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Abstract

Let (G, ∗) be a finite group and S = {u ∈ G|u 6= u−1}, then the inverse
graph is defined as a graph whose vertices coincide with G such that two
distinct vertices u and v are adjacent if and only if either u ∗ v ∈ S or
v ∗ u ∈ S. In this paper, we introduce a modified version of the inverse
graph, called i∗-graph associated with a group G. The i∗-graph is a simple
graph with vertex set consisting of elements of G and two vertices x, y ∈ Γ
are adjacent if x and y are not inverses of each other. We study certain
properties and characteristics of this graph. Some parameters of the i∗-
graph are also determined.
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1. Introduction

For the terms and definitions in graph theory, refer to [14] and for those in group
theory, refer to [6]. To avoid confusions regarding the terminology of groups and
graphs, we represent the identity element of a group G by iG and a graph by Γ.

Graph constructions using various concepts of group theory have been exten-
sively studied in the literature. In [2], zero-divisor graph of a commutative ring
and its properties were studied and the same were investigated for semigroups
in [7]. Recently, some studies on a new family of graphs, as a generalization of
zero-divisor graphs have been introduced in [11] and determined an upper-bound
for the diameter of those graphs.

In [5], the intersection graph of non-trivial left ideals of a ring are studied and
the rings for which the intersection graph is connected are characterized. In [3],
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the power graph of a finite group in which two vertices are adjacent if one is a
power of the other was introduced and it was eshtablished that the only finite
group whose automorphism group is the same as that of its power graph is the
Klein 4-group.

In [1], a new graph construction called inverse graph associated with finite
groups was introduced as follows. If (G, ∗) is a finite group S = {u ∈ G|u 6= u−1},
then inverse graph is defined as a graph whose vertices coincide with G such that
two distinct vertices u and v are adjacent if and only if either u∗v ∈ S or v∗u ∈ S.
Motivated by the studies mentioned above, we introduce a modified version of
inverse graphs in the following section.

2. The non-inverse graph of a group

Definition 1. Let G be a group with binary operation ∗. The non-inverse graph

(in short, i∗-graph) ofG, denoted by Γ, is a simple graph with vertex set consisting
of elements of G and two vertices x, y ∈ Γ are adjacent if x and y are not inverses
of each other. That is, x ∼ y ⇐⇒ x ∗ y 6= iG 6= y ∗ x, where iG is the identity
element of G.

First, recall the definition of the direct product of groups as given below.

Definition 2 [12]. A group G decomposes into a direct product of subgroups
G1, . . . , Gk if

(i) every element g ∈ G decomposes uniquely as g = g1 · · · gk, gi ∈ Gi;

(ii) gigj = gjgi for gj ∈ Gj , i 6= j.

The result given below discusses the non-inverse graph of the direct product
of n cyclic groups and we make use of the lemma stated below.

Lemma 2.1 [8]. If {Gi|i = 1, 2, . . . , n} is a family of groups, then the direct

product
∏n

i=1 Gi is a group.

Proposition 2.2. The non-inverse graph associated with the direct product of

n cyclic groups under multiplication of order 2 with generators ai with a2i = 1,
i = 1, 2, . . . , n is complete.

Proof. By Lemma 2.1, the direct product of n cyclic groups of order 2 is a group
and since multiplication is commutative, it is an Abelian group with identity
element 1. Given that the generators ai, i = 1, 2, . . . , n satisfy the condition
a2i = 1, the diagonal elements of the Cayley table are all 1 which means that
ai are inverse of itself. By Definition 1, each ai is adjacent to all the remaining
vertices in the non-inverse graph associated with the direct product of n cyclic
groups of order 2 and hence it is complete.
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Proposition 2.3. The non-inverse graph Γ associated with a group G is con-

nected.

Proof. For any group G, there exists an identity element iG which is inverse of
itself. Hence, by Definition 1, iG is adjacent to all other vertices in Γ. Therefore,
the non-inverse graph Γ associated with G is connected.

Theorem 2.4. Given a group G with identity element iG and its non-inverse

graph Γ, the graph Γ− iG is disconnected if and only if order of G is 3 and G− iG
has no self inverse elements.

Proof. Assume that Γ − iG is disconnected. We have to prove that o(G) = 3
and iG is the only self-inverse element in G.

If G has at least one element, say a which is the inverse of itself, then a is
adjacent to all other vertices in Γ and hence it is adjacent to all vertices in Γ− iG,
which is a contradiction to the fact that Γ− iG is disconnected.

If o(G) > 3, then there are two cases as follows.

Case 1. If o(G) is even, then there exists at least one element, say x 6= e, in G

which is the inverse of itself. Therefore, as mentioned earlier, x will be adjacent
to all other vertices in Γ and hence in Γ− iG, a contradiction.

Case 2. Let o(G) be odd. If G has self-inverse elements other than iG, then,
as explained above, Γ − iG is connected. Otherwise, there exist at least two
partitions in Γ with two elements each. Since every element other than iG is
non-adjacent to its own inverse, any two partitions will form a complete bipartite
graph showing that Γ− iG is connected.

Thus, in all cases we arrive at a contradiction to the hypothesis that Γ− iG
is disconnected. Therefore, o(G) = 3 and iG is the only self-inverse element in G.

Conversely, assume that o(G) = 3 and iG is the only self-inverse element in
G. Therefore, G = {e, a, b} such a and b are inverses of each other. Hence, by
Definition 1, a and b are non-adjacent in Γ − iG. Therefore, a and b are in two
components in Γ− iG, completing the proof.

Theorem 2.5. The non-inverse graph associated with any group (G, ∗) of order

n is complete multipartite graph with n+l
2 partitions, where l is the number of

self-inverse elements in G.

Proof. Let A ⊆ G, be the set of all self-inverse elements of G. Then, |A| = l.
By Definition 1, every element a ∈ A will be adjacent to all other elements
of G. Thus, the corresponding partition of G containing a will be a singleton.
Therefore, there are l partitions consisting of exactly one element. Now, every
element x of A will be adjacent to all elements of G other than its inverse. Thus,
the partition containing x consists of one more element, which is the inverse of
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x. Therefore, partitions containing the elements of A are 2-element sets. Hence,
there are l partitions with one element and n−l

2 partitions with two elements
each. Therefore, the non-inverse graph of G is a complete multipartite graph
with n−l

2 + l = n+l
2 partitions.

Theorem 2.6. The size of non-inverse graph associated with a group G of order

n with l self-inverse elements is n2−2n+l
2 .

Proof. Let V (Γ) = {v1, v2, . . . , vn} and E(Γ) be the vertex set and edge set of
non-inverse graph Γ associated with a group G. The vertices vi, i = 1, 2, . . . , l
have degree n − 1 each and the remaining n − l vertices have degree n − 2.
Therefore,

n
∑

i=1

deg(vi) = l(n− 1) + (n− l)(n− 2) = n2 − 2n+ l.

By the first theorem of graph theory, we have

n
∑

i=1

deg(vi) = 2|E(Γ)|.

Therefore, |E(Γ)| = n2−2n+l
2 .

3. Some parameters of non-inverse graphs

In this section, we discuss certain parameters of non-inverse graphs.

Proposition 3.1. The chromatic number of the non-inverse graph associated

with any group G of order n is n+l
2 , where l is the number of self-inverse elements

in G.

Proof. Since a self-inverse vertex is adjacent to all other vertices in Γ, all the l

self-inverse vertices are assigned l different colors. The remaining n − l vertices
are assigned n−l

2 colors as each vertex and its inverse can be given the same color.

Therefore, χ(Γ) = l + n−l
2 = n+l

2 .

Proposition 3.2. The independence number of the non-inverse graph Γ associ-

ated with a group G with at least one element which is not self-inverse is 2.

Proof. Let a be an element in G which is not a self-inverse. Then there exists
another element b in G which is the inverse of a. So the vertices corresponding
to a and b in Γ will be non-adjacent and hence can be in one independent set.
Since all other vertices of Γ are adjacent to both a and b in Γ, the set {a, b} is a
maximal independence set in Γ. Therefore, independence number of Γ is 2.
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Proposition 3.3. The domination number of the non-inverse graph associated

with any group G is 1.

Proof. For any group G, there exists an identity element iG which is self-inverse.
Thus, by Definition 1, iG is adjacent to all the remaining vertices in Γ. Hence,
G(Γ) = 1.

Theorem 3.4. The set of all self inverse elements of a group G form the centre

of non-inverse graph of G.

Proof. Consider the partition of vertex set of Γ as mentioned in Theorem 2.5.
The vertices belonging to the 2-element set have eccentricity 2 and the remaining
vertices belonging to singleton set have eccentricity 1. Therefore, the diameter
and radius of Γ is 2 and 1 respectively. The vertices of singleton sets having
eccentricity 1 in Γ are the self-inverse elements in G. Thus, the self-inverse
elements in G are the central points in Γ. Therefore, the set of all self-inverse
elements in G form the centre of Γ.

The following theorem is used in our next result.

Theorem 3.5 [14]. If G is a simple graph, then κ(G) ≤ κ′(G) ≤ δ(G), where,
κ(G), κ′(G), δ(G) are vertex connectivity, edge connectivity and minimum degree

of G.

Theorem 3.6. For a non-inverse graph Γ associated with a group G, the vertex-

connectivity and edge-connectivity are always equal.

Proof. By Theorem 3.5 , κ(Γ) ≤ κ′(Γ) ≤ δ(Γ) where, κ(Γ), κ′(Γ), δ(Γ) are vertex
connectivity, edge connectivity and minimum degree of the non-inverse graph Γ
associated with a group G of order n respectively.

Case 1. Let all elements of the group G be self-inverses. Then, δ(Γ) = n− 1.
Then every partition of V (Γ) will be singleton (as mentioned in Theorem 2.5).
Since Γ has no cut-edges and cut-vertices and every vertex of Γ is adjacent to all
other vertices, we have to remove n− 1 edges or n− 1 vertices to make the graph
disconnected. Therefore, κ(Γ) = κ′(Γ) = δ(Γ) = n− 1.

Case 2. Assume that G has some elements which are not self-inverse. Hence,
δ(Γ) = n − 2. Since degree of any self-inverse element in Γ is n − 1, we have
to remove all singleton partitions from the vertex set of Γ. Now, we have only
2-element partitions in V (Γ). The two vertices in a partition will be adjacent to
all other vertices of all other remaining partitions. Therefore, we have to remove
the vertices until only one partition remains to make the graph disconnected.
Therefore, κ(Γ) = n − 2. Note that the degree of a vertex which belongs to a
2-element partition of V (Γ) is n−2 which is the minimum degree of Γ. Therefore,
κ′(Γ) = n− 2 = δ(Γ). Therefore, κ(Γ) = κ′(Γ) = δ(Γ) = n− 2.
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For the next result, we use the lemma stated below.

Lemma 3.7 [10]. A complete multipartite graph G of at least three vertices is

Hamiltonian if and only if the cardinality of no partite set is larger than sum of

the cardinalities of all the other partite sets.

Proposition 3.8. Let G be a group with n ≥ 4 elements, then the circumference

and girth of the non-inverse graph associated with G are n and 3, respectively.

Proof. By Theorem 2.5, non-inverse graph Γ associated with a group G of order
n is a complete multipartite graph. By Lemma 3.7 and since n ≥ 4, there exists
a Hamiltonian cycle in Γ, which implies that circumference of Γ is n.

Since n ≥ 4, there are at least three partitions of V (Γ) and vertices from
each partition are mutually adjacent which forms a cycle of length 3. Therefore,
girth of Γ is 3.

4. Further results on non-inverse graphs

The following results discuss the characterisation for the non-inverse graph of a
group to be regular with certain conditions.

Theorem 4.1. Let G be a group of odd order n. Then, the non-inverse graph Γ
associated with G − iG is (n − 3)-regular if and only if there are no self-inverse

elements in G− iG.

Proof. Let G = {iG = x1, x2, . . . , xn} be a group of odd order n. Without loss
of generality, let the identity element be x1. Let Γ(G) − x1 be (n − 3)-regular.
We have to show that there are no self inverse elements in G − x1. If possible,
assume the contrary. Without loss of generality, let x2 be a self inverse element
in G − x1. Then by Definition 1, x2 is adjacent to all xi’s, i 6= 2 in Γ(G) − x1.
Therefore, degree of x1 in Γ(G)− x1 is n− 2 which is a contradiction to the fact
that Γ(G) − x1 is (n − 3)-regular. Therefore, G − x1 cannot have self inverse
elements.

Conversely, let there be no self-inverse elements in G − x1. Therefore, by
Definition 1, each vertex is adjacent to all vertices in Γ(G) − x1 other than its
inverse. Hence, every vertex in Γ(G)−x1 has degree n− 3. Therefore, Γ(G)−x1
is (n− 3)-regular.

Theorem 4.2. Let G be a group of order n. Then, the non-inverse graph associ-

ated with G− iG is (n− 2)-regular if and only if G− iG contains only self-inverse

elements.
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Proof. Let G = {iG = x1, x2, . . . , xn} be a group of n elements. Without loss of
generality, let the identity element be x1. Let Γ(G) − x1 be (n− 2)-regular. We
have to show that there are only self inverse elements in Γ(G) − x1. If possible,
assume the contrary. Without loss of generality, let there be one element say, x2
in Γ(G)− x1 which is not self inverse. Then, there must be another element say
x3 which is inverse of x2. Thus, by Definition 1, x2 is adjacent to xi’s, i 6= 2, 3 in
Γ(G) − x1 and degree of x2 is n − 3. Similarly, degree of x3 is n − 3 which is a
contradiction to the fact that Γ(G)− x1 is (n− 2)-regular.

Conversely, let there be only self-inverse elements in G − x1. Therefore, by
Definition 1, each vertex is adjacent to all vertices in Γ(G) − x1. Hence, every
vertex in Γ(G)− x1 has degree n− 2. Therefore, Γ(G)− x1 is (n− 2)-regular.

Now, recall the following results.

Lemma 4.3 [13]. For an arbitrary graph G of order n,

ω(G) ≥
n
∑

i=1

1

n− di
,

where ω is the clique number and di is the degree of the vertex vi, i = 1, 2, . . . , n
in G.

Lemma 4.4 [13]. The chromatic number of a graph G is greater than or equal

to its clique number, i.e., χ(G) ≥ ω(G).

In view of the above lemmas, we have the next result,

Theorem 4.5. The clique number of non-inverse graph associated with a group

G of order n is equal to its chromatic number.

Proof. Let G be a group of order n and l be the number of self-inverse elements
in G. By Lemma 4.3 and Lemma 4.4,

(1)
n
∑

i=1

1

n− di
≤ ω(G) ≤ χ(G).

Since there are l vertices with degree (n − 1) and (n − l) vertices with degree
(n − 2), we have,

(2)

n
∑

i=1

1

n− di
= l

1

n− (n− 1)
+ (n− l)

1

n− (n− 2)
=

n+ l

2
.

In view of Lemma 3.1, Equation (1) and Equation (2) together will give,

n+ l

2
≤ ω(G) ≤ χ(G) =

n+ l

2
.

Therefore, ω(G) = n+l
2 = χ(G).
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Now, recall the following important properties of group isomorphism.

Lemma 4.6 [9]. If two groups are isomorphic, they must have the same order.

Lemma 4.7 [9]. If φ is a homomorphism of a group G into another group G′,

then

(i) φ(1) = 1′ (where, 1′ is the unit element of G′),

(ii) φ(x−1) = [φ(x)]−1, ∀x ∈ G.

In view of the above properties, we have:

Theorem 4.8. The non-inverse graphs of two isomorphic groups are also iso-

morphic.

Proof. Let G and H be two groups and let f be an isomorphism of G onto
H. Then, by Lemma 4.6, G and H must have same order say, n. Therefore,
each element say a in G is mapped onto an element say, f(a) in H. By Lemma
4.7, inverse of a is mapped onto inverse of f(a). Therefore, by Definition 1, the
adjacency of the vertices in Γ(G) is same as the adjacency of the vertices in Γ(H).
Therefore, Γ(G) ∼= Γ(H).

Definition 3. Let Γ(G) be the non-inverse graph associated with a group G of
order n and A(Γ(G)) be its adjacency matrix. If λ1, λ2, . . . , λn are the eigenvalues
of A(Γ(G)) with their multiplicities m1,m2, . . . ,mr, r ≤ n, then, the spectra of
Γ(G) is given by

(

λ1 λ2 · · · λn

m1 m2 · · · mr

)

.

Theorem 4.9. Let G be a group of order n, then the spectra of Γ(G) is given by

the following cases:

(i) when all the elements in G are self-inverse elements:

(

n− 1 −1
1 n− 1

)

,

(ii) when G contains all non self-inverse elements other than the identity ele-

ment:





0 n−3
2 +

√

(n−1)2

4 + 1 −2 n−3
2 −

√

(n−1)2

4 + 1

n−1
2 1 n−1

2 − 1 1



 ,

(iii) when G has l self-inverse elements:



On the non-inverse graph of a group 323

(a) when n is even:

(

0 (n−3)+
√
n2−2n+4l+1
2 −2 (n−3)−

√
n2−2n+4l+1
2 −1

n−l

2 1 n−l

2 − 1 1 l − 1

)

,

(b) when n is odd:




0 n−3
2 +

√

n2−2n+5
4 + (l − 1) −2 n−3

2 −
√

n2−2n+5
4 + (l − 1) −1

n−l

2 1 n−l

2 − 1 1 l − 1



 .

Proof. Let G be a group of order n. Then the adjacency matrix of Γ(G) denoted
by A(Γ(G)) is given by

A(Γ(G)) =



















0 a12 a13 · · · a1(n−1) a1n
a12 0 a23 · · · a2(n−1) a2n
a13 a23 0 · · · a3(n−1) a3n
...

...
...

. . .
...

...
a1(n−1) a2(n−1) a3(n−1) · · · 0 a(n−1)n

a1n a2n a3n · · · a(n−1)n 0



















n×n

.

Consider the following cases to find the spectra of Γ(G).

Case 1. Let all the elements in G be self-inverse elements. By Definition 1,
Γ(G) is a complete graph of order n and the spectra of Kn is given by [4] as

(

n− 1 −1
1 n− 1

)

.

Case 2. Let all the elements in G other than iG be non self-inverse elements.
By Theorem 2.5, it is clear that o(G) must be odd. In A(Γ(G)),

aij=

{

0, if i = k, j = k + 1; k = 2, 4, 6, . . . , n− 1,

1, otherwise.

Consider det(λI −A(Γ(G))).

Step 1. If Ri represents the i-th row, let Ri → Ri +Ri+1 −Ri+2 −Ri+3 for i =

2, 4, . . . , n − 3, then we get det(λI −A(Γ(G))) of the form [λ+ 2]
n−3

2 det(B).

Step 2. In det(B), if Ci refers to i-th column, let Ci → Ci−Ci−1, where i = 3, 5,

7, . . . , n to obtain det(B) of the form [λ]
n−1

2 det(C).

Step 3. Expanding det(C) by third column and simplifying we get

det(C) =

[

λ−
(

n− 3

2
+

√

(n− 1)2

4
+ 1

)][

λ−
(

n− 3

2
−
√

(n− 1)2

4
+ 1

)]

.
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Therefore, the characteristic polynomial of

A(Γ(G))

= [λ+ 2]
n−3

2 [λ]
n−1

2

[

λ−
(

n−3
2 +

√

(n−1)2

4 + 1

)] [

λ−
(

n−3
2 −

√

(n−1)2

4 + 1

)]

.

Case 3. Let there be l self-inverse elements in G and hence the entries of
A(Γ(G)) depend on l. Consider det(λI −A(Γ(G))).

Step 1. Let Ri → Ri + Ri+1 − Ri+2 − Ri+3 for i = l + 1, l + 2, . . . , n − 3, then

we get det(λI −A(Γ(G))) of the form [λ+ 2]
n−l−2

2 det(B).

Step 2. In det(B), let Ci → Ci − C1, where i = 2, 3, 4 . . . , l to obtain det(B) of
the form [λ+ 1]l−1 det(C).

Step 3. In det(C), let Ci → Ci −Ci+1, where i = l+1, l+3, . . . , n− 1 to obtain

det(C) of the form [λ]
n−l

2 det(D).

Here, we need to consider the following subcases.

Subcase 1. Let n be even. Then, on expansion and simplification of det(D),
we get

det(D) =
[

λ− (n−3)+
√
n2−2n+4l+1
2

] [

λ− (n−3)−
√
n2−2n+4l+1
2

]

.

Subcase 2. Let n be odd. Then, on expansion and simplification of det(D),
we get

det(D)=

[

λ−
(

n−3
2 +

√

n2−2n+5
4 + (l − 1)

)][

λ−
(

n−3
2 −

√

n2−2n+5
4 + (l−1)

)]

.

Therefore, the characteristic polynomial of A(Γ(G)) is given by

ϕ(A(Γ(G))) =






[λ+ 2]
n−l−2

2 [λ+ 1]l−1 [λ]
n−l

2

[

λ− (n−3)+η
2

][

λ− (n−3)−η
2

]

; when n is even;

[λ+ 2]
n−l−2

2 [λ+ 1]l−1 [λ]
n−l

2

[

λ−
(

n−3
2 + ζ

)] [

λ−
(

n−3
2 − ζ

)]

; when n is odd,

where η =
√
n2 − 2n+ 4l + 1 and ζ =

√

n2−2n+5
4 + (l − 1). Hence the result.

5. Conclusion

This paper discussed certain properties and characteristics of a newly defined
graph called non-inverse graph which is a modified version of the inverse graph.
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Some of the parameters of non-inverse graph such as size, chromatic number,
domination number, centre, vertex-connectivity, edge-connectivity, girth and cir-
cumference were also determined. We also investigated graph theoretic properties
and characteristics of non-inverse graphs. Being a newly defined graph class, the
class of non-inverse graphs offers a wide scope for further studies.
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