8}$ as its unique maximal ideal. Observe that $Z(R)=\mathfrak{p}=\left((0,0):_{R}(0,4)\right)$ is a B-prime of the zero ideal in R.
(1) As $T=R \times R$, we get that $Z(T)=(Z(R) \times R) \cup(R \times Z(R))=(\mathfrak{p} \times R) \cup(R \times$ $\mathfrak{p})$. Let $\mathfrak{p}_{1}=\mathfrak{p} \times R$ and let $\mathfrak{p}_{2}=R \times \mathfrak{p}$. Notice that $\mathfrak{p}_{i} \in \operatorname{Max}(T)$ for each $i \in\{1,2\}$, $\mathfrak{p}_{1} \neq \mathfrak{p}_{2}$, and $Z(T)=\bigcup_{i=1}^{2} \mathfrak{p}_{i}$. Hence, it follows that $\left\{\mathfrak{p}_{i} \mid i \in\{1,2\}\right\}$ is the set of all maximal N -primes of the zero ideal in T. Let $u=((0,4),(0,0))$ and let $v=((0,0),(0,4))$. It is clear that $\mathfrak{p}_{1}=\left(\left(0_{R}, 0_{R}\right):_{T} u\right)$ and $\mathfrak{p}_{2}=\left(\left(0_{R}, 0_{R}\right):_{T} v\right)$,
where $0_{R}=(0,0)$ is the zero element of R. Therefore, \mathfrak{p}_{i} is a B-prime of the zero ideal in T for each $i \in\{1,2\}$.
(2) As $\bigcap_{i=1}^{2} \mathfrak{p}_{i}=\mathfrak{p} \times \mathfrak{p}$ is not the zero ideal of T, we obtain from (2) \Rightarrow (1) of Proposition 2.5 that $(A(T))^{c}$ is connected. Since \mathfrak{p}_{i} is a B-prime of the zero ideal in T for each $i \in\{1,2\}$, it follows from Proposition 2.6(2) that $\operatorname{diam}\left((A(T))^{c}\right)=3$ and from Proposition 2.8, we obtain that $r\left((A(T))^{c}\right)=2$.
(3) Let $f(X), g(X) \in Z(R[X])^{*}$ be given by $f(X)=(4,2)+(4,1) X$ and $g(X)=(4,0)+(4,1) X$. It was already noted in the proof of [1, Example 2] that $f(X) g(X)$ is the zero polynomial but $f(X)$ and $g(X)$ are not adjacent in $A(R)$. Hence, $f(X)$ and $g(X)$ are not adjacent in $(\Gamma(R[X]))^{c}$ but they are adjacent in $(A(R))^{c}$. Let $f_{1}(X)=((4,2),(0,0))+((4,1),(0,0)) X$ and let $g_{1}(X)=((4,0),(0,0))+((4,1),(0,0)) X$. It can be shown as in the proof of Example 2.9(3) that $f_{1}(X)$ and $g_{1}(X)$ are not adjacent in $(\Gamma(T[X]))^{c}$ but they are adjacent in $(A(T))^{c}$. Therefore, $(A(T))^{c} \neq(\Gamma(T[X]))^{c}$.

Example 2.11. Let T be as in Example 2.4 and let $S=T \times \mathbb{Z}_{8} \times \mathbb{Z}_{8}$ be the direct product of rings T, \mathbb{Z}_{8}, and \mathbb{Z}_{8}. Then the following statements hold:
(1) S has exactly three maximal N-primes of its zero ideal.
(2) $(A(S))^{c}$ is connected with $\operatorname{diam}\left((A(S))^{c}\right)=r\left((A(S))^{c}\right)=2$.
(3) $(A(S))^{c} \neq(\Gamma(S[X]))^{c}$.

Proof. In the notation of Example 2.4, T is quasi-local with $Z(T)=\mathfrak{p}(+) R$ as its unique maximal ideal.
(1) It follows as in the proof of (1) of Example 2.10 that $Z(S)=(Z(T) \times$ $\left.\mathbb{Z}_{8} \times \mathbb{Z}_{8}\right) \cup\left(T \times 2 \mathbb{Z}_{8} \times \mathbb{Z}_{8}\right) \cup\left(T \times \mathbb{Z}_{8} \times 2 \mathbb{Z}_{8}\right)$. Let $\mathfrak{p}_{1}=(\mathfrak{p}(+) R) \times \mathbb{Z}_{8} \times \mathbb{Z}_{8}$, $\mathfrak{p}_{2}=T \times 2 \mathbb{Z}_{8} \times \mathbb{Z}_{8}$, and $\mathfrak{p}_{3}=T \times \mathbb{Z}_{8} \times 2 \mathbb{Z}_{8}$. It is clear that $\mathfrak{p}_{i} \in \operatorname{Max}(S)$ for each $i \in\{1,2,3\}, \mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ for all distinct $i, j \in\{1,2,3\}$, and $Z(S)=\bigcup_{i=1}^{3} \mathfrak{p}_{i}$. Hence, it follows that $\left\{\mathfrak{p}_{i} \mid i \in\{1,2,3\}\right\}$ is the set of all maximal N -primes of the zero ideal in S.
(2) As S has more than two maximal N-primes of its zero ideal, it follows from Proposition 2.7 that $(A(S))^{c}$ is connected and $\operatorname{diam}\left((A(S))^{c}\right)=2$ and we know from Proposition 2.8 that $r\left((A(S))^{c}\right)=2$.
(3) Using the fact that $(A(T))^{c} \neq(\Gamma(T[X]))^{c}$ (see Example 2.4(3)), it can be shown as in the proof of Example 2.9(3) that $(A(S))^{c} \neq(\Gamma(S[X]))^{c}$.

In [20, Theorem 5.1], rings R with $\left|Z(R)^{*}\right| \geq 1$ and $(\Gamma(R))^{c}$ is connected were characterized in order that $(\Gamma(R))^{c}$ to admit a cut vertex. If $(A(R))^{c}$ is connected, then we prove in Theorem 2.12 that $(A(R))^{c}$ does not admit any finite vertex cut.

Theorem 2.12. Let R be a ring such that $(A(R))^{c}$ is connected. Let S be any finite non-empty subset of $Z(R[X])^{*}$. Then $(\Gamma(R[X]))^{c}-S$ is connected and so, $(A(R))^{c}-S$ is connected.

Proof. We are assuming that $(A(R))^{c}$ is connected. Hence, it follows from (1) \Rightarrow (3) of Proposition 2.3 (respectively, Proposition 2.5) and Proposition 2.7 that $(\Gamma(R[X]))^{c}$ is connected. Moreover, we obtain from [18, Propositions 2.2, 2.6, and 2.8] that $\operatorname{diam}\left((\Gamma(R[X]))^{c}\right) \in\{2,3\}$. Let S be a finite non-empty subset of $Z(R[X])^{*}$. Let $f(X), g(X) \in Z(R[X])^{*} \backslash S$ be such that $f(X) \neq g(X)$. Let $S=\left\{f_{i}(X) \mid i \in\{1, \ldots, k\}\right\}$. Let $\operatorname{deg}\left(f_{i}(X)\right)=n_{i}$ for each $i \in\{1, \ldots, k\}$. If $f(X) g(X) \neq 0$, then $f(X)-g(X)$ is a path in $(\Gamma(R[X]))^{c}-S$. Suppose that $f(X) g(X)=0$. Notice that $d(f(X), g(X))=2$ or 3 in $(\Gamma(R[X]))^{c}$. Let $f(X)-h_{1}(X)-\cdots-h_{m}(X)-g(X)$ be a path of shortest length between $f(X)$ and $g(X)$ in $(\Gamma(R[X]))^{c}$. It is clear that $m \in\{1,2\}$. Let $n \in \mathbb{N}$ be such that $n>n_{i}$ for each $i \in\{1, \ldots, k\}$. Let $i \in\{1, \ldots, m\}$. Observe that $X^{n} h_{i}(X) \notin S$ and from the fact that $X^{n} \notin Z(R[X])^{*}$, it follows that $X^{n} h_{i}(X) \in Z(R[X])^{*}$. It is clear that $X^{n} h_{i}(X) \neq X^{n} h_{j}(X)$ for all distinct $i, j \in\{1, \ldots, m\}$ and $f(X)-$ $X^{n} h_{1}(X)-\cdots-X^{n} h_{m}(X)-g(X)$ is a path in $(\Gamma(R[X]))^{c}-S$.

From the above discussion, it is clear that $(\Gamma(R[X]))^{c}-S$ is connected. Since $(\Gamma(R[X]))^{c}-S$ is a spanning subgraph of $(A(R))^{c}-S$, we obtain that $(A(R))^{c}-S$ is connected.

Corollary 2.13. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$ and $(A(R))^{c}$ is connected. Then $(\Gamma(R[X]))^{c}$ and $(A(R))^{c}$ do not admit any cut vertex.

Proof. Let $f(X) \in Z(R[X])^{*}$. We know from Theorem 2.12 that both $(\Gamma(R[X]))^{c}-f(X)$ and $(A(R))^{c}-f(X)$ are connected. This proves that both the graphs $(\Gamma(R[X]))^{c}$ and $(A(R))^{c}$ do not admit any cut vertex.

3. Some more results on $(A(R))^{c}$

Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. The aim of this section is to discuss some more properties of $(A(R))^{c}$. First, we prove some results on $\operatorname{gr}\left((A(R))^{c}\right)$.

Lemma 3.1. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. The following statements are equivalent:
(1) $(A(R))^{c}$ has no edges.
(2) $(\Gamma(R[X]))^{c}$ has no edges.
(3) $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$.

Proof. (1) \Rightarrow (2) This is clear, since $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$.
(2) \Rightarrow (3) Suppose that $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as rings. Let us denote $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by T. It was already noted in [6, page 2045] that $f(X)=(1,0)+(1,0) X, g(X)=(1,0)+$ $(1,0) X^{2} \in Z(T[X])^{*}$ are such that $f(X)-g(X)$ is an edge of $(\Gamma(T[X]))^{c}$. So, we
get that $(\Gamma(R[X]))^{c}$ has at least one edge. Therefore, if (2) holds, then $R \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as rings. As (2) holds, it follows that $(\Gamma(R))^{c}$ has no edges (equivalently, $\Gamma(R)$ is complete). In such a case, we obtain from [2, Theorem 2.8] that $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$.
(3) $\Rightarrow(1)$ Let $f(X), g(X) \in Z(R[X])^{*}$ be distinct. Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ and let $g(X)=\sum_{j=0}^{m} b_{j} X^{j}$. It follows from McCoy's Theorem [16, Theorem 2] that $a_{i}, b_{j} \in Z(R)$ for all $i \in\{0, \ldots, n\}$ and $j \in\{0, \ldots, m\}$. By (3), $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$ and so, $a_{i} b_{j}=0$ for all $i \in\{0, \ldots, n\}$ and $j \in\{0, \ldots, m\}$. Hence, $f(X)$ and $g(X)$ are not adjacent in $(A(R))^{c}$. Therefore, $(A(R))^{c}$ has no edges.

Proposition 3.2. Let R be a ring and let $f(X), g(X) \in Z(R[X])^{*}$ be such that $f(X)-g(X)$ is an edge of $(A(R))^{c}$. Then there exists $h(X) \in Z(R[X])^{*}$ such that $f(X)-h(X)-g(X)-f(X)$ is a cycle of length three in $(A(R))^{c}$ with $f(X) h(X) \neq 0$ and $h(X) g(X) \neq 0$.

Proof. Let $f(X), g(X) \in Z(R[X])^{*}$ be such that $f(X)-g(X)$ is an edge of $(A(R))^{c}$. Let $\operatorname{deg}(f(X))=m$ and let $\operatorname{deg}(g(X))=k$. Let $f(X)=\sum_{i=0}^{m} a_{i} X^{i}$ and let $g(X)=\sum_{j=0}^{k} b_{j} X^{j}$. It follows from $f(X)-g(X)$ is an edge of $(A(R))^{c}$ that $a_{s} b_{t} \neq 0$ for some $s \in\{0, \ldots, m\}$ and $t \in\{0, \ldots, k\}$. Let $n \in \mathbb{N}$ be such that $n>\max (m, k)$. We consider the following cases.

Case (1). $a_{s}^{2}=0=b_{t}^{2}$. Notice that $a_{s}+b_{t}$ is nilpotent and from $a_{s}^{2}=0$ and $a_{s} b_{t} \neq 0$, it follows that $a_{s}+b_{t} \neq 0$. It is clear that $f(X)\left(a_{s}+b_{t}\right) \neq 0$ and $g(X)\left(a_{s}+b_{t}\right) \neq 0$. Let $h(X)=\left(a_{s}+b_{t}\right) X^{n}$. As $X^{n} \notin Z(R[X])$ and $a_{s}+b_{t} \in$ $Z(R)^{*}$, it follows that $X^{n}\left(a_{s}+b_{t}\right) \in Z(R[X])^{*}, f(X) h(X) \neq 0, h(X) g(X) \neq 0$, and by the choice of n, we get that $h(X) \notin\{f(X), g(X)\}$. Therefore, $h(X)$ is adjacent to both $f(X)$ and $g(X)$ in $(\Gamma(R[X]))^{c}$ and so, in $(A(R))^{c}$. Hence, we obtain that $f(X)-h(X)-g(X)-f(X)$ is a cycle of length three in $(A(R))^{c}$ with $f(X) h(X) \neq 0$ and $h(X) g(X) \neq 0$.

Case (2). At least one between a_{s}^{2} and b_{t}^{2} is not equal to 0 . Without loss of generality, we can assume that $a_{s}^{2} \neq 0$. Let $h(X)=a_{s} X^{n}$. It follows from [16, Theorem 2] that $a_{s} \in Z(R)^{*}$. From $X^{n} \notin Z(R[X])$, it follows that $h(X) \in$ $Z(R[X])^{*}$. As $a_{s}^{2} \neq 0, a_{s} b_{t} \neq 0$, we obtain that $f(X) h(X) \neq 0$ and $h(X) g(X) \neq 0$. By the choice of n, it is clear that $h(X) \notin\{f(X), g(X)\}$. Thus $f(X)-h(X)-$ $g(X)-f(X)$ is a cycle of length three in $(A(R))^{c}$ with $f(X) h(X) \neq 0$ and $h(X) g(X) \neq 0$.

This completes the proof.
Corollary 3.3. Let R be a ring such that $(\Gamma(R[X]))^{c}$ admits at least one edge. Then any edge of $(\Gamma(R[X]))^{c}$ is an edge of a triangle in $(\Gamma(R[X]))^{c}$.

Proof. Let $f(X), g(X) \in Z(R[X])^{*}$ be such that $f(X)-g(X)$ is an edge of $(\Gamma(R[X]))^{c}$. Then $f(X)-g(X)$ is also an edge of $(A(R))^{c}$. Hence, we obtain from Proposition 3.2 that there exists $h(X) \in Z(R[X])^{*}$ such that $f(X)-h(X)-$ $g(X)-f(X)$ is a cycle of length three in $(\Gamma(R[X]))^{c}$. This proves that any edge of $(\Gamma(R[X]))^{c}$ is an edge of a triangle in $(\Gamma(R[X]))^{c}$.

Corollary 3.4. Let R be a ring such that $(\Gamma(R[X]))^{c}$ admits at least one edge. Then $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=\operatorname{gr}\left((A(R))^{c}\right)=3$.
Proof. We know from Corollary 3.3 that any edge of $(\Gamma(R[X]))^{c}$ is an edge of a triangle in $(\Gamma(R[X]))^{c}$. Therefore, we get that $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=3$. Since $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, it follows that $\operatorname{gr}\left((A(R))^{c}\right)=3$.

Proposition 3.5. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Then the following statements hold:
(1) $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=\operatorname{gr}\left((A(R))^{c}\right) \in\{3, \infty\}$.
(2) $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=\operatorname{gr}\left((A(R))^{c}\right)=\infty$ if and only if $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$.
Proof. (1) If $(\Gamma(R[X]))^{c}$ admits at least one edge, then we know from Corollary 3.4 that $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=\operatorname{gr}\left((A(R))^{c}\right)=3$. Suppose that $(\Gamma(R[X]))^{c}$ contains no cycle. Then $(\Gamma(R[X]))^{c}$ has no edges and hence, we obtain from $(2) \Rightarrow(1)$ of Lemma 3.1 that $(A(R))^{c}$ has no edges. Therefore, $\operatorname{gr}\left((A(R))^{c}\right)=\infty$. If $(A(R))^{c}$ does not contain any cycle, then as $(\Gamma(R[X]))^{c}$ being a spanning subgraph of $(A(R))^{c}$, it follows that $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=\infty$. This proves that $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=$ $\operatorname{gr}\left((A(R))^{c}\right) \in\{3, \infty\}$.
(2) It follows from the proof of (1) that $\operatorname{gr}\left((\Gamma(R[X]))^{c}\right)=\operatorname{gr}\left((A(R))^{c}\right)=$ ∞ if and only if $(\Gamma(R[X]))^{c}$ has no edges and we obtain from (2) \Leftrightarrow (3) of Lemma 3.1 that $(\Gamma(R[X]))^{c}$ has no edges if and only if $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$.

Let $G=(V, E)$ be a graph. Recall from [4] that two distinct vertices u, v of G are said to be orthogonal, written $u \perp v$ if u and v are adjacent in G and there is no vertex w of G which is adjacent to both u and v in G. A vertex v of G is said to be a complement of u if $u \perp v$ [4]. Moreover, recall from [4] that G is complemented if each vertex of G admits a complement in G. In Section 3 of [4] Anderson et al. determined rings R for which the zero-divisor graphs $\Gamma(R)$ are complemented. For a ring R with $\left|Z(R)^{*}\right| \geq 1$, we verify in Corollary 3.6 that no vertex of $(A(R))^{c}\left(\right.$ respectively, $\left.(\Gamma(R[X]))^{c}\right)$ admits a complement in $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$.
Corollary 3.6. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Then no vertex of $(A(R))^{c}$ (respectively, $(\Gamma(R[X]))^{c}$) admits a complement in $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$.

Proof. Let $f(X) \in Z(R[X])^{*}=V\left((\Gamma(R[X]))^{c}\right)=V\left((A(R))^{c}\right)$. Since any edge of $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$ is an edge of a triangle in $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$ by Proposition 3.2 (respectively, Corollary 3.3), it follows that $f(X)$ does not admit any complement in $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$.

Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. We next discuss some results on the dominating sets and the domination number of $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$. For a graph G, we denote the domination number of G by $\gamma(G)$.
Lemma 3.7. Let $G=(V, E)$ be a simple graph such that $|V| \geq 2$. If G is connected, then $\gamma\left(G^{c}\right) \geq 2$.
Proof. Let $v \in V$. As $|V| \geq 2$ and G is connected, we can find $u \in V$ such that v and u are adjacent in G. Therefore, u is not adjacent to v in G^{c}. This implies that $\{v\}$ is not a dominating set of G^{c} for any $v \in V$. Therefore, $\gamma\left(G^{c}\right) \geq 2$.

Corollary 3.8. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Then $\gamma\left((A(R))^{c}\right) \geq 2$ (respectively, $\left.\gamma\left((\Gamma(R[X]))^{c}\right) \geq 2\right)$.

Proof. We know from Lemma 2.1 that $Z(R[X])^{*}$ is infinite. It follows from [1, Theorem 4] (respectively, [2, Theorem 2.3]) and Lemma 3.7 that $\gamma\left((A(R))^{c}\right) \geq 2$ (respectively, $\left.\gamma\left((\Gamma(R[X]))^{c}\right) \geq 2\right)$.

Proposition 3.9. Let R be a ring such that $Z(R)$ is not an ideal of R. Then $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Proof. Notice that $Z(R[X]) \cap R=Z(R)$. As $Z(R)$ is not an ideal of R by hypothesis, it follows that $Z(R[X])$ is not an ideal of $R[X]$. Hence, we obtain from [21, Lemma 2.3] that $\gamma\left((\Gamma(R[X]))^{c}\right)=2$. Since $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, we get that $\gamma\left((A(R))^{c}\right) \leq 2$. It now follows from Corollary 3.8 that $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$ and $Z(R)$ is an ideal of R. We next discuss some results on the dominating sets and the domination number of $(A(R))^{c}\left(\right.$ respectively, $\left.(\Gamma(R[X]))^{c}\right)$. We prove in Theorem 3.10 that $(A(R))^{c}$ admits a finite dominating set if and only if $Z(R[X])$ is not an ideal of $R[X]$.

Theorem 3.10. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$ and $Z(R)$ is an ideal of R. The following statements are equivalent:
(1) $(A(R))^{c}$ admits a finite dominating set.
(2) $Z(R[X])$ is not an ideal of $R[X]$.
(3) $(\Gamma(R[X]))^{c}$ admits a finite dominating set.

Moreover, if the statement (1) holds, then $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Proof. (1) $\Rightarrow(2)$ Let D be a finite dominating set of $(A(R))^{c}$. Notice that $D \subset Z(R[X])^{*}$. Let $D=\left\{f_{i}(X) \mid i \in\{1, \ldots, n\}\right\}$. It follows from Corollary 3.8 that $n \geq 2$. Observe that $\left\{X f_{i}(X) \mid i \in\{1,2, \ldots, n\}\right\}$ is also a dominating set of $(A(R))^{c}$. Hence, on replacing $f_{i}(X)$ by $X f_{i}(X)$ (if necessary) for each $i \in\{1,2, \ldots, n\}$, we can assume without loss of generality that $\operatorname{deg}\left(f_{i}(X)\right)>0$ for each $i \in\{1,2, \ldots, n\}$. For each $i \in\{1,2, \ldots, n\}$, let $A_{f_{i}}$ denote the ideal of R generated by the coefficients of $f_{i}(X)$ and it follows from [16, Theorem 2] that $A_{f_{i}} \subseteq Z(R)$. We assert that $Z(R[X])$ is not an ideal of $R[X]$. Suppose that $Z(R[X])$ is an ideal of $R[X]$. Notice that $A=\sum_{i=1}^{n} A_{f_{i}}$ is a f.g. ideal of R and $A \subseteq Z(R)$. Hence, we obtain from [15, Theorem 3.3] that there exists $r \in R \backslash\{0\}$ such that $r A_{f_{i}}=(0)$ for each $i \in\{1,2, \ldots, n\}$. Observe that $r \in Z(R)^{*} \subset$ $Z(R[X])^{*}$. It is clear that $r \notin D$. Since D is a dominating set of $(A(R))^{c}$, we obtain that there exists $t \in\{1,2, \ldots, n\}$ such that r and $f_{t}(X)$ are adjacent in $(A(R))^{c}$. This implies that $r f_{t}(X) \neq 0$. This is a contradiction and so, $Z(R[X])$ is not an ideal of $R[X]$.
$(2) \Rightarrow(3)$ As $Z(R[X])$ is not an ideal of $R[X]$ by assumption, we obtain from [21, Lemma 2.3] that $\gamma\left((\Gamma(R[X]))^{c}\right)=2$. If $f(X), g(X) \in Z(R[X])^{*}$ are such that $f(X)+g(X) \notin Z(R[X])$, then we know from the proof of [21, Lemma 2.3] that $\{f(X), g(X)\}$ is a dominating set of $(\Gamma(R[X]))^{c}$.
$(3) \Rightarrow(1)$ Since $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$, any dominating set of $(\Gamma(R[X]))^{c}$ is a dominating set of $(A(R))^{c}$. As $(\Gamma(R[X]))^{c}$ admits a finite dominating set by assumption, we obtain that $(A(R))^{c}$ admits a finite dominating set.

Assume that (1) holds. It is noted in the proof of $(2) \Rightarrow(3)$ of this theorem that $\gamma\left((\Gamma(R[X]))^{c}\right)=2$. Hence, we obtain that $\gamma\left((A(R))^{c}\right) \leq 2$. It now follows from Corollary 3.8 that $\gamma\left((A(R))^{c}\right)=2$. Therefore, $\gamma\left((A(R))^{c}\right)=$ $\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. If $Z(R)$ is a f.g. ideal of R and is not a B-prime of (0) in R, then we verify in Corollary 3.11 that $\gamma\left((A(R))^{c}\right)=$ $\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Corollary 3.11. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$ and suppose that R admits \mathfrak{p} as its unique maximal N-prime of (0). If there exists a f.g. ideal I of R with $I \subseteq \mathfrak{p}$ such that I is not annihilated by any non-zero element of R, then $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)=2$. In particular, if \mathfrak{p} is a f.g. ideal of R and is not a B-prime of (0) in R, then $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Proof. By hypothesis, $Z(R)$ is an ideal of R and there exists a f.g. ideal I of R with $I \subseteq Z(R)$ such that $\operatorname{Ir} \neq(0)$ for any non-zero $r \in R$. Hence, we obtain from [15, Theorem 3.3] that $Z(R[X])$ is not an ideal of $R[X]$. Therefore, we obtain from the moreover part of Theorem 3.10 that $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)=2$.

Suppose that $\mathfrak{p}=Z(R)$ is a f.g. ideal of R with \mathfrak{p} is not a B-prime of (0) in R. Hence, $\mathfrak{p r} \neq(0)$ for any $r \in R \backslash\{0\}$. Therefore, we obtain using the arguments given in the previous paragraph of this proof that $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[X]))^{c}\right)$ $=2$.

We provide Example 3.12 to illustrate Corollary 3.11.
Example 3.12. Let $S=K[X, Y]$ be the polynomial ring in two variables X, Y over a field K. Let $\mathfrak{m}=S X+S Y$. Let $T=S_{\mathfrak{m}}$. Let M be the T-module given by $M=\frac{K(X, Y)}{T}$, where $K(X, Y)$ is the field of rational functions in two variables X, Y over K. Let $R=T(+) M$ be the ring obtained by using Nagata's principle of idealization. Let $\mathfrak{p}=\mathfrak{m} T(+) M$. Then R has \mathfrak{p} as its unique maximal N-prime of its zero ideal, \mathfrak{p} is not a B-prime of the zero ideal in $R, \gamma\left((A(R))^{c}\right)=$ $\gamma\left((\Gamma(R[Z]))^{c}\right)=2$, where $R[Z]$ is the polynomial ring in one variable Z over R.

Proof. It is clear that $\mathfrak{m} \in \operatorname{Max}(S)$. It follows from [5, Example 1, page 38] that T has $\mathfrak{m} T$ as its unique maximal ideal. We know from [5, Corollary 7.6 and Proposition 7.3] that T is Noetherian. Notice that $K(X, Y)$ is the quotient field of T. As $\mathfrak{m}=S X+S Y$, it follows that $\mathfrak{m} T=T X+T Y$. We claim that $Z(R)=$ $\mathfrak{m} T(+) M$. Since $\mathfrak{m} T$ is the unique maximal ideal of T, we obtain that $\mathfrak{m} T(+) M$ is the unique maximal ideal of R. Hence, $Z(R) \subseteq \mathfrak{m} T(+) M$. Let $(t, m) \in \mathfrak{m} T(+) M$. It is clear that $(t, m)=(t, 0+T)+(0, m)$. From $(0, m)^{2}=(0,0+T)$, in view of $[15$, Lemma 2.3] to prove $(t, m) \in Z(R)$, it is enough to show that $(t, 0+T) \in Z(R)$. If $t=0$, then it is clear that $(0,0+T) \in Z(R)$. Suppose that $t \neq 0$. From $t \in \mathfrak{m} T$, it follows that $\frac{1}{t} \in K(X, Y) \backslash T$. Notice that $\frac{1}{t}+T$ is a non-zero element of M and $(t, 0+T)\left(0, \frac{1}{t}+T\right)=(0,0+T)$ is the zero element of R. This shows that $(t, m) \in Z(R)$ for any $(t, m) \in \mathfrak{m} T(+) M$. Therefore, $\mathfrak{m} T(+) M \subseteq Z(R)$ and so, $Z(R)=\mathfrak{m} T(+) M$. This proves that $\mathfrak{p}=\mathfrak{m} T(+) M$ is the unique maximal N-prime of the zero ideal in R. We verify that $\mathfrak{p}=R(X, 0+T)+R(Y, 0+T)$. It is clear that $R(X, 0+T)+R(Y, 0+T) \subseteq \mathfrak{p}$. Let $(t, m) \in \mathfrak{p}$. Notice that $t \in \mathfrak{m} T$ and $m \in M$ and $(t, m)=(t, 0+T)+(0, m)$. Now, $t=t_{1} X+t_{2} Y$ for some $t_{1}, t_{2} \in T$. Hence, $(t, 0+T)=\left(t_{1} X+t_{2} Y, 0+T\right)=\left(t_{1}, 0+T\right)(X, 0+T)+\left(t_{2}, 0+T\right)(Y, 0+T) \in$ $R(X, 0+T)+R(Y, 0+T)$. Since $M=\frac{K(X, Y)}{T}, m=\frac{f(X, Y)}{g(X, Y)}+T$ for some $f(X, Y), g(X, Y) \in S=K[X, Y]$. Therefore, $(0, m)=(X, 0+T)\left(0, \frac{f(X, Y)}{g(X, Y) X}+\right.$ $T) \in R(X, 0+T)$. Hence, $(t, m) \in R(X, 0+T)+R(Y, 0+T)$. This proves that $\mathfrak{p} \subseteq R(X, 0+T)+R(Y, 0+T)$ and so, $\mathfrak{p}=R(X, 0+T)+R(Y, 0+T)$. Thus \mathfrak{p} is a f.g. ideal of R. Suppose that \mathfrak{p} is a B-prime of the zero ideal in R. Then there exists $(t, m) \in \mathfrak{p} \backslash\{(0,0+T)\}$ such that $\mathfrak{p}=\left((0,0+T):_{R}(t, m)\right)$. This implies that $(X, 0+T)(t, m)=(0,0+T)$ and so, $t X=0$. Hence, $t=0$. Therefore, $m \neq 0+T$. Since $K[X, Y]$ is a unique factorization domain (UFD), it follows from [5, Proposition $3.11(i v)$] and [14, Theorem 5] that T is a UFD. Notice that $K(X, Y)$ is the quotient field of T. It is possible to find $t_{1}, t_{2} \in T$
such that t_{1} and t_{2} are relatively prime in T and $m=\frac{t_{1}}{t_{2}}+T$. From $m \neq 0+T$, it follows that $\frac{t_{1}}{t_{2}} \notin T$. Now, $(X, 0)(0, m)=(Y, 0)(0, m)=(0,0+T)$. Hence, $X t_{1}=t_{2} t_{3}$ and $Y t_{1}=t_{2} t_{4}$ for some $t_{3}, t_{4} \in T$. Notice that $T X \in \operatorname{Spec}(T)$ and from $\frac{t_{1}}{t_{2}} \notin T, X t_{1}=t_{2} t_{3}$, we get that $t_{2} \in T X$. From $Y t_{1}=t_{2} t_{4}$, it follows that $Y t_{1} \in T X$. As $Y \notin T X$, we obtain that $t_{1} \in T X$. This is impossible, as t_{1} and t_{2} are relatively prime in T. This shows that there exists no non-zero $r \in R$ such that $\mathfrak{p}=\left((0,0+T):_{R} r\right)$ and so, \mathfrak{p} is not a B-prime of the zero ideal in R. Thus the ring R satisfies the hypotheses of Corollary 3.11 and hence, it follows from Corollary 3.11 that $\gamma\left((A(R))^{c}\right)=\gamma\left((\Gamma(R[Z]))^{c}\right)=2$.

We provide Example 3.13 to illustrate that the in particular part of Corollary 3.11 can fail to hold if the ideal $Z(R)$ is f.g. is omitted. The example of the reduced ring R given in Example 3.13 is due to Gilmer and Heinzer [11, Example, page 16].

Example 3.13. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a set of indeterminates over a field K. Let $D=\bigcup_{n=1}^{\infty} K\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, where for each $n \in \mathbb{N}, K\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ is the power series ring in X_{1}, \ldots, X_{n} over K. Let I be the ideal of D generated by $\left\{X_{i} X_{j} \mid\right.$ $i, j \in \mathbb{N}, i \neq j\}$. Let $R=\frac{D}{I}$. Then $(A(R))^{c}=(\Gamma(R[X]))^{c}$ and moreover, $(\Gamma(R[X]))^{c}$ does not admit any finite dominating set.
Proof. For each $i \in \mathbb{N}$, let us denote $X_{i}+I$ by x_{i}. It was already noted in [11, Example, page 16] that R is reduced and it is quasi-local with $\mathfrak{m}=\sum_{n=1}^{\infty} R x_{n}$ as its unique maximal ideal. It was observed in [21, Example 2.4] that $Z(R)=\mathfrak{m}$ and so, \mathfrak{m} is the unique maximal N -prime of the zero ideal in R. As R is reduced, we get that \mathfrak{m} is not a B-prime of the zero ideal in R. By [16, Theorem 2], we obtain that $Z(R[X]) \subseteq Z(R)[X]=\mathfrak{m}[X]$. It was verified in the proof of [21, Example 2.4] that any f.g. proper ideal of R is annihilated by a non-zero element of R. Let $f(X) \in \mathfrak{m}[X]$ with $f(X) \neq 0$. Let C be the ideal of R generated by the coefficients of $f(X)$. Then C is a non-zero f.g. proper ideal of R. If $r \in R \backslash\{0+I\}$ is such that $C r=(0+I)$, then $f(X) r=0+I$. Hence, $f(X) \in Z(R[X])$. This shows that $\mathfrak{m}[X] \subseteq Z(R[X])$. Therefore, $Z(R[X])=\mathfrak{m}[X]$ is an ideal of $R[X]$. Hence, we obtain from (1) $\Rightarrow(2)$ of Theorem 3.10 that $(A(R))^{c}$ does not admit any finite dominating set. Since R is reduced, it follows that $(A(R))^{c}=(\Gamma(R[X]))^{c}$. Therefore, we obtain that $(A(R))^{c}=(\Gamma(R[X]))^{c}$ does not admit any finite dominating set.

Proposition 3.14. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. If $(\Gamma(R[X]))^{c}(r e-$ spectively, $\left.(A(R))^{c}\right)$ admits a finite dominating set, then so does $(\Gamma(R))^{c}$.
Proof. Suppose that $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$ admits a finite dominating set. In such a case, we know from (1) $\Rightarrow(2)$ (respectively, (3) $\Rightarrow(2)$) of Theorem 3.10 that $Z(R[X])$ is not an ideal of $R[X]$. If $f_{1}(X), f_{2}(X) \in Z(R[X])^{*}$
are such that $f_{1}(X)+f_{2}(X) \notin Z(R[X])$, then $A=\left\{f_{1}(X), f_{2}(X)\right\}$ is a dominating set of $(\Gamma(R[X]))^{c}\left(\right.$ respectively, $\left.(A(R))^{c}\right)$. Notice that $\left\{X f_{i}(X) \mid i \in\{1,2\}\right\}$ is a dominating set of $(\Gamma(R[X]))^{c}$ (respectively, $\left.(A(R))^{c}\right)$. Hence on replacing $f_{i}(X)$ by $X f_{i}(X)$ (if necessary) for each $i \in\{1,2\}$, we can assume without loss of generality that $\operatorname{deg}\left(f_{i}(X)\right)>0$ for each $i \in\{1,2\}$. It is clear that $A \subset Z(R[X])^{*}$. Let $i \in\{1,2\}$ and let C_{i} be the set consisting of distinct non-zero coefficients of $f_{i}(X)$. As $f_{i}(X) \in Z(R[X])^{*}$, it follows from [16, Theorem 2] that $C_{i} \subseteq Z(R)^{*}$. Let $C=\bigcup_{i=1}^{2} C_{i}$. Then C is a finite non-empty subset of $Z(R)^{*}$. Let $a \in Z(R)^{*} \backslash C$. Notice that $a \in Z(R[X])^{*} \backslash A$. Since A is a dominating set of $(\Gamma(R[X]))^{c}$ (respectively, $\left.(A(R))^{c}\right)$, there exists $i \in\{1,2\}$ such that a and $f_{i}(X)$ are adjacent in $(\Gamma(R[X]))^{c}$ (respectively, $\left.(A(R))^{c}\right)$. Hence, there exists $c \in C_{i}$ such that $a c \neq 0$ and so, a and c are adjacent in $(\Gamma(R))^{c}$. This shows that C is a dominating set of $(\Gamma(R))^{c}$. Hence, we obtain that $(\Gamma(R))^{c}$ admits a finite dominating set.

In Example 3.15, we mention an example of a ring R such that $\gamma\left((\Gamma(R))^{c}\right)=1$ but $(A(R))^{c}\left(\right.$ respectively, $\left.(\Gamma(R[X]))^{c}\right)$ does not admit any finite dominating set.

Example 3.15. Let $R=\mathbb{Z}_{4}$. Then $\gamma\left((\Gamma(R))^{c}\right)=1$ but $(A(R))^{c}$ (respectively, $\left.(\Gamma(R[X]))^{c}\right)$ does not admit any finite dominating set.

Proof. Notice that R is local with $2 R$ as its unique maximal ideal and $Z(R)=$ $2 R$. As $Z(R)^{*}=\{2\}$, it follows that $\gamma\left((\Gamma(R))^{c}\right)=1$. Observe that $Z(R[X])=$ $2 R[X]$ is an ideal of $R[X]$. From $Z(R[X])^{2}=(0)$, it follows from $(3) \Rightarrow(1)$ (respectively, $(3) \Rightarrow(2))$ of Lemma 3.1 that $(A(R))^{c}\left(\right.$ respectively, $\left.(\Gamma(R[X]))^{c}\right)$ has no edges. Hence, $(A(R))^{c}=(\Gamma(R[X]))^{c}$ and $Z(R[X])^{*}$ is the only dominating set of $(A(R))^{c}$. As $Z(R[X])^{*}$ is infinite, we get that $(A(R))^{c}=(\Gamma(R[X]))^{c}$ does not admit any finite dominating set.

Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. We next discuss some results on $\omega\left((A(R))^{c}\right)$ (respectively, $\left.\omega\left((\Gamma(R[X]))^{c}\right)\right)$.

Lemma 3.16. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. If there exists $a \in Z(R)^{*}$ such that $a^{2} \neq 0$, then $(\Gamma(R[X]))^{c}$ admits an infinite clique.

Proof. Notice that for any $n \in \mathbb{N}, a X^{n} \in Z(R[X])^{*}$ and for any distinct $m, n \in$ $\mathbb{N}, a X^{m} \neq a X^{n}$. From $a^{2} \neq 0$ and $X \notin Z(R[X])^{*}$, it follows that $\left(a X^{m}\right)\left(a X^{n}\right)=$ $a^{2} X^{m+n} \neq 0$. Therefore, the subgraph of $(\Gamma(R[X]))^{c}$ induced by $\left\{a X^{n} \mid n \in \mathbb{N}\right\}$ is an infinite clique.

Corollary 3.17. Let R be a ring such that R has at least two maximal N-primes of (0). Then $(\Gamma(R[X]))^{c}$ admits an infinite clique.

Proof. By hypothesis, R has at least two maximal N-primes of (0). Let $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ be distinct maximal N-primes of (0) in R. Then $\mathfrak{p}_{1} \nsubseteq \mathfrak{p}_{2}$. Let $a \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{2}$. Then $a \in Z(R)^{*}$ and $a^{2} \neq 0$. Hence, we obtain from Lemma 3.16 that $(\Gamma(R[X]))^{c}$ admits an infinite clique.

Proposition 3.18. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Suppose that R has \mathfrak{p} as its unique maximal N-prime of (0). Then the following statements are equivalent:
(1) $\omega\left((A(R))^{c}\right)<\infty$.
(2) $\omega\left((\Gamma(R[X]))^{c}\right)<\infty$.
(3) $(\Gamma(R[X]))^{c}$ does not admit any infinite clique.
(4) $\mathfrak{p}^{2}=(0)$.

Proof. (1) \Rightarrow (2) This is clear, since $\left(\Gamma((R[X]))^{c}\right.$ is a spanning subgraph of $(A(R))^{c}$.
$(2) \Rightarrow(3)$ This is clear.
$(3) \Rightarrow(4)$ As $(\Gamma(R[X]))^{c}$ does not admit any infinite clique by assumption, it follows from Lemma 3.16 that $a^{2}=0$ for each $a \in Z(R)=\mathfrak{p}$. Suppose that $\mathfrak{p}^{2} \neq(0)$. Then there exist $a, b \in Z(R)^{*}=\mathfrak{p} \backslash\{0\}$ such that $a b \neq 0$. Let $n \in \mathbb{N}$. From $a^{2}=b^{2}=0$, it follows that $a+b X^{n}$ is a nilpotent element of $R[X]$ and hence, $a+b X^{n} \in Z(R[X])^{*}$. Let us denote $a+b X^{n}$ by $f_{n}(X)$. It is clear that $f_{m}(X) \neq f_{n}(X)$ for all distinct $m, n \in \mathbb{N}$. Let $m, n \in \mathbb{N}$ with $m \neq n$. Observe that $a b$ is the coefficient of X^{m} in $f_{m}(X) f_{n}(X)$. From $a b \neq 0$, we get that $f_{m}(X) f_{n}(X) \neq 0$ and so, the subgraph of $(\Gamma(R[X]))^{c}$ induced by $\left\{f_{n}(X) \mid n \in \mathbb{N}\right\}$ is an infinite clique. This is a contradiction and so, we obtain that $\mathfrak{p}^{2}=(0)$.
$(4) \Rightarrow(1)$ By hypothesis, $Z(R)=\mathfrak{p}$ is an ideal of R. We are assuming that $\mathfrak{p}^{2}=(0)$. Hence, we obtain from $(3) \Rightarrow(1)$ of Lemma 3.1 that $(A(R))^{c}$ has no edges. Therefore, $\omega\left((A(R))^{c}\right)=1<\infty$.

Corollary 3.19. Let R be a ring such that $\left|Z(R)^{*}\right| \geq 1$. Then the following statements are equivalent:
(1) $(A(R))^{c}$ is planar.
(2) $(\Gamma(R[X]))^{c}$ is planar.
(3) $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$.
(4) $(A(R))^{c}$ has no edges.

Proof. (1) $\Rightarrow(2)$ As $(\Gamma(R[X]))^{c}$ is a spanning subgraph of $(A(R))^{c}$ and $(A(R))^{c}$ is planar, we obtain that $(\Gamma(R[X]))^{c}$ is planar.
$(2) \Rightarrow(3)$ We are assuming that $(\Gamma(R[X]))^{c}$ is planar. As K_{5} is non-planar by Kuratowski's Theorem [9, Theorem 5.9] we obtain that $\omega\left((\Gamma(R[X]))^{c}\right) \leq 4$.

Therefore, it follows from Corollary 3.17 that $Z(R)$ is necessarily an ideal of R. It now follows from $(2) \Rightarrow(4)$ of Proposition 3.18 that $Z(R)^{2}=(0)$.
$(3) \Rightarrow(4)$ We are assuming that $Z(R)$ is an ideal of R with $Z(R)^{2}=(0)$. Hence, we obtain from $(3) \Rightarrow(1)$ of Lemma 3.1 that $(A(R))^{c}$ has no edges. $(4) \Rightarrow(1)$ This is clear.

Acknowledgement

We are very much thankful to the referee for his many useful and helpful suggestions.

References

[1] C. Abdioğlu, E.Y. Çelikel, and A. Das, The Armendariz graph of a ring, Discuss. Math. Gen. Algebra Appl. 38 (2) (2018) 189-197.
https://doi.org/10.7151/dmgaa. 1292
[2] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434-447.
https://doi.org/10.1006/jabr.1998.7840
[3] D.F. Anderson, M.C. Axtell, and J.A. Stickles Jr., Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and Non-Noetherian Perspectives, M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson (Eds), (Springer-Verlag, New York, 2011) 23-45.
https://doi.org/10.1007/978-1-4419-6990-3_2
[4] D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (3) (2003) 221-241. https://doi.org/10.1016/S0022-4049(02)00250-5
[5] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (AddisonWesley, Reading, Massachusetts, 1969).
[6] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (6) (2005) 2043-2050. https://doi.org/10.1081/AGB-200063357
[7] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Universitext, Springer, New York, 2000).
[8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988) 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
[9] N. Deo, Graph Theory with Applications to Engineering and Computer Science (Prentice -Hall of India Private Limited, New Delhi, 1994).
[10] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Ann. 157 (3) (1964) 215-218. https://doi.org/10.1007/BF01362435
[11] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1) (1980) 13-16. https://doi.org/10.1090/S0002-9939-1980-0560575-6
[12] W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (2) (1971) 273-284. https://doi.org/10.1090/S0002-9947-1971-0280472-2
[13] W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34 (1) (1972) 73-74. https://doi.org/10.1090/S0002-9939-1972-0294316-2
[14] I. Kaplansky, Commutative Rings (The University of Chicago Press, Chicago, 1974).
[15] T.G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (1) (2006) 174193. https://doi.org/10.1016/j.jalgebra.2006.01.019
[16] N.H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (5) (1942) 286-295.
https://doi.org/10.1080/00029890.1942.11991226
[17] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1) (1997) 14-17. https://doi.org/10. 3792/pjaa.73.14.Source OAI
[18] S. Visweswaran, Some results on the complement of the zero-divisor graph of a commutative ring, J. Algebra Appl. 10 (3) (2011) 573-595. https://doi.org/10.1142/S0219498811004781
[19] S. Visweswaran, Some properties of the complement of the zero-divisor graph of a commutative ring, ISRN Algebra 2011 (Article ID 591041) 24 pages. https://doi.org/10.5402/2011/591041
[20] S. Visweswaran, When does the complement of the zero-divisor graph of a commutative ring admit a cut vertex?, Palest. J. Math. 1 (2) (2012) 138-147.
[21] S. Visweswaran and Pravin Vadhel, On the dominating sets of the complement of the annihilating ideal graph of a commutative ring, Gulf J. Math. 4 (1) (2016) 27-38. https://doi.org/10.56947/gjom.v4i1.54

