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Abstract

An involutive pocrim is a resituated integral partially ordered commuta-
tive monoid with an involution operator, consider as an algebra. In this pa-
per it is proved that the variety of a finitely generated by involutive pocrims
of finite type has a finitely based equational theory. We also study the al-
gebraic geometry over compete lattices and we investigate the properties of
being equationally Noetherian and uω-compact over such lattices.

Keywords: congruence distributive, algebraically closed algebra, involutive
pocrims, equationally Noetherian.

2010 Mathematics Subject Classification: Primary 03C05; Secondary
08A99.

1. Introduction

We continue our study of the algebraic structure of partially ordered commu-
tative residuated integral monoid (pocrim) [4]. In this paper, we will introduce
new algebraic results that allow us to generalize the main properties of residuated
lattices. In order to make this paper as self-contained as possible, we will recall
a commonly considered algebraic structure. Using a difficult 1941 result of Emil
Post, in 1951 Roger Lyndon demonstrated that all 2-element algebras are finitely
based. Recall that the all finite algebras with only finitely many basic operations
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which belong to congruence meet semidistributive residually very finite varieties
are finitely based. In this note, finitely generated varieties by involutive pocrims
is related to finitely based equational theory and existentially closed algebras,
where by an equational theory we mean a set of equations from some fixed lan-
guage which is closed with respect to logical consequences. Recall that involutive
pocrims were introduced under the name pre-Boolean algebras by Wronski and
krzystek in [17] and there are some related in [6, 13], and [15]. We know that
pocrims include complete lattices and satisfy the infinite distributive law.

Our interest in this topic is twofold. The first part comes from studying
involutive pocrims and it is shown that if a variety is a finitely generated by
involutive pocrims of finite type, then it has a finitely based equational theory.
The other part of our interest in the universal algebraic geometry over complete
lattices i.e., different conditions relating systems of equations especially conditions
about systems and sub-systems of equations over algebras and it is proved that if
K is a sublattice of a complete lattice satisfies the infinite distributive law, then
the lattice is not K-equationally Noetherian, where K is infinite.

2. Algebraic properties of involutive pocrims

In this section, L is a first order language and variety is a nonempty class of
algebras of type L such that it is closed under subalgebras, homomorphic images,
and direct products.

We recall from [2] that equations are simply ordered pairs of terms, but
an equation (u, v) will be more naturally denoted by u ≈ v to emphasize its
semantical intent and by u −→ v in the context of rewriting. Also, an equational
theory is a set of equations which is closed with respect to logical consequences;
equivalently, an equational theory is a fully invariant congruence of the term
algebra. A set B of equations is called a base for an equational theory E, provided
E is the set of all equations that are consequences of B. An equational theory
with a finite base is said to be finitely based. In general, a variety V of algebras
of some type L is called finitely based if there is a finite set Φ of identities such
that an algebra A of type L lies in V if and only if A |= Φ. An algebra is called
finitely based if the variety its generates is finitely based.

Now, some relationships between involutive pocrims and a finitely based
equational theory are considered. Consider a commutative monoid (A, ·, t) whose
universe A is partially ordered by a relation ≤. Suppose that ≤ is compatible with
·, i.e., for all a, b, c ∈ A, if a ≤ b, then a ·c ≤ b ·c. The structure (A, ·, t, ≤) is said
to be resituated if there is a largest c ∈ A such that a ·c ≤ b for any a, b ∈ A. The
largest c with this property is denoted by a −→ b, so (A, ·, −→, t, ≤) satisfies:

x · z ≤ y ⇐⇒ z ≤ x −→ y
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and in particular,

x ≤ y ⇐⇒ t ≤ x −→ y.

If t is the greatest element of (A, ≤), then we say that (A, ·, t) is integral. In this
case, the partial order ≤ is equationally definable by x ≤ y ⇐⇒ t ≈ x −→ y, so
(A, ·, t) is first order definitionally equivalent to the algebra (A, ·, −→, t). We
recall form [4] that an algebra (A, ·, −→, t) which arises in this way is called a
pocrim for ‘partially ordered commutative residuated integral monoid’. In other
words, a tuple (A, ≤, ·, →, T ) is said to be a partially ordered commutative
residuated integral monoid, briefly a pocrim, if, for every a, b, c ∈ A, the following
properties hold:

1- (A, ·, T ) is a commutative monoid with neutral element,

2- (A, ≤) is a partially ordered set with maximum,

the operations · and −→ satisfy the adjointness condition, that is a · c = b if
and only if c ≤ a → b. It is well known that the class POCR of all pocrims is
axiomatized by the identities, for all x, y, z, t ∈ A:

(M1) (x · y) −→ z ≈ y −→ (x −→ z),

(M2) t −→ x ≈ x,

(M3) x −→ t ≈ t,

(M4) (x −→ y) −→ ((y −→ z) −→ (x −→ z)) ≈ t,

together with the single quasi-identity:

(M5) (x −→ y ≈ t and y −→ x ≈ t) =⇒ x ≈ y.

Definition. A quasivariety is class of algebras closed under I (isomorphisn),
S (subalgebra), and PR (close under I and S), and containing the one-element
algebras.

Therefore, POCR is a quasivariety. For a general study of pocrims, see [4].
An involutive pocrim is an algebra

(A, ·, −→, ¬, t)

such that

(A, ·, −→, t)

is a pocrim, ¬ is a unary operation on A, and (A, ·, −→, ¬, t) satisfies:

(M6) ¬¬x ≈ x,

(M7) x −→ ¬y ≈ y −→ ¬x.

Notice that the class IPOC of all involutive pocrims is therefore also a quasi-
variety. Recall that a variety V is said to be locally finite if its finitely generated
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members are finite algebras. In particulary, every variety generated by a finite
set of finite algebras is locally finite.

Baker in [1] showed that every finite algebra of finite type that generates
a congruence distributive variety is finitely based. Let A be an algebra. By a
congruence relation on A we mean an equivalence relation on A that has the
substitution property for A. Con(A) denotes the set of all congruence relations
on A.

Definition. An algebra A is said congruence distributive if the lattice Con(A)
is distributive.

Now, we can prove the following theorem.

Theorem 1. If variety V is a finitely generated by involutive pocrims of finite

type, then V has a finitely based equational theory.

Proof. To proof we know every finitely generated variety is locally finite and also
a variety generated by a class K of similar algebras, the free algebras belong to
the quasivariety generated by K, hence they are involutive pocrims if K ⊆ IPOC.
Further, since IPOC satisfies xn+1 ≤ xn for all n ∈ ω (where x0 =: t and xn+1 =
xn ·x), it follows that every finite involutive pocrims satisfies xn ≈ xn+1 for some
n ∈ ω. So, in a variety V generated by involutive pocrims, if the 1-generated
free algebra is finite, then V satisfies xn ≈ xn+1 for some finite any n. Now any
involutive pocrim satisfying xn ≈ xn+1 also satisfies:

(x −→ y) −→n (y −→ x) −→n x ≈ (y −→ x) −→n (x −→ y) −→n y

(where x −→0 y : y and x −→n+1 y : x −→ (x −→n y) see [7]). As the 2-
generated free algebra in V belong to IPOC, the above equation holds throughout
V, and it clearly entails (M5), where V consists of involutive pocrims. Finally,
every variety of involutive pocrims, such as V, is congruence distributive. Also,
every finitely generated congruence distributive variety V contains only finitely
many subdirectly irreducible algebras. On the other hand, if V is a finitely
generated congruence distributive variety of finite type then V has a finitely
based equational theory (see [1] and [2]).

Now we consider a characterization of absolute retracts, and proves that, in a
finitely generated by involutive pocrims of finite type, we are able to characterize
the absolute retract which is a product of reduced powers of maximal subdirectly
irreducibles of V. The investigation of absolute retracts has been most fruitful
when restricted to congruence distributive varieties, where the Fraser-Horn prop-
erty and Jonsson’s Lemma provide powerful tools for managing congruences on
products.
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Definition. Let V be a variety of algebras. An algebra A is said to be an absolute
retract in V if and only if every embedding A →֒ B in V is split (i.e., has a left
inverse).

We recall form [12] that if A is an algebra, then LA denotes the language L
augmented with constant symbols ca : a ∈ A. An algebra A is algebraically closed
in V if and only if any finite set of equations in LA which is satisfiable in some
extension of A in V is already satisfiable in A. An embedding A →֒ B is said to be
existential ∃1− provided that every finite set of equations and inequations in LA

which is satisfiable in B is already satisfiable in A. In that case, we say that A is a
∃1− subalgebra of B. An extension A →֒ B is said to be an essential extension if
and only if whenever θ ∈ Con(B) has θ ↑A= 0A, then θ = 0B . An algebra A ∈ V
is an absolute retract in V if and only if it has no proper essential extensions in
V. An essential extension of a (finitely) subdirectly irreducible algebra is also
(finitely) subdirectly irreducible. A subdirectly irreducible algebra is said to be
a maximal subdirectly irreducible in V if and only if it has no proper essential
extensions in V. Thus each maximal subdirectly irreducible is an absolute retract.

Now, we study the class of algebraically closed members VAC of a variety
V. Model complete theories were introduced by Robinson as a natural model-
theoretic generalization of the theory of algebraically closed fields. Recall that a
class of models K for L is called an elementary class if and only if there exists
a theory T such that K is exactly the class of all models of T . Also, a theory is
model complete if the class of its models is model complete.

Theorem 2. If variety V is a finitely generated by involutive pocrims of finite type

with the property that VAC is closed under products and VAC is model complete,

then VAC is existentially closed.

Proof. We know that, if a locally finite variety is generated by involutive pocrims
then it is congruence distributive variety ([7]). On the hand, every finitely gen-
erated variety is locally finite. Here, variety V is a finitely generated by involu-
tive pocrims then V is finitely generated congruence distributive variety. Con-
sequently, V is a generated congruence distributive variety of finite type. We
have if A is a finite algebra, and B a Boolean algebra, then A[B] ∼= A[B]∗ ([3]).
Furthermore, if F is a filter on B, then A[B]∗/F ∼= A[B/F ]∗. It follows that if A
is a finite algebra, then any reduced power AI/F of A is isomorphic to a bounded
Boolean power A[P(I)/F ]∗. So, in a finitely generated congruence distributive
variety V, every absolute retract is a product of reduced powers of maximal sub-
directly irreducibles of V ([12]). In this theorem, the class of algebraically closed
algebras in V is closed under finite products, so the class of absolute retracts in
V is closed under finite products. Suppose that M is a maximal subdirectly irre-
ducible, then M I/F is algebraically closed. Also we know an algebra of a variety
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of algebras is algebraically closed if and only if it can be existentially embedded
into an algebraically closed. As a result, it can be existentially embedded into a
product of reduced powers of maximal subdirectly irreducibles ([7] and [14]). It is
well-known that a first-order theory which is preserved under updirected unions
and finite direct products is axiomatized by set of universal-existential Horn sen-
tences ([5], chapter 6). Therefore, VAC is an elementary class. In addition, we
know if VAC is an elementary class and is model complete, then existentially
closed of VAC equivalent with VAC and complete the proof.

For an arbitrary algebra A it is possible with a use of the Compactness
Theorem to construct an elementary extension A∗ of A such that A∗ is logically
compact (see [8]). The definitions of uω-compactness is given in geometric form.

Corollary 3. If variety V is a finitely generated by involutive pocrims of finite

type with the property that VAC is closed under products and VAC is model com-

plete there exists uω-compact algebra V∗
AC

which is elementary equivalent to VAC .

3. Algebraic geometry over complete lattices

We know that pocrims include BL-algebras (BL-logic), MV-algebras (£ukasiewicz
infinite-valued logic) and, complete lattice and satisfies the infinite distributive
law x ∧

∨
i∈I yi =

∨
i∈I(x ∧ yi).

By System of equations we mean an arbitrary set of equations. Let S be a
system of equations in lattice A. The set of all logical consequences of S over A
is denoted by LcA(S). In other words, LcA(S) is the set of all lattice equations
f ≈ g such that VA(S) ⊆ VA(f ≈ g), where VA(S) is the sets of solutions of S in
A. As is shown in [16], a lattice A is called equationally Noetherian, if any system
of equations with coefficient in A is equivalent with a finite subsystem. Note that
an algebra A is called qω-compact, if for any system S and any equation p ≈ q,
the condition VA(S) ⊆ VA(p ≈ q) implies that VA(S0) ⊆ VA(p ≈ q) for some finite
S0 ⊆ S. Clearly, every equationally Noetherian algebra is qω-compact.

Theorem 4. Let L be a complete lattice and satisfies the infinite distributive law

x∧
∨

i∈I yi =
∨

i∈I(x∧ yi) and K be a sublattice, which is infinite. Then L is not

K-equationally Noetherian, for all x, yi ∈ L.

Proof. Suppose that x, z ∈ L and B = {yi | i ∈ I} is the set of elements yi ∈ L
such that x∧yi ≤ z. We set y = supLB then x∧y = x∧

∨
i∈I yi =

∨
i∈I(x∧yi) ≤ z

and consequently the pseudocomplement exists and is y.

Now, we prove that L is not K-equationally Noetherian. To see this, we focus
on the case of equations with coefficients inside L (Diophantine Geometry). For
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simplicity we discuss Diophantine case (K = L). The idea of the proof is taken
from a similar theorem for Boolean algebras (see [10]). Let

b0, b1, b2, . . .

be an infinite set of elements in L. Let L0 = {0, 1} and define Ln by inductions
as follows: if Ln−1 = {a0 = 0, a1, . . . , an−1, an = 1}, and if 0 ≤ i ≤ n, then we
define

ci+1 = ai ∨ (ai+1 ∧ bn).

For example, we have L0 = {a0 = 0, a1 = 1}. Then we compute

c1 = a0 ∨ (a1 ∧ b1) = b1.

It is clear that 0 ≤ b1 ≤ 1. Let L1 = {0, b1, 1} and rename its elements as
a0 = 0, a1 = b1, a2 = 1. Now, to find L2, we compute

c1 = a0 ∨ (a1 ∧ b2) = b1 ∧ b2,

and
c2 = a1 ∨ (a2 ∧ b2) = b1 ∨ b2.

We have
0 ≤ b1 ∧ b2 ≤ b1 ≤ b1 ∨ b2 ≤ 1,

so L2 consists of the above elements. Again rename a0 = 0, a1 = b1 ∧ b2, . . ., and
continue this process. It is clear from the construction that

L0 ⊂ L1 ⊂ L2 ⊂ · · · ,

so the set L =
⋃

n≥0
Ln is an infinite chain in L.

Now, we proved that there is an infinite chain a0 < a1 < a2 < · · · in H so we
can consider the following system

S = {x ≥ a0, x ≥ a1, x ≥ a2, . . .}.

For any finite subsystem S0 = {x ≥ a0, x ≥ a1, x ≥ a2, . . . , x ≥ an}, we have
an+1 ∈ VH(S0), while an+1 does not belong to VL(S). This proves that L is not
equationally Noetherian.

Example 5. If L is a distributive lattice then the ideal lattice I(L) is a complete
Heyting algebra in which residuals are given by

I : J = {x ∈ L |x↓ ∩ J ⊆ I}.

In fact, it is clear that I : J so defined is an ideal of L and is such that
J ∩ (I : J) ⊆ I. Suppose that K ∈ I(L) is such that x ∈ K we have x↓ ∩ J ⊆ I.
Consequently, x ∈ I : J and K ⊆ I : J .
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Corollary 6. Let L be a complete lattice and satisfies the infinite distributive law

x
∨

i∈I yi =
∨

i∈I(x∧yi). Then every interval of is not K-equationally Noetherian.

Proof. Suppose that a, b ∈ L and c, d ∈ [a, b]. Consider the element a = (d :
c) ∧ b. Since a ≤ d ≤ d : c and a ≤ b we have α ∈ [a, b]. Furthermore, by ([3],
Theorem 7.11), we have that c∧α = c∧ (d : c)∧ b = c∧d∧ b ≤ d, and if x ∈ [a, b]
is such that c ∧ x ≤ d then x ≤ d : c and x ≤ b, and consequently x ≤ α. Hence
the residual [d : c]ba of d by c in [a, b] exists and is α = (d : c)∧ b. Using Theorem
4, completes the proof of the theorem.

Corollary 7. Let L be a complete lattice and satisfies the infinite distributive

law x
∨

i∈I yi =
∨

i∈I(x ∧ yi). Then the set Con L of congruence on L is not

K-equationally Noetherian.

Corollary 8. Let L be a complete lattice and satisfies the infinite distributive

law x
∨

i∈I yi =
∨

i∈I(x ∧ yi). Then the set of multiplicative closure on L is not

K-equationally Noetherian.
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