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Abstract

We generalize the concept of a fuzzy distributive lattice by introducing
the concepts of a fuzzy join-distributive pair and a fuzzy join-semidistributive
pair in a fuzzy lattice. A relationship among a fuzzy join-distributive pair, a
fuzzy join-semidistributive pair and a fuzzy join-modular pair is proved. It is
shown that for a pair of fuzzy atoms, the notions of a fuzzy join-distributive
pair and a fuzzy join-semidistributive pair coincide.
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1. Introduction

The concept of a Boolean algebra has its origin in the work of George Boole on
“Laws of Thoughts”(1854). A Boolean algebra is a complemented, distributive
lattice. The concept of a distributive lattice is generalized in various directions,
such as distributive pairs (Maeda [4]), distributive triples (Maeda [5]), modular
pairs in semilattices (Thakare et al. [10]).

We know that a lattice 〈L;∨;∧〉 is distributive iff it satisfies any of the fol-
lowing equivalent conditions for all a, b, c ∈ L.
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(i) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

(ii) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A well known example of a distributive lattice is the power set of a set (i.e. the
collection of all subsets of a set) which is a lattice with set inclusion as the partial
order relation.

There are lattices which are not distributive, e.g. the lattice of all normal
subgroups of a group is not distributive in general. Also, there are lattices which
are not distributive but one of the conditions (i) or (ii) of distributivity may hold
for some triplets of elements a, b, c. This gives rise to the concept of a distributive
triple (Maeda and Maeda [5, p. 15]). Also, in some lattices, one of the conditions
(i) or (ii) may hold for a pair of elements a, b ∈ L and for all choices of c. This
gives rise to the concept of a distributive pair. Maeda [4] has studied the concept
of a distributive pair in a lattice. There are nonmodular lattices, in which a pair
of elements may exist which satisfies the condition of modularity. It gives rise to
the concept of a modular pair of elements. Thakare et al. [10] have studied this
concept in the context of semilattices.

The concept of a fuzzy set is introduced by Zadeh [13]. Many researchers
have introduced fuzzy algebraic structures such as fuzzy groups by Rosenfeld [9],
fuzzy lattices by Ajmal et al. [1], Chon [2], Mezzomo et al. [6, 8]. Wasadikar
and Khubchandani [11] have introduced the concept of a fuzzy modular pair in
a fuzzy lattice.

In this paper, we define a fuzzy distributive pair, a fuzzy semi-distributive
pair in a fuzzy lattice and study relationships among them. The motivation is
from the work of Maeda [4]. We also prove that for a pair of fuzzy atoms, the
concepts of a fuzzy distributive pair and a fuzzy semi-distributive pair coincide.

2. Preliminaries

Zadeh [14] introduced the concept of a fuzzy binary relation and a fuzzy partial
order relation. Throughout this paper, (X,A) denotes a fuzzy lattice, where A

is a binary ordering relation on a nonempty set X.
We recall some concepts.

Definition (Chon [2, Definition 2.1]). A mapping A : X ×X → [0, 1] is called a
fuzzy binary relation on X.

Definition (Chon [2, Definition 2.1]). A fuzzy binary relation A on X is called:

(i) fuzzy reflexive: if A(a, a) = 1, for all a ∈ X;

(ii) fuzzy symmetric: if A(a, b) = A(b, a), for all a, b ∈ X;

(iii) fuzzy transitive: if A(a, c) ≥ supb∈X min[A(a, b), A(b, c)];
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(iv) fuzzy antisymmetric: if A(a, b) > 0 and A(b, a) > 0 implies a = b.

Definition (Chon [2, Definition 2.1]). Let A be a fuzzy binary relation on X.

(i) A is called a fuzzy equivalence relation on X, if A is fuzzy reflexive, fuzzy
symmetric and fuzzy transitive.

(ii) A is called a fuzzy partial order relation, if A is fuzzy reflexive, fuzzy anti-
symmetric and fuzzy transitive. The pair (X,A) is called a fuzzy partially
ordered set or a fuzzy poset.

(iii) A is called a fuzzy total order relation, if it is a fuzzy partial order relation
and A(a, b) > 0 or A(b, a) > 0, for all a, b ∈ X. In this case, the fuzzy poset
(X,A) is called a fuzzy totally ordered set or a fuzzy chain.

Several researchers have studied fuzzy lattices. Chon [2] and some others use
the terms upper bound, lower bound and use the notations a ∨ b and a ∧ b to
denote the supremum and the infimum of two elements a, b in a fuzzy lattice X

in the fuzzy sense. Since the set X is arbitrary, this gives the impression that X
itself is a partially ordered set or a lattice. So we use the notations a ∨F b and
a ∧F b to denote the fuzzy supremum and the fuzzy infimum of a, b ∈ X.

Definition (Chon [2, Definition 3.1]). Let (X,A) be a fuzzy poset and let Y ⊆ X.
An element b ∈ X is said to be a fuzzy upper bound for Y iff A(a, b) > 0 for
all a ∈ Y . A fuzzy upper bound b0 for Y is called a least upper bound (or
supremum) of Y iff A(b0, b) > 0 for every fuzzy upper bound b for Y . We then
write b0 = supF Y = ∨FY . If Y = {a, b}, then we write ∨FY = a ∨F b.

Similarly, an element c ∈ X is said to be a fuzzy lower bound for Y iff
A(c, a) > 0, for all a ∈ Y . A fuzzy lower bound c0 for Y is called a fuzzy greatest
lower bound (or infimum) of Y iff A(c, c0) > 0 for every fuzzy lower bound c for Y .
We then write c0 = infF Y = ∧FY . If Y = {a, b}, then we write ∧FY = a ∧F b.

Since A is fuzzy antisymmetric, the fuzzy least upper (fuzzy greatest lower)
bound, if it exists, is unique, see Mezzomo et al. [6, Remark 3.2].

Definition (Chon [2, Definition 3.2]). Let (X,A) be a fuzzy poset. Then, (X,A)
is called a fuzzy lattice if and only if a ∨F b and a ∧F b exist, for all a, b ∈ X.

Definition (Mezzomo et al. [7, Definition 3.4]). A fuzzy lattice (X,A) is said
to be bounded if there exist elements ⊥ and ⊤ in X, such that A(⊥, a) > 0 and
A(a,⊤) > 0, for every a ∈ X. In this case, ⊥ and ⊤ are respectively, called
bottom and top elements of X.

We illustrate these concepts in the following example. In this example, the
fuzzy poset (X,A) is a fuzzy lattice.



182 M. Wasadikar and P. Khubchandani

Example 1. LetX = {⊥, a, b, c, d, e, f,⊤}. Define a fuzzy relation A : X×X −→
[0, 1] on X as follows such that

A(⊥,⊥) = A(a, a) = A(b, b) = A(c, c) = A(d, d) = A(e, e) = A(f, f) = 1
A(⊤,⊤) = 1,
A(⊥, a) = 0.1, A(⊥, b) = 0.1, A(⊥, c) = 0.1, A(⊥, d) = 0.1, A(⊥, e) = 0.1,
A(⊥, f) = 0.1, A(⊥,⊤) = 0.1,
A(a,⊥) = 0, A(a, b) = 0.5, A(a, c) = 0, A(a, d) = 0.5, A(a, e) = 0.5, A(a, f) = 0,
A(a,⊤) = 0.01,
A(b,⊥) = 0, A(b, a) = 0, A(b, c) = 0, A(b, d) = 0.5, A(b, e) = 0, A(b, f) = 0,
A(b,⊤) = 0.01,
A(c,⊥) = 0, A(c, a) = 0, A(c, b) = 0.5, A(c, d) = 0.5, A(c, e) = 0, A(c, f) = 0.5,
A(c,⊤) = 0.01,
A(d,⊥) = 0, A(d, a) = 0, A(d, b) = 0, A(d, c) = 0, A(d, e) = 0, A(d, f) = 0,
A(d,⊤) = 0.01,
A(e,⊥) = 0, A(e, a) = 0, A(e, b) = 0, A(e, c) = 0, A(e, d) = 0, A(e, f) = 0,
A(e,⊤) = 0.01,
A(f,⊥) = 0, A(f, a) = 0, A(f, b) = 0, A(f, c) = 0, A(f, d) = 0, A(f, e) = 0,
A(f,⊤) = 0.01,
A(⊤,⊥) = 0, A(⊤, a) = 0, A(⊤, b) = 0, A(⊤, c) = 0, A(⊤, d) = 0, A(⊤, e) = 0,
A(⊤, f) = 0.

This fuzzy relation is shown in the following table:

A ⊥ a b c d e f ⊤

⊥ 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a 0.0 1.0 0.5 0.0 0.5 0.5 0.0 0.01

b 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.01

c 0.0 0.0 0.5 1.0 0.5 0.0 0.5 0.01

d 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.01

e 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.01

f 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.01

⊤ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

The fuzzy join and fuzzy meet tables are as follows:

∨F ⊥ a b c d e f ⊤

⊥ ⊥ a b c d e f ⊤

a a a b b d e ⊤ ⊤

b b b b b d ⊤ ⊤ ⊤

c c b b c d ⊤ f ⊤

d d d d d d ⊤ ⊤ ⊤

e e e ⊤ ⊤ ⊤ e ⊤ ⊤

f f ⊤ ⊤ f ⊤ ⊤ f ⊤

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

∧F ⊥ a b c d e f ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

a ⊥ a a ⊥ a a ⊥ a

b ⊥ a b c b a c b

c ⊥ ⊥ c c c ⊥ c c

d ⊥ a b c d a c d

e ⊥ a a ⊥ a e ⊥ e

f ⊥ ⊥ c c c ⊥ f f

⊤ ⊥ a b c d e f ⊤
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We note that (X,A) is a fuzzy lattice.

The following result is from Chon [2, Proposition 3.3] and Mezzomo et al. [6,
Proposition 3.5].

Proposition 2. Let (X,A) be a fuzzy lattice. For a, b, c ∈ X. The following stat-

ements hold:

(i) A(a, a ∨F b) > 0, A(b, a ∨F b) > 0, A(a ∧F b, a) > 0, A(a ∧F b, b) > 0.

(ii) A(a, c) > 0 and A(b, c) > 0 implies A(a ∨F b, c) > 0.

(iii) A(c, a) > 0 and A(c, b) > 0 implies A(c, a ∧F b) > 0.

(iv) A(a, b) > 0 iff a ∨F b = b.

(v) A(a, b) > 0 iff a ∧F b = a.

(vi) If A(b, c) > 0, then A(a ∧F b, a ∧F c) > 0 and A(a ∨F b, a ∨F c) > 0.

(vii) If A(a ∨F b, c) > 0, then A(a, c) > 0 and A(b, c) > 0.

(viii) If A(a, b ∧F c) > 0, then A(a, b) > 0 and A(a, c) > 0.

Corollary 3. Let (X,A) be a fuzzy lattice and a, b, c, d ∈ X. If A(c, a) > 0 and

A(d, b) > 0, then A(c ∧F d, a ∧F b) > 0 and A(c ∨F d, a ∨F b) > 0.

Proof. Since A(c, a) > 0 holds, by (vi) of Proposition 2, we get A(c∧F d, a∧F d)
> 0. Similarly, from A(d, b) > 0 we get A(a ∧F d, a ∧F b) > 0. Hence by fuzzy
transitivity of A, we conclude that A(c ∧F d, a ∧F b) > 0. Similarly, we can show
that A(c ∨F d, a ∨F b) > 0.

Chon [2] has considered fuzzy distributivity and fuzzy modularity in fuzzy
lattices.

Definition (Chon [2]). Let (X,A) be a fuzzy lattice. (X,A) is called a fuzzy
distributive lattice, if a ∧F (b ∨F c) = (a ∧F b) ∨F (a ∧F c) and a ∨F (b ∧F c) =
(a ∨F b) ∧F (a ∨F c) for all a, b, c ∈ X.

Definition (Chon [2]). A fuzzy lattice (X,A) is called fuzzy modular if A(a, c)
> 0 implies a ∨F (b ∧F c) = (a ∨F b) ∧F c, for all a, b, c ∈ X.

3. Fuzzy distributive pairs and fuzzy semidistributive pairs

Chon [2] and Yuan and Wu [12] have proved results related to fuzzy distributive
lattices.

The notion of a distributive pair in a lattice, introduced by Maeda [4], has
motivated us to introduce and study fuzzy join-distributive pairs and fuzzy meet-
distributive pairs in fuzzy lattices.
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Definition. Let (X,A) be a fuzzy lattice. A pair of elements a, b ∈ X is called
a fuzzy join-distributive pair, denoted by (a, b)FDj , if the following condition
holds:
(a, b)FDj : If c ∈ X is such that A(c, a ∨F b) > 0, then there exist a1, b1 ∈ X

satisfying A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = c.

Dually we can define the concept of a fuzzy meet-distributive pair, (a, b)FDm.
We prove some equivalent forms of (a, b)FDj .

Theorem 4. In a fuzzy lattice (X,A), the following conditions are equivalent:

(i) A pair (a, b) of elements in X satisfies (a, b)FDj .

(ii) A((a ∨F b) ∧F c, (a ∧F c) ∨F (b ∧F c)) > 0 for every c ∈ X.

(iii) (a ∨F b) ∧F c = (a ∧F c) ∨F (b ∧F c) for every c ∈ X.

Proof. (i)⇒(ii) Suppose that (a, b)FDj holds, i.e., if x ∈ X is such that A(x,
a ∨F b) > 0 holds, then there exist a1, b1 ∈ X such that

(3.1) A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = x.

By (i) of Proposition 2, for any x ∈ X we have

(3.2) A((a ∨F b) ∧F x, a ∨F b) > 0 and A((a ∨F b) ∧F x, x) > 0.

Let c ∈ X. Taking x = c in (3.2), we get

A((a ∨F b) ∧F c, a ∨F b) > 0.

As (a, b)FDj holds, by (3.1), there exist a1, b1 ∈ X such that

A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = (a ∨F b) ∧F c.

From a1∨F b1 = (a∨F b)∧F c we conclude that A(a1, c) > 0 and A(b1, c) > 0. Using
A(a1, a) > 0, A(a1, c) > 0, and (iii) of Proposition 2, we get A(a1, a ∧F c) > 0.
Similarly, from A(b1, c) > 0 and A(b1, b) > 0, we get A(b1, b ∧F c) > 0. Hence by
Corollary 3 we have

A(a1 ∨F b1, (a ∧F c) ∨F (b ∧F c)) > 0.

Since a1 ∨F b1 = (a ∨F b) ∧F c, we conclude that

A((a ∨F b) ∧F c, (a ∧F c) ∨F (b ∧F c)) > 0.

(ii)⇒(i) Let c ∈ X be such that A(c, a ∨F b) > 0. Since (ii) holds for any
c ∈ X, we have

(3.3) A((a ∨F b) ∧F c, (a ∧F c) ∨F (b ∧F c)) > 0.
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By (i) of Proposition 2 we have

A(a ∧F c, a) > 0 and A(b ∧F c, b) > 0.

This implies by Corollary 3 that

(3.4) A((a ∧F c) ∨F (b ∧F c), a ∨F b) > 0.

Also, from
A(a ∧F c, c) > 0 and A(b ∧F c, c) > 0,

we have by Corollary 3 that

(3.5) A((a ∧F c) ∨F (b ∧F c), c) > 0.

Thus from (3.4), (3.5) and by Corollary 3 we get

(3.6) A((a ∧F c) ∨F (b ∧F c), (a ∨F b) ∧F c) > 0.

From (3.3) and (3.6) by fuzzy antisymmetry of A, we get

(3.7) (a ∧F c) ∨F (b ∧F c) = (a ∨F b) ∧F c.

From (v) of Proposition 2 and A(c, a∨F b) > 0, we get (a∨F b)∧F c = c. Putting
a1 = a ∧F c and b1 = b ∧F c and using (3.7) we note that a1, b1 satisfy

A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = c.

Thus (a, b)FDj holds.

(ii)⇒(iii) We note that for any a, b, c ∈ X, A(a ∧F c, (a ∨F b) ∧F c) > 0 and
A(b ∧F c, (a ∨F b) ∧F c) > 0. Hence by using Corollary 3, we get

A((a ∧F c) ∨F (b ∧F c), (a ∨F b) ∧F c) > 0.

By (ii) we have

A((a ∨F b) ∧F c, (a ∧F c) ∨F (b ∧F c)) > 0.

Hence by fuzzy antisymmetry of A, we get

(a ∨F b) ∧F c = (a ∧F c) ∨F (b ∧F c).

(iii)⇒(ii) The proof is obvious.

Lemma 5. Let (X,A) be a fuzzy lattice. Then the following statements hold:

(i) For any a, b ∈ X, if A(a, b) > 0, then (a, b)FDj .
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(ii) For any a, b ∈ X, the following statements hold:

(a ∧F b, a)FDj , (a ∧F b, b)FDj, (a, a ∨F b)FDj , (b, a ∨F b)FDj ,

(a ∧F b, a ∨F b)FDj.

(iii) If X has the elements ⊥ and ⊤, then for every a ∈ X, (⊥, a)FDj and

(a,⊤)FDj hold.

Proof. (i) Let A(a, b) > 0. This implies that a ∨F b = b. To show (a, b)FDj ,
we need to show that if x ∈ X is such that A(x, a ∨F b) > 0, then there exist
a1, b1 ∈ X such that

A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = x.

Let c ∈ X be such that A(c, a∨F b) > 0. Since a∨F b = b, we get A(c, b) > 0 and
so b∧F c = c. For any a ∈ X, we always have c = c∨F (a∧F c). Since c = b∧F c,
we get

c = (b ∧F c) ∨F (a ∧F c).

Put a1 = a∧F c and b1 = b∧F c. Then by (v) of Proposition 2, A(a1, a) > 0 and
A(b1, b) > 0 hold. Thus we have a1 ∨F b1 = c. Hence (a, b)FDj holds.

(ii) Follows from (i) of Proposition 2 and (i).

(iii) Follows from (i).

Now we give a generalization of the concept of a fuzzy join-distributive pair.

Definition. Let (X,A) be a fuzzy lattice. A pair of elements a, b ∈ X is called a
fuzzy join-semidistributive pair, denoted by (a, b)FSDj , if the following condition
holds:

(a, b)FSDj : Let c ∈ X be such that A(c, a ∨F b) > 0. Then there exists a1 ∈ X

satisfying A(a1, a) > 0, A(a1, c) > 0 and A(c, a1 ∨F b) > 0.

Dually, we have the concept of a fuzzy meet-semidistributive pair, denoted
by (a, b)FSDm.

Lemma 6. In any fuzzy lattice (X,A), if (a, b)FDj holds, then (a, b)FSDj holds.

Proof. Suppose that for some a, b ∈ X, (a, b)FDj holds, i.e., if c ∈ X is such
that A(c, a ∨F b) > 0, then there exist a1, b1 ∈ X such that

(3.8) A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = c.

To show that (a, b)FSDj holds, i.e., to show that, if x ∈ X is such that
A(x, a ∨F b) > 0 holds, then there exists d ∈ X such that

(3.9) A(d, a) > 0, A(d, x) > 0 and A(x, d ∨F b) > 0.
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Suppose that c ∈ X is such that A(c, a ∨F b) > 0 holds. Since (a, b)FDj

holds, by (3.8), there exist a1, b1 ∈ X such that

(3.10) A(a1, a) > 0, A(b1, b) > 0 and a1 ∨F b1 = c.

As a1 ∨F b1 = c we get A(a1, c) > 0. Since A(b1, b) > 0 and A(a1, a1) > 0, by
Corollary 3, we get A(a1 ∨F b1, a1 ∨F b) > 0. Hence A(c, a1 ∨F b) > 0. Thus a1
satisfies

A(a1, a) > 0, A(a1, c) > 0 and A(c, a1 ∨F b) > 0.

Hence (a, b)FSDj holds.

The following example shows that in a fuzzy lattice,
(i) there may exist a pair of elements which is not a fuzzy semi-distributive

pair
(ii) there may exist a pair of elements x, y for which (x, y)FSDj holds but

(x, y)FDj does not hold.
Thus “fuzzy semi-distributivity”is weaker than “fuzzy distributivity”.

Example 7. Consider the fuzzy lattice in Example 1.

(i) We show that the pair (e, b) in Example 1 is not a fuzzy semi-distributive
pair. If (e, b)FSDj holds, then we need to show that for every x satisfying
A(x, e ∨F b) > 0, there exists a1 such that

A(a1, e) > 0, A(a1, x) > 0 and A(x, a1 ∨F b) > 0.

We note that for x = f , A(f, e ∨F b) = A(f,⊤) > 0 holds. The only element
a1 satisfying both A(a1, e) > 0, A(a1, f) > 0 is a1 = ⊥. For a1 = ⊥ we have
A(f, a1 ∨F b) = A(f, b) but A(f, b) > 0 does not hold. Thus (e, b)FSDj does not
hold.

(ii) We show that (e, f)FSDj holds but (e, f)FDj does not hold.
(I) To show that (e, f)FSDj holds, we need to show that if x ∈ X is such that
A(x, e ∨F f) > 0, then there exists a1 ∈ X such that

(3.11) A(a1, x) > 0, A(a1, e) > 0 and A(x, a1 ∨F f) > 0.

We note e ∨F f = ⊤.

Hence the possible choices for x satisfying A(x, e ∨F f) > 0 are x = ⊥, a, b, c, d,

e, f,⊤.

For x = ⊥, we take a1 = ⊥ and it satisfies all the conditions in (3.11).
For x = a, we take a1 = a and it satisfies all the conditions in (3.11).
For x = b, we take a1 = a and it satisfies all the conditions in (3.11).
For x = c, we take a1 = ⊥ and it satisfies all the conditions in (3.11).
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For x = d, we take a1 = a and it satisfies all the conditions in (3.11).
For x = e, we take a1 = a and it satisfies all the conditions in (3.11).
For x = f , we take a1 = ⊥ and it satisfies all the conditions in (3.11).
For x = ⊤, we take a1 = a and it satisfies all the conditions in (3.11).

Thus (e, f)FSDj holds.

(II) We claim that (e, f)FDj does not hold. We observe that e ∨F f = ⊤ and
A(d, e ∨F f) = A(d,⊤) > 0. Suppose that there exist a1, b1 ∈ X such that
A(a1, e) > 0, A(b1, f) > 0. We note that A(a1, e) > 0 is satisfied only for a1 = ⊥
or a or e. The only elements satisfying A(b1, f) > 0 are b1 = ⊥ or c or f . Hence
the possible choices for a1 ∨F b1 are ⊥ or a or b or e or f or a ∨F c = b or
a ∨F f = ⊤, e ∨F c = ⊤ or e ∨F f = ⊤. Thus there do not exist a1, b1 ∈ X such
that

A(a1, e) > 0, A(b1, f) > 0 and a1 ∨F b1 = d.

Hence (e, f)FDj does not hold.

We prove some equivalent forms of (a, b)FSDj .

Theorem 8. Let a, b ∈ X. The following conditions are equivalent:

(i) (a, b) is a fuzzy join-semidistributive pair.

(ii) A({(a ∨F b) ∧F c} ∨F b, (a ∧F c) ∨F b) > 0 for every c ∈ X.

(iii) {(a ∨F b) ∧F c} ∨F b = (a ∧F c) ∨F b for every c ∈ X.

Proof. (i)⇒(ii) Suppose that (a, b) is a fuzzy join-semidistributive pair, i.e., if
x ∈ X is such that A(x, a ∨F b) > 0 holds. Then there exists a1 ∈ X such that

A(a1, a) > 0, A(a1, x) > 0 and A(x, a1 ∨F b) > 0.

Let c ∈ X. We note that A((a∨F b)∧F c, a∨F b) > 0. By (i) there exists a1 ∈ X

such that

A(a1, a) > 0, A(a1, (a ∨F b) ∧F c) > 0 and A((a ∨F b) ∧F c, a1 ∨F b) > 0.

Hence we get

A(a1 ∨F b, [(a ∨F b) ∧F c] ∨F b) > 0 and A([(a ∨F b) ∧F c] ∨F b, a1 ∨F b) > 0.

Hence by fuzzy antisymmetry, we get

[(a ∨F b) ∧F c] ∨F b = a1 ∨F b.

From A(a1, (a ∨F b) ∧F c) > 0 and A((a ∨F b) ∧F c, c) > 0 by fuzzy transitivity
of A we have A(a1, c) > 0. Now A(a1, a) > 0, A(a1, c) > 0 imply by (vi) of
Proposition 2 that A(a1, a ∧F c) > 0 and by (vi) of Proposition 2 we get

A(a1 ∨F b, (a ∧F c) ∨F b) > 0.
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Using [(a ∨F b) ∧F c] ∨F b = a1 ∨F b, we get

A([(a ∨F b) ∧F c] ∨F b, (a ∧F c) ∨F b) > 0.

Since A((a ∨F b) ∧F c, [(a ∨F b) ∧F c] ∨F b) > 0 holds, by fuzzy transitivity of A
we have

A((a ∨F b) ∧F c, (a ∧F c) ∨F b) > 0.

By (vi) of Proposition 2 we get

A({(a ∨F b) ∧F c} ∨F b, (a ∧F c) ∨F b) > 0.

Thus, (ii) holds.

(ii)⇒(i) Suppose that (ii) holds. We need to show that (a, b) is a fuzzy join-
semidistributive pair, i.e., to show that, if x ∈ X is such that A(x, a ∨F b) > 0
holds, then there exists a1 ∈ X such that

A(a1, a) > 0, A(a1, x) > 0 and A(x, a1 ∨F b) > 0.

Let c ∈ X be such that A(c, a ∨F b) > 0. Hence by (v) of Proposition 2, c =
(a ∨F b) ∧F c. By (ii) A({(a ∨F b) ∧F c} ∨F b, (a ∧F c) ∨F b) > 0. Hence by (vii)
of Proposition 2, (as (a ∨F b) ∧F c ≤F {(a ∨F b) ∧F c} ∨F b) we get

(3.12) A((a ∨F b) ∧F c, (a ∧F c) ∨F b) > 0.

Putting c = (a ∨F b) ∧F c in (3.12), we get

A(c, (a ∧F c) ∨F b) > 0.

Put a ∧F c = a1. Then A(a1, a) > 0 and A(a1, c) > 0 and A(c, a1 ∨F b) > 0.
Thus, (i) holds.

(ii)⇒(iii) By using Proposition 2, we note that for all a, b, c ∈ X, A((a ∧F c)
∨F b, {(a∨F b)∧F c} ∨F b) > 0 always holds. By (ii) for every c ∈ X, A({(a∨F b)
∧F c}∨F b, (a∧F c)∨F b) > 0 holds. Hence by fuzzy antisymmetry of A, for every
c ∈ X we get

{(a ∨F b) ∧F c} ∨F b = (a ∧F c) ∨F b.

(iii)⇒(ii) Obvious.

We recall some definitions from Wasadikar and Khubchandani [11]. In [11],
the term modular pair (respectively, dual modular pair) is used. But we use the
terminology from Maeda [4].

Definition [11, Definition 3.1]. Let (X,A) be a fuzzy lattice. We say that (a, b)
is a fuzzy join-modular pair and we write (a, b)FMj , if whenever A(b, c) > 0 for
some c ∈ X, then (c ∧F a) ∨F b = c ∧F (a ∨F b).
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Dually, we can define a fuzzy meet-modular pair (a, b)FMm.

Definition. A fuzzy lattice (X,A) is called a fuzzy modular lattice, if (a, b)FMj

(equivalently, (a, b)FMm) holds for all a, b ∈ X.

We prove a characterization for a pair of elements to be a fuzzy join-modular
pair.

Theorem 9. Let (X,A) be a fuzzy lattice. For a pair (a, b) of elements in X,

the following conditions are equivalent:

(i) (a, b) is a fuzzy join-modular pair.

(ii) If A(b, c) > 0 and A(c, a ∨F b) > 0, then there exists a1 ∈ X such that

A(a1, a) > 0 and a1 ∨ b = c.

Proof. (i)⇒(ii) Suppose that (a, b) is a fuzzy join-modular pair, i.e., if A(b, x) >
0 for some x ∈ X, then (x ∧F a) ∨F b = x ∧F (a ∨F b). Let c ∈ X be such that
A(b, c) > 0 and A(c, a ∨F b) > 0. Since (a, b) is a fuzzy join-modular pair and
A(b, c) > 0, by (i),

(3.13) (c ∧F a) ∨F b = c ∧F (a ∨F b).

Since A(c, a ∨F b) > 0, it follows from (v) of Proposition 2, that

(3.14) c ∧F (a ∨F b) = c.

Put a1 = c∧F a. Then A(a1, a) > 0. From (3.13) and (3.14), we get a1 ∨F b = c.
Thus, (ii) holds.

(ii)⇒(i) To show that (a, b) is a fuzzy join-modular pair, i.e., to show that if
A(b, x) > 0 for some x ∈ X, then (x ∧F a) ∨F b = x ∧F (a ∨F b). Let c ∈ X be
such that A(b, c) > 0. By (i) of Proposition 2, A(b, a ∨F b) > 0 holds. Hence by
Corollary 3, A(b, c∧F (a∨F b)) > 0. Similarly, we get A(c∧F (a∨F b), a∨F b) > 0.
By applying (ii) to A(b, c∧F (a∨F b)) > 0, there exists d ∈ X such that A(d, a) > 0
and d∨F b = c∧F (a∨F b). From this, we have A(d, c∧F (a∨F b)) > 0. This implies
A(d, c) > 0. By (vi) of Proposition 2, we have A(d ∧F a, c ∧F (a ∨F b) ∧F a) > 0,
i.e., A(d ∧F a, c ∧F a) > 0. From A(d, a) > 0 and A(d, c) > 0, by Corollary 3, we
have A(d, c ∧F a) > 0. We have

(c ∧F a) ∨F {c ∧F (a ∨F b)} = (c ∧F a) ∨F d ∨F b

= (c ∧F a) ∨F b, as A(d, c ∧F a) > 0.
(3.15)

Since A(a, a ∨F b) > 0 by (vi) of Proposition 2 we have

A(c ∧F a, c ∧F (a ∨F b)) > 0.
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Again by (iv) of Proposition 2 we have

(c ∧F a) ∨F {c ∧F (a ∨F b)} = c ∧F (a ∨F b).

Hence from (3.15) we conclude that

c ∧F (a ∨F b) = (c ∧F a) ∨F b.

Thus, (i) holds.

In the following lemma we prove relationships among a fuzzy distributive
pair, a fuzzy semi-distributive pair and a fuzzy join-modular pair.

Lemma 10. For a pair (a, b) of elements in X, consider the following statements:

(i) (a, b) is a fuzzy join-distributive pair.

(ii) (a, b) is a fuzzy join-semidistributive pair.

(iii) (a, b) is a fuzzy join-modular pair.

Then the following implications hold:

(i)⇒(ii)⇒(iii).

Proof. (i)⇒(ii) This implication is shown in Lemma 6.

(ii)⇒(iii) Suppose that (a, b) is a fuzzy join-semidistributive pair. To show
that (a, b) is a fuzzy join-modular pair, we need to show that if A(b, x) > 0 for
some x ∈ X, then (x ∧F a) ∨F b = x ∧F (a ∨F b).

Let c ∈ X be such that A(b, c) > 0 and A(c, a ∨F b) > 0. Since (a, b) is a
fuzzy join-semidistributive pair, it follows from (ii) that there exists a1 ∈ X such
that A(a1, a) > 0, A(a1, c) > 0 and A(c, a1 ∨F b) > 0. By (vi) of Proposition 2
we get A(a1 ∨F b, c ∨F b) > 0 and A(c ∨F b, a1 ∨F b) > 0. Therefore, by fuzzy
antisymmetry of A we get a1 ∨F b = c∨F b. As A(b, c) > 0 by (iv) of Proposition
2 we have a1 ∨F b = c. Thus, by Theorem 9, (iii) holds.

In the following remark we show that the implications in Lemma 10 are not
reversible.

Remark 11. (i) We have shown in Example 1, that (e, f)FSDj holds but
(e, f)FDj does not hold.

(ii) We show that in the fuzzy lattice in Example 1 (e, d)FMj holds but
(e, d)FSDj does not hold. To show that (e, d)FMj holds, we need to show that
for every x ∈ X satisfying A(d, x) > 0, A(x, e∨F d) > 0, there exists a1 ∈ X such
that

(3.16) A(a1, e) > 0 and a1 ∨F d = x.
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We note that e ∨F d = ⊤. The possible choices for x satisfying A(d, x) > 0,
A(x, e ∨F d) > 0 are x = d,⊤. For x = d, we take a1 = ⊥ and it satisfies all the
conditions in (3.16). For x = ⊤, we take a1 = e and it satisfies all the conditions
in (3.16). Thus (e, d)FMj holds. We claim that (e, d)FSDj does not hold. We
need to show that for some x ∈ X satisfying A(x, e ∨F d) > 0, there does not
exist a1 ∈ X such that

(3.17) A(a1, x) > 0, A(a1, e) > 0 and A(x, a1 ∨F d) > 0.

Since e ∨F d = ⊤, every element x ∈ X satisfies A(x,⊤) > 0.

If we consider x = f , then we have to find a1 satisfying A(a1, f) > 0,
A(a1, e) > 0 and A(f, a1∨F d) > 0. The only elements satisfying A(a1, e) > 0 are
a1 = ⊥, a, e. We note that if we take a1 = ⊥, then the condition A(f, a1∨F d) > 0
becomes A(f, d) > 0 but it does not hold. If we take a1 = a, then the condition
A(a1, f) > 0 becomes A(a, f) > 0, a contradiction to A(a, f) = 0. If we take
a1 = e, then the condition A(a1, f) > 0 becomes A(e, f) > 0, a contradiction to
A(e, f) = 0. Thus, there does not exist a1 satisfying A(a1, f) > 0, A(a1, e) > 0
and A(f, a1 ∨F d) > 0. Hence (e, d)FSDj does not hold.

This shows that the implications in Lemma 10 are not reversible.

Lemma 12. If (a, b) is a fuzzy join-semidistributive pair and if (b, a1) is a fuzzy

join-modular pair for every a1 satisfying A(a1, a) > 0, then (a, b)FDj .

Proof. Let A(c, a ∨F b) > 0. Since (a, b) is a fuzzy join-semidistributive pair,
there exists a1 ∈ X such that A(a1, a) > 0, A(a1, c) > 0 and A(c, a1 ∨F b) > 0.
By assumption, (b, a1) is a fuzzy join-modular pair. Hence there exists b1 ∈ X

such that A(b1, b) > 0 and b1 ∨F a1 = c. Thus (a, b) is a fuzzy join-distributive
pair.

From Lemma 12 we conclude that in a fuzzy modular lattice if (a, b) is a
fuzzy join-semidistributive pair, then (a, b) is a fuzzy join-distributive pair. We
note some elementary properties.

Proposition 13. In a fuzzy lattice (X,A), the following statements hold:

(i) Let a, b, c ∈ X be such that (a, b)FDj and (a ∨F b, c)FDj hold. If a1 ∈ X

satisfies A(a, a1) > 0 and A(a1, a ∨F c) > 0, then (a1, b ∨F c)FDj holds.

(ii) Let a, b, c ∈ X be such that (a, b)FSDj and (a ∨F b, c)FSDj hold. If a1 ∈ X

satisfies A(a, a1) > 0 and A(a1, a ∨F c) > 0, then (a1, b ∨F c)FSDj holds.

Proof. (i) Suppose that a, b, c ∈ X are such that (a, b)FDj and (a ∨F b, c)FDj

hold. Let a1 ∈ X be such that A(a, a1) > 0 and A(a1, a ∨F c) > 0. To show that
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(a1, b∨F c)FDj holds, i.e., to show that if x ∈ X is such that A(x, a1∨F b∨F c) > 0,
then there exist α, β ∈ X satisfying

(3.18) A(α, a1) > 0, A(β, b ∨F c) > 0 and α ∨F β = x.

Suppose that for some d ∈ X, A(d, a1∨F b∨F c) > 0. Since A(a, a1) > 0 holds,
by (vi) of Proposition 2, we get A(a∨F b, a1∨F b) > 0. From this by applying (vi)
of Proposition 2, we get A(a ∨F b ∨F c, a1 ∨F b ∨F c) > 0. Similarly, by applying
(vi) of Proposition 2, to A(a1, a∨F c) > 0 we get A(a1 ∨F b, a∨F c∨F b) > 0 and
from this by (vi) of Proposition 2 we get A(a1 ∨F b ∨F c, a ∨F c ∨F b) > 0. Thus
by fuzzy antisymmetry of A we get

a1 ∨F b ∨F c = a ∨F b ∨F c.

Hence we conclude that A(d, a ∨F b ∨F c) > 0. Since (a ∨F b, c)FDj holds and
A(d, a ∨F b ∨F c) > 0, there exist e, f ∈ X such that

A(e, a ∨F b) > 0, A(f, c) > 0 and e ∨F f = d.

Since (a, b)FDj and A(e, a ∨F b) > 0, there exist g, h ∈ X such that

A(g, a) > 0, A(h, b) > 0 and g ∨F h = e.

From A(h, b) > 0 and A(f, c) > 0 we get by Corollary 3, A(h ∨F f, b ∨F c) > 0.
Put i = f ∨F h. Then A(i, b ∨F c) > 0 and g ∨F i = d. From A(g, a) > 0 and
A(a, a1) > 0, by fuzzy transitivity of A we get A(g, a1) > 0. Thus we have shown
the existence of g, i ∈ X such that A(g, a1) > 0, A(i, b ∨F c) > 0 and g ∨F i = d.
Thus (3.18) holds with α = g, β = i and x = d. Hence (a1, b ∨F c)FDj holds.

(ii) Suppose that (a, b)FSDj and (a ∨F b, c)FSDj hold. Let a1 ∈ X be such
that A(a, a1) > 0 and A(a1, a ∨F c) > 0. We have to show that (a1, b ∨F c)FSDj

holds, i.e., to show that if x ∈ X satisfies A(x, a1∨F b∨F c) > 0, then there exists
α ∈ X such that

(3.19) A(α, a1) > 0, A(α, x) > 0 and A(x, α ∨F b ∨F c) > 0.

Suppose that for some d ∈ X, A(d, a1 ∨F b ∨F c) > 0. Since A(a, a1) > 0,
A(a1, a ∨F c) > 0, by (vi) of Proposition 2, as shown in (i), we get

A(a ∨F b ∨F c, a1 ∨F b ∨F c) > 0 and A(a1 ∨F b ∨F c, a ∨F b ∨F c) > 0.

By fuzzy antisymmetry of A we get

a1 ∨F b ∨F c = a ∨F b ∨F c.
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Hence A(d, a ∨F b ∨F c) > 0. Since (a ∨F b, c)FSDj and A(d, a ∨F b ∨F c) > 0
hold, there exists f ∈ X such that

A(f, a ∨F b) > 0, A(f, d) > 0 and A(d, f ∨F c) > 0.

Since (a, b)FSDj and A(f, a ∨F b) > 0 hold, there exists e ∈ X such that

A(e, a) > 0, A(e, f) > 0 and A(f, e ∨F b) > 0.

From A(e, a) > 0 and A(a, a1) > 0 by fuzzy transitivity of A we get A(e, a1) > 0.
From A(e, f) > 0 and A(f, d) > 0 by fuzzy transitivity of A we get A(e, d) > 0.
As A(f, e ∨F b) > 0 holds, by (vi) of Proposition 2, we get

(3.20) A(f ∨F c, e ∨F b ∨F c) > 0.

We have noted above that

(3.21) A(d, f ∨F c) > 0.

From (3.20) and (3.21) by fuzzy transitivity of A we get

A(d, e ∨F b ∨F c) > 0.

Thus we have shown the existence of e ∈ X such that

A(e, a1) > 0, A(e, d) > 0 and A(d, e ∨F b ∨F c) > 0.

Thus (3.19) holds with x = d, α = e. Hence (a1, b ∨F c)FSDj holds.

Proposition 14. Let (X,A) be a fuzzy lattice and a, a1, b, b1 ∈ X.

(i) If (a1, b)FDj and (a2, b)FDj hold, then (a1 ∧F a2, b)FDj holds.

(ii) If (a1, b)FSDj and (a2, b)FSDj hold, then (a1 ∧F a2, b)FSDj holds.

Proof. (i) Suppose that (a1, b)FDj and (a2, b)FDj hold. To show that (a1 ∧F

a2, b)FDj holds, i.e., to show that if x ∈ X is such that A(x, (a1 ∧F a2)∨F b) > 0,
then there exist α, β ∈ X such that

(3.22) A(α, a1 ∧F b1) > 0, A(β, b) > 0 and α ∨F β = x.

Let c ∈ X satisfy A(c, (a1∧F a2)∨F b) > 0. Since A((a1∧F a2)∨F b, a1∨F b) > 0
and A((a1 ∧F a2)∨F b, a2 ∨F b) > 0 always hold, by fuzzy transitivity of A, from
A(c, (a1 ∧F a2) ∨F b) > 0 we get

A(c, a1 ∨F b) > 0 and A(c, a2 ∨F b) > 0.
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Since A(c, a1 ∨F b) > 0 and (a1, b)FDj hold, there exist c1, b1 ∈ X such that

A(c1, a1) > 0, A(b1, b) > 0 and c1 ∨F b1 = c.

From c1 ∨F b1 = c, we conclude that A(c1, c) > 0. Using the fuzzy transitivity of
A and from

A(c1, c) > 0 and A(c, a2 ∨F b) > 0

we have
A(c1, a2 ∨F b) > 0.

Since A(c1, a2 ∨F b) > 0 and (a2, b)FDj hold, there exist c2, b2 ∈ X such that

A(c2, a2) > 0, A(b2, b) > 0 and c2 ∨F b2 = c1.

We have A(c1, a1) > 0, A(c2, a2) > 0. From Corollary 3, this implies that

A(c1 ∧F c2, a1 ∧F a2) > 0.

From c2 ∨F b2 = c1, we have A(c2, c1) > 0 and so c1 ∧F c2 = c2. This implies

A(c2, a1 ∧F a2) > 0.

From A(b1, b) > 0 and A(b2, b) > 0, from Corollary 3, we have A(b1 ∨F b2, b) > 0.
Thus we have A(c2, a1 ∧F a2) > 0, A(b1 ∨F b2, b) > 0 and c2 ∨F (b1 ∨F b2) = c.
Hence (3.22) holds with α = c2, β = b1 ∨F b2 and so (a1 ∧F a2, b)FDj holds.

(ii) Suppose that (a1, b)FSDj and (a2, b)FSDj hold. To show that (a1 ∧F

a2, b)FSDj holds, i.e., to show that if x ∈ X is such that A(x, (a1∧F a2)∨F b) > 0,
then there exists α ∈ X such that

(3.23) A(α, a1 ∧F a2) > 0, A(α, b) > 0, and A(x, α ∨F b) > 0.

Let c ∈ X be such that A(c, (a1 ∧F a2) ∨F b) > 0. As shown in the proof of (i),
this implies that A(c, a1 ∨F b) > 0 and A(c, a2 ∨F b) > 0. As A(c, a1 ∨F b) > 0
and (a1, b)FSDj hold, there exists c1 ∈ X such that

A(c1, c) > 0, A(c1, a1) > 0 and A(c, c1 ∨F b) > 0.

Since A(c1, c) > 0 and A(c, a2 ∨F b) > 0, we get by fuzzy transitivity of A, that
A(c1, a2 ∨F b) > 0. From A(c1, a2 ∨F b) > 0 and (a2, b)FSDj , there exists c2 ∈ X

such that
A(c2, a2) > 0, A(c2, c1) > 0 and A(c1, c2 ∨F b) > 0.

By the fuzzy transitivity of A, we get the following. From A(c2, c1) > 0 and
A(c1, c) > 0, we get A(c2, c) > 0. From A(c2, c1) > 0 and A(c1, a1) > 0 we get
A(c2, a1) > 0. By Corollary 3, we get the following. Using A(c2, a2) > 0 and
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A(c2, a1) > 0 we get A(c2, a1∧F a2) > 0. From A(c1, c2∨F b) > 0 and A(b, b) > 0,
we get A(c1∨F b, c2∨F b) > 0. From A(c, c1∨F b) > 0 and A(c1∨F b, c2∨F b) > 0,
by fuzzy transitivity, we get A(c, c2 ∨F b) > 0. Thus c2 satisfies

A(c2, a1 ∧F a2) > 0, A(c2, c) > 0 and A(c, c2 ∨F b) > 0.

Hence (3.23) is satisfied with α = c2, x = c. Thus, (a1 ∧F a2, b)FSDj holds.

Definition. Let (X,A) be a fuzzy lattice with ⊥. An element a ∈ X is called a
fuzzy atom, if A(b, a) > 0 holds for some b ∈ X, then either b = ⊥ or b = a.

Theorem 15. Let (X,A) be a fuzzy lattice with ⊥. Let a be a fuzzy atom and

b ∈ X. Then the following statements are equivalent:

(i) (a, b)FSDj.

(ii) If A(c, a ∨F b) > 0, for some c ∈ X, then either A(a, c) > 0 or A(c, b) > 0.

Proof. (i)⇒(ii) Suppose that (a, b)FSDj holds, i.e., if x ∈ X is such that
A(x, a ∨F b) > 0, then there exists α ∈ X satisfying

(3.24) A(α, a) > 0, A(α, b) > 0, and A(x, α ∨F b) > 0.

Let c ∈ X be such that A(c, a∨F b) > 0. Since (a, b)FSDj holds, A(c, a∨F b) > 0
implies from (3.24) that there exists a1 ∈ X such that

A(a1, a) > 0, A(a1, c) > 0 and A(c, a1 ∨F b) > 0.

Since a is a fuzzy atom, A(a1, a) > 0 implies that either a1 = ⊥ or a1 = a.
If a1 = ⊥, then A(c, a1 ∨F b) > 0 implies that A(c, b) > 0. If a1 = a, then
A(a1, c) > 0 implies that A(a, c) > 0. Thus, (ii) holds.

(ii)⇒(i) Let a be a fuzzy atom. Suppose that for some c ∈ X, A(c, a∨F b) > 0
holds. By (ii), either A(a, c) > 0 or A(c, b) > 0. If A(a, c) > 0, we take α = a

and x = c and all the conditions in (3.24) are satisfied. If A(c, b) > 0, we take
α = ⊥ and x = c and all the conditions in (3.24) are satisfied. Thus, (a, b)FSDj

holds.

In the next theorem, we prove that for a pair of fuzzy atoms, the concepts of a
fuzzy join-distributive pair and a fuzzy join semi-distributive pair are equivalent.

Theorem 16. Let (X,A) be a fuzzy lattice with ⊥. Let p and q be fuzzy atoms

of X. Then the following statements are equivalent.

(i) (p, q)FDj .

(ii) (p, q)FSDj and (q, p)FSDj .
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(iii) Let a 6= ⊥. If 0 < A(⊥, a) < 1 and 0 < A(a, p ∨F q) < 1, then either a = p

or a = q.

Proof. (i)⇒(ii) Suppose that (p, q)FDj holds, i.e., if x ∈ X is such that A(x, p∨F

q) > 0, then there exist a1, b1 such that

(3.25) A(a1, p) > 0 and A(b1, q) > 0 such that a1 ∨F b1 = x.

To show that (p, q)FSDj holds, i.e., to show that if x ∈ X is such that
A(x, p ∨F q) > 0, then there exists α ∈ X satisfying

(3.26) A(α, p) > 0, A(α, x) > 0 and A(x, p ∨F q) > 0.

Let c ∈ X be such that A(c, p∨F q) > 0. Since (p, q)FDj holds and A(c, p∨F q) >
0, by (3.25), there exist c1, d1 satisfying

A(c1, p) > 0 and A(d1, q) > 0 such that c1 ∨F d1 = c.

Since p is a fuzzy atom, either c1 = ⊥ or c1 = p. Thus we note that taking x = c,
α = ⊥ or α = p all the conditions in (3.26) are satisfied and thus (p, q)FSDj

holds. Similarly, we can prove that (q, p)FSDj holds.

(ii)⇒(iii) Suppose that both (p, q)FSDj and (q, p)FSDj hold. Let 0 <

A(⊥, a) < 1 and 0 < A(a, p∨F q) < 1. It follows from Lemma 15 that A(p, a) > 0
or A(a, q) > 0.

Case (1). Suppose that A(p, a) > 0. Since (q, p)FSDj holds. It follows from
A(a, q ∨F p) > 0 and Theorem 15 that either A(q, a) > 0 or A(a, p) > 0. Suppose
that A(q, a) > 0. This together with A(p, a) > 0 implies by Corollary 3 that
A(p ∨F q, a) > 0.

Hence it follows from A(p ∨F q, a) > 0, A(a, p ∨F q) > 0 and fuzzy antisym-
metry of A, that p ∨F q = a and so A(a, p ∨F q) = 1, a contradiction. Hence
A(q, a) > 0 is not possible. Thus A(a, p) > 0. This together with A(p, a) > 0
implies that a = p.

Case (2). Suppose that A(a, q) > 0. Since q is a fuzzy atom, this implies
that a = q. Thus, (iii) holds.

(iii)⇒(i) Let a 6= ⊥ and A(a, p ∨F q) > 0. Then either 0 < A(a, p ∨F q) < 1
or A(a, p ∨F q) = 1. We have to show that (p, q)FDj holds, i.e., we have to show
that there exist b, c ∈ X satisfying A(b, p) > 0, A(c, q) > 0 and b ∨F c = a. We
have the following two cases.

Case (1). Suppose that 0 < A(a, p ∨F q) < 1. Then by (iii) either a = p or
a = q. If a = p, we take b = p and c = ⊥, then A(p, p) > 0, A(⊥, q) > 0 and
p∨F ⊥ = a hold. If a = q, we take b = ⊥ and c = q, then A(⊥, p) > 0, A(q, q) > 0
and ⊥ ∨F q = a hold. Thus in any case (p, q)FDj holds.
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Case (2). Suppose that A(a, p ∨F q) = 1. Then a = p ∨F q. We take b = p

and c = q. We then have A(p, p) > 0, A(q, q) > 0 and p∨F q = a. Thus, (p, q)FDj

holds.

4. Conclusion and future work

In this paper, we have introduced the concepts of fuzzy distributive pairs, fuzzy
semi-distributive pairs and fuzzy modular pairs in a fuzzy lattice and have given
some characterizations and implications of these pairs.

In future, we shall introduce these types of pairs in fuzzy α-lattices and shall
try to prove their properties.

There is a vast study of distributive pairs, semi-distributive pairs and modular
pairs in the context of posets. We shall try to introduce the concepts of fuzzy
distributive pairs, fuzzy semi-distributive pairs and fuzzy modular pairs in fuzzy
partially ordered sets.
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