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Abstract

In this paper, we consider Leavitt path algebras having coefficients in
a k-semifield. Concentrating on the aspect of k-simplicity, we find a set of
necessary and sufficient conditions for the k-simplicity of the Leavitt path
algebra LS(Γ) of a directed graph Γ over a non-zeroid k-semifield S.
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1. Introduction

Since the last decade, Leavitt path algebras have drawn a great deal of interest
in various disciplines. The Leavitt path algebras, in a way, trace their origin to
the Leavitt algebras (introduced by Leavitt [10] in 1962, and denoted by L(m,n)
nowadays); which are a class of K-algebras (K being a field) universal with re-
spect to an isomorphism property between finite-rank free modules. Then, the
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C∗-algebra On [5], the C∗-algebra OA of a finite matrix A [6], the Cuntz-Krieger
algebra C∗(E) of a finite graph E, all paved the path for Leavitt path algebras,
which involve both graphs and algebraic structures. Abrams and Aranda Pino
introduced [1] the Leavitt path algebra LK(E) over a field K and a row-finite
graph E in 2005. As they mentioned, the motivation was to complete the ‘al-
gebraic picture’ of the interrelated fields of Leavitt Algebras, graph C∗-algebras
and CKA(K) (the algebraic analog of OA). Since then, Leavitt path algebras
have been studied from both analytical and algebraic perspectives. The survey
by Abrams [3] provides an extensive overview in this regard.

After initially considering row-finite graphs, Abrams and Aranda Pino de-
fined Leavitt path algebras for any directed graph [2] in 2008. Later, Tomforde
[14] considered Leavitt path algebras over commutative rings. In 2016, Katsov et

al. [9] studied Leavitt path algebras in semiring setting.

Simplicity (i.e., absence of non-trivial ideals) is an important structural as-
pect of such algebraic studies. Abrams and Aranda Pino determined the condi-
tion for simplicity of LK(E) (in [1, 2]). Tomforde [14] studied basically simple

Leavitt path algebras in the commutative ring setting. Likewise, Katsov et al.

[9] found a set of necessary and sufficient conditions for simplicity of a Leavitt
path algebra over any commutative semiring. As Katsov mentioned in [9], sim-
ple algebras are the building blocks in the structural theory of algebras. Unlike
rings, ideal-simpleness and congruence-simpleness are not the same in the semir-
ing setting. Furthermore, the yet uncharacterized simple infinite semirings may
be better understood by characterization of simple Leavitt path algebras. Hence,
studying Leavitt path algebras over semirings is significant on many accounts.
Now Katsov showed that for a commutative semiring S, a necessary condition
for LS(Γ) to be simple is that S should be a semifield. This acts as a motivation
of studying Leavitt path algebras over semifields and its various generalizations.
We earlier studied Leavitt path algebras with coefficients in Clifford semifields
[13], where we looked at the full k-simplicity (the property of not having any full
k-ideals). In this paper, we consider another class of commutative semirings, viz.,
the k-semifields.

A k-semifield is a generalization of a field in the sense that it is a commutative
semiring free from a special kind of ideal called the k-ideals. It is known that
kernels of semiring homomorphisms are ideals, but they are not ordinary ideals.
If one considers the Bourne Congruence σI = {(x, y) ∈ S × S | x+ a = y + b for
some a, b ∈ I} of a commutative semiring S with respect to an ideal I, then I
is contained in the congruence class I, i.e., the k-closure of I (defined in Section
2); and I is the kernel of the canonical homomorphism from S onto S/I (= S/I).
This led to the concept of k-ideals (defined later). Probably, the k stands for
‘kernel’. For any ideal I of a semiring S, I is the smallest k-ideal containing
I. Thus, k-ideals, characterized as kernels of homomorphisms, are often more
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important than ordinary ideals. The characteristic k-simplicity, i.e., absence of
non-trivial k-ideals, makes k-semifields play a significant role. k-semifields not
only generalize semifields (since every semifield is a k-semifield, although the
converse is not true), but they also lead to many interesting characterizations
and structures in the semiring theory (cf. [4, 11, 12]), often involving distributive
lattices. Considering all this, it seemed worthwhile to look at the k-simplicity of
LS(Γ) for any k-semifield S, from the perspectives of both semiring theory and
Leavitt path algebra. We also note that (as shown in Section 4) simplicity implies
k-simplicity, but not the other way around.

In this paper, we discuss some basic properties of k-semifields in Section 2.
Some earlier results on Leavitt path algebras are given in Section 3, and then in
Section 4 we consider k-semifields S with no non-zero zeroid elements, and find
a set of necessary and sufficient conditions for LS(Γ) to be k-simple. Before we
move on, we give some basic definitions and terminologies regarding graphs.

Definition 1.1. A directed graph Γ = (V,E, r, s) consists of two sets, V (6= ∅)
and E, and two maps r, s : E → V . The elements of V are called vertices and
the elements of E are called edges. For any e ∈ E, s(e) and r(e) are respectively
called the source and range of e. If s(e) = v and r(e) = w, then v emits e and w
receives e. If r(e1) = s(e2), then e1 and e2 are called adjacent.

We refer to directed graphs simply as graphs. For v ∈ V , s−1(v) and r−1(v)
are respectively the set of all edges emitted by v and received by v. A vertex
v is called a sink if s−1(v) = ∅, and regular if 0 < |s−1(v)| < ∞. A graph is
row-finite if |s−1(v)| < ∞,∀v ∈ V . A path p = e1e2 · · · en is a sequence of edges
e1, e2, . . . , en such that r(ei) = s(ei+1) for i = 1, 2, . . . , n − 1. A path consisting
of n edges is said to be of length n. The functions s, r are extended to paths
by considering s(e1) as the source of p = e1e2 · · · en, and (if p has finite length)
r(en) as the range of p. Every v ∈ V is considered as a path of length 0, with
s(v) = v = r(v). E(∗) denotes the set of all paths in Γ. A path p is called a closed

path based at v if s(p) = r(p) = v. A closed path based at v is a closed simple

path based at v if s(ei) 6= v ∀i > 1. CP (v) denotes the set of all closed paths
based at v, while CSP (v) is the set of all closed simple paths based at v. A cycle

based at v is a closed simple path based at v not visiting any vertex more than
once, i.e., s(ei) 6= s(ej) if i 6= j. An edge e is called an exit to the cycle e1e2 · · · en
if ∃ some i ∈ {1, 2, . . . , n} such that s(e) = s(ei) but e 6= ei.

2. Basic notions regarding k-semifields

In this section, we discuss some basic ideas regarding semirings and k-semifields.
A semiring is an algebraic system (S,+, ·) where S is a nonempty set and ‘+’ and
‘·’ are two binary operations on S, called addition and multiplication respectively;
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(S,+) and (S, ·) are semigroups connected to each other by ring-like distributivity.
A semiring S is said to be additively commutative if (S,+) is commutative; and
simply commutative if it is both additively and multiplicatively commutative. A
zero of a semiring S is an element 0 ∈ S satisfying a + 0 = 0 + a = a and
a · 0 = 0 · a = 0 for all a ∈ S. The set S − {0} is denoted by S∗. An element
1 ∈ S is called the identity of a semiring S if a · 1 = 1 · a = a for all a ∈ S. For
more on semirings, one may see [7, 8]. Now we define a semifield.

Definition 2.1. A commutative semiring (S,+, ·) with identity which satisfies
|S| ≥ 2 is called a semifield if (S∗, ·) is a subgroup of (S, ·).

We next consider the background of the concept of a k-semifield. In semiring
theory, various generalizations of fields are found from semirings free of different
types of ideals, e.g., k-ideals.

Definition 2.2. Let S be a semiring. A nonempty subset A of S is called

1. an ideal of S if A+A ⊆ A, and SA ⊆ A,AS ⊆ A

2. a k-ideal of S if A is an ideal such that for any x, y ∈ S, it happens that if
x ∈ A and either x+ y ∈ A or y + x ∈ A, then y ∈ A (Golan, in [7], termed
such an ideal as subtractive).

For a semiring S, the zero ideal (0) (if 0 ∈ S) and S itself are the trivial

ideals (as well as the trivial k-ideals) of S. S is called simple (respectively, k-
simple) if S has no non-trivial ideals (respectively, k-ideals). For two semirings
S and T , a homomorphism of S into T is a mapping f : S −→ T such that
f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, y ∈ S. If S, T have
zero elements 0S , 0T respectively, then a homomorphism f : S → T is called a
homomorphism of semirings with zero if f(0S) = 0T . We define the kernel of f
by the set kerf = {x ∈ S | f(x) = 0T }, which is easily seen to be a k-ideal of
S. Next, we define the k-closure of a subset of a semiring. Let A ⊆ S, then the
k-closure of A is defined by

A = {x ∈ S | x+ y = z or y + x = z for some y, z ∈ A}.

For any ideal I of S (where 0S exists in S), the k-closure of I is the smallest
k-ideal containing I. Thus, an ideal I of S (where 0S ∈ S) is a k-ideal of S if and
only if I = I.

Definition 2.3. The zeroid of a semiring (S,+, ·) is the set ZS = {a ∈ S | a+b =
b or b + a = b for some b ∈ S}. The elements belonging to the zeroid of S are
called zeroid elements of S.

Remark 2.4. The zeroid elements of a commutative semiring S have some in-
teresting properties.
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(i) If 1 is a zeroid element in S, then all elements of S are clearly zeroid elements
of S.

(ii) The set ZS forms a k-ideal of S. It is easily seen to be an ideal. Let x, x+y ∈
ZS . Then ∃ c, d ∈ S such that x + c = c and x + y + d = d. Thus,
c+ d = x+ c+ y + d = y + c+ d. So y ∈ ZS .

Clearly, it is reasonable to consider only those semirings in which 1 is not a
zeroid element.

Definition 2.5. (i) Let S be a semiring with identity. An element a ∈ S∗ is said
to be semi-invertible if there exist r, s ∈ S such that 1+ ra = sa and 1+ar = as.

(ii) A commutative semiring S with identity is called a k-semifield (Golan
[7] used the term austere semiring for such semirings) if every non-zero element
of S is semi-invertible.

We now give a characterization of k-simple commutative semirings.

Theorem 2.6. A commutative semiring S with identity is k-simple if and only

if ∀a ∈ S∗, ∃ r, s ∈ S such that 1 + ra = sa. Thus, a commutative semiring

with identity is a k-semifield if and only if it has no non-trivial k-ideal; i.e.,

k-semifields are commutative k-simple semirings with identity.

Remark 2.7. By definition, every semifield is a k-semifield. But not all k-
semifields are semifields. For example, S = Q+

0
(
√
2) = {a + b

√
2 : a, b ∈ Q+

0
}

with usual addition and multiplication is a k-semifield. However, S is not a
semifield, as the element 1 +

√
2 has no inverse in S.

Proposition 2.8. If a k-semifield S has a non-zero zeroid element, then ZS = S.

Proof. Let a ∈ ZS −{0}. Then ∃ b ∈ S such that a+ b = b. As a 6= 0, ∃ r, s ∈ S
such that 1 + ra = sa. Now a+ b = b implies sb = sa+ sb = 1+ ra+ sb. Hence,
rb+ sb = 1 + ra+ rb+ sb = 1 + rb+ sb (since ra+ rb = rb). Thus, 1 ∈ ZS, and
hence, by Remark 2.4, all elements of S are zeroid elements.

Remark 2.9. The above proposition shows that for a k-semifield S, either ZS =
{0S} (e.g., for Q+

0
(
√
2)) or ZS = S (e.g., for any distributive lattice). Thus, it

seems reasonable to consider only those k-semifields in which 0 is the only zeroid
element. We call them non-zeroid k-semifields. Hereafter, throughout the paper
we shall assume that all the semirings we consider: (i) are additively commutative
(ii) contain 1 and 0 with 1 6= 0 (iii) have 0 as their only zeroid element.

3. Definitions and some earlier results on Leavitt path algebras

In this section we discuss the basic notions regarding Leavitt path algebras defined
over semirings.
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Definition 3.1 [9]. Let Γ = (V,E, s, r) be a graph, S be a commutative semiring
with 1S and 0S and E∗ be the set of formal symbols {e∗ | e ∈ E}. The Leavitt
path algebra LS(Γ) of the graph Γ with coefficients in S is defined to be the
Universal S-algebra generated by the set of generators V ∪E∪E∗ (where e → e∗

is a bijection between E and E∗ with r(e) = s(e∗) and r(e∗) = s(e), and V,E,E∗

are pairwise disjoint), satisfying the following relations:

(A1) vw = δv,wv for all v,w ∈ V ;

(A2) s(e)e = e = er(e), r(e)e∗ = e∗ = e∗s(e) for all e ∈ E;

(CK1) e∗f = δe,fr(e) for all e, f ∈ E;

(CK2) v =
∑

e∈s−1(v) ee
∗ for any regular vertex v.

Note that elements of E and E∗ are respectively, called real edges and ghost

edges. Also, if S is additively commutative then so is LS(Γ).

Remark 3.2. Let Γ = (V,E, s, r) be a graph, S be a commutative semiring and
A be an S-algebra generated by the three subsets {av | v ∈ V }, {ae | e ∈ E},
{ae∗ | e ∈ E} of A such that:

(1) avaw = δv,wav for all v,w ∈ V ;

(2) as(e)ae = ae = aear(e), ar(e)ae∗ = ae∗ = ae∗as(e) for all e ∈ E;

(3) ae∗af = δe,far(e) for all e, f ∈ E;

(4) av =
∑

e∈s−1(v) aeae∗ for any regular vertex v.

Then there always exists a unique S-algebra homomorphism φ : LS(Γ) → A
given by φ(v) = av, φ(e) = ae, φ(e

∗) = ae∗ for all v ∈ V, e ∈ E. This universal
property ensures the uniqueness of LS(Γ) for a graph Γ and a semiring S.

Remark 3.3. From Definition 3.1, it is easy to deduce the following properties:

(i) ef = er(e)s(f)f = δr(e),s(f)ef for all e, f ∈ E;

(ii) e∗f∗ = δs(e),r(f)e
∗f∗ for all e∗, f∗ ∈ E∗;

(iii) ve = δv,s(e)e and ev = δv,r(e)e ∀v ∈ V, e ∈ E. (Thus, ve 6= 0 ⇒ v = s(e) and
ev 6= 0 ⇒ v = r(e));

(iv) ve∗ = δv,r(e)e
∗ and e∗v = δv,s(e)e

∗ for all v ∈ V, e ∈ E∗.

Remark 3.4 [9, Remark 2.7]. For a path p = e1e2 · · · en, p∗ is defined as
e∗ne

∗

n−1 · · · e∗1. Then

p∗q =















q′ if q = pq′;
r(p) if p = q;
p′∗ if p = qp′;
0 otherwise.
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A semiring R has a set of local units F , if F is a set of idempotents in R such
that for each finite subset {r1, r2, . . . , rn} in R, there exists an element f ∈ F for
which frif = ri for all 1 ≤ i ≤ n. The following result shows that LS(Γ) either
has an identity or it has a set of local units.

Proposition 3.5 [9, Proposition 2.5]. Let Γ = (V,E, s, r) be an arbitrary graph

and let S be a commutative semiring. Then the S-algebra LS(Γ) has an identity

1(=
∑

v∈V v) if V is finite; and if V is infinite, the set of all finite sums of distinct

elements of V is a set of local units of LS(Γ).

Katsov et al. gave the general form of the monomials in LS(Γ), for a com-
mutative semiring S.

Proposition 3.6 [9, Proposition 2.4]. For a commutative semiring S and a graph

Γ = (V,E, s, r), the Leavitt path algebra LS(Γ) has the following properties:

(i) All elements of the set V ∪ E ∪ E∗ are non-zero.

(ii) If a, b are distinct elements in S, then av 6= bv for all v ∈ V .

(iii) Every monomial in LS(Γ) is of the form λpq∗, where λ ∈ S and p, q are

paths in Γ such that r(p) = r(q).

The following result, which has been proved in our earlier paper [13], is
interesting to note.

Proposition 3.7. Let S be a commutative semiring and Γ = (V,E, s, r) be a

graph. Let c be a cycle in Γ which has no exit. If c is based at some vertex v then

vLS(Γ)v =

{

n
∑

i=−m

kic
i | m,n ∈ N0, ki ∈ S for i = −m, . . . , n

}

where c−t = (c∗)t for all t ∈ N, and c0 = v.

A monomial is a path in only real edges (respectively, path in only ghost edges)
if it contains no ghost edges (respectively, no real edges). A polynomial in only
real edges (respectively, in only ghost edges) is a sum of paths in only real edges
(respectively, paths in only ghost edges). The following result was used [9] for
determining conditions for simplicity of LS(Γ) over a semifield S.

Theorem 3.8 [9, Lemma 3.2]. Let Γ = (V,E, s, r) be a graph such that every

cycle in Γ has an exit. If S is a semifield and α 6= 0 is a polynomial in LS(Γ) in
only real edges, then ∃ a, b ∈ LS(Γ) such that aαb ∈ V .

Definition 3.9. For a graph Γ = (V,E, s, r), a subset H ⊆ V is called a hered-

itary subset if s(e) ∈ H =⇒ r(e) ∈ H for all e ∈ E; and H ⊆ V is called
saturated if for any regular vertex v, r(s−1(v)) ⊆ H =⇒ v ∈ H. Clearly, ∅ and
V are hereditary and saturated subsets of V .
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The following necessary and sufficient conditions for the simplicity of LS(Γ)
with coefficients in a semifield S were given by Katsov et al., which involves
hereditary and saturated vertex subsets.

Theorem 3.10 [9, Theorem 3.4]. A Leavitt path algebra LS(Γ) of a graph Γ =
(V,E, s, r) with coefficients in a semifield S is simple if and only if both of the

following conditions are satisfied:

(i) The only hereditary and saturated subsets of V are ∅ and V .

(ii) Every cycle in Γ has an exit.

In fact, Katsov et al. provided the following result for any commutative
semiring S.

Theorem 3.11 [9, Theorem 3.5]. The Leavitt path algebra LS(Γ) of a graph

Γ = (V,E, s, r) with coefficients in a commutative semiring S is simple if and

only if all the following conditions hold:

(i) S is a semifield.

(ii) The only hereditary and saturated subsets of V are ∅ and V .

(iii) Every cycle in Γ has an exit.

4. k-simplicity of LS(Γ) for a k-semifield S

For a k-semifield S, Theorem 3.11 gives a set of necessary and sufficient conditions
for LS(Γ) to be simple. However, not every ideal is a k-ideal, so it might happen
that LS(Γ) is not simple but is k-simple (a semiring is k-simple if it has no
non-trivial k-ideal), as seen in the following example.

Example 4.1. Consider the semiring T = Q+
0
(
√
2) with usual addition and

multiplication. From [7, Proposition (6.45)], there is an inclusion preserving
bijection f between the ideals of any semiring S and the ideals of Mn(S); and
an ideal of Mn(S) is a k-ideal of Mn(S) if and only if the corresponding ideal
of S is a k-ideal of S. Now since T is a k-semifield, it has no non-trivial k-ideal
(by Theorem 2.4), and thus, the same is true for Mn(T ). Hence, Mn(T ) is k-
simple. However, T , being not a semifield, does contain a non-trivial ideal I, and
consequently, Mn(T ) has a non-trivial ideal f(I). Hence, Mn(T ) is not simple.
Now let Γn denote the finite line graph.

It is known (cf. [1, Example 1.4(i)]) that LT (Γn) ∼= Mn(T ), via the maps
vn 7→ Enn, vi 7→ Eii, ei 7→ Ei,i+1, e

∗

i 7→ Ei+1,i for i = 1, 2, . . . , n− 1; Eij being the
matrix with 1 in its (i, j)th position and 0 elsewhere. Thus, LT (Γn) is k-simple
but not simple. This shows that we can find a k-semifield S (which is not a
semifield) and a graph Γ such that LS(Γ) is k-simple but not simple.
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Figure 1. Finite line graph Γn.

In view of the above case, we specifically consider the k-simplicity of LS(Γ)
for a k-semifield S.

Proposition 4.2. Let Γ = (V,E, s, r) be a graph and S be a k-semifield. Then

any non-zero k-ideal I of LS(Γ) contains a polynomial in only real edges.

Proof. The result follows immediately by [9, Proposition 3.3] since S is a com-
mutative semiring and I is an ideal of LS(Γ).

Proposition 4.3. Let Γ = (V,E, s, r) be a graph with the property that every

cycle in Γ has an exit. Let S be a k-semifield. If α ∈ LS(Γ) is a polynomial in

only real edges with α 6= 0, then there exist a, b ∈ LS(Γ) such that aαb = λv for

some λ (6= 0S) ∈ S and v ∈ V .

Proof. We begin as in the proof of Theorem 3.8 given in [9]. The overall proof
here (in particular, the initial steps) is exactly similar to our proof of the cor-
responding result for Clifford semifields [13]. However, we present a sketch of
the proof for the sake of completeness. The polynomial α is written in the form
α =

∑

i λiqi, where the qi’s are distinct paths in only real edges and 0S 6= λi ∈ S
for all i. We choose a path p from the set {qi} such that no proper initial sub-
path of p is contained in {qi}. Let v = r(p). Then, by Remark 3.4, we have that
p∗αv = λv +

∑

i λip
∗qi, where the sum runs over all qi’s having p as one of their

proper initial subpaths and r(qi) = v (ensuring p∗qi ∈ CP (v)). Denoting p∗αv by
α1, we get α1 = λv+

∑n
i=1 λipi, where pi is a closed path of positive length based

at v and 0S 6= λ ∈ S. Fixing some c ∈ CSP (v), any pi ∈ CP (v) can be written
as pi = cnip′i with ni ∈ N being maximal. Let n = max{ni | i = 1, 2, . . . , n}+ 1.
Then (c∗)nα1c

n = λv+
∑

j λjc
nj with nj > 0. Hence, α′ = (c∗)nα1c

n = λv+cP (c)
for some polynomial P . Suppose c = e1e2 · · · em. By our hypothesis and [1,
Lemma 2.5], c has an exit g ∈ Γ. Let s(g) = s(ej) with g 6= ej . We con-
sider the path z = e1e2 · · · g. Clearly, s(z) = v and z∗c = 0. Now we have
that z∗α′z = z∗λvz + z∗cP (c)z = λz∗vz = λz∗s(z)z = λz∗z = λr(z). Writing
a = z∗(c∗)np∗ and b = vcnz, we get that aαb = λr(z).

Corollary 4.4. Let Γ = (V,E, s, r) be a graph where every cycle has an exit. If

S is a k-semifield and α 6= 0 is a polynomial in only real edges in a k-ideal J of

LS(Γ), then J contains a vertex.
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Proof. By Proposition 4.3, there exist a, b ∈ LS(Γ) such that aαb = λv for some
λ ∈ S − {0S} and some v ∈ V . Now α ∈ J implies that λv = aαb ∈ J . As
λ 6= 0S and S is a k-semifield, there exist t1, t2 ∈ S such that 1 + λt1 = λt2.
Then, t2aαb = λt2v = (1 + λt1)v = v + λt1v. Since λt1v ∈ J and t2aαb ∈ J , by
the property of k-ideal it follows that v ∈ J . Thus, J contains a vertex.

Now, we give a set of sufficient conditions for k-simplicity of LS(Γ) over a
k-semifield S.

Lemma 4.5. For a graph Γ = (V,E, s, r), the Leavitt path algebra LS(Γ) with

coefficients in a k-semifield S is k-simple if both of the following conditions are

satisfied:

(i) The only hereditary and saturated subsets of V are ∅ and V .

(ii) Every cycle in Γ has an exit.

Proof. Let J be a non-zero k-ideal of LS(Γ). By Proposition 4.2, J contains
a non-zero polynomial in only real edges. Then, by condition (ii) and Corollary
4.4, J∩V 6= ∅. Considering the ideal J and the commutative semiring S, we have
by [9, Lemma 2.6] that J ∩ V is hereditary and saturated in V . The condition
(i) then gives that J ∩ V = V , implying V ⊆ J . Hence, by Proposition 3.5, J
contains an identity or a set of local units of LS(Γ). So J = LS(Γ). Thus, LS(Γ)
is k-simple.

As shown next, the condition (i) of Lemma 4.5 is a necessary condition for
k-simplicity of LS(Γ).

Lemma 4.6. For a graph Γ = (V,E, s, r), if the Leavitt path algebra LS(Γ) with
coefficients in a k-semifield S is k-simple, then the only hereditary and saturated

subsets of V are ∅ and V .

Proof. Let LS(Γ) be k-simple. We assume that V has a hereditary and satu-
rated subset H which is non-trivial (i.e., H 6= V, ∅) and see if this leads to any
contradiction. Consider the graph F = (F 0, F 1, rF , sF ), where F 0 = V − H,
F 1 = r−1(V − H), rF = r|V−H and sF = s|V−H . Clearly, rF (F

1) ∪ sF (F
1) ⊆

F 0. Hence, F is well-defined. We then produce an S-algebra homomorphism
Ψ : LS(Γ) → LS(F ). To do so, define Φ on the generators of the free S-
algebra B = S[V ∪ E ∪ E∗] by setting Φ(v) = χF 0(v)v,Φ(e) = χF 1(e)e and
Φ(e∗) = χ(F 1)∗(e

∗) for all v ∈ V, e ∈ E, e∗ ∈ E∗, and extending it to B (note
that χA is the characteristic function of a set A). Now we check if the relations
(1)–(4) mentioned in Definition 3.1 are preserved under Ψ. Clearly, it suffices to
check the same for Φ. We can proceed similarly to the converse part of the proof
of [1, Theorem 3.11], to show that the aforementioned conditions are preserved
under Ψ. Next, we consider the k-ideal Ker(Ψ) of LS(Γ). Arguing as in the
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proof of [1, Theorem 3.11], we infer that Ker(Ψ) is a proper non-trivial k-ideal
of LS(Γ), contradicting that LS(Γ) is k-simple. Thus, we get a contradiction if
such a subset H of V exists. So ∅ and V are the only hereditary and saturated
subsets of V .

As we shall see next, the condition (ii) of Lemma 4.5 also is a necessary
condition for k-simplicity of LS(Γ) if S is a k-semifield. We now give our main
result, which gives a set of necessary and sufficient conditions for LS(Γ) to be
k-simple, where S is a (non-zeroid) k-semifield.

Theorem 4.7. Let S be a (non-zeroid) k-semifield, and Γ = (V,E, s, r) be a

graph. Then LS(Γ) is k-simple if and only if both of the following conditions are

satisfied:

(i) The only hereditary and saturated subsets of V are ∅ and V .

(ii) Every cycle in Γ has an exit.

Proof. First, let the conditions (i) and (ii) hold. Then, by Lemma 4.5, LS(Γ) is
k-simple. Conversely, let LS(Γ) be k-simple. Then, by Lemma 4.6, the condition
(i) holds. Now we assume that there exists a cycle c in Γ with no exit, and see if
this leads to any contradiction. Let c be based at v. As c has no exit, we have
that CSP (v) = {c}. For the same reason, cc∗ = v (note that for any edge e of c,
e is the only edge having s(e) as its source, and thus ee∗ = s(e)) and c∗c = v. We
next consider the k-ideal I = 〈v + c〉, which is the k-closure of the ideal 〈v + c〉.
Clearly, I is non-zero.

Case I. Let v 6∈ I. Then I 6= LS(Γ). Thus, LS(Γ) has a non-trivial k-ideal I.
This contradicts that LS(Γ) is k-simple. So a cycle without any exit in Γ leads
to a contradiction, and we are through.

Case II. Let v ∈ I. Then there exist monic monomials αi, βi, γj , δj such that

(4.1) v +

n
∑

i=1

kiαi(v + c)βi =

m
∑

j=1

ljγj(v + c)δj

where ki, lj ∈ S for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Now noting that
v(v + c)v = v, we can assume that (by multiplying both sides by v if neces-
sary) vαiv = αi, vβiv = βi for i = 1, 2, . . . , n and vγjv = γj and vδjv = δj for j =
1, 2, . . . ,m. This shows that the monomials αi, βi, γj, δj are elements of vLS(Γ)v.
By Proposition 3.7, it then follows that (noting that v = c0 and also that (v+ c)
commutes with c and c∗) both

∑n
i=1 kiαi(v + c)βi and

∑m
j=1 ljγj(v + c)δj are

products of (v + c) with some polynomial in c, c∗. Thus, we have that

v + (v + c)P (c, c∗) = (v + c)Q(c, c∗).



252 R. Sen Gupta and M.K. Sen

Writing (c∗)n = c−n for any n ∈ N, let Q(c, c∗) = b−mc−m + · · ·+ b−1c
−1 + b0v+

b1c
1 + · · ·+ byc

y and P (c, c∗) = a−nc
−n + · · ·+ a−1c

−1 + a0v + a1c
1 + · · ·+ atc

t,
where ai 6= 0 for i = −n, . . . , t and bi 6= 0 for i = −m, . . . , y. From (4.1), we then
have that
(4.2)

a−nc
−n+

(

−1
∑

i=−n+1

(ai−1 + ai)c
i

)

+ (1+ a−1 + a0)v+

(

t
∑

i=1

(ai−1 + ai)c
i

)

+ atc
t+1

= b−mc−m+

(

−1
∑

i=−m+1

(bi−1 + bi)c
i

)

+ (b−1 + b0)v+

(

y
∑

i=1

(bi−1 + bi)c
i

)

+ byc
y+1.

Comparing both sides, we have thatm = n and t = y. Now we can equate the
coefficients of identical powers of c in both sides, since the equation (4.2) involves
elements in a free S-semimodule with basis {ci | i ∈ Z}. Comparing coefficients,
we obtain that a−n = b−n, at = bt, ai + ai−1 = bi + bi−1 for −n+ 1 ≤ i ≤ −1 and
for 1 ≤ i ≤ t. By invoking Proposition 3.6, we also get that

(4.3) 1 + a−1 + a0 = b−1 + b0.

Now let a = a−n + a−n+1+ · · ·+ a−2, and b = at+ at−1 + · · ·+ a1. Then we have
that

(1 + (b+ a0) + (a+ a−1))v = ((b+ b0) + (a+ b−1)) v.

Putting d = b+a0+a+a−1 (and noting that a+a−1 = a+b−1 and b+a0 = b+b0),
we get by invoking Proposition 3.6 that 1+ d = d. This is a contradiction since 1
is not a zeroid element (cf. Remark 2.9). Thus, the existence of a cycle without
an exit in Γ leads us to a contradiction. Hence, every cycle must have an exit in
Γ, satisfying the condition (ii). This completes the proof.

We conclude the paper by illustrating the utility of Theorem 4.7 by an ex-
ample. We can use Theorem 4.7 to check the k-simplicity of LS(Γn) over a
k-semifield S (where Γn is the finite line graph). As discussed in Example 4.1,
LS(Γn) is k-simple. However, this can also be verified with the help of Theorem
4.7, since Γn clearly satisfies conditions (i) and (ii) mentioned in Theorem 4.7.
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