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Abstract

The concept of disjunctive ideals is introduced in an Almost Distributive
Lattice (ADL). It is proved that the set of all disjunctive ideals of an ADL
forms a complete lattice. A necessary and sufficient condition is derived
for an inverse homomorphic image of a disjunctive ideal of an ADL to be
again a disjunctive ideal. Later, the concept of strongly disjunctive ideals
is introduced in an ADL and their properties are studied. Some equivalent
conditions are established for the set of all strongly disjunctive ideals to
convert into a sublattice of the ideal lattice.
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1. Introduction

An Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [8] as a
common abstraction of many existing ring theoretic generalizations of a Boolean
algebra on one hand and the class of distributive lattices on the other. In that
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paper, the concept of an ideal in an ADL was introduced analogous to that in a
distributive lattice and it was observed that the set PI(L) of all principal ideals
of L forms a distributive lattice. This provided a path to extend many existing
concepts of lattice theory to the class of ADLs. In [5], Rao and Ravi Kumar
proved that some important results on minimal prime ideals of an ADL. In [4],
Rao and Ravi Kumar, characterized the normal ADL in terms of its prime ideals,
minimal prime ideals and annihilator ideals. In [7], Sambasiva Rao introduced the
concepts of disjunctive ideals, strongly disjunctive ideals and normal prime ideals
in distributive Lattices. In that paper, he derived a set of equivalent conditions
for every ideal of a lattice to become a disjunctive ideal. In this paper, we have
introduced the concept of disjunctive ideals in an ADL, analogous to that in
a distributive lattice. We have proved that the set of all disjunctive ideals of
an ADL can be made into a complete lattice. For any ideal I of an ADL, we
have derived that the extension Ie is a disjunctive ideal containing I. We have
provided a necessary and sufficient condition for an inverse homomorphic image of
a disjunctive ideal of an ADL to be again a disjunctive ideal. We have introduced
the concept of normal prime ideals in an ADL and studied their properties. We
have given an equivalent condition for every minimal prime ideal to convert into
a normal prime ideal. We have derived a set of equivalent conditions for every
ideal of an ADL to convert into a strongly disjunctive ideal. Finally, we have
established some equivalent conditions for the set of all strongly disjunctive ideals
to convert into a sublattice of the ideal lattice.

2. Preliminaries

In this section we give some important definitions and results that are frequently
used for ready reference.

Definition 2.1 [8]. An Almost Distributive Lattice with zero or simply ADL is
an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:

1. a ∨ 0 = a

2. 0 ∧ a = 0

3. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

4. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

5. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

6. (a ∨ b) ∧ b = b, for all a, b, c ∈ L.

Every nonempty set X can be regarded as an ADL as follows. Let x0 ∈ X.
Define the binary operations ∨,∧ on X by
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x ∨ y =

{

x if x 6= x0

y if x = x0
x ∧ y =

{

y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.
If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a∧ b (or
equivalently, a ∨ b = b), then ≤ is a partial ordering on L.

Theorem 2.2 [8]. If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the

following:

1. a ∨ b = a ⇔ a ∧ b = b

2. a ∨ b = b ⇔ a ∧ b = a

3. ∧ is associative in L

4. a ∧ b ∧ c = b ∧ a ∧ c

5. (a ∨ b) ∧ c = (b ∨ a) ∧ c

6. a ∧ b = 0 ⇔ b ∧ a = 0

7. a ∧ (a ∨ b) = a ∨ (b ∧ a) = (a ∨ b) ∧ a = a ∨ (a ∧ b) = a and (a ∧ b) ∨ b = b

8. a ≤ a ∨ b and a ∧ b ≤ b

9. a ∧ a = a and a ∨ a = a

10. 0 ∨ a = a and a ∧ 0 = 0.

11. If a ≤ c, b ≤ c, then a ∧ b = b ∧ a and a ∨ b = b ∨ a

12. a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except the right distributivity of ∨ over ∧, commutativity of
∨, commutativity of ∧. Any one of these properties make an ADL L a distributive
lattice.

Theorem 2.3 [8]. Let (L,∨,∧, 0) be an ADL with 0. Then the following are

equivalent:

1. (L,∨,∧, 0) is a distributive lattice

2. a ∨ b = b ∨ a, for all a, b ∈ L

3. a ∧ b = b ∧ a, for all a, b ∈ L

4. (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in
the partially ordered set (L,≤). That is, for any a ∈ L, m ≤ a ⇒ m = a.

Theorem 2.4 [8]. Let L be an ADL and m ∈ L. Then the following are equiva-

lent:
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1. m is maximal with respect to ≤

2. m ∨ a = m, for all a ∈ L

3. m ∧ a = a, for all a ∈ L

4. a ∨m is maximal, for all a ∈ L.

As in distributive lattices [1, 2], a nonempty subset I of an ADL L is called
an ideal of L if a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a
nonempty subset F of L is said to be a filter of L if a ∧ b ∈ F and x ∨ a ∈ F for
a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least
element {0} and greatest element L under set inclusion in which, for any I, J ∈
I(L), I ∩ J is the infimum of I and J while the supremum is given by I ∨ J :=
{a ∨ b | a ∈ I, b ∈ J}. A proper ideal P of L is called a prime ideal if, for any
x, y ∈ L, x∧y ∈ P ⇒ x ∈ P or y ∈ P . A proper idealM of L is said to be maximal
if it is not properly contained in any proper ideal of L. It can be observed that
every maximal ideal of L is a prime ideal. Every proper ideal of L is contained in
a maximal ideal. For any subset S of L the smallest ideal containing S is given
by (S] := {(

∨

n

i=1 si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s]
instead of (S]. Similarly, for any S ⊆ L, [S):={x ∨ (

∧

n

i=1 si) | si ∈ S, x ∈ L and
n ∈ N}. If S = {s}, we write [s) instead of [S).

Theorem 2.5 [8]. For any x, y in L the following are equivalent:

1. (x] ⊆ (y]

2. y ∧ x = x

3. y ∨ x = y

4. [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.

Definition 2.6 [6]. For any nonempty subset A of an ADL L, define A∗ = {x ∈
L | a ∧ x = 0 for all a ∈ A}. Here A∗ is called the annihilator of A in L.

For any a ∈ L, we have {a}∗ = (a]∗, where (a] is the principal ideal generated
by a. For any a ∈ L, we denote ({a})∗ = (a)∗.

Annulets have many important properties. We give some of them in the
following.

Theorem 2.7 [6]. Let L be an ADL. For any x, y ∈ L, we have:

1. x ≤ y ⇒ (y]∗ ⊆ (x]∗



Disjunctive ideals of Almost Distributive Lattices 163

2. (x ∧ y]∗ = (y ∧ x]∗

3. (x ∨ y]∗ = (y ∨ x]∗

4. (x ∨ y]∗ = (x]∗ ∩ (y]∗

5. (x]∗ ∨ (y]∗ ⊆ (x ∧ y]∗

6. x = 0 ⇔ (x]∗ = L.

Definition 2.8 [5]. A prime ideal of L is called a minimal prime ideal if it is a
minimal element in the set of all prime ideals of L ordered by set inclusion.

Theorem 2.9 [5]. Let L be an ADL. Then a prime ideal P is minimal if and

only if for any x ∈ P, there exist an element y /∈ P such that x ∧ y = 0.

3. Disjunctive ideals of ADLs

In this section, we have introduced the concept of disjunctive ideals and normal
prime ideals in an ADL, analogous to that in a distributive lattice. We have
proved that the set of all disjunctive ideals of an ADL can be made into a com-
plete lattice. For any ideal I of an ADL, we have derived that the extension Ie is
a disjunctive ideal containing I. We have derived a necessary and sufficient con-
dition for an inverse homomorphic image of a disjunctive ideal of an ADL to be
again a disjunctive ideal. We have derived that a set of all equivalent conditions
for every ideal to become a disjunctive ideal.

We start this section with the following definition.

Definition 3.1. For any nonempty subset A of an ADL L, define A◦ = {x ∈
L | (a)∗ ∨ (x)∗ = L, for all a ∈ A}.

For any a ∈ L, we denote ({a})◦ = (a)◦.

Lemma 3.2. Let L be an ADL with maximal element m. For any nonempty

subsets A, B of L, we have:

1. A◦ is an ideal of L

2. A ∩A◦ ⊆ {0}

3. If A ⊆ B, then B◦ ⊆ A◦

4. A ⊆ A◦◦

5. A◦◦◦ = A◦

6. A◦ = L if and only if A = {0}.

Proof. Let A, B be any two nonempty subsets of L.
1. Clearly, we have that (0)∗∨(a)∗ = L, for all a ∈ A. Then 0 ∈ A◦ and hence

A◦ is a nonempty set. Let x, y ∈ A◦. Then (x)∗∨(a)∗ = L and (y)∗∨(a)∗ = L, for
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all a ∈ A. Now (x∨y)∗∨(a)∗ = ((x)∗∩(y)∗)∨(a)∗ = ((x)∗∨(a)∗)∩((y)∗∨(a)∗) = L.
Therefore x∨ y ∈ A◦. Let x ∈ A◦. Then (x)∗ ∨ (a)∗ = L, for all a ∈ A. Let r ∈ L.
Since r ∧ x ≤ x, we have that (x)∗ ⊆ (r ∧ x)∗ = (x ∧ r)∗. Now L = (x)∗ ∨ (a)∗ ⊆
(x ∧ r)∗ ∨ (a)∗. Therefore (x ∧ r)∗ ∨ (a)∗ = L and hence x ∧ r ∈ A◦. Thus A◦ is
an ideal of L.

2. Let x ∈ A ∩ A◦. Then x ∈ A and x ∈ A◦. Since x ∈ A◦, we have
(x)∗ ∨ (a)∗ = L, for all a ∈ A. Since x ∈ A, we get that (x)∗ ∨ (x)∗ = L. That
implies (x)∗ = L and hence x = 0. Therefore A ∩A◦ ⊆ {0}.

3. Assume that A ⊆ B. Let x ∈ B◦. Then (x)∗ ∨ (b)∗ = L, for all b ∈ B.
Since A ⊆ B, we get that (x)∗ ∨ (a)∗ = L, for all a ∈ A. Therefore x ∈ A◦. Hence
B◦ ⊆ A◦.

4. Let x ∈ A and y ∈ A◦. Since y ∈ A◦, we have that (y)∗ ∨ (a)∗ = L, for all
a ∈ A. That implies (y)∗ ∨ (x)∗ = L, for all y ∈ A◦. Therefore x ∈ A◦◦ and hence
A ⊆ A◦◦.

5. By 4, we have that A ⊆ A◦◦ and hence A◦◦◦ ⊆ A◦. Let x be any element of
A◦ and t ∈ A◦◦. Then (t)∗∨ (s)∗ = L, for all s ∈ A◦. That implies (x)∗∨ (t)∗ = L,
for all t ∈ A◦◦. That implies x ∈ A◦◦◦ and hence A◦ ⊆ A◦◦◦. Therefore A◦ = A◦◦◦.

6. Assume that A◦ = L. Let m be any maximal element of L. Then m ∈ A◦.
That implies (m)∗∨ (a)∗ = L, for all a ∈ A. That implies (m∧a)∗ = L and hence
(a)∗ = L, for all a ∈ A. Therefore a = 0. Thus A = {0}. Conversely assume that
A = {0}. Since (0)∗ = L, we get that (x)∗ ∨ (0)∗ = L, for all x ∈ L. Therefore
x ∈ A◦, for all x ∈ L. Hence A◦ = L.

Theorem 3.3. Let I, J be any two ideals of ADL L. Then we have the following:

1. (I ∨ J)◦ = I◦ ∩ J◦

2. (I ∩ J)◦◦ ⊆ I◦◦ ∩ J◦◦

3. I◦◦ ∩ J◦◦ ⊆ (I ∨ J)◦◦

4. I ⊆ J◦ ⇒ I ∩ J = {0}.

Proof. 1. Clearly, we have that (I ∨ J)◦ ⊆ I◦ and (I ∨ J)◦ ⊆ J◦. That implies
(I∨J)◦ ⊆ I◦∩J◦. Let x ∈ I◦∩J◦. Then x ∈ I◦ and x ∈ J◦. Then (x)∗∨(i)∗ = L,
for all i ∈ I and (x)∗ ∨ (j)∗ = L, for all j ∈ J. Now, (x)∗ ∨ (i∨ j)∗ = (x)∗ ∨ ((i)∗ ∩
(j)∗) = ((x)∗ ∨ (i)∗) ∩ ((x)∗ ∨ (j)∗) = L. That implies (x)∗ ∨ (i ∨ j)∗ = L, for all
i ∨ j ∈ I ∨ J. That implies x ∈ (I ∨ J)◦ and hence I◦ ∩ J◦ ⊆ (I ∨ J)◦. Therefore
(I ∨ J)◦ = I◦ ∩ J◦.

2, 3, 4 are Clear.

Corollary 3.4. Let L be an ADL with maximal elements. If {Ii | i ∈ ∆} is a

family of ideals of L, then (
⋂

i∈∆ Ii)
◦◦ =

⋂

i∈∆(Ii)
◦◦.

The following result can be verified easily.



Disjunctive ideals of Almost Distributive Lattices 165

Theorem 3.5. Let L be an ADL with maximal elements. For any a, b ∈ L, we
have the following:

1. ((a])◦ = (a)◦

2. (0)◦ = L.

3. For any maximal element m of L, (m)◦ = {0}.

4. If a ≤ b, then (b)◦ ⊆ (a)◦

5. (a ∨ b)◦ = (a)◦ ∩ (b)◦

6. (a)◦ ∨ (b)◦ ⊆ (a ∧ b)◦

7. (a ∨ b)◦ = (b ∨ a)◦

8. (a ∧ b)◦ = (b ∧ a)◦

9. (a)◦ = L if and only if a = 0.

Theorem 3.6. Let L be an ADL with maximal elements. For any nonempty

subset A of L, we have A◦ =
⋂

a∈A
(a)◦.

Proof. Let x ∈ A◦. Then (x)∗ ∨ (a)∗ = L, for all a ∈ A. That implies x ∈ (a)◦,
for all a ∈ A. and hence x ∈

⋂

a∈A
(a)◦. Therefore A◦ ⊆

⋂

a∈A
(a)◦. Conversely let

x ∈
⋂

a∈A
(a)◦. Then x ∈ (a)◦, for all a ∈ A. That implies (x)∗ ∨ (a)∗ = L, for all

a ∈ A. That implies x ∈ A◦. Therefore
⋂

a∈A
(a)◦ ⊆ A◦. Hence A◦ =

⋂

a∈A
(a)◦.

Lemma 3.7. Let I be any ideal of an ADL L with maximal elements. Then

I◦ ⊆ I∗.

Proof. Let x ∈ I◦. Then (x)∗ ∨ (i)∗ = L, for all i ∈ I. Let m be any maximal
element of L such that m ∈ (x)∗ ∨ (i)∗. Then there exist elements y ∈ (x)∗ and
a ∈ (i)∗ such that m = y ∨ a. Since y ∈ (x)∗ and a ∈ (i)∗, we have that y ∧ x = 0
and a∧ i = 0. Now x∧ i = m∧x∧ i = (y∨ a)∧x∧ i = (y∧x∧ i)∨ (a∧x∧ i) = 0.
Therefore x ∧ i = 0, for all i ∈ I and hence x ∈ I∗. Thus I◦ ⊆ I∗.

Example 3.8. Let A = {0, a} be a discrete ADL and B = {0′, a′, b′, c′, 1} be a
distributive lattice whose Hasse diagram is given in the following.

�
�
��

@
@

@@

@
@

@@

�
�
��

d

d d

d

d

0′

a′ b′

c′

1

Take L = A×B = {(0, 0′), (0, a′), (0, b′), (0, c′),

(0, 1), (a, 0′), (a, a′), (a, b′), (a, c′), (a, 1)}.

Then (L,∨,∧, 0) is an ADL with zero 0 = (0, 0′) under

point-wise operations.
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Here
(0, 0′)∗ = L,
(0, a′)∗ = {(0, 0′), (0, b′), (a, b′), (a, 0′)},
(0, b′)∗ = {(0, 0′), (0, a′), (a, a′), (a, 0′)},
(0, c′)∗ = (0, 1)∗ = {(0, 0′), (a, 0′)},
(a, 0′)∗ = {(0, 0′), (0, a′), (0, b′), (0, c′), (0, 1)},
(a, a′)∗ = {(0, 0′), (0, b′)},
(a, b′)∗ = {(0, 0′), (0, a′)},
(a, c′)∗ = (a, 1)∗ = {(0, 0′)}.

Now
(0, 0′)◦ = L,
(0, a′)◦ = (0, b′)◦ = (0, c′)◦ = (0, 1)◦ = {(0, 0′), (a, 0′)},
(a, 0′)◦ = {(0, 0′), (0, a′), (0, b′), (0, c′), (0, 1)},
(a, a′)◦ = (a, b′)◦ = (a, c′)◦ = (a, 1)◦ = {(0, 0′)}.

Consider an ideal I = {(0, 0′), (0, a′)}. Clearly, we have that I∗ = {(0, 0′), (0, b′),
(a, b′), (a, 0′)} and I◦ = {(0, 0′), (a, 0′)}. Hence I◦ ⊆ I∗ but not I∗ * I◦.

Definition 3.9 [4]. An ADL L is said to be normal if every prime ideal of L
contains unique minimal prime ideal.

Definition 3.10 [4]. Two ideals I, J of an ADL L are said to be co-maximal if
I ∨ J = L.

Theorem 3.11 [4]. Let L be an ADL with maximal elements. Then the following

are equivalent:

1. L is normal.

2. Any two distinct minimal prime ideals are co-maximal.

3. For any prime ideal P, O(P ) = {x ∈ L | x ∧ y = 0, for some y /∈ P} is

prime.

4. For any x, y ∈ L, x ∧ y = 0 implies (x)∗ ∨ (y)∗ = L.

5. For any x, y ∈ L, (x)∗ ∨ (y)∗ = (x ∧ y)∗.

Now we derive a set of equivalent conditions for every ideal I of L satisfy
I∗ ⊆ I◦ which is not true in general.

Theorem 3.12. Let L be an ADL with maximal elements. Then the following

conditions are equivalent:

1. L is a normal ADL.

2. For any ideals I, J of L, I ∩ J = {0} if and only if I ⊆ J◦.

3. For any ideal I of L, I◦ = I∗.

4. For any a ∈ L, (a)◦ = (a)∗.
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Proof. 1 ⇒ 2 : Assume that L is a normal ADL. Let I, J be any two ideals of L.
Now we prove that I ∩ J = {0} if and only if I ⊆ J◦. Suppose I ∩ J = {0}. Let
x ∈ I. Then x ∧ a ∈ I, for all a ∈ J. Since a ∈ J, we have that x ∧ a ∈ J. That
implies x∧ a ∈ I ∩ J = {0}. So that x∧ a = 0. Since L is a normal ADL, we have
that (x)∗ ∨ (a)∗ = L, for all a ∈ J. That implies x ∈ J◦ and hence I ⊆ J◦. From
Theorem-3.3(4), we have the converse part.

2 ⇒ 3 : Assume 2. Clearly, we have that I◦ ⊆ I∗. Let x ∈ I∗. Then x∧ i = 0,
for all i ∈ I. That implies (x∧ i] = (0], for all i ∈ I. That implies (x] ∩ (i] = {0},
for all i ∈ I. By our assumption, we get that (x] ⊆ (i]◦, for all i ∈ I. That implies
(x] ⊆

⋂

i∈I
(i]◦ = I◦ and hence x ∈ I◦. Therefore I∗ ⊆ I◦. Thus I◦ = I∗.

3 ⇒ 4 : Assume 3. We prove that (a)◦ = (a)∗, for all a ∈ L. By our assump-
tion, we have that (a]◦ = (a]∗. Clearly, we have that (a)∗ = (a]∗ and (a)◦ = (a]◦.
Therefore (a)◦ = (a)∗.

4 ⇒ 1 : Assume (a)◦ = (a)∗, for all a ∈ L. Let x, y ∈ L with x ∧ y = 0. Then
x ∈ (y)∗. By our assumption, we get that x ∈ (y)◦. That implies (x)∗ ∨ (y)∗ = L.
Hence L is a normal ADL.

Definition 3.13. An ideal I of an ADL L is said to be disjunctive if for any
x, y ∈ L, (x)◦ = (y)◦ and x ∈ I implies y ∈ I.

Lemma 3.14. Let L be an ADL with maximal elements. Then we have the

following:

1. (x)◦ is a disjunctive ideal of L, for all x ∈ L.

2. If I is an ideal of L such that x ∈ L, x ∈ I implies (x)◦◦ ⊆ I, then I is a

disjunctive ideal of L.

Proof. 1. Clearly, (x)◦ is an ideal of L. Let a, b ∈ L with (a)◦ = (b)◦ and a ∈ (x)◦.
Since a ∈ (x)◦, we have (x)∗∨(a)∗ = L. That implies x ∈ (a)◦ = (b)◦. That implies
(x)∗ ∨ (b)∗ = L and hence b ∈ (x)◦. Therefore (x)◦ is a disjunctive ideal of L.

2. Let x be any element of an ideal I with (x)◦◦ ⊆ I. We prove that I is a
disjunctive ideal of L. Let a, b ∈ L with (a)◦ = (b)◦ and a ∈ I. Then (a)◦◦ = (b)◦◦

and (a)◦◦ ⊆ I. That implies (b)◦◦ ⊆ I. Let x ∈ (b)◦. Then (x)∗ ∨ (b)∗ = L. Since
x ∈ (b)◦, we get that b ∈ (b)◦◦. Therefore I is a disjunctive ideal of L.

Theorem 3.15. Let L be an ADL and S a multiplicatively closed subset of L
(i.e., a subset S of L in which a ∧ b ∈ S for all a, b ∈ S). Then the set I = {x ∈
L | (x)∗ ∨ (a)∗ = L, for some a ∈ S} is a disjunctive ideal of L.

Proof. Clearly, 0 ∈ I and hence I is a nonempty set. Let x, y ∈ I. Then there
exist elements a, b ∈ S such that (x)∗∨(a)∗ = L and (x)∗∨(b)∗ = L. Since a, b ∈ S,
we have that a ∧ b ∈ S. Now (x ∨ y)∗ ∨ (a)∗ ∨ (b)∗ = ((x)∗ ∩ (y)∗) ∨ (a)∗ ∨ (b)∗ =
((x)∗ ∨ (a)∗ ∨ (b)∗) ∩ ((y)∗ ∨ (a)∗ ∨ (b)∗) = L. Since (a)∗ ∨ (b)∗ ⊆ (a ∧ b)∗, we get



168 N. Rafi, M. Srujana and T. Srinivasa Rao

that (x∨y)∗∨ (a∧b)∗ = L. Since a∧b ∈ S, we get that x∨y ∈ I. Let x ∈ I. Then
there exists an element a ∈ S such that (x)∗ ∨ (a)∗ = L. Let r be any element of
L. Clearly, we have that (x)∗ ∨ (r)∗ ∨ (a)∗ = L. That implies (x ∧ r)∗ ∨ (a)∗ = L
and hence x ∧ r ∈ I. Therefore I is an ideal of L. It can be easily observed that
I =

⋃

a∈ S
(a]◦. Now, let x ∈ I. Then there exists an element a ∈ S such that

x ∈ (a]◦. That implies (x]◦◦ ⊆ (a]◦. Hence (x]◦◦ ⊆
⋃

a∈S
(a]◦ = I. Therefore I is

a disjunctive ideal of L.

Corollary 3.16. Let L be an ADL. Then for any prime ideal P of L, the set

ℓ(P ) = {x ∈ L | (x)∗ ∨ (a)∗ = L, for some a /∈ P} is a disjunctive ideal of L.

Proof. It is clear by taking S = L \ P , in the above theorem.

We now prove the following.

Lemma 3.17. Let L be an ADL. If the set-theoretic union of disjunctive ideals

of L is an ideal, then it is also a disjunctive ideal in L.

Proof. Let {Ji}i∈∆ be an arbitrary family of disjunctive ideals of L. By hypoth-
esis

⋃

i∈∆ Ji is an ideal of L. Let x, y ∈ L with (x)◦ = (y)◦ and x ∈
⋃

i∈∆ Ji.
Since x ∈

⋃

i∈∆ Ji, there exists k ∈ ∆ such that x ∈ Jk. Since Jk is a disjunctive
ideal of L and (x)◦ = (y)◦, we get that y ∈ Jk. Therefore y ∈

⋃

i∈∆ Ji. Hence
⋃

i∈∆ Ji is a disjunctive ideal of L.

We define an extension of an ideal in an ADL.

Definition 3.18. Let L be an ADL. For any ideal I of L, define Ie = {x ∈
L | (a)◦ ⊆ (x)◦ for some a ∈ I}.

We first prove some elementary properties of Ie in the following.

Lemma 3.19. Let L be an ADL with maximal elements. Then for any ideals

I, J of L, we have the following:

1. I ⊆ Ie

2. I ⊆ J ⇒ Ie ⊆ Je

3. (I ∩ J)e ⊆ Ie ∩ Je

4. Ie ∨ Je ⊆ (I ∨ J)e

5. (I◦)e = I◦.

Proof. 1. Clear.

2. Assume that I ⊆ J. Let x ∈ Ie. Then there exists an element a ∈ I such
that (a)◦ ⊆ (x)◦. Since a ∈ I ⊆ J, we get that x ∈ Je. Therefore Ie ⊆ Je.

3. Clear.
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4. Clear.

5. Clearly, I◦ ⊆ (I◦)e. Let x ∈ (I◦)e. Then there exists an element a ∈ I◦

such that (a)◦ ⊆ (x)◦. Since a ∈ I◦, we get that (a)∗ ∨ (i)∗ = L, for all i ∈ I.
That implies i ∈ (a)◦ ⊆ (x)◦, for all i ∈ I. That implies (x)∗ ∨ (i)∗ = L, for all
i ∈ I. Therefore x ∈ I◦ and hence (I◦)e ⊆ I◦. Thus (I◦)e = I◦.

Theorem 3.20. Let L be an ADL with maximal elements and I an ideal of L.
Then Ie is a disjunctive ideal of L containing I.

Proof. Clearly, 0 ∈ Ie and hence Ie 6= ∅. Let x, y ∈ Ie. There there exist elements
a, b ∈ I such that (a)◦ ⊆ (x)◦ and (b)◦ ⊆ (y)◦. Since a, b ∈ I, we get that a∨b ∈ I.
Now, (a ∨ b)◦ = (a)◦ ∩ (b)◦ ⊆ (x)◦ ∩ (y)◦ = (x ∨ y)◦. Since a ∨ b ∈ I, we get that
x ∨ y ∈ Ie. Let x ∈ Ie. Then there exits an element a ∈ I such that (a)◦ ⊆ (x)◦.
Let r be any element of L. Clearly, we have that (a)◦ ⊆ (x)◦ ⊆ (x ∧ r)◦. That
implies x∧ r ∈ Ie. Therefore Ie is an ideal of L. Let x ∈ Ie. Then there exists an
element a ∈ I such that (a)◦ ⊆ (x)◦. Now we prove that (x)◦◦ ⊆ Ie. Let t ∈ (x)◦◦.
Then (x)◦ ⊆ (t)◦ and hence (a)◦ ⊆ (x)◦ ⊆ (t)◦. That implies t ∈ Ie. Therefore
(x)◦◦ ⊆ Ie, for all x ∈ Ie. Thus Ie is a disjunctive ideal of L containing I.

Theorem 3.21. Let I be a disjunctive ideal of an ADL L. Then Ie = I.

Proof. Clearly, we have that I ⊆ Ie. Let x ∈ Ie. Then there exists an element
a ∈ I such that (a)◦ ⊆ (x)◦. That implies (a)◦ = (a)◦ ∩ (x)◦ = (a ∨ x)◦. Since
I is a disjunctive ideal of L and a ∈ I, We get that a ∨ x ∈ I. That implies
(a ∨ x) ∧ x ∈ I and hence x ∈ I. Therefore Ie ⊆ I. Thus I = Ie.

Theorem 3.22. Let L be an ADL with maximal elemnts. Then the set ID(L)
of all disjunctive ideals of L forms a complete lattice on its own.

Proof. For I, J ∈ ID(L), define I∧J = I∩J and I∨̃ J = (I∨J)e. Then I∩J is a
disjunctive ideal and the infimum of I and J is in ID(L). Therefore I∩J ∈ ID(L).
Also I∨̃ J is a disjunctive ideal. Clearly I, J ⊆ I ∨ J ⊆ (I ∨ J)e = I∨̃J . Let
K be any upper bound for I, J in ID(L). Hence I ∨ J ⊆ K, which implies that
(I ∨ J)e ⊆ Ke = K (since K ∈ ID(L)). Therefore I∨̃ J is the supremum of both
I and J in ID(L). Hence (ID(L),∧, ∨̃) is a lattice. For I, J ∈ ID(L), define
I ≤ J ⇔ I ⊆ J . Clearly 〈ID(L),≤〉 is a partially ordered set. Clearly, (0] and
L are the disjunctive ideals in L and they are the bounds for ID(L). Let {Ii}i∈∆
be a family of disjunctive ideals in ID(L). Since

⋂

i∈∆ Ii is the ideal, we have
⋂

i∈∆ Ii ⊆ (
⋂

i∈∆ Ii)
e. Again, we have

⋂

i∈∆ Ii ⊆ Ii for all i ∈ ∆. That implies
(
⋂

i∈∆ Ii)
e ⊆ (Ii)

e for all i ∈ ∆. That implies (
⋂

i∈∆ Ii)
e ⊆ Ii for all i ∈ ∆(since

Ii ∈ ID(L)). That implies (
⋂

i∈∆ Ii)
e ⊆

⋂

i∈∆ Ii. Hence {
⋂

i∈∆ Ii}
e =

⋂

i∈∆ Ii.
Clearly

⋂

i∈∆ Ii is the infimum of {Ii}i∈∆ in ID(L). Therefore ID(L) is a complete
lattice.
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Theorem 3.23. Let L be an ADL with maximal elements. Then the following

conditions are equivalent:

1. Every ideal is a disjunctive ideal.

2. Every principal ideal is a disjunctive ideal.

3. Every prime ideal is a disjunctive ideal.

4. For any a, b ∈ L, (a)◦ = (b)◦ implies (a] = (b].

Proof. 1 ⇒ 2 : Clear.

2 ⇒ 3 : Assume that every principal ideal is a disjunctive ideal. Let x, y ∈ L
and P, any prime ideal of L with (x)◦ = (y)◦ and x ∈ P. Since x ∈ P, we get that
(x] ⊆ P. By our assumption, we have that (x] is a disjunctive ideal of L. Since
(x)◦ = (y)◦, we get that y ∈ (x] and hence y ∈ P. Therefore P is a disjunctive
ideal of L.

3 ⇒ 4 : Assume that every prime ideal is a disjunctive ideal. Let x, y ∈ L
with (x)◦ = (y)◦. Now we prove that (x] = (y]. Suppose (x] 6= (y]. With out loss
of generality we can assume that (x] * (y]. Then there exists an element a ∈ (x]
such that a /∈ (y]. Since a /∈ (y], there exists a maximal ideal M such that a /∈ M
and (y] ⊆ M. Since M is a maximal ideal, we get that M is prime ideal of L. By
our assumption, we get that M is a disjunctive ideal of L. Since (x)◦ = (y)◦ and
y ∈ M, we get that x ∈ M. That implies (x] ⊆ M and hence a ∈ M, which is a
contradiction to a /∈ M. Therefore (x] = (y].

4 ⇒ 1 : Assume 4. Let x, y ∈ L and I, any ideal of L with (x)◦ = (y)◦ and
x ∈ I. By our assumption, we get that (x] = (y] and x ∈ I. That implies y ∈ I.
Therefore I is a disjunctive ideal of L.

Now we introduce the concept of normal prime ideal to an ADL.

Definition 3.24. Let L be an ADL with maximal elements. A prime ideal P of L
is said to be normal if to each x ∈ P, there exists y /∈ P such that (x)◦∨ (y)◦ = L.

Theorem 3.25. Every normal prime ideal of an ADL L is a minimal prime

ideal.

Proof. Let P be a normal prime ideal of L. Let x ∈ P. Then there exists an
element y /∈ P such that (x)◦ ∨ (y)◦ = L. That implies (x∧ y)◦ = L. That implies
x ∧ y = 0. Therefore P is a minimal prime ideal of L.

In general, the converse of the above theorem is not true. It can see in the
following example.

Example 3.26. From the Example 3.8, we have that I = {(0, 0′), (0, a′)} is an
ideal of L. Clearly, I is a minimal prime ideal of L and (0, a′)◦ ∨ (x, y)◦ 6= L, for
all (x, y) /∈ I. Hence I is not a normal prime ideal of L.
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We derive a sufficient condition for every minimal prime ideal to become a
normal prime ideal.

Theorem 3.27. Let L be a normal ADL with maximal elements. Then every

minimal prime ideal of L is normal prime ideal.

Proof. Let P be a minimal prime ideal of L with x ∈ P. Then there exists an
element y /∈ P such that x∧ y = 0. Since L is normal, we get that (x)∗∨ (y)∗ = L
and hence (x)◦ ∨ (y)◦ = L. Therefore P is a normal prime ideal of L.

Theorem 3.28. Let P be a normal prime ideal of an ADL L with maximal

elements. Then for each x ∈ L, we have x /∈ P if and only if (x)◦ ⊆ P.

Proof. Assume x /∈ P. Let a ∈ (x)◦. Then (a)∗ ∨ (x)∗ = L. Let m be any
maximal element of L. Then m ∈ (a)∗ ∨ (x)∗. Then there exist elements s ∈ (a)∗

and t ∈ (x)∗ such that m = s ∨ t. Since s ∈ (a)∗ and t ∈ (x)∗, we have that
s ∧ a = 0 and t ∧ x = 0. That implies t ∧ x = 0 ∈ P. Since x /∈ P, we get that
t ∈ P. Since m = s ∨ t, we get that s /∈ P. Since s ∧ a = 0, we get that s ∧ a ∈ P.
Since s /∈ S, we get that a ∈ P. Therefore (x)◦ ⊆ P. Conversely, assume that
(x)◦ ⊆ P. We prove that x /∈ P. Suppose x ∈ P. Since P is normal prime ideal
of L, there exists an element y /∈ P such that (x)◦ ∨ (y)◦ = L. That implies
(x)∗ ∨ (y)∗ = L. That implies y ∈ (x)◦ ⊆ P. That implies y ∈ P, which is a
contradiction to y /∈ P. Therefore x /∈ P.

Corollary 3.29. Let L be an ADL with maximal elements. Then for any x ∈ L,
(x]◦ =

⋂

{P | P is a normal prime ideal and x /∈ P}.

Theorem 3.30. Every normal prime ideal of L is a disjunctive ideal.

Proof. Let x, y ∈ L and P, a normal prime ideal of L with (x)◦ = (y)◦ and
x ∈ P. We prove that y ∈ P. Suppose y /∈ P. Then by the above result we get
that (y)◦ ⊆ P. That implies (x)◦ ⊆ P. Again by the above result, we get that
x /∈ P, which is a contradiction. Therefore y ∈ P and hence P is a disjunctive
ideal of L.

However in the following we derive a necessary and sufficient condition for
the contraction of a disjunctive ideal of an ADL L1 to become a disjunctive ideal.

Theorem 3.31. Let L1 and L2 be any two ADLs with maximal elements and

f, a homomorphism from L1 onto L2. If I is a disjunctive ideal of L2, then the

following are equivalent:

1. f−1(I) is a disjunctive ideal of L1

2. for any x ∈ L2, f
−1((x)◦) is a disjunctive ideal of L1.
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Proof. 1 ⇒ 2 : Assume 1. Let x ∈ L2. Clearly, we have that (x)
◦ is a disjunctive

ideal of L2. By our assumption, we get that f−1((x)◦) is a disjunctive ideal of L1.

2 ⇒ 1 : Assume 2. Clearly, f−1(I) is an ideal of L1. Now we prove that
f−1(I) is a disjunctive ideal of L1. Let x, y ∈ L with (x)◦ = (y)◦ and x ∈ f−1(I).
Since x ∈ f−1(I), we have that f(x) ∈ I. We show that (f(x))◦ = (f(y))◦. Now,

a ∈ (f(x))◦ ⇔ (a)∗ ∨ (f(x))∗ = L2

⇔ f(x) ∈ (a)◦

⇔ x ∈ f−1((a)◦)

⇔ y ∈ f−1((a)◦)

⇔ f(y) ∈ (a)◦

⇔ (f(y))∗ ∨ (a)∗ = L2

⇔ a ∈ (f(y))◦.

Therefore (f(x))◦ = (f(y))◦. Since f(x) ∈ I and I is a disjunctive ideal of L2, we
get that f(y) ∈ I and hence y ∈ f−1(I). Therefore f−1(I) is a disjunctive ideal
of L1.

Theorem 3.32. Let L, L′ be two ADLs. If f : L −→ L′ is an epimorphism with

f((a]◦) = {f((a])}◦, for all a ∈ L, then every disjunctive ideal of L′ contracts to

a disjunctive ideal in L.

Proof. Suppose J is a disjunctive ideal of L′. Let a, b ∈ L such that (a]◦ = (b]◦.
Now (a]◦ = (b]◦ ⇔ f((a]◦) = f((b]◦) ⇔ {f((a])}◦ = {f((b])}◦. That implies
(f(a)]◦ = (f(b)]◦. Suppose a ∈ f−1(J). Then f(a) ∈ J . Since J is a disjunctive
ideal in L′, we get f(b) ∈ J . Hence b ∈ f−1(J). Therefore f−1(J) is a disjunctive
ideal in L.

Corollary 3.33. Let L, L′ be two ADLs. If f is an epimorphism with f((a]◦) =
{f((a])}◦, for all a ∈ L then for any nonempty subset A of L′, f−1(A◦) is a

disjunctive ideal of L containing {f−1(A)}◦.

Proof. Let A be a nonempty subset of L′. Then for any x ∈ A◦, we have
(x]◦◦ ⊆ A◦◦◦ = A◦. Hence A◦ is a disjunctive ideal of L′. Therefore by above
theorem, f−1(A◦) is a disjunctive ideal of L. Let x /∈ f−1(A◦). Then f(x) /∈ A◦.
There there exists an element f(y) /∈ A such that (f(x))∗ ∨ (f(y)∗) 6= L′. That
implies (f(x) ∧ f(y))∗ 6= L′. That implies f(x) ∧ f(y) 6= 0′, where 0′ is the zero
element of L′. Since f is homomorphism, we have that f(x∧y) 6= 0′. That implies
x ∧ y 6= 0, where 0 is the zero element of L. That implies (x ∧ y)∗ 6= L, for some
y /∈ f−1(A). Therefore x /∈ (f−1(A))◦. Hence {f−1(A)}◦ ⊆ f−1(A◦).

Corollary 3.34. If f is an epimorphism from L to L′ with f((a]◦) = {f((a])}◦,
for all a ∈ L then Kerf is a disjunctive ideal of L.



Disjunctive ideals of Almost Distributive Lattices 173

Proof. We have Kerf = f−1({0′}). Since {0′} is a disjunctive ideal in L′,
f−1({0′}) is a disjunctive ideal in L. Thus Kerf is a disjunctive ideal of L.

The following result can be verified easily.

Lemma 3.35. Let L1 and L2 be any two ADLs with maximal elements. For any

(a, b) ∈ L1 × L2, we have the following:

1. (a, b)∗ = (a)∗ × (b)∗

2. (a, b)∗ ∨ (c, d)∗ = (a ∨ c, b ∨ d)∗

3. (a, b)◦ = (a)◦ × (b)◦.

We conclude this section with the following theorem.

Theorem 3.36. Let L = L1×L2 be the product of ADLs L1 and L2. If I1 and I2
are disjunctive ideals of L1 and L2, respectively, then I1×I2 is a disjunctive ideal

of L. Conversely, every disjunctive ideal of L can be expressed as I = I1 × I2,
where I1 and I2 are disjunctive ideals of L1 and L2, respectively.

Proof. Let I1 and I2 be the disjunctive ideals of L1 and L2, respectively. Clearly,
we have that I1×I2 is an ideal of L. Now we prove that I1×I2 is a disjunctive ideal
of L. Let (a, b), (c, d) ∈ L1×L2 with ((a, b))◦ = ((c, d))◦ and (a, b) ∈ I1×I2. Then
(a)◦ × (b)◦ = (c)◦ × (d)◦ and a ∈ I1, b ∈ I2. That implies (a)◦ = (c)◦, (b)◦ = (d)◦

and a ∈ I1, b ∈ I2. Since I1 and I2 are disjunctive ideals of L1 and L2, we get that
c ∈ I1, d ∈ I2. That implies (c, d) ∈ I1×I2. Therefore I1×I2 is a disjunctive ideal of
L. Let I be any disjunctive ideal of L. Consider I1 = {a ∈ L1 | (a, b) ∈ I, for some
b ∈ L2}. Clearly, I1 is an ideal of L1. Let x, y ∈ L1 with (x)◦ = (y)◦ and x ∈ I1.
Since x ∈ I1, there exists an element a ∈ L2 such that (x, a) ∈ I. Since (x)◦ =
(y)◦, we get that (x)◦×(a)◦ = (y)◦×(a)◦. That implies ((x, a))◦ = ((y, a))◦. Since
I is a disjunctive ideal of L and (x, a) ∈ I, we get that (y, a) ∈ I. That implies
y ∈ I1. Therefore I1 is a disjunctive ideal of L1. Consider I2 = {b ∈ L2 | (a, b) ∈ I,
for some a ∈ L1}. Clearly, I2 is a disjunctive ideal of L2.We prove that I = I1×I2.
We get easily that I ⊆ I1× I2. Let (a, b) ∈ I1× I2. Then a ∈ I1 and b ∈ I2. Then
there exist elements a1, b1 ∈ L1 such that (a, a1) ∈ I and (b1, b) ∈ I. Since I is
an ideal of L, we get that (a, 0) ∧ (a, a1) ∈ I and (0, b) ∧ (b1, b) ∈ I. That implies
(a, 0) ∈ I and (0, b) ∈ I. That implies (a, 0) ∨ (0, b) ∈ I. That implies (a, b) ∈ I.
Therefore I1 × I2 ⊆ I and hence I = I1 × I2.

4. Strongly disjunctive ideals of ADLs

In this section, we have introduced the concept of strongly disjunctive ideals in an
ADL and studied their properties. We have derived a set of equivalent conditions
for every ideal of an ADL to become a strongly disjunctive ideal. Finally, A set
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of all equivalent conditions are established for the set of all strongly disjunctive
ideals of an ADL to become a sublattice of the ideal lattice of an ADL.

Now we have the following definition.

Definition 4.1. Let I be an ideal of an ADL L with maximal elements. Define
β(I) = {x ∈ L | (x)◦ ∨ I = L}.

Lemma 4.2. Let L be an ADL with maximal elements. For any ideals I, J of

L, we have the following:

1. β(I) ⊆ I

2. If I ⊆ J, then β(I) ⊆ β(J)

3. β(I ∩ J) = β(I) ∩ β(J)

4. β(I) is an ideal of L.

Proof. 1. Let x ∈ β(I). Then (x)◦ ∨ I = L. That implies (x)∗ ∨ I = L. Let m be
any maximal element of L. Since (x)∗ ∨ I = L, we get that m ∈ (x)∗ ∨ I. Then
there exist elements y ∈ (x)∗ and a ∈ I such that m = y ∨ a. Since y ∈ (x)∗, we
have that y ∧ x = 0. Now x = m ∧ x = (y ∨ a) ∧ x = (y ∧ x) ∨ (a ∧ x) = a ∧ x.
Since a ∈ I, we get that a ∧ x ∈ I and hence x ∈ I. Therefore β(I) ⊆ I.

2. Suppose I ⊆ J. Let x ∈ β(I). Then (x)◦ ∨ I = L. By our assumption, we
get that (x)◦ ∨ J = L. That implies x ∈ β(J). Therefore β(I) ⊆ β(J).

3. Clearly, we have that β(I ∩ J) ⊆ β(I) ∩ β(J). Let x ∈ β(I) ∩ β(J). Then
x ∈ β(I) and x ∈ β(J). That implies (x)◦ ∨ I = L and (x)◦ ∨ J = L. Now
(x)◦ ∨ (I ∩ J) = ((x)◦ ∨ I)∩ ((x)◦ ∨ J) = L. That implies x ∈ β(I ∩ J). Therefore
β(I) ∩ β(J) ⊆ β(I ∩ J). Hence β(I ∩ J) = β(I) ∩ β(J).

4. Clearly, (0)◦ ∨ I = L. That implies 0 ∈ β(I) and hence β(I) 6= ∅. Let
x, y ∈ β(I). Then (x)◦ ∨ I = L and (y)◦ ∨ I = L. Now, (x ∨ y)◦ ∨ I = ((x)◦ ∩
(y)◦) ∨ I = ((x)◦ ∨ I) ∩ ((y)◦ ∨ I) = L. That implies x ∨ y ∈ β(I). Let x ∈ β(I).
Then (x)◦ ∨ I = L. Let r be any element of L. Now, L = (x)◦ ∨ I ⊆ (x ∧ r)◦ ∨ I.
That implies (x ∧ r)◦ ∨ I = L and hence x ∧ r ∈ β(I). Therefore β(I) is an ideal
of L.

Now, we define the concept of strongly disjunctive ideal in an ADL.

Definition 4.3. An ideal I of an ADL L is said to be a strongly disjunctive if
β(I) = I.

Lemma 4.4. Every strongly disjunctive ideal of an ADL L is disjunctive.

Proof. Let I be any strongly disjunctive ideal of L. Let x, y ∈ L with (x)◦ = (y)◦

and x ∈ I. Since x ∈ I, we get that x ∈ β(I). Then (x)◦ ∨ I = L and hence
(y)◦ ∨ I = L. Therefore y ∈ β(I) = I. Thus I is a disjunctive ideal of L.
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Theorem 4.5. If every prime ideal of an ADL L is normal, then every ideal is

strongly disjunctive.

Proof. Assume that every prime ideal of L is normal. Let I be any ideal of L.
Clearly, we have that β(I) ⊆ I. Let x ∈ I. Now we prove that x ∈ β(I). Suppose
x /∈ β(I). Then (x)◦ ∨ I 6= L. Then there exists a prime ideal P of an ADL L
such that (x)◦ ∨ I ⊆ P. That implies (x)◦ ⊆ P and I ⊆ P. Since x ∈ I, we have
x ∈ P. By our assumption, P is a normal prime ideal of L. Since (x)◦ ⊆ P, we
get that x /∈ P, which is a contradiction to x ∈ P . Therefore x ∈ β(I) and hence
I ⊆ β(I). Therefore β(I) = I. Thus I is a strongly disjunctive ideal of L.

Theorem 4.6. Let P be a prime ideal of a normal ADL L with maximal elements.

If P is strongly disjunctive, then P is normal.

Proof. Assume that P is a strongly disjunctive ideal of L. We prove that P is
normal. Let x ∈ P. Then x ∈ β(P ). That implies (x)◦ ∨ P = L. Let m be any
maximal element of L such that m ∈ (x)◦∨P. Then there exist elements a ∈ (x)◦

and b ∈ P such that m = a ∨ b. Since a ∈ (x)◦, we have that (a)∗ ∨ (x)∗ = L.
Since L is normal, we get that (a)◦ ∨ (x)◦ = L. Since a ∨ b = m and b ∈ P, we
get that a /∈ P. Therefore P is normal.

Theorem 4.7. Let L be an ADL with maximal elements. Then the following are

equivalent:

1. (x)◦ ∨ (x)◦◦ = L, for all x ∈ L.

2. Every ideal I of the form I = I◦◦, is strongly disjunctive.

3. For each x ∈ L, (x)◦◦ is strongly disjunctive.

Proof. 1 ⇒ 2 : Assume that (x)◦ ∨ (x)◦◦ = L, for all x ∈ L. Let I be an ideal
of L with I = I◦◦. We prove that I is strongly disjunctive. Clearly, we have that
β(I) ⊆ I. Let x ∈ I. Then (x)◦◦ ⊆ I◦◦ = I. By our assumption, we get that
(x)◦ ∨ I = L. That implies x ∈ β(I). Therefore I ⊆ β(I) and hence β(I) = I.
Thus I is a strongly disjunctive ideal of L.

2 ⇒ 3 : Clear.

3 ⇒ 1 : Assume that (x)◦◦ is strongly disjunctive, for all x ∈ L. Then β((x)◦◦)
= (x)◦◦. Since x ∈ (x)◦◦, we get that x ∈ β((x)◦◦). Therefore (x)◦ ∨ (x)◦◦ = L.

Definition 4.8. For any maximal ideal M of an ADL L, define Ω(M) = {x ∈
L | (x)◦ * M}.

Lemma 4.9. Let M be a maximal ideal of an ADL L with maximal elements.

Then Ω(M) is an ideal of L contained in M.
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Proof. Clearly, we have that 0 ∈ Ω(M) and hence Ω(M) 6= ∅. Let x, y ∈ Ω(M).
Then (x)◦ * M and (y)◦ * M. Since M is prime, we get that (x ∨ y)◦ =
(x)◦ ∩ (y)◦ * M. Therefore x ∨ y ∈ Ω(M). Let x ∈ Ω(M). Then (x)◦ * M. Let r
be any element of L. Since (x)◦ ⊆ (x ∧ r)◦, we get that (x ∧ r)◦ * M. Therefore
x ∧ r ∈ Ω(M). Hence Ω(M) is an ideal of L. Let x ∈ Ω(M). Then (x)◦ * M.
Choose an element a ∈ (x)◦ such that a /∈ M. That implies (a)∗ ∨ (x)∗ = L.
Let m be any maximal element of L such that m ∈ (a)∗ ∨ (x)∗. Then there exist
elements b ∈ (a)∗ and y ∈ (x)∗ such that m = b ∨ y. Since b ∈ (a)∗ and y ∈ (x)∗,
we have that a ∧ b = 0 and y ∧ x = 0. Since a /∈ M and a ∧ b = 0, we get that
b ∈ M. Since b ∈ M and m = b ∨ y, we get that y /∈ M. Since y ∧ x = 0 and
y /∈ M, we get that x ∈ M. Therefore Ω(M) ⊆ M.

We denote the set of all maximal ideals of an ADL by Max L. For any ideal
I of an ADL, K(I) = {M ∈ Max L | I ⊆ M}.

Theorem 4.10. Let I be an ideal of an ADL L. Then β(I) =
⋂

M∈K(I)Ω(M).

Proof. Let x ∈ β(I) and M ∈ K(I). Then (x)◦ ∨ I = L and I ⊆ M. That
implies (x)◦ ∨M = L. Now we prove that (x)◦ * M. Suppose (x)◦ ⊆ M. Then
M = L, which is a contradiction. Therefore (x)◦ * M and hence x ∈ Ω(M), for
all M ∈ K(I). Thus β(I) ⊆

⋂

M∈K(I)Ω(M). Conversely, let x ∈
⋂

M∈K(I)Ω(M).

Then x ∈ Ω(M), for all M ∈ K(I). That implies (x)◦ * M, for all M ∈ K(I).
We prove that x ∈ β(I). Suppose x /∈ β(I). Then (x)◦ ∨ I 6= L. Then there exists
a maximal ideal N of L such that (x)◦ ∨ I ⊆ N. That implies (x)◦ ⊆ N, which
is a contradiction to (x)◦ * M, for all M ∈ K(I). Therefore x ∈ β(I) and hence
⋂

M∈K(I)Ω(M) ⊆ β(I.) Thus β(I) =
⋂

M∈K(I)Ω(M).

Finally, a set of all equivalent conditions are established for the set of all
strongly disjunctive ideals of an ADL to become a sublattice of the ideal lattice
of an ADL.

Theorem 4.11. Let L be an ADL with maximal elements. Then the following

conditions are equivalent:

1. For any M ∈ Max L, Ω(M) is maximal.

2. For any ideals I, J of L, I ∨ J = L implies β(I) ∨ β(J) = L.

3. For any ideals I, J of L, β(I ∨ J) = β(I) ∨ β(J).

4. If M,N ∈ Max L with M 6= N, then Ω(M) ∨ Ω(N) = L.

5. For any M ∈ Max L, M is the unique member of Max L such that Ω(M)
⊆ M.

Proof. 1 ⇒ 2 : Assume 1. Let I, J be any ideals of L with I ∨ J = L. Now,
we prove that β(I) ∨ β(J) = L. Suppose β(I) ∨ β(J) 6= L. Then there exists
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N ∈ Max L such that β(I) ∨ β(J) ⊆ N. That implies β(I) ⊆ N and β(J) ⊆ N.
Since β(I) ⊆ N, we we get that

⋂

N∈K(I)Ω(N) ⊆ N. Since N is a prime ideal
of L, there exists Ni ∈ K(I) such that Ω(Ni) ⊆ N. By our assumption, we get
that Ni ⊆ N. Since Ni ∈ K(I), we get that I ⊆ N. Since β(J) ⊆ N, we get that
J ⊆ N. That implies I ∨ J ⊆ N. Since I ∨ J = L, we get that L = N, which is a
contradiction. Therefore β(I) ∨ β(J) = L.

2 ⇒ 3 : Assume 2. Clearly, we have that β(I)∨β(J) ⊆ β(I∨J). Let x ∈ β(I∨
J). Then (x)◦∨(I∨J) = L. That implies (x)◦∨I∨(x)◦∨J = L. By our assumption,
we get that β((x)◦∨I)∨β((x)◦∨J) = L. That implies x ∈ β((x)◦∨I)∨β((x)◦∨J).
Then there exist elements a ∈ β((x)◦∨ I) and b ∈ β((x)◦∨J) such that x = a∨ b.
Since a ∈ β((x)◦∨I), we have that (a)◦∨(x)◦∨I = L. Since (a)◦∨(x)◦ ⊆ (a∧x)◦,
we get that (a∧x)◦∨I = L and hence a∧x ∈ β(I). Similarly, we that b∧x ∈ β(J).
Now x = x∧x = (a∨b)∧x = (a∧x)∨(b∧x) ∈ β(I)∨β(J). Therefore x ∈ β(I)∨β(J)
and hence β(I ∨ J) ⊆ β(I) ∨ β(J). Thus β(I ∨ J) = β(I) ∨ β(J).

3 ⇒ 4 : Assume 3. Let M, N ∈ Max L with M 6= N. Then choose elements
x, y ∈ L such that x ∈ M\N and y ∈ N\M. Since x /∈ N, we get thatN∨(x] = L.
Let m1 be any maximal element of L such that m1 ∈ N∨(x]. Then there exists an
element n ∈ N such that n∨ x = m1. Since y /∈ M, we get that M ∨ (y] = L. Let
m2 be any maximal element of L such that m2 ∈ M ∨ (y]. Then there exists an
element m ∈ M such that m ∨ y = m2. Clearly, we have that (n ∨ x] = (m1] = L
and (m∨ y] = (m2] = L. That implies ((n∨ v)∨ (m∨ y)] = (n∨x]∨ (m∨ y] = L.
That implies β(((n∨v)∨(m∨y)]) = β(L). That implies β((n∨x])∨β((m∨y]) = L.
Since x,m ∈ M and y, n ∈ N, we get that m∨x ∈ M and n∨y ∈ N. That implies
(m∨x] ⊆ M and (n∨ y] ⊆ N. That implies M ∈ K((n∨x]) and N ∈ K((m∨ y]).
That β((n∨x]) ⊆ Ω(M) and β((m∨y]) ⊆ Ω(N). Since β((n∨x])∨β((m∨y]) = L,
we get that Ω(M) ∨ Ω(N) = L.

4 ⇒ 5 : Assume 4. Clearly we have Ω(M) ⊆ M, for all M ∈ Max L.We prove
that M is unique. Let M,N be any two maximal ideal of L with Ω(M) ⊆ M
and Ω(N) ⊆ M. We prove that M = N. Suppose M 6= N. By our assumption,
we have that Ω(M) ∨ Ω(N) = L and hence M = L, which is a contradiction.
Therefore M = N.

5 ⇒ 1 : Assume 5. Let M ∈ Max L. Clearly, we have that Ω(M) ⊆ M.
We prove that Ω(M) is maximal. Suppose N be any maximal ideal of L with
Ω(M) ⊆ N. Since Ω(N) ⊆ N and Ω(M) ⊆ N, we get that M = N. Therefore
Ω(M) is maximal.
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