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Abstract

In this paper, we study the structure of cyclic codes overM2(Z4) (the
matrix ring of matrices of order 2 over Z4), which is perhaps the first time
that the ring is considered as a code alphabet. This ring is isomorphic to
Z4[w]+UZ4[w], where w is a root of the irreducible polynomial x2+x+1 ∈

Z2[x] and U ∼=

(

1 1
1 1

)

. In our work, we first discuss the structure of the

https://doi.org/10.7151/dmgaa.1395


350 S. Bhowmick, J. Pal, R. Bandi and S. Bagchi

ring M2(Z4) and then focus on the structure of cyclic codes and self-dual
cyclic codes over M2(Z4). Thereafter, we obtain the generators of the cyclic
codes and their dual codes. A few non-trivial examples are given at the end
of the paper.

Keywords: codes over Z4 + uZ4, Gray map, Lee weight, self-dual codes.
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1. Introduction

Over the past three decades, the study of codes over various finite rings has been
a topic of interest [10]. However, their applications in digital communication are
the most demanding problems in this ultra-modern era. Codes over rings have
got the attention of researchers only after the remarkable work of Hammons et
al. [4] in which they have shown an interesting relation between some popular
non-linear codes and linear codes over residue ring of integers modulo 4, via a
map called Gray map. This attracted researchers to focus on codes over rings
and their applications. As a result, plenty of new ring structures have been
considered as code alphabets. However, most of the study was restricted to codes
over commutative rings [4, 8, 9]. In 2013, codes over a non-commutative matrix
ring, the ring of 2 × 2 matrices over the field F2; i.e., M2(F2) has been taken as
a code alphabet to study the space-time codes [6]. The advantage of this type of
non-commutative matrix ring is that it allows to form quotient rings which are
either left ideals or right ideals (cyclic codes). This is also true in the case of
skew polynomial rings but polynomial factorization is a big hurdle to construct
the codes over skew polynomial rings. Some notable works on cyclic codes over
non-commutative finite rings can be found in [2, 3, 7, 11].

In [1], the authors have studied cyclic codes over M2(F2) and obtained some
optimal codes over the same. Inspired by this work, Luo and Parampalli [5]
proposed the structure of cyclic codes over M2(F2 + uF2) and found some good
optimal cyclic codes. Recently, the structure of cyclic codes over the ring M4(F2)
has been introduced to the literature [7]. Motivated by these works, in our paper,
we explore a new construction of codes over M2(Z4). The reason for choosing Z4

is that Z4 is the best-suited ring for the construction of modular lattices and also
the relation established by Hammons et al. [4] between binary non-linear codes
and linear codes over Z4. The approach which is being used to construct cyclic
codes over M2(Z4) is the same as that of cyclic codes over M2(F2); however, it is
not straightforward which can be realized from the later parts of our work.

Our proposed work is organized as follows: In Section 2, we describe the
structure of M2(Z4) and show that M2(Z4) is isomorphic to Z4[w] + UZ4[w],
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where w is a root of the polynomial x2 + x+ 1 and U ≡

(

1 1
1 1

)

. Besides, we

define a Gray map from Z4[w] + UZ4[w] to F
4
4 which preserves the Lee weight

in Z4[w] + UZ4[w] and Hamming weight in F
4
4. In Section 3, we discuss the

structure of cyclic codes and prove some results on the dimension of cyclic codes.
In Section 4, we construct the structure of dual cyclic codes and self-dual codes.
We enlighten on the Hermitian self-dual cyclic codes in Section 5. Finally, we
exhibit some non-trivial examples of cyclic codes and their Gray images.

2. Structure of M2(Z4)

Let us denote R = M2(Z4). It is clear that R is a non-commutative ring of
matrices of order 2 over the ring Z4. Now, we see that the set Z4 + XZ4 +
Y Z4 + Y XZ4 forms a non-commutative finite ring with respect to component-
wise addition, and the multiplication rule defined in Table 1.

R· 1 X Y YX

1 1 X 0 0

X 0 0 1 X

Y Y YX 0 0

YX 0 0 Y YX

Table 1. Multiplication rule of R.

Lemma 2.1. The ring M2(Z4) is isomorphic to the ring Z4+XZ4+Y Z4+Y XZ4.

Proof. We define a mapping f : M2(Z4) −→ Z4+XZ4+Y Z4+Y XZ4 such that

f(A) = a+Xb+Y c+Y Xd, where A =

(

a b
c d

)

∈ M2(Z4). It is easy to verify

that f(A + B) = f(A) + f(B). Now, we show that f(AB) = f(A)f(B). Let

A =

(

a b
c d

)

and B =

(

a1 b1
c1 d1

)

. Then, AB =

(

aa1 + bc1 ab1 + bd1
ca1 + dc1 cb1 + dd1

)

.

Therefore, f(AB) = (aa1 + bc1) +X(ab1 + bd1) + Y (ca1 + dc1) + Y X(cb1 + dd1).
Now,

f(A)f(B) = (a+Xb+ Y c+ Y Xd)(a1 +Xb1 + Y c1 + Y Xd1)
= (aa1 + bc1) +X(ab1 + bd1) + Y (ca1 + dc1) + Y X(cb1 + dd1)
= f(AB).

Thus, f is a ring homomorphism. One can easily verify that f is one-one and
onto. Hence, M2(Z4) ∼= Z4 +XZ4 + Y Z4 + Y XZ4.
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We consider a subset of Z4 + XZ4 + Y Z4 +Y XZ4, namely W = {0, X +
Y 3 + Y X3, X2 + Y 2 + Y X2, X3 + Y + Y X, 1 + X + Y X3, 2 + X2 + Y X2,
3+X3+Y X, 1+Y X, 2+Y X2, 3+Y X3, 1+X2+Y 2+Y X3, 3+X2+Y 2+Y X,
1+X3+Y +Y X2, 2+X3+Y +Y X3, 2+X +Y 3+Y X, 3+X +Y 3+Y X3}.

Lemma 2.2. The subset W forms a commutative ring with respect to component-
wise addition and multiplication defined on Z4 +XZ4 + Y Z4 + Y XZ4.

Proof. For simplicity, we use the following notations:
a0 = 0, a1 = X + Y 3 + Y X3, a2 = X2 + Y 2 + Y X2, a3 = X3 + Y + Y X,

a4 = 1 + X + Y X3, a5 = 2 + X2 + Y X2, a6 = 3 + X3 + Y X, a7 = 1 + Y X,

a8 = 2 + Y X2, a9 = 3 + Y X3, a10 = 1 + X2 + Y 2 + Y X3, a11 = 3 + X2 + Y 2 + Y X,

a12 = 1 + X3 + Y + Y X2, a13 = 2 + X3 + Y + Y X3, a14 = 2 + X + Y 3 + Y X, a15 = 3 + X + Y 3 + Y X3.

The multiplication table on W is given below:

· 0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1 0 a6 a5 a4 a9 a8 a7 a1 a2 a3 a13 a14 a10 a12 a15 a11
a2 0 a5 0 a5 a8 0 a8 a2 0 a2 a2 a2 a8 a5 a5 a8
a3 0 a4 a5 a6 a7 a8 a9 a3 a2 a1 a14 a13 a11 a15 a12 a10
a4 0 a9 a8 a7 a1 a2 a3 a4 a5 a6 a15 a12 a14 a11 a10 a13
a5 0 a8 0 a8 a2 0 a2 a5 0 a5 a5 a5 a5 a8 a8 a2
a6 0 a7 a8 a9 a3 a2 a1 a6 a5 a4 a12 a15 a13 a10 a11 a14
a7 0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
a8 0 a2 0 a2 a5 0 a5 a8 0 a8 a8 a8 a5 a2 a2 a5
a9 0 a3 a2 a1 a6 a5 a4 a9 a8 a7 a11 a10 a15 a14 a13 a12
a10 0 a13 a2 a14 a15 a5 a12 a10 a8 a11 a7 a9 a6 a1 a3 a4
a11 0 a14 a2 a13 a12 a5 a15 a11 a8 a10 a9 a7 a4 a3 a1 a6
a12 0 a10 a8 a11 a14 a5 a13 a12 a5 a15 a6 a4 a1 a7 a9 a3
a13 0 a12 a5 a15 a11 a8 a10 a13 a2 a14 a1 a3 a7 a6 a4 a9
a14 0 a15 a5 a12 a10 a8 a11 a14 a2 a13 a3 a1 a9 a4 a6 a7
a15 0 a11 a8 a10 a13 a2 a14 a15 a5 a12 a4 a6 a3 a9 a7 a1

Table 2. Multiplication table of W .

From the context of algebra, it can be easily proved that W is an abelian
group under component-wise addition. The other criteria of the ring can be
verified by using Table 2.

The ring W is commutative because

ai · aj = aj · ai for 0 ≤ i, j ≤ 15 (see Table 2).

Hence, W is a commutative ring.
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We choose an element 1 +X + Y + Y X from Z4 +XZ4 + Y Z4 + Y XZ4 and
denote it by U ; i.e., U = 1 + X + Y + Y X. So, UW = {0, 3 + Y 3, 2 + Y 2,
1+ Y , X + Y X, X2+ Y X2, X3+ Y X3, 1+X + Y + Y X, 2 +X2+ Y 2+ Y X2,
3 +X3 + Y 3 + Y X3, 3+X + Y 3 + Y X, 1 +X3 + Y + Y X3, 2 +X + Y 2+ Y X,
3 +X2 + Y 3 + Y X2, 1 +X2 + Y + Y X2, 2 +X3 + Y 2 + Y X3}. It shows that
W ∩UW = {0}, which in turn implies that W +UW = Z4+XZ4+Y Z4+Y XZ4

as W + UW is a subring of Z4 + XZ4 + Y Z4 + Y XZ4 and | W + UW |= 256.
Therefore, Z4 +XZ4 + Y Z4 + Y XZ4 = W + UW .

Let x2 + x + 1 be a basic irreducible polynomial over Z4. Then Z4[x]
〈x2+x+1〉 is

called the Galois extension ring of Z4 and is denoted by GR(4,2). If w is a root

of x2 + x+ 1, then Z4[x]
〈x2+x+1〉

∼= GR(4, 2) ∼= Z4[w].

Lemma 2.3. The ring W is isomorphic to the ring Z4[w].

Proof. We consider an explicit form of a mapping from W to Z4[w] as follows:
0 7−→ 0, X + Y 3+ Y X3 7−→ w, X2+ Y 2+ Y X2 7−→ 2w, X3 + Y + Y X 7−→ 3w,
1 +X + Y 3 7−→ 3w2, 2 +X2 + Y 2 7−→ 2w2, 3 +X3 + Y 7−→ w2, 1 + Y X 7−→ 1,
2+ Y X2 7−→ 2, 3+Y X3 7−→ 3, 1+X2+ Y 2+ Y X3 7−→ 2w+1, 3+X2+ Y 2+
Y X 7−→ 2w+3, 1+X3+ Y + Y X2 7−→ 3w+1, 2+X3 + Y + Y X3 7−→ 3w+2,
2 + X + Y 3 + Y X 7−→ w + 2, 3 + X + Y 3 + Y X2 7−→ w + 3. It is clear from
Table 2 that the mapping is a ring isomorphism. Therefore, W ∼= Z4[w].

Theorem 2.1. The ring M2(Z4) is isomorphic to the ring Z4[w] + UZ4[w].

Proof. We have,

M2(Z4) ∼= Z4 +XZ4 + Y Z4 + Y XZ4 from Lemma 2.1
∼= W + UW
∼= Z4[w] + UZ4[w] from Lemma 2.3.

Therefore, M2(Z4) ∼= Z4[w] + UZ4[w].

We get that the rings W and Z4[w] are commutative; however, their exten-
sions W+UW and Z4[w]+UZ4[w] are non-commutative. Summarizing the above
discussion, we have R ∼= Z4[w] +UZ4[w], where U

2 = 2U , U3 = 0, 2U = U2 and
2U2 = 0.

We know that each element of Z4 has 2-adic representation a + 2b, where
a, b ∈ Z2, so is Z4[w]. Now, we define the Gray map on R. To accomplish it,
first, we define a mapping R to Z

2
4[w], and then define a mapping Z

2
4[w] to F

4
4 so

that the Gray map is

Φ : R −→ F
4
4

a+ 2b+ Uc+ U2d 7−→ (d, c+ d, b+ d, a+ b+ c+ d),
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where a, b, c, d ∈ F4. This map can easily be extended toRn component-wise. The
Hamming weight wH of x ∈ F

n
4 is defined as the number of non-zero coordinates

of x. For x = a + 2b + Uc + U2d ∈ Rn, we define the Lee weight of x, denoted
by wL(x), as

wL(x) = wH(d) + wH(d+ c) + wH(d+ b) + wH(a+ b+ c+ d).

For any x, y ∈ Rn, the Lee distance dL(x, y) between x and y is the Lee weight
of x− y, i.e., dL(x, y) = wL(x− y). A linear code C of length n over R is an R-
submodule ofRn. C is said to be a free code if C has aR-basis. We define the rank
of a code C as the cardinality of minimal generating set of C. The Lee distance of
C is denoted by dL(C) and is defined by dL(C) = min{wL(c) =

∑n−1
i=0 wL(ci)|c =

(c0, c1, . . . , cn−1) ∈ C}. From the above discussion and definitions, we have the
following result.

Theorem 2.2. If C is a linear code over R of length n and size M with Lee
distance dL, then Φ(C) is a code of length 4n over F4 with size M .

3. Cyclic codes over M2(Z4)

Let τ be the standard cyclic shift operator on Rn. A linear code C of length n
over R is cyclic if τ(c) ∈ C whenever c ∈ C, i.e., if (c0, c1, . . . , cn−1) ∈ C, then
(cn−1, c0, c1, . . . , cn−2) ∈ C. As usual, in the polynomial representation, a cyclic

code of length n over R is an ideal of the quotient ring R[x]
〈xn−1〉 .

Theorem 3.1. A linear code C = C1 + UC2 of length n over R is cyclic if and
only if C1, C2 are cyclic codes of length n over Z4[w].

Proof. Let c1 + Uc2 ∈ C, where c1 ∈ C1 and c2 ∈ C2. Then τ(c1 + Uc2) =
τ(c1) + Uτ(c2) ∈ C, since C is cyclic and τ is a linear map. So, τ(c1) ∈ C1 and
τ(c2) ∈ C2. Therefore, C1, C2 are cyclic codes.

Conversely, if C1, C2 are cyclic codes, then for any c1 + Uc2 ∈ C, where
c1 ∈ C1 and c2 ∈ C2, we have τ(c1) ∈ C1 and τ(c2) ∈ C2, and so, τ(c1 + Uc2) =
τ(c1) + Uτ(c2) ∈ C. Hence C is cyclic.

We assume that n is odd for the rest of this paper. Let R[x] be the ring of
polynomials over the ring R. We define a mapping

µ : R[x] −→ F4[x]

n
∑

i=0

aix
i 7−→

n
∑

i=0

µ(ai)x
i,

where µ(ai) denote reduction modulo 2 and U .
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A polynomial f ∈ R[x] is called a basic irreducible polynomial if µ(f) is
irreducible over F4. Two polynomials f(x), g(x) ∈ R[x] are said to be coprime if
there exist a(x), b(x) ∈ R[x] such that

a(x)f(x) + b(x)g(x) = 1.

The polynomial xn− 1 can be factorized uniquely into pairwise coprime irre-
ducible polynomials over F4. Let x

n−1 = f1f2f3 · · · fm, where fi’s are irreducible
polynomials over F4.

Lemma 3.1. Let fi be a basic irreducible polynomial over R for 1 ≤ i ≤ m.
Then R[x]

〈fi〉
is not a ring but a right module over R.

Proof. Since 〈fi〉 is not two sided ideal ofR[x], so R[x]
〈fi〉

is not a ring for 1 ≤ i ≤ m.

Then each R[x]
〈fi〉

is a right R-module.

To prove our next results, we need a non-commutative analogue of the Chi-
nese Remainder Theorem for modules.

Lemma 3.2. Let n be an odd integer. Then

R[x]

〈xn − 1〉
=

m
⊕

1

R[x]

〈fi〉
.

Proof. The proof follows from [6] and [11, Chapter 9].

Theorem 3.2. If f be an irreducible polynomial in F4[x], then the right R-

modules of R[x]
〈f〉 are 〈0〉, 〈1 + 〈f〉〉, 〈U + 〈f〉〉, 〈2U + 〈f〉〉, 〈(2 + Umf ) + 〈f〉〉, 〈2 +

〈f〉〉, 〈〈2, U〉 + 〈f〉〉, where mf is a unit in F4[x]
〈f〉 .

Proof. Let I be a non-zero right sub-module of R[x]
〈f〉 and g(x) ∈ R[x] such that

g(x) + 〈f〉 ∈ I but g(x) /∈ 〈f〉. If gcd(µ(g(x)), f(x)) = 1, then g is invertible

modulo f . So, I = 〈1 + 〈f〉〉 = R[x]
〈f〉 .

If gcd(µ(g(x)), f(x)) = f(x), then there exist g1(x), g2(x), g3(x), g4(x) ∈
F4[x] such that g(x) = g1(x)+Ug2(x)+2g3(x)+2Ug4(x) with gcd((g1(x)), f(x)) =
f(x). Therefore, g(x) + 〈f〉 = Ug2(x) + 2g3(x) + 2Ug4(x) + 〈f〉.

Case 1. If gcd(g2(x), f(x)) = f(x), then g(x)+ 〈f〉 = 2g3(x)+2Ug4(x)+ 〈f〉.
It follows that I = 〈2 + 〈f〉〉.

Subcase a. gcd(g3(x), f(x)) = f(x), then I = 〈2U + 〈f〉〉.

Subcase b. gcd(g3(x), f(x)) = 1, then I = 〈2 + 〈f〉〉.
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Case 2. If gcd(g2(x), f(x)) = 1, then there exists g−1
2 (x) ∈ F4[x] such that

g2(x)g
−1
2 (x) ≡ 1 (mod f). Therefore, 2U = 2g(x)g−1

2 (x). Consequently, 2U +
〈f〉 = 2g(x)g−1

2 (x) + 〈f〉 ∈ I. It follows that Ug2(x) + 2g3(x) + 〈f〉 = g(x) +
2Ug4(x) + 〈f〉 ∈ I.

Subcase a. gcd(g3(x), f(x)) = f(x), then I = 〈U + 〈f〉〉.

Subcase b. gcd(g3(x), f(x)) = 1, then g−1
3 (x) ∈ F4[x] such that g3(x)g

−1
3 (x) ≡

1 (mod f). Hence, 2 +Ug2(x)g
−1
3 (x) + 〈f〉 ∈ I, i.e., 〈2 +Umf + 〈f〉〉 = I, where

mf = g2(x)g
−1
3 (x) is a unit in F4[x]

〈f〉 . Since gcd(g2(x), f(x)) = 1, gcd(g3(x), f(x)) =

1, then there exist a1(x), a2(x), b1(x), b2(x) ∈ F4[x] such that g2(x)a1(x) +
f(x)a2(x) = 1, g3(x)b1(x) + f(x)b2(x) = 1. Therefore,

Ub1(x) + 〈f〉 = (Ug2(x) + 〈f〉)(a1(x)b1(x) + 〈f〉)

2a1(x) + 〈f〉 = (Ug3(x) + 〈f〉)(a1(x)b1(x) + 〈f〉)

Ub1(x) + 2a1(x) + 〈f〉 = (Ug2(x) + 2g3(x)〈f〉)(a1(x)b1(x) + 〈f〉).

It follows that I = 〈〈U, 2〉 + 〈f〉〉.

Theorem 3.3. Let xn− 1 = f1f2f3 · · · fm, where fi’s are monic basic irreducible
pairwise coprime polynomials in R[x]. Let f̂i =

xn−1
fi

. Then any ideal in R[x]
〈xn−1〉

is the sum of the right sub-modules:
〈

f̂i + 〈xn − 1〉
〉

,
〈

2f̂i + 〈xn − 1〉
〉

,
〈

Uf̂i +

〈xn − 1〉
〉

,
〈

2Uf̂i + 〈xn − 1〉
〉

,
〈

(2+Umf )f̂i + 〈xn − 1〉
〉

,
〈

〈2, U〉 f̂i + 〈xn − 1〉
〉

,

where mf is a unit in F4[x]
〈f〉 .

Proof. Proof of the theorem follows from the Chinese Remainder Theorem for
modules and the right R-modules of R[x]

〈f〉 .

Theorem 3.4. Let C be a cyclic code of length n over R. Then there exists
a family of pairwise coprime monic polynomials F0, F1, . . . , F6 ∈ F4[x] such that
F0F1 · · ·F6 = xn−1 and C =

〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2+Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, where mf is a unit in F4[x]
〈f〉 . Moreover, |C| = 4α, where α =

4degF1 + 2degF2 + 2degF3 + degF4 + 2degF5 + 3degF6.

Proof. The first part follows from a similar argument of Theorem 2 in [5].

Now, to compute |C| we use the result C =
〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2 + Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, which implies that |C| =| F̂1 | · | UF̂2 | · | 2F̂3 |

· | 2UF̂4 | · | (2 + Umf )F̂5 | · | 〈2, U〉F̂6 |. The rest of the proof follows from

the fact that | F̂1 |= 44degF1 , |UF̂2| = 42degF2 , | 2F̂3 |= 42degF3 , | 2UF̂4 |= 4degF4 ,
| (2 + Umf )F̂5 |= 42degF5 , | 〈2, U〉F̂6 |= 43degF6 .
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Theorem 3.5. Let C be a cyclic code of length n over R with C =
〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2 +Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, where mf is a unit in
F4[x]
〈f〉 and F = F̂1+UF̂2+2F̂3+2UF̂4+(2+Umf)F̂5+ 〈2, U〉 F̂6. Then C = 〈F 〉.

Proof. For any two distinct i, j, we have (xn − 1) | F̂iF̂j , where 1 ≤ i, j ≤ 6. So,
F̂iF̂j = 0. Also, for any i with 1 ≤ i ≤ 6, Fi, F̂i are coprime and FiF̂i = 0. Since
Fi, F̂i are coprime, there exist ai, bi such that (a1F1 + b1F̂1)(a2F2 + b2F̂2)(a3F3 +
b3F̂3)(a4F4 + b4F̂4)(a5F5 + b5F̂5) = 1. It shows that,

a1F1a2F2a3F3a4F4a5F5 + b1F̂1a2F2a3F3a4F4a5F5+

a1F1b2F̂2a3F3a4F4a5F5 + a1F1a2F2b3F̂3a4F4a5F5+

a1F1a2F2a3F3b4F̂4a5F5 + a1F1a2F2a3F3a4F4b5F̂5 = 1.

On multiplying both side by F̂6, we obtain F̂6a1F1a2F2a3F3a4F4a5F5 = F̂6.
We have F = F̂1+UF̂2+2F̂3+2UF̂4+(2+Umf)F̂5+〈2, U〉 F̂6. As a result, we see

that Fa1F1a2F2a3F3a4F4a5F5 = 〈2, U〉 F̂6a1F1a2F2a3F3a4F4a5F5, which in turn
implies that Fa1F1a2F2a3F3a4F4a5F5 = 〈2, U〉F̂6. Hence, 〈2, U〉F̂6 ∈ 〈F 〉. Con-
tinuing this process, we obtain F̂1, UF̂2, 2F̂3, 2UF̂4, (2 + Umf )F̂5, 〈2, U〉 F̂6 ∈
〈F 〉. Consequently, C = 〈F 〉.

Let us denote R = F4[x]
〈xn−1〉 .

Theorem 3.6. Let C be a cyclic code of length n over R. Then there exists a
family of polynomials F,G,H,Q, T ∈ F4[x] which are the divisors of xn − 1 such
that C = 〈F 〉R ⊕ U 〈G〉R ⊕ 2 〈H〉R ⊕ 2U 〈Q〉R ⊕ (2 + Umf ) 〈T 〉R, where mf is a

unit in F4[x]
〈f〉 . Moreover, |C| = 45n−(degF+degG+degH+degQ+degT ).

Proof. A similar argument as in [5].

4. Self-dual cyclic codes over M2(Z4)

For given x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, the Euclidean scalar
product (or dot product) of x, y is x · y = x1y1 + x2y2 + · · · + xnyn (mod 4).
Two vectors x and y in Rn are called orthogonal if x · y = 0. For a linear code
C over R, its dual code C⊥ is the set of words over R that are orthogonal to
all codewords of C, i.e., C⊥ = {x ∈ Rn | x · y = 0,∀y ∈ C}. A code C is called
self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥.

Let f(x) = a0 + a1x + · · · + ak−1x
k−1 + akx

k be a polynomial of degree k
with ak 6= 0, a0 6= 0. The reciprocal f∗(x) of f(x) is defined by

f∗(x) = a−1
0 xkf(x−1).
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Theorem 4.1. Let C be a cyclic code of length n over R with C =
〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2+Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, where mf is a unit in F4[x]
〈f〉 .

Then C⊥ =
〈

F̂ ∗
0

〉

⊕
〈

UF̂ ∗
2

〉

⊕
〈

2F̂ ∗
3

〉

⊕
〈

2UF̂ ∗
6

〉

⊕
〈

(2+Umf)F̂
∗
5

〉

⊕
〈

〈2, U〉 F̂ ∗
4

〉

and | C⊥ |= 44degF0+2degF2+2degF3+3degF4+2degF5+degF6 .

Proof. From the Theorem 3.4, | C |= 44degF1+2degF2+2degF3+degF4+2degF5+3degF6 .
Since | C || C⊥ |= 44n and n = degF1 + degF2 + degF3 + degF4 + degF5 + degF6,
so | C⊥ |= 44degF0+2degF2+2degF3+3degF4+2degF5+degF6 .

We denote C∗ =
〈

F̂ ∗
0

〉

⊕
〈

UF̂ ∗
2

〉

⊕
〈

2F̂ ∗
3

〉

⊕
〈

2UF̂ ∗
6

〉

⊕
〈

(2 + Umf )F̂
∗
5

〉

⊕
〈

〈2, U〉 F̂ ∗
4

〉

. For 0 ≤ i, j ≤ 6, if i + 1 = 7 − j + 1, i.e., i = 7 − j, we see that

F̂i+1F̂
∗
7−i+1 = 0. If i+1 6= 7−j+1, i.e., i 6= 7−j, then we have xn−1 | F̂i+1F̂

∗
7−i+1.

Thus, F̂i+1F̂
∗
7−i+1 = 0. Therefore, C∗ ⊆ C⊥. Note that | F̂ ∗

0 |= 44degF0 , |

UF̂ ∗
2 |= 42degF2 , | 2F̂ ∗

3 |= 42degF3 , | 2UF̂ ∗
6 |= 4degF6 , | (2 + Umf )F̂

∗
5 |= 42degF5 ,

| 〈2, U〉F̂ ∗
4 |= 4degF4 . Hence |C∗| = 44degF0+2degF2+2degF3+3degF4+2degF5+degF6 =

|C⊥|. Consequently, C∗ = C⊥.

Theorem 4.2. Let C be a cyclic code of length n over R with C and C⊥ men-
tioned as in Theorem 4.1 and denote F ∗ = F̂ ∗

0 + UF̂ ∗
2 + 2F̂3 + 2UF̂ ∗

6 + (2 +
Umf )F̂

∗
5 + 〈2, U〉 F̂ ∗

4 . Then C⊥ = 〈F ∗〉.

Proof. The result follows from a similar argument as in the proof of Theorem
3.5 as F̂ ∗

i F̂
∗
j = 0 and F̂ ∗

i , F
∗
j are coprime for 0 ≤ i, j ≤ 6.

Theorem 4.3. Let C be a cyclic code of length n over R. Then there exists a
family of polynomials F ∗, G∗,H∗, Q∗, T ∗ ∈ F4[x] which are the divisors of xn − 1
such that C⊥ = 〈F ∗〉R⊕U 〈G∗〉R⊕2 〈H∗〉R⊕2U 〈Q∗〉R⊕ (2+Umf) 〈T

∗〉R, where

mf is a unit in F4[x]
〈f〉 . Moreover, |C⊥| = 45n−(degF ∗+degG∗+degH∗+degQ∗+degT ∗).

Proof. Follows from Theorem 3.6.

We now prove the main result of this section, a condition for a cyclic code C
over R to be self-dual. From Theorem 3.5 and Theorem 4.2, we can see that a
cyclic code C is self-dual if and only if F = F ∗. It shows that

F̂1 = F̂ ∗
0 , F̂2 = F̂ ∗

2 , F̂3 = F̂ ∗
3 , F̂4 = F̂ ∗

6 , F̂5 = F̂ ∗
5 , F̂6 = F̂ ∗

4 .

Again since F̂i =
xn−1
Fi

, F̂ ∗
j = xn−1

F ∗

j
and F̂i = F̂ ∗

j , we have Fi = F ∗
j . Hence, we

state the following results.

Theorem 4.4. Let C be a cyclic code of length n over R with C =
〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2+Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, where mf is a unit in F4[x]
〈f〉 .

Then C is a self-dual code if and only if F1 = F ∗
0 , F2 = F ∗

2 , F3 = F ∗
3 , F4 =

F ∗
6 , F5 = F ∗

5 .
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Theorem 4.5. Let C be a cyclic code of length n over R with C = 〈F 〉R ⊕

U 〈F 〉R⊕2 〈F 〉R⊕2U 〈F 〉R⊕(2+Umf ) 〈F 〉R , where mf is a unit in F4[x]
〈f〉 . Then C

is a self-dual code if and only if F = F ∗, G = G∗, H = H∗, Q = Q∗, T = T ∗.

5. Hermitian Self-dual cyclic codes over M2(Z4)

For any two codewords x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, the
Hermitian inner product is defined as

〈x,y〉 = x · ȳ = x1ȳ1 + x2ȳ2 + · · ·+ xnȳn,

where “ȳ” is called the conjugation of y, for example, 0̄ = 0, 1̄ = 1, w̄ = w2,
w̄2 = w. The Hermitian dual of C, denoted by C⊥H , is define as

C⊥H = {x ∈ Rn | 〈x,y〉 = 0,∀y ∈ C} .

We can see that C̄⊥ = C⊥H . As usual C is called Hermitian self-orthogonal and
Hermitian self-dual if C ⊆ C⊥H and C = C⊥H , respectively.

Let f(x) = a0 + a1x + · · · + ak−1x
k−1 + akx

k be a polynomial of degree k
with ak 6= 0, a0 6= 0. The reciprocal f∗(x) of f(x) is defined by

f∗(x) = a−1
0 xkf(x−1).

We denote f̄(x) = a20 + a21x + · · · + a2k−1x
k−1 + a2kx

k. It is easy to check that
¯(f∗)(x) = (f̄)∗(x). All the theorems proved in previous section are true with

respect to Hermitian inner product as well. So, we state them here without
narrating the proofs elaborately.

Theorem 5.1. Let C be a cyclic code of length n over R with C =
〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2 + Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, where mf is a unit

in F4[x]
〈f〉 . Then C⊥H =

〈 ˆ̄F ∗
0

〉

⊕
〈

U ˆ̄F ∗
2

〉

⊕
〈

2 ˆ̄F ∗
3

〉

⊕
〈

2U ˆ̄F ∗
6

〉

⊕
〈

(2 + Umf )
ˆ̄F ∗
5

〉

⊕
〈

〈2, U〉 ˆ̄F ∗
4

〉

and | C⊥H |= 44degF0+2degF2+2degF3+3degF4+2degF5+degF6.

Theorem 5.2. Let C be a cyclic code of length n over R with C and C⊥ as

referred in Theorem 5.1, and F̄ ∗ = ˆ̄F ∗
0 + U ˆ̄F ∗

2 + 2 ˆ̄F3 + 2U ˆ̄F ∗
6 + (2 + Umf )

ˆ̄F ∗
5 +

〈2, U〉 ˆ̄F ∗
4 . Then C⊥H =

〈

F̄ ∗
〉

.

Theorem 5.3. Let C be a cyclic code of length n over R. Then there exists a fam-
ily of polynomials F̄ ∗, Ḡ∗, H̄∗, Q̄∗, T̄ ∗ ∈ F4[x] which are the divisors of xn−1 such
that C⊥H =

〈

F̄ ∗
〉

R
⊕U

〈

Ḡ∗
〉

R
⊕ 2

〈

H̄∗
〉

R
⊕ 2U

〈

Q̄∗
〉

R
⊕ (2 +Umf )

〈

T̄ ∗
〉

R
, where

mf is a unit in F4[x]
〈f〉 . Moreover, |C⊥H | = 45n−(degF ∗+degG∗+degH∗+degQ∗+degT ∗).



360 S. Bhowmick, J. Pal, R. Bandi and S. Bagchi

Theorem 5.4. Let C be a cyclic code of length n over R with C =
〈

F̂1

〉

⊕
〈

UF̂2

〉

⊕
〈

2F̂3

〉

⊕
〈

2UF̂4

〉

⊕
〈

(2+Umf )F̂5

〉

⊕
〈

〈2, U〉 F̂6

〉

, where mf is a unit in F4[x]
〈f〉 .

Then C is a Hermitian self-dual code if and only if

F̂1 =
ˆ̄F ∗
0 , F̂2 =

ˆ̄F ∗
2 , F̂3 =

ˆ̄F ∗
3 , F̂4 =

ˆ̄F ∗
6 , F̂5 =

ˆ̄F ∗
5 , F̂6 =

ˆ̄F ∗
4 .

Proof. A cyclic code C is Hermitian self-dual if and only if C = C⊥H . Therefore,
the desired result is an immediate consequence of Theorem 3.5 and Theorem
5.2.

Theorem 5.5. Let C be a cyclic code of length n over R with C = 〈F 〉R ⊕

U 〈F 〉R⊕2 〈F 〉R⊕2U 〈F 〉R⊕ (2+Umf ) 〈F 〉R , where mf is a unit in F4[x]
〈f〉 . Then

C is a Hermitian self-dual code if and only if

F = F̄ ∗, G = Ḡ∗, H = H̄∗, Q = Q̄∗, T = T̄ ∗.

Proof. A cyclic code C is Hermitian self-dual if and only if C = C⊥H . Thus, the
required result can be proved by comparing Theorem 3.6 with Theorem 5.3.

Example 5.1. The factorization of x7 − 1 is (x − 1)(x3 + x + 1)(x3 + x2 + 1)
over F4. Let f1 = (x − 1), f2 = (x3 + x + 1) and f3 = (x3 + x2 + 1), then
f1 = f∗

1 , f2 = f∗
3 and f3 = f∗

2 . The following cyclic codes of length 7 over R
are self-dual (Euclidean) codes and their Gray images Φ(C) have the parameter
[28, 14, 4] over F4.

〈f1f2, rf2f3〉, 〈f1f3, rf2f3〉, where r ∈ {U, 2, 2 + U},

〈2Uf1f3, 2f1f2, Uf1f3, sf2f3〉, where s ∈ {2, 2 + U},

〈2Uf1f2, 2f1f3, Uf1f3, tf2f3〉, where t ∈ {2, 2 + U}.

Example 5.2. The factorization of x5 − 1 is (x− 1)(x2 +wx+1)(x2 +w2x+1)
over F4. Let f1 = (x − 1), f2 = (x2 + wx + 1) and f3 = (x2 + w2x + 1), then
f1 = f̄∗

1 , f2 = f̄∗
3 and f3 = f̄∗

2 . The following cyclic codes of length 5 over R
are self-dual (Hermitian) codes and their Gray images Φ(C) have the parameter
[20, 10, 4] over F4.

〈f1f2, rf2f3〉, 〈f1f3, rf2f3〉, where r ∈ {U, 2, 2 + U},

〈2Uf1f3, 2f1f2, Uf1f3, sf2f3〉, where s ∈ {2, 2 + U},

〈2Uf1f2, 2f1f3, Uf1f3, tf2f3〉, where t ∈ {2, 2 + U}.

Example 5.3. The factorization of x3− 1 is (x+1)(x+w)(x+w2) over F4. Let
f1 = x + 1, f2 = x + w and f3 = x + w2. Some cyclic codes of length 3 over R
with their Gray images Φ(C) are given below.
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Generators Φ(C)

〈2f1, Uf1, (2 + U)f2f3〉 [12, 8, 4]
〈2f1, Uf1, 2Uf2f3〉 [12, 7, 4]
〈f3, 2f1, Uf1〉 [12, 11, 2]
〈uf1, (2 + U)f2f3〉 [12, 10, 2]

Example 5.4. The factorization of x6−1 = (x3−1)2 is (x+1)2(x+w)2(x+w2)2

over F4. Let f1 = (x+ 1)2, f2 = (x+w)2 and f3 = (x+w2)2. Some cyclic codes
of length 6 over R with their Gray images Φ(C) are given below.

Generators Φ(C)

〈2f1, Uf1, (2 + U)f2f3〉 [24, 19, 4]
〈f3, 2f1, Uf1〉 [24, 23, 2]

6. Conclusion

In 2013, Alahmadi et al. developed cyclic codes over finite matrix ring M2(F2)
and their duals as right ideals in terms of two generators. Also, the structure
of cyclic codes over M2(F2) has made the existence of infinitely many nontrivial
cyclic codes for the Euclidean product. All this was derived for odd length codes.
In our paper, we have taken the structure of M2(Z4) and constructed cyclic dual
codes and cyclic self-dual codes over it which are even length codes over M2(F2).
On the ring structures of [1] [5], it is not possible to construct negacyclic codes,
as the characteristic of those rings is 2. But in our construction one can form
negacyclic codes. Also, we welcome the readers to construct even length codes
over M2(Z4). Another useful direction for further research is to consider LCD
codes over M2(Z4).
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[8] V. Pless, P. Solé and Z. Qian, Cyclic self-dual Z4-codes, Finite Fields and Their
Appl. 3 (1997) 48–69.
https://doi.org/10.1006/ffta.1996.0172

[9] V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Z4, IEEE Trans.
Inform. Theory 42 (5) (1996) 1594–1600.
https://doi.org/10.1109/18.532906
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