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Abstract

In this paper, we introduce a new family of circulants GA(t, k), called
Generalized Andrásfai graphs, where t, k ≥ 2 are integers. We study var-
ious parameters like diameter, girth, domination number etc. of GA(t, k).
Moreover, we find the full automorphism group of GA(t, k) and compute its
determining number.
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1. Introduction

Andrásfai graphs, denoted by And(k), is a family of triangle-free circulant graphs,
named after Bela Andrásfai [1]. It is a Cayley graph on Zn where n = 3k−1 and
the connection set S = {[1], [4], . . . , [3k − 2]}, where [x] denote the equivalence
class of x in Zn. In this paper, we introduce a generalization of this family of
circulants and study its automorphisms and structural properties. For definitions
and terminologies, readers are referred to [4].

Definition 1.1. Let t, k ≥ 2 be two positive integers and set n = t(k − 1) + 2.
Define GA(t, k) to be the Cayley graph on Zn with connection set S = {[1], [t+
1], [2t+ 1], . . . , [t(k − 1) + 1]}.

1Corresponding author.
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Clearly, GA(3, k) = And(k) and hence GA(t, k) is a generalization of the
family of Andrásfai graphs. Being a circulant graph, GA(t, k) is a k-regular,
vertex-transitive, Hamiltonian graph.

To avoid ambiguity, by [x], we denote the equivalence class of x in Zn and by
x, we denote the corresponding integer in the range 0 ≤ x ≤ t(k − 1) + 1. While
denoting any vertex, we use both symbols [x] and x, where they have the above
meanings.

2. Structural properties of GA(t, k)

In this section, we study some structural properties of GA(t, k), like girth, di-
ameter, chromatic number, domination number etc. Before that, we prove two
lemmas which will be crucial throughout the paper.

Lemma 2.1. Let [x] and [y] be two vertices of GA(t, k) with 0 ≤ x, y ≤
t(k − 1) + 1. If [x] is adjacent to [y], then x− y ≡ ±1 (mod t).

Proof. Case 1. x > y. In this case, we have [x − y] = [x] − [y] ∈ S. Therefore,
[x − y] = [st + 1] where 0 ≤ s ≤ (k − 1), i.e., x − y ≡ st + 1 (mod n), i.e.,
(x−y)−(st+1) is a multiple of n. As 0 < x−y, st+1 < n, we have x−y = st+1
(as integers), i.e., x− y ≡ 1 (mod t).

Case 2. y > x. Proceeding similarly as above, we get y− x ≡ 1 (mod t), i.e.,
x− y ≡ −1 (mod t).

It is to be noted that the converse of the above lemma does not hold. For
example, let t = k = 4, then n = 14. Also let x = 9 and y = 6. Then
x− y = 3 ≡ −1 (mod 4), but [6] 6∼ [9], as S = {[1], [5], [9], [13]}. This observation
motivates us to get a better understanding of the adjacency condition in light of
Lemma 2.1.

Let [x] and [y] be two adjacent vertices of GA(t, k) with 0 ≤ x, y ≤ t(k−1)+1.
Then there exists integers l1, l2, r1, r2 such that x = tl1 +r1 and y = tl2 +r2 where
0 ≤ l1, l2 ≤ k − 1 and 0 ≤ r1, r2 ≤ t− 1. Note that if li = k − 1, then ri ∈ {0, 1}.
Suppose x > y. Then by Lemma 2.1, x− y = t(l1− l2) + (r1− r2) ≡ ±1 (mod t).
Again, as [x] ∼ [y], we have x− y = st+ 1, i.e., x− y ≡ 1 (mod t). Similarly, if
x < y, we have x− y ≡ −1 (mod t). This gives us the following lemma, which is
a sort of converse to Lemma 2.1.

Lemma 2.2. Let [x] and [y] be two vertices of GA(t, k) with 0 ≤ x, y ≤ n − 1
and x − y ≡ ±1 (mod t). Then [x] ∼ [y] if and only if either x − y ≡ 1 (mod t)
and x > y or x− y ≡ −1 (mod t) and x < y.

Proposition 2.3. GA(t, k) is triangle-free and hence of girth 4.
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Proof. We first show that GA(t, k) has no triangle containing the vertex [0].
Let [g] and [h] be two neighbours of [0], which forms a triangle. Then [g], [h] ∈ S.
Let g = l1t + 1 and h = l2t + 1. Without loss of generality, let g > h. Then so
l1 ≥ l2. Thus [g] − [h] = [g − h] = [(l1 − l2)t] /∈ S. Thus [g] 6∼ [h]. So GA(t, k)
has no triangle with [0] as a vertex. As GA(t, k) is vertex transitive, it is triangle
free.

As GA(t, k) is a Cayley graph on Zn, so girth of GA(t, k) ≤ 4 and it is
triangle-free, hence GA(t, k) is of girth 4.

Theorem 2.1. GA(t, k) is bipartite if and only if t is even.

Proof. Let t be even, then n is even. Let A = {[0], [2], [4], . . . , [t], [t+ 2], . . . , [2t],
[2t + 2], . . . , [(k − 1)t]} and B = {[1], [3], [5], . . . , [t − 1], [t + 1], . . . , [2t + 1], . . . ,
[(k−1)t+1]}. As difference between any two elements of A (or B) is even, it can
not be congruent to ±1 (mod t). Hence A and B form partite sets of GA(t, k).
Hence GA(t, k) is bipartite.

Let t be odd. Consider the cycle [0] ∼ [1] ∼ [2] ∼ · · · ∼ [t] ∼ [t + 1] ∼ [0] of
length t+ 2. As t is odd, it is an odd cycle and hence GA(t, k) is not bipartite.

Corollary 2.4. If t = 2, then GA(t, k) is a complete bipartite graph with equal
partite-sets.

Proof. If t = 2, by previous theorem, GA(t, k) is bipartite, where A = {[0], [2],
[4], . . . , [2(k − 1)]} and B = {[1], [3], [5], . . . , [2(k − 1) + 1]} forms the bipartition
and |A| = |B| = k. Now, as GA(t, k) is k-regular and no two vertices in A (or B)
are adjacent to each other, GA(t, k) is a complete bipartite graph.

Proposition 2.5. If t is odd, the odd girth of GA(t, k) is t+ 2.

Proof. Let t be odd. In the proof of Theorem 2.1, we have seen the existence
of an odd cycle of length t + 2. Let, if possible, C : [0] ∼ [x1] ∼ [x2] ∼ · · · ∼
[xt−2m−1] ∼ [0] be a cycle of length t− 2m where 0 ≤ m ≤ t−5

2 .

x1 ≡ 1 (mod t)
x2 − x1 ≡ ±1 (mod t)
x3 − x2 ≡ ±1 (mod t)

...
...

...
xt−2m−1 − xt−2m−2 ≡ ±1 (mod t).

Adding this relations we have xt−2m−1 ≡ β (mod t). As [0] ∼ [xt−2m−1], we have
xt−2m−1 ≡ β ≡ 1(mod t). Since there are t− 2m− 1 relations, so −t+ 2m+ 3 ≤
β ≤ t− 2m− 1. This implies β = 1. So half of xi+1 − xi ≡ 1 (mod t) and half of
xi+1 − xi ≡ −1 (mod t). Thus t− 2m− 2 must be even, which contradicts that
t is odd. Therefore, GA(t, k) has no odd cycle of length < t+ 2. So odd girth of
GA(t, k) is t+ 2.
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Theorem 2.2. The chromatic number of GA(t, k) is =

{
2, if t is even,
3, otherwise.

Proof. If t is even, then GA(t, k) is bipartite, thus chromatic number = 2. If t
is odd, then GA(t, k) is not bipartite and hence χ ≥ 3. Now, consider the sets

A = {[0], [2], [4], . . . , [t− 1], [t+ 2], . . . , [2t− 1], [2t+ 2], . . . , [(k − 1)t− 1]},
B = {[1], [3], [5], . . . , [t], [t+ 3], . . . , [2t], [2t+ 3], . . . , [(k − 1)t]} and

C = {[t+ 1], [2t+ 1], [3t+ 1], . . . , [(k − 1)t+ 1]}.
We claim that A,B,C are independent sets, as that will prove GA(t, k) is 3-

colourable. Let [g], [h] ∈ A be arbitrary, and if possible [g] ∼ [h]. So [g] = l1t+ i1
and [h] = l2t+ i2 where 0 ≤ l1, l2 ≤ k− 1 and i1, i2 ∈ {0, 2, 4, . . . , t− 1}. Without
loss of generality, let i1 ≥ i2. Thus [g] − [h] = [g − h] = (l1 − l2)t + (i1 − i2) ≡
i1 − i2 (mod t) 6≡ ± 1(mod t), except when i1 = t− 1, i2 = 0, as i1, i2 both are
even and 0 ≤ i1 − i2 ≤ t− 1. Hence, by Lemma 2.1, [g] � [h].

If i1 = t − 1, i2 = 0, then [g] = [l1t + (t − 1)] and [h] = [l2t]. However this
implies [h] = [0]. Now, all the neighbours of [0] are in C and hence [g] � [h], and
A is an independent set. In a similar way, B is also an independent set. Since
GA(t, k) is triangle-free and vertices of C are neighbours of [0], there is no edge
between them and hence C is also an independent set. Therefore, χ = 3.

Now, we prove two lemmas which serves as the distance formulae for any
two vertices in GA(t, k). These lemmas will be used to compute the diameter in
Theorem 2.3 as well as it will be useful in ascertaining the automorphism group
of GA(t, k) in Section 3.

Lemma 2.6. Let t be even and [x] be a vertex in GA(t, k) such that x = lt+ i,
where 0 ≤ l ≤ k − 1 and 0 ≤ i ≤ t− 1. (If l = k − 1, then i = 0 or 1.) Then

d([0], [x]) =


2, if i = 0,
i, if 1 ≤ i ≤ t

2 + 1,
t+ 2− i, if t

2 + 1 ≤ i ≤ t− 1.

Proof. Case 1. If i = 0, then x = lt and hence [0] 6∼ [x]. Also [0] ∼ [lt+ 1] ∼ [lt]
is a path of length 2 and hence d([0], [x]) = 2.

Case 2. Let 1 ≤ i ≤ t
2 + 1. Then there exists a path [0] ∼ [lt + 1] ∼

[lt + 2] ∼ · · · ∼ [lt + i] = [x] of length i joining [0] and [x]. If possible, let
d([0], [x]) < i, i.e., there exists a path of length p < i between [0] and [x], such
that [0] ∼ [y1] ∼ [y2] ∼ · · · ∼ [yp] = [lt+ i]. Then, by Lemma 2.1, we have

y1 ≡ 1 (mod t)
y2 − y1 ≡ ±1 (mod t)
y3 − y2 ≡ ±1 (mod t)

...
...

...
yp − yp−1 ≡ ±1 (mod t).
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Adding these congruences, we get yp ≡ β (mod t), where −p+ 2 ≤ β ≤ p. Also,
we have yp ≡ i (mod t). However, as p < i, this is a contradiction. Therefore,
d([0], [x]) = i.

Case 3. Let t
2 + 1 ≤ i ≤ t − 1, i.e., 3 ≤ t + 2 − i ≤ t

2 + 1. We can find
a path [x] = [lt + i] ∼ [lt + (i + 1)] ∼ [lt + (i + 2)] ∼ · · · ∼ [lt + (t + 1)] ∼ [0]
of length t + 2 − i between [0] and [x]. If possible, let d([0], [x]) < t + 2 − i,
i.e., there exists a path of length q < t + 2 − i between [0] and [x], such that
[0] ∼ [y1] ∼ [y2] ∼ · · · ∼ [yq] = [lt + i]. Then, using Lemma 2.1, as in Case
1 and adding the congruences, we get yq ≡ β (mod t) where −q + 2 ≤ β ≤ q.
Also, we have yq ≡ i (mod t), i.e., β ≡ i (mod t). Note that as q < t + 2 − i
and t

2 + 1 ≤ i ≤ t − 1, we have −t + i < −q + 2 ≤ β ≤ q < t + 2 − i ≤ i, i.e.,
−t+ i < β < i. Now, the range of β shows that β 6≡ i (mod t), a contradiction.

This completes the proof and we have d([0], [x]) = t+ 2− i.

Lemma 2.7. Let t be odd and [x] be a vertex in GA(t, k) such that x = lt+ i,
where 0 ≤ l ≤ k − 1 and 0 ≤ i ≤ t− 1. (If l = k − 1, then i = 0 or 1.) Then

d([0], [x]) =


2, if i = 0,
i, if 1 ≤ i ≤ t+1

2 ,
t+ 2− i, if t+3

2 ≤ i ≤ t− 1.

Proof. It can be shown as that of Lemma 2.6.

Theorem 2.3. The diameter of GA(t, k) is
⌈
t+1

2

⌉
.

Proof. From Lemma 2.6, we have when t is even, maxv∈V (G) d([0], [v]) = t
2 + 1

and from Lemma 2.7, we have when t is odd, maxv∈V (G) d([0], [v]) = t+1
2 . As

GA(t, k) is vertex transitive, combining these two, we have for any t, diameter of
GA(t, k) is

⌈
t+1

2

⌉
.

Theorem 2.4. The domination number of GA(t, k) is less than or equal to t. If
k > 2t+ 1, then it is equal to t.

Proof. It is easy to see that A = {[0], [1], [2], . . . , [t − 1]} is a dominating set of
GA(t, k). Thus γ ≤ t. Also, if k > 2t+ 1 and as γ ≥ n

1+∆ , then we have

γ ≥ n

k + 1
=
t(k − 1) + 2

k + 1
= t− 2(t+ 1)

k + 1
> t− 1, i.e., γ = t.

3. Automorphism group of GA(t, k)

We denote the automorphsim group of GA(t, k) by A(t, k). If t = 2, i.e., n = 2k,
then GA(t, k) is a complete bipartite graph with equal partite sets each of size k
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and hence A(2, k) ∼= Sk × Sk × Z2. Also, if k = 2, then GA(t, k) ∼= Cn is a cycle
of length n and hence A(t, 2) ∼= Dn. Thus for the rest of the section, we assume
t, k ≥ 3. Since GA(t, k) is a Cayley graph, A(t, k) contains a regular subgroup
isomorphic to Zn. Note that ϕa : GA(t, k)→ GA(t, k) defined by ϕa([x]) = [x+a]
is an automorphism of GA(t, k), and {ϕa : 0 ≤ a ≤ n− 1} forms a regular cyclic
subgroup of A(t, k) generated by ϕ1 which is isomorphic to Zn. Also note that
τ : GA(t, k) → GA(t, k) given by τ([x]) = [n − x] forms an automorphism of
GA(t, k) and τϕ1τ = ϕ−1

1 . Thus Dn
∼= H = 〈ϕ1, τ〉 forms a subgroup of A(t, k).

However, we claim that for t 6= 2, A(t, k) = H. In this section, we establish this
claim.

Consider the stabilizer of [0], Stab[0] in A(t, k). Clearly, id and τ are two
elements of H which belong to Stab[0], i.e., |Stab[0]| ≥ 2. We will prove that
|Stab[0]| = 2, i.e., Stab[0] = {id, τ}. As GA(t, k) is vertex-transitive, this will
prove that |A(t, k)| = |GA(t, k)| · |Stab[0]| = 2n, i.e., A(t, k) = H. Thus, now we
focus on proving Stab[0] = {id, τ}.

Let ϕ ∈ Stab[0]. Consider the following cycle C0 : [0] ∼ [1] ∼ [2] ∼ · · · ∼ [t] ∼
[t+1] ∼ [0] of length t+2. Then ϕ(C0) is a cycle of length t+2 and it is of the form
ϕ(C0) : [0] ∼ [x1] ∼ [x2] ∼ · · · ∼ [xt] ∼ [xt+1] ∼ [0], where 0 < xi ≤ t(k − 1) + 1.
Then by Lemma 2.1, we get the following t+ 1 congruences:

x1 ≡ 1 (mod t)
x2 − x1 ≡ ±1 (mod t)
x3 − x2 ≡ ±1 (mod t)

...
...

...
xt+1 − xt ≡ ±1 (mod t).

Adding these congruences, we get

(1) xt+1 ≡ α0 (mod t), where − t+ 1 ≤ α0 ≤ t+ 1.

But, as [xt+1] ∼ [0], we have xt+1 ≡ 1 (mod t), i.e., α0 ≡ 1 (mod t). Now,
given the possible range of α0, it can assume only one of three values, namely
−t + 1, 1, t + 1. If α0 = t + 1, then all the above congruences (with R.H.S ±1)
take the value +1. Similarly, if α0 = −t+1, then all the above congruences (with
R.H.S ±1) take the value −1. However, if α0 = 1, half of the t congruences (with
R.H.S ±1) are +1 (mod t) and half of them are −1 (mod t) and this implies that
t is even. Thus, if t is odd, the only possible value of α0 is t + 1 or −t + 1. For
t = even and t 6= 2, we prove separately that α0 = 1 can not hold. For that, we
first prove some lemmas.

Lemma 3.1. Let t 6= 2 be even. If ϕ([i]) = [lit + i] for i = 1 and 2, then
ϕ([j]) = [ljt+ j] for 3 ≤ j ≤ t+ 1.



Generalized Andrásfai Graphs 455

Proof. We will proof this lemma by method of induction.

Base Step. As [2] ∼ [3]⇒ ϕ([2]) ∼ ϕ([3]). Then by Lemma 2.1, ϕ([3]) = [l3t+3]
or [l3t + 1]. If ϕ([3]) = [l3t + 1], then ϕ([0]) ∼ ϕ([3]), which holds only if t = 2,
hence ϕ([3]) = [l3t+ 3].

Inductive Step. Let ϕ([j]) = [ljt + j] for 3 ≤ j ≤ p ≤ t. As [0] ∼ [1] ∼ [2] ∼
· · · ∼ [p], we have [0] ∼ ϕ([1]) ∼ ϕ([2]) ∼ · · · ∼ ϕ([p]), i.e., [0] ∼ [l1t + 1] ∼
[l2t + 2] ∼ · · · ∼ [lpt + p]. Therefore, by Lemma 2.2, we have l1 ≤ l2 ≤ · · · ≤ lp.
Again, as [p+1] ∼ [p], by Lemma 2.1, ϕ([p+1]) = [lp+1t+(p+1)] or [lp+1t+(p−1)].
We will show that ϕ([p+ 1]) = [lp+1t+ (p+ 1)].

If possible, let

(2) ϕ([p+ 1]) = [lp+1t+ (p− 1)]

and hence, by Lemma 2.2, lp+1 ≤ lp. Again, this implies that lp+1 < lp−2,
because if lp+1 ≥ lp−2, as ϕ([p − 2]) = [lp−2t + (p − 2)] then by Lemma 2.2,
ϕ([p − 2]) ∼ ϕ([p + 1]), i.e., [p − 2] ∼ [p + 1], i.e., [0] ∼ [3], which holds only if
t = 2. Thus, we have

(3) lp−1 ≥ lp−2 > lp+1.

Now, by Lemma 2.6, we have

d([0], ϕ([p+1])) = d([0], [lp+1t+(p−1)]) =


2, if p− 1 = 0, i.e., p = 1,

p− 1, if 1 ≤ p− 1 ≤ t
2 + 1,

t+ 3− p, if t
2 + 1 ≤ p− 1 ≤ t− 1.

We will prove that none of these distance formulae hold.

Case 1. Since, p ≥ 3, the case p = 1 does not arise. Therefore d([0], ϕ([p +
1])) 6= 2.

Case 2. Let t
2 + 1 ≤ p − 1 ≤ t − 1, i.e., t

2 + 3 ≤ p + 1 ≤ t + 1 and hence
d([0], ϕ([p+ 1])) = t+ 3− p. Again, by Lemma 2.6, note that

d([0], [p+ 1]) =


t+ 1− p, if t

2 + 3 ≤ p+ 1 ≤ t− 1,

2, if p+ 1 = t, i.e., p = t− 1,

1, if p+ 1 = t+ 1, i.e., p = t.

Now, as d([0], ϕ([p+1])) = d([0], [p+1]), we have t+3−p = 1 or 2 or t+1−p.
If t+ 3− p = t+ 1− p, then 2 = 0, a contradiction. If t+ 3− p = 2 and in this
case p = t − 1, we have 2 = 0, a contradiction. If t + 3 − p = 1 and in this case
p = t, we have 2 = 0, a contradiction. Thus d([0], ϕ([p+ 1])) 6= t+ 3− p.
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Case 3. Finally, let 1 ≤ p − 1 ≤ t
2 + 1, i.e., 3 ≤ p + 1 ≤ t

2 + 3 and
d([0], ϕ([p+ 1])) = p− 1. Again, note that

(4) d([0], [p+ 1]) =

{
p+ 1, if 3 ≤ p+ 1 ≤ t

2 + 1,

t+ 1− p, if p+ 1 = t
2 + 2 or t

2 + 3.

Now, as d([0], ϕ([p+ 1])) = d([0], [p+ 1]), we have p− 1 = p+ 1 or t+ 1− p.
Clearly p − 1 = p + 1 can not hold. If p − 1 = t + 1 − p, then p = t

2 + 1. This
implies

(5) d([0], ϕ([p+ 1])) =
t

2
, as ϕ([p+ 1]) =

[
lp+1t+

t

2

]
.

As [p + 1] ∼ [p + 2], then from Equation 5 and Lemma 2.1, ϕ([p + 2]) =[
lp+2t+

(
t
2 − 1

)]
or
[
lp+2t+

(
t
2 + 1

)]
.

If ϕ([p + 2]) =
[
lp+2t+

(
t
2 + 1

)]
, then d ([0], [p+ 2]) = d

(
[0],
[
t
2 + 3

])
=

t
2 − 1 (by Lemma 2.6) and d ([0], ϕ ([p+ 2])) = d

(
[0], [lp+2t+ t

2 + 1]
)

= t
2 + 1 6=

d ([0], [p+ 2]), a contradiction, hence ϕ([p+ 2]) 6=
[
lp+2t+

(
t
2 + 1

)]
.

If ϕ([p+ 2]) =
[
lp+2t+

(
t
2 − 1

)]
= [lp+2t+ (p− 2)], as p = t

2 + 1. Note that
this, along with Equation 3, implies that lp−1 ≥ lp−2 > lp+1 ≥ lp+2.

Now, as ϕ([p − 1]) = [lp−1t + (p − 1)] and ϕ([p + 2]) = [lp+2t + (p − 2)],
by Lemma 2.2, we have ϕ([p − 1]) ∼ ϕ([p + 2]), i.e., [p − 1] ∼ [p + 2], i.e.,
[0] ∼ [3], a contradiction, as t 6= 2. This establishes that d([0], ϕ([p+ 1])) 6= p−1,
contradicting Equation 4. Thus Equation 2 does not hold and ϕ([p + 1]) =
[lp+1t+ (p+ 1)]. Hence, the lemma.

Lemma 3.2. Let t 6= 2 be even. If ϕ([1]) = [l1t + 1] and ϕ([2]) = [l2t], then
ϕ([i]) = [lit+ {t− (i− 2)}] for 3 ≤ i ≤ t+ 1.

Proof. We will proof this lemma by method of induction.

Base Step. As [2] ∼ [3]⇒ ϕ([2]) ∼ ϕ([3]). Then by Lemma 2.1, ϕ([3]) = [l3t+1]
or [l′3t−1] = [(l′3−1)t+(t−1)] = [l3t+(t−1)](where l′3−1 = l3). If ϕ([3]) = [l3t+1],
then ϕ([0]) ∼ ϕ([3]), which holds only if t = 2. Hence ϕ([3]) = [l3t+ (t− 1)].

Inductive Step. Let ϕ([j]) = [ljt + {t − (j − 2)}] for 3 ≤ j ≤ p ≤ t. As
[0] ∼ [1] ∼ [2] ∼ · · · ∼ [p], we have [0] ∼ ϕ([1]) ∼ ϕ([2]) ∼ · · · ∼ ϕ([p]), i.e.,
[0] ∼ [l1t + 1] ∼ [l2t] ∼ · · · ∼ [lpt + {t − (p − 2)}]. Therefore, by Lemma 2.2,
we have l1 ≥ l2 ≥ · · · ≥ lp. Again, as [p + 1] ∼ [p], by Lemma 2.1, ϕ([p + 1]) =
[lp+1t + (t − p + 1)] or [lp+1t + (t − p + 3)]. We will show that ϕ([p + 1]) =
[lp+1t+ (t− p+ 1)] = [lp+1t+ {t− (p+ 1− 2)}].

If possible, let

(6) ϕ([p+ 1]) = [lp+1t+ (t− p+ 3)]
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and hence, by Lemma 2.2, lp+1 ≥ lp. Again, this implies that lp+1 > lp−2,
because if lp+1 ≤ lp−2,as ϕ([p − 2]) = [lp−2t + (t − p + 4)] then by Lemma 2.2,
ϕ([p − 2]) ∼ ϕ([p + 1]), i.e., [p − 2] ∼ [p + 1], i.e., [0] ∼ [3], which holds only if
t = 2. Thus, we have

(7) lp−1 ≤ lp−2 < lp+1.

Now, by Lemma 2.6, we have

d([0], ϕ([p+ 1])) = d([0], [lp+1t+ (t− p+ 3)])

=


2, if t− p+ 3 = 0, i.e., p = t+ 3,

t− p+ 3, if 1 ≤ t− p+ 3 ≤ t
2 + 1,

(t+ 2)− (t− p+ 3) = p− 1, if t
2 + 1 ≤ t− p+ 3 ≤ t− 1.

We will prove that none of these distance formulae hold.

Case 1. Since, p ≤ t, the case p = t + 3 does not arise. Therefore d([0],
ϕ([p+ 1])) 6= 2.

Case 2. Let 1 ≤ t − p + 3 ≤ t
2 + 1, i.e., t

2 + 3 ≤ p + 1 ≤ t + 3 and hence
d([0], ϕ([p+ 1])) = t− p+ 3. Again, note that

d([0], [p+ 1]) =


t+ 1− p, if t

2 + 3 ≤ p+ 1 ≤ t− 1,

2, if p+ 1 = t, t+ 2, i.e., p = t− 1, t+ 1,

1, if p+ 1 = t+ 1, i.e., p = t,

3, if p+ 1 = t+ 3, i.e., p = t+ 2.

As we consider p ≤ t, the cases p = t + 1, t + 2 do not arise. Now, as d([0],
ϕ([p+ 1])) = d([0], [p+ 1]), we have t+ 3− p = 1 or 2 or t+ 1− p.

If t+ 3− p = t+ 1− p, then 2 = 0, a contradiction. If t+ 3− p = 2 and in
this case p = t − 1, we have 2 = 0, a contradiction. If t + 3 − p = 1 and in this
case p = t, we have 2 = 0, a contradiction. Thus d([0], ϕ([p+ 1])) 6= t+ 3− p.

Case 3. Finally, let t
2 + 1 ≤ t − p + 3 ≤ t − 1, i.e., 5 ≤ p + 1 ≤ t

2 + 3 and
d([0], ϕ([p+ 1])) = p− 1. Again, note that

(8) d([0], [p+ 1]) =

{
p+ 1, if 5 ≤ p+ 1 ≤ t

2 + 1,

t+ 1− p, if p+ 1 = t
2 + 2 or t

2 + 3.

Now, as d([0], ϕ([p+ 1])) = d([0], [p+ 1]), we have p− 1 = p+ 1 or t+ 1− p.
Clearly p − 1 = p + 1 can not hold. If p − 1 = t + 1 − p, then p = t

2 + 1. This
implies

(9) ϕ([p+ 1]) = [lp+1t+ (t+ 3− p)] =

[
lp+1t+

(
t

2
+ 2

)]
.
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As [p+ 1] ∼ [p+ 2], then from Equation 9, ϕ([p+ 2]) =
[
lp+2t+

(
t
2 + 1

)]
or[

lp+2t+
(
t
2 + 3

)]
.

If ϕ([p+2]) =
[
lp+2t+

(
t
2 + 1

)]
, then d ([0], [p+ 2]) = d

(
[0],
[
t
2 + 3

])
= t

2−1
(by Lemma 2.6).

Also d ([0], ϕ ([p+ 2])) = d
(
[0], [lp+2t+ t

2 + 1]
)

= t
2 + 1 6= d ([0], [p+ 2]), a

contradiction, hence ϕ([p+ 2]) 6=
[
lp+2t+

(
t
2 + 1

)]
.

If ϕ([p+ 2]) =
[
lp+2t+

(
t
2 + 3

)]
= [lp+2t+ (p+ 2)], as p = t

2 + 1. Note that
this, along with Equation 7, implies that lp−1 ≤ lp−2 < lp+1 ≤ lp+2.

Now, as ϕ([p − 1]) = ϕ([ t2 ]) = [lp−1t + t
2 + 2] = [lp−1t + (p + 1)] and ϕ([p +

2]) = [lp+2t + (p + 2)], by Lemma 2.2, we have ϕ([p − 1]) ∼ ϕ([p + 2]), i.e.,
[p − 1] ∼ [p + 2], i.e., [0] ∼ [3], a contradiction, as t 6= 2. This establishes that
d([0], ϕ([p + 1])) 6= p − 1, contradicting Equation 8. Thus Equation 6 does not
hold and ϕ([p+ 1]) = [lp+1t+ (t− p+ 1)] = [lp+1t+ {t− (p+ 1− 2)}]. Hence, the
lemma.

Note. From the Equation 1, we concluded that α0 = 1 can occur only if t is
even. Now by Lemma 3.1 and 3.2, we get for any t(6= 2), α0 = t + 1 or −t + 1.
Analogously corresponding to the cycle Ci : [0] ∼ [it + 1] ∼ [it + 2] ∼ · · · ∼
[(i+ 1)t] ∼ [(i+ 1)t+ 1] ∼ [0] of length t+ 2, we have x(i+1)t+1 ≡ αi (mod t) for
0 ≤ i ≤ k − 2, where −t+ 1 ≤ αi ≤ t+ 1 and hence αi can take the value either
of −t+ 1, 1, t+ 1. (See Figure 1. The blue vertex in the center is [0] and the red
vertices are elements of S.) In the next lemma, we determine the values of αi in
terms of α0.

[1]

[2]

[−1]

[3]

[t] [t+ 1]

[t+ 2]

[2t+ 1][st+ 1]

C0

Ck−2 C1

C2

Figure 1. The cycles C0, C1, . . . , Ck−2.
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Lemma 3.3. If α0 = t+ 1 or −t+ 1, then αi = t+ 1 or −t+ 1 respectively for
1 ≤ i ≤ k − 2.

Proof. Let α0 = t+ 1. We will proof this by method of induction.

Base Step. For i = 1 we have x2t+1 ≡ α1 (mod t), where −t+ 1 ≤ α1 ≤ t+ 1.
Then α1 = t+ 1 or −t+ 1. We will prove that α1 = t+ 1.

If possible let α1 = −t+ 1, then by Lemma 2.2, we have lt+1 ≥ lt+2 ≥ · · · ≥
l2t+1. Now,

xt+2 − xt+1 ≡ −1 (mod t)
xt+1 − xt ≡ 1 (mod t)
xt − xt−1 ≡ 1 (mod t).

Adding these congruences, we get xt+2 − xt−1 ≡ 1 (mod t). If lt+2 ≥ lt−1,
then by Lemma 2.2, we have xt+2 ∼ xt−1, which holds only if t = 2, hence
lt+2 < lt−1. Thus, we have

(10) lt ≥ lt−1 > lt+2 ≥ lt+3.

Now,
xt+3 − xt+2 ≡ −1 (mod t)
xt+2 − xt+1 ≡ −1 (mod t)
xt+1 − xt ≡ 1 (mod t).

Adding these congruences, we get xt+3 − xt ≡ −1 (mod t), i.e., xt − xt+3 ≡
1 (mod t), then by Equation 10 and Lemma 2.2, we get xt ∼ xt+3, which holds
only if t = 2, which is a contradiction, hence α1 = t+ 1.

Inductive Step. Let αi = t + 1 for 1 ≤ i ≤ p ≤ k − 3, we will show that
αp+1 = t+ 1.

If possible let αp+1 = −t + 1, then by Lemma 2.2, we have lpt+1 ≥ lpt+2 ≥
· · · ≥ l(p+1)t+1. Now,

xpt+2 − xpt+1 ≡ −1 (mod t)
xpt+1 − xpt ≡ 1 (mod t)
xpt − xpt−1 ≡ 1 (mod t).

Adding these congruences, we get xpt+2−xpt−1 ≡ 1 (mod t). If lpt+2 ≥ lpt−1,
then by Lemma 2.2, we have xpt+2 ∼ xpt−1, which holds only if t = 2, hence
lpt+2 < lpt−1. Thus, we have

(11) lt ≥ lpt−1 > lpt+2 ≥ lpt+3

Now,
xpt+3 − xpt+2 ≡ −1 (mod t)
xpt+2 − xpt+1 ≡ −1 (mod t)
xpt+1 − xpt ≡ 1 (mod t).
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Adding these congruences, we get xpt+3−xpt ≡ −1 (mod t), i.e., xpt−xpt+3 ≡
1 (mod t), then by Equation 11 and Lemma 2.2, we get xpt ∼ xpt+3, which holds
only if t = 2, which is a contradiction, hence αp+1 = t+ 1.

Similarly, it can be proved that if α0 = −t + 1, then αi = −t + 1 for all
1 ≤ i ≤ k − 2.

Now, we are in a position to prove the main theorem that |Stab[0]| = 2, i.e.,
Stab[0] = {id, τ}. Recall that, in the begining of this section, we started with an
arbitrary element ϕ ∈ Stab[0]. In the next theorem, we prove that ϕ = id or τ .

Theorem 3.1. If α0 = t+ 1 or −t+ 1 then ϕ = id or τ respectively, and hence
for t 6= 2, A(t, k) = 〈ϕ1, τ〉 ∼= Dn.

Proof. Case 1. Let α0 = t+ 1, we will show that ϕ = id. Let consider the cycle
[0] ∼ ϕ([1]) = [l1t + 1] ∼ ϕ([2]) = [l2t + 2] ∼ · · · ∼ ϕ([i]) = [lit + i] ∼ · · · ∼
ϕ([n− 1]) = [ln−1t+ (n− 1)] ∼ 0. Then by Lemma 2.2, we have

(12) 0 ≤ l1 ≤ l2 ≤ · · · ≤ ln−1 ≤ k − 1.

We will show that li = 0 ∀i = 1, 2, . . . , n− 1.

If possible let ∃i ∈ {1, 2, . . . , n− 1} such that li = p(> 0), then by Equation
12, we have lj ≥ p ∀j > i ⇒ ϕ([n − 1]) ≥ pt + (n − 1) = (k − 1 + p)t + 1, as
n = (k− 1)t+ 2 then ln−1 ≥ k− 1 + p 
 k− 1, which is a contradiction, hence we
have li = 0 ∀i = 1, 2, . . . , n−1. Therefore we have ϕ([i]) = [i] ∀i = 0, 1, . . . , n−1,
hence ϕ = id.

Case 2. Let α0 = −t+ 1, we will show that ϕ = τ . Let us consider the cycle
[0] ∼ ϕ([1]) = [l1t+ 1] ∼ ϕ([2]) = [l2t] ∼ ϕ([3]) = [l′3t− 1] = [(l′3− 1)t+ (t− 1)] =
[l3t+(t−1)] ∼ · · · ∼ ϕ([i]) = [l′it−(i−2)] = [(l′i−1)t+ t−(i−2)] = [lit+{t−(i−
2)}] ∼ · · · ∼ ϕ([n− 1]) = [(l′n−1 − 1)t+ t− (n− 3)] = [ln−1t+ {t− (n− 3)}] ∼ 0,
where li = l′i − 1 ∀ i = 3, . . . , n− 1. Then by Lemma 2.2, we have

(13) k − 1 ≥ l′1 ≥ l′2 ≥ · · · ≥ l′n−1 ≥ 0.

We will show that l′i = k − 1 ∀i = 1, 2, . . . , n− 1.

If possible let ∃i ∈ {1, 2, . . . , n − 1} such that l′i = p(< k − 1), then by
Equation 13, we have l′j ≤ p ∀j > i ⇒ ϕ([n − 1]) ≤ (p − 1)t + t − (n − 3) =
{p − (k − 1)}t + 1, as n = (k − 1)t + 2 then l′n−1 ≤ p − (k − 1) � 0, which is a
contradiction, hence we have l′i = k − 1 ∀i = 1, 2, . . . , n − 1. Therefore we have
ϕ([i]) = [(k − 2)t+ {t− (i− 2)}] = [n− i] ∀i = 0, 1, . . . , n− 1, hence ϕ = τ .

The last part of the theorem follows from the discussion in the begining of
this section.

Corollary 3.4. For t 6= 2, GA(t, k) is a normal Cayley graph.
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Proof. As GA(t, k) = Cay(Zn, S) and A(t, k) ∼= Dn, the regular subgroup of
A(t, k) is of index 2 and hence, normal in A(t, k).

Corollary 3.5. GA(t, k) is edge-transitive if and only if t = 2 or k = 2. If
t, k > 2, it has

⌈
k
2

⌉
many edge-orbits.

Proof. If t = 2, then GA(t, k) is a complete bipartite graph with balanced
bipartite set and hence is edge-transitive. If k = 2, the GA(t, k) is a cycle and
hence, it is edge-transitive. Let t, k > 2. Consider the set of k edges which are
adjacent to [0], i.e., {e0 = ([0], [1]), e1 = ([0], [t+1]), e2 = ([0], [2t+1]), . . . , ek−1 =
([0], [t(k−1)+1])}. As A(t, k) ∼= Dn, only ei and ek−1−i lie in the same edge-orbit.
Thus there are at least

⌈
k
2

⌉
many edge-orbits. As GA(t, k) is vertex-transitive,

there are exactly
⌈
k
2

⌉
many edge-orbits. Thus, for t, k ≥ 3, there are at least 2

edge-orbits and hence GA(t, k) is not edge-transitive.

At this junction, we recall another graph parameter related to the auto-
morphism group of a graph, namely determining number of a graph [2]. The
determining number of a graph G = (V,E) is the minimum size of a set S ⊆ V
such that the pointwise stabilizer of S in the full automorphism group of G is
trivial.

Corollary 3.6. For t 6= 2, the determining number of GA(t, k) is 2.

Proof. Let S = {[0], [1]}. We first show that S is a determining set for GA(t, k),
i.e., Stab[0] ∩ Stab[1] = {id}. Let ϕi

1τ
j be an arbitrary element of A(t, k) which

stabilizes both [0] and [1], where 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 1. If j = 1, we
have ϕi

1τ([0]) = [0] and ϕi
1τ([1]) = [1], i.e., [i] = [0] and [i − 1] = [1]. But this

implies [0] = [2], a contradiction. Thus j = 0 and so we have ϕi
1([0]) = [0]

and ϕi
1([1]) = [1], i.e., [i] = [0] and hence i = 0. Thus Stab[0] ∩ Stab[1] = {id}

and determining number is less than or equal to 2. Moreover, the determining
number can not be 1, otherwise as GA(t, k) is vertex-transitive, we would have
|Stab[0]| = 1, a contradiction. This proves the corollary.

4. Conclusion and open issues

In this paper, we introduced a new family of circulants, called Generalized
Andrásfai graphs, and studied its various parameters like diameter, girth, dom-
ination number etc. The full automorphism group and determining number is
also computed.

As circulant graphs are an important class of interconnection networks in
parallel and distributed computing, two important questions pertaining to gener-
alized Andrásfai graphs for further research are to determining its metric dimen-
sion and spectrum. It is worth mentioning that recently in [6], authors computed
the metric dimension of Andrásfai graphs.
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