PRIME IDEALS OF TRANSITIVE BE-ALGEBRAS

M. Bala Prabhakar ${ }^{1}$
Department of Mathematics
Aditya Engineering College (A), Surampalem
Kakinada, Andhra Pradesh, India-533 437
e-mail: prabhakar_mb@yahoo.co.in
S. Kalesha Vali
Department of Mathematics
JNTUK University College of Engineering
Vizianagaram, Andhra Pradesh, India-535003
e-mail: valijntuv@gmail.com
AND
M. Sambasiva Rao
Department of Mathematics
MVGR College of Engineering (A), Chintalavalasa
Vizianagaram, Andhra Pradesh, India-535 005
e-mail: mssraomaths35@rediffmail.com

Abstract

The notion of prime ideals is introduced in transitive $B E$-algebras. Prime ideals are characterized with the help of principal ideals. Prime ideal theorem is stated and derived for $B E$-algebras. The concept of minimal prime ideals is introduced in transitive $B E$-algebras. A decomposition theorem of proper ideals into minimal prime ideals is derived.

Keywords: transitive $B E$-algebra, ideal, maximal ideal, prime ideal.
2010 Mathematics Subject Classification: 03G25.

[^0]
Introduction

The concept of $B E$-algebras was introduced and extensively studied in [7]. The class of $B E$-algebras was introduced as a generalization of the class of $B C K$ algebras of Iseki and Tanaka [5]. Some properties of filters of $B E$-algebras were studied by Ahn and Kim in [1] and by Meng in [9]. The notion of dual ideals in $B C K$-algebras was introduced by Deeba [3] in 1979. Later 2000, Sun [11] investigated the homomorphism theorems via dual ideals in bounded $B C K$-algebras. In [8], Meng introduced the notion of $B C K$-filters in $B C K$-algebras and presented a description of the $B C K$-filter generated by a set. In this paper, he discussed prime decompositions and irreducible decompositions. In [6], Jun, Hong and Meng, considered the fuzzification of the concept of $B C K$-filters, and investigate their properties.

In this work, we initially study some properties of ideals and the ideals generated by an arbitrary set. The notions of maximal ideals and prime ideals are introduced in transitive $B E$-algebras and they are characterized with the help of principal ideals. Properties of a prime ideal containing an arbitrary ideal are investigated. A necessary and sufficient condition is obtained for every proper ideal of a transitive $B E$-algebra to become a prime ideal. The famous prime ideal theorem of many algebraic structures is generalized to the case of prime ideals of transitive $B E$-algebras. Finally, some properties of prime ideals of transitive $B E$-algebras are derived with respect to inverse homomorphic images and cartesian products.

The concept of minimal prime ideals is introduced in transitive $B E$-algebras. Some properties of minimal prime ideals belonging to a proper ideal are investigated. Decomposition of a proper ideal as the intersection of all minimal prime ideals belonging to that proper ideal is derived. Another version of prime ideal theorem is derived with respect to a finite \cap-structure. Minimal prime ideals are characterized with the help of finite \cap-structures.

1. Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers $[1,2,7,9]$ and $[10]$ for the ready reference of the reader.

Definition 1.1 [7]. An algebra $(X, *, 1)$ of type $(2,0)$ is called a $B E$-algebra if it satisfies the following properties:
(1) $x * x=1$,
(2) $x * 1=1$,
(3) $1 * x=x$,
(4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$.

A $B E$-algebra X is called self-distributive if $x *(y * z)=(x * y) *(x * z)$ for all $x, y, z \in X$. A $B E$-algebra X is called transitive if $y * z \leq(x * y) *(x * z)$ for all $x, y, z \in X$. Every self-distributive $B E$-algebra is transitive. A $B E$-algebra X is called commutative if $(x * y) * y=(y * x) * x$ for all $x, y \in X$. We introduce a relation \leq on a $B E$-algebra X by $x \leq y$ if and only if $x * y=1$ for all $x, y \in X$. Clearly \leq is reflexive. If X is commutative, then \leq is both anti-symmetric, transitive and so it is a partial order on X.

Theorem 1.2 [9]. Let X be a transitive $B E$-algebra and $x, y, z \in X$. Then
(1) $1 \leq x$ implies $x=1$,
(2) $y \leq z$ implies $x * y \leq x * z$ and $z * x \leq y * x$.

Definition 1.3 [1]. A non-empty subset F of a $B E$-algebra X is called a filter of X if, for all $x, y \in X$, it satisfies the following properties:
(1) $1 \in F$,
(2) $x \in F$ and $x * y \in F$ imply that $y \in F$.

For any $a \in X,\langle a\rangle=\left\{x \in X \mid a^{n} * x=1\right.$ for some $\left.n \in \mathbb{N}\right\}$ is called the principal filter generated a. If X is self-distributive, then $\langle a\rangle=\{x \in X \mid a * x=$ 1\}. For a commutative $B E$-algebra, define $x \vee y=(y * x) * x$ for any $x, y \in X$. Then $x \vee y=y \vee x$ and the suprimum of x and y is $x \vee y$ for all $x, y \in X$. Hence (X, \vee) will become a semilattice which is called a $B E$-semilattice.

A $B E$-algebra X is called bounded [2], if there exists an element 0 satisfying $0 \leq x$ (or $0 * x=1$) for all $x \in X$. Define an unary operation N on a bounded $B E$-algebra X by $x N=x * 0$ for all $x \in X$.

Theorem 1.4 [2]. Let X be a transitive BE-algebra and $x, y, z \in X$. Then
(1) $1 N=0$ and $0 N=1$,
(2) $x \leq x N N$,
(3) $x * y N=y * x N$.

An element x of a bounded $B E$-algebra X is called dense [10] if $x N=0$.We denote the set of all dense elements of a $B E$-algebra X by $\mathcal{D}(X)$.A $B E$-algebra X is called a dense $B E$-algebra if every non-zero element of X is dense (i.e., $x N=0$ for all $0 \neq x \in X$). Let X and Y be two bounded $B E$-algebras, then a homomorphism $f: X \rightarrow Y$ is called bounded if $f(0)=0$. If f is a bounded homomorphism, then it is easily observed that $f(x N)=f(x) N$ for all $x \in X$. For any bounded homomorphism $f: X \rightarrow Y$, define the dual kernel of the homomorphism f as $\operatorname{Dker}(f)=\{x \in X \mid f(x)=0\}$. It is easy to check that $\operatorname{Dker}(f)=\{0\}$ whenever f is an injective homomorphism.

2. Ideals of transitive $B E$-algebras

In this section, some properties of ideals of a transitive $B E$-algebra are studied and the notion of maximal ideals is introduced in transitive $B E$-algebras. Some properties of maximal ideals are studied.

Definition 2.1. A non-empty subset I of a $B E$-algebra X is called an ideal of X if it satisfies the following conditions for all $x, y \in X$:
(I1) $0 \in I$,
(I2) $x \in I$ and $(x N * y N) N \in I$ imply that $y \in I$.
Obviously the single-ton set $\{0\}$ is an ideal of a $B E$-algebra X. For, suppose $x \in\{0\}$ and $(x N * y N) N \in\{0\}$ for $x, y \in X$. Then $x=0$ and $y N N=$ $(0 N * y N) N \in\{0\}$. Hence $y \leq y N N=0 \in\{0\}$. Thus $\{0\}$ is an ideal of X. In the following example, we observe non-trivial ideals of a $B E$-algebra.

Example 2.2. Let $X=\{1, a, b, c, d, 0\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Clearly ($X, *, 0,1$) is a bounded $B E$-algebra. It can be easily verified that the set $I=\{0, c, d\}$ is an ideal of X. However, the set $J=\{0, a, b, d\}$ is not an ideal of X, because of $a \in J$ and $(a N * c N) N=(d * b) N=a N=d \in J$ but $c \notin J$.

Lemma 2.3. Let X be a transitive BE-algebra X. For any $x, y, z \in X$, we have
(1) $x N N N \leq x N$,
(2) $x * y \leq y N * x N$,
(3) $x * y N \leq x N N * y N$,
(4) $(x * y N N) N N \leq x * y N N$,
(5) $(x N * y N) N N \leq x N * y N$,
(6) $x \leq y$ implies $y N \leq x N$,
(7) $x \leq y$ implies $y * z N \leq x * z N$.

Proof. (1) Let $x \in X$. Then $1=(x * 0) *(x * 0)=x *((x * 0) * 0)=x * x N N \leq$ $x * x N N N N=x N N N * x N$. Hence $x N N N * x N=1$, which gives $x N N N \leq x N$.
(2) Let $x, y \in X$. Since X is transitive, we get $y N=y * 0 \leq(x * y) *(x * 0)=$ $(x * y) * x N$. Hence $1=y N * y N \leq y N *((x * y) * x N)=(x * y) *(y N * x N)$. Thus, we get $(x * y) *(y N * x N)=1$. Therefore $x * y \leq y N * x N$.
(3) Let $x, y \in X$. Then, we get $x * y N=y * x N \leq y * x N N N=x N N * y N$.
(4) Let $x, y \in X$. Clearly $(x * y N N) N \leq(x * y N N) N N N$. Since X is transitive, we get $y N *(x * y N N) N \leq y N *(x * y N N) N N N$ and so $x *(y N *$ $(x * y N N) N) \leq x *(y N *(x * y N N) N N N)$. Hence, we get

$$
\begin{aligned}
1 & =(x * y N N) *(x * y N N) \\
& =x *((x * y N N) * y N N) \\
& =x *(y N *(x * y N N) N) \\
& \leq x *(y N *(x * y N N) N N N) \\
& =x *((x * y N N) N N * y N N \\
& =(x * y N N) N N *(x * y N N) .
\end{aligned}
$$

Thus $(x * y N N) N N *(x * y N N)=1$. Therefore $(x * y N N) N N \leq(x * y N N)$.
(5) Form (4), it can be easily verified.
(6) Let $x, y \in X$ be such that $x \leq y$. Then by (2), we get $1=x * y \leq y N * x N$. Hence $y N * x N=1$. Therefore $y N \leq x N$.
(7) Let $x, y \in X$ be such that $x \leq y$. Then by (6), we get $y N \leq x N$. Since X is transitive, we get $z * y N \leq z * x N$. Therefore $y * z N \leq x * z N$.

Proposition 2.4. Let I be an ideal of a transitive BE-algebra X. Then we have:
(1) For any $x, y \in X, x \in I$ and $y \leq x$ imply $y \in I$,
(2) For any $x, y \in X, x N=y N, x \in I$ imply $y \in I$,
(3) For any $x \in X, x \in I$ if and only if $x N N \in I$.

Proof. (1) Let $x, y \in X$. Suppose $x \in I$ and $y \leq x$. Then $x N \leq y N$, which implies $x N * y N=1$. Hence $(x N * y N) N=0 \in I$. Since $x \in I$, we get $y \in I$.
(2) Let $x, y \in X$. Assume that $x N=y N$. Suppose $x \in I$. Then we get $(x N * y N) N=1 N=0 \in I$. Since I is an ideal of X, we get $y \in I$.
(3) Let $x \in X$. Suppose $x \in I$. Then we get $(x N * x N N N) N=(x N N *$ $x N N) N=1 N=0 \in I$. Since $x \in I$, it yields $x N N \in I$. Conversely, let $x N N \in I$ for any $x \in X$. Since $x \leq x N N$, by property (1) we get that $x \in I$.

We denote by $\mathcal{I}(X)$ the set of all ideals of a $B E$-algebra X and $\mathcal{F}(X)$ the set of all filters of X. Let A be a non-empty subset of X, then the set

$$
[A]=\bigcap\{I \in \mathcal{I}(X) \mid A \subseteq I\}
$$

is called the ideal generated by A, written $[A]$. In the following proposition, we characterize the elements of a principal ideal generated by a set.

Theorem 2.5. Let X be a transitive $B E$-algebra and $\emptyset \neq A \subseteq X$. Then

$$
\begin{aligned}
{[A]=} & \left\{x \in X \mid a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right)=1\right. \text { for some } \\
& \left.a_{1}, a_{2}, \ldots, a_{n} \in A \text { and } n \in \mathbb{N}\right\} .
\end{aligned}
$$

Proof. It is enough to show that $[A]$ is the smallest ideal of X containing the set A. Clearly $0 \in[A]$. Let $x \in[A]$ and $(x N * y N) N \in[A]$. Then there exist $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in A$ such that $a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right)=1$ and $b_{1} N *\left(b_{2} N *\left(\cdots\left(b_{m} N *(x N * y N) N N\right) \cdots\right)\right)=1$. Hence we get

$$
\begin{aligned}
1= & b_{m} N *\left(\cdots *\left(b_{1} N *(x N * y N) N N\right) \cdots\right) \\
\leq & b_{m} N *\left(\cdots *\left(b_{1} N *(x N * y N)\right) \cdots\right) \\
= & b_{m} N *\left(\cdots *\left(x N *\left(b_{1} N * y N\right)\right) \cdots\right) \\
& \cdots \\
& \cdots \\
= & x N *\left(b_{m} N *\left(\cdots *\left(b_{1} N * y N\right)\right) \cdots\right) .
\end{aligned}
$$

Hence $x N \leq b_{m} N *\left(\cdots *\left(b_{1} N * y N\right) \cdots\right)$. Since X is transitive, we get $1=$ $a_{n} N *\left(\cdots *\left(a_{1} N * x N\right) \cdots\right) \leq a_{n} N *\left(\cdots *\left(a_{1} N *\left(b_{m} N *\left(\cdots *\left(b_{1} N * y N\right) \cdots\right)\right)\right) \cdots\right)$. Hence

$$
a_{n} N *\left(\cdots *\left(a_{1} N *\left(b_{m} N *\left(\cdots *\left(b_{1} N * y N\right) \cdots\right)\right)\right) \cdots\right)=1
$$

where $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in A$. From the structure of $[A]$, it yields that $y \in[A]$. Therefore $[A]$ is an ideal of X. For any $x \in A$, we get $x N *(\cdots *(x N *$ $x N) \cdots)=1$. Hence $x \in[A]$. Therefore $A \subseteq[A]$.

Let I be an ideal of X containing A. Let $x \in[A]$. Then there exists $a_{1}, a_{2}, \ldots, a_{n} \in A \subseteq I$ such that $a_{n} N *\left(\cdots *\left(a_{1} N * x N\right) \cdots\right)=1$. Hence $\left(a_{n} N *\left(\cdots *\left(a_{1} N * x N\right) \cdots\right) N N\right) N \leq\left(a_{n} N *\left(\cdots *\left(a_{1} N * x N\right) \cdots\right)\right) N=0 \in I$. Thus by Proposition 2.4(1), we get $\left(a_{n} N *\left(\cdots *\left(a_{1} N * x N\right) \cdots\right) N N\right) N \in I$. Since $a_{n} \in I$ and I is an ideal, we get $\left(a_{n-1} N *\left(\cdots *\left(a_{1} N * x N\right) \cdots\right)\right) N \in I$. Continuing in this way, we finally get $x \in I$. Hence $[A] \subseteq I$. Therefore $[A]$ is the smallest ideal containing A.

For $A=\{a\}$, we then denote $[\{a\}]$, briefly by $[a]$. We call this ideal by principal ideal generated by a and is represented by $[a]=\left\{x \in X \mid(a N)^{n} * x N=\right.$ 1 for some $n \in \mathbb{N}\}$. We can easily observe, if X is self-distributive and $a \in X$, then $[a]=\{x \in X \mid a N * x N=1\}$.

The following is a direct consequence of the above theorem.
Corollary 2.6. Let X be a transitive $B E$-algebra. For any $a, b \in X$, and $A, B \subseteq$ X, we have
(1) $[0]=\{0\}$,
(2) $[X]=X$ and $[1]=X$,
(3) $A \subseteq B$ implies $[A] \subseteq[B]$,
(4) $a \leq b$ implies $[a] \subseteq[b]$,
(5) if A is an ideal, then $[A]=A$,
(6) if A is an ideal and $a \in A$, then $[a] \subseteq A$.

Proof. (1) Let $x \in[0]$. Then $(0 N)^{n} * x N=1$ for some $n \in \mathbb{N}$. Hence $x N=1$. Thus $x \leq x N N=1 N=0$. Therefore $x=0$, which means $[0]=\{0\}$.
(2) For all $x \in X$, we get $1 N * x N=1=0 * x N=1$. Hence [1] $=X$.
(3) Suppose $A \subseteq B$ and let $x \in[A]$ then $a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right)=$ 1 for some $a_{1}, a_{2}, \ldots, a_{n} \in A$ and $n \in \mathbb{N}$. Since $A \subseteq B$ implies $a_{1} N *\left(a_{2} N *\right.$ $\left.\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right)=1$ for some $a_{1}, a_{2}, \ldots, a_{n} \in B$ and $n \in \mathbb{N}$, we get $x \in[B]$ and hence $[A] \subseteq[B]$.
(4) Suppose $a \leq b$. By Lemma 2.3(6), we get $b N \leq a N$. Again by Lemma 2.3(7), we get $a N * x N \leq b N * x N$ for any $x \in X$. Since X is transitive, we get $(b N)^{n-1} *(a N * x N) \leq(b N)^{n-1} *(b N * x N)=(b N)^{n} * x N$. Thus $1=(b N)^{n-1} * 1 \leq(b N)^{n} * x N$, which gives $x \in[b]$. Therefore $[a] \subseteq[b]$.
(5) From the construction of $[A]$, it is obvious.
(6) Let A be an ideal and $a \in A$. Suppose $x \in[a]$. Then there exists $n \in \mathbb{N}$ such that $(a N)^{n} * x N=1$. Hence $1=a N *\left((a N)^{n-1} * x N\right) \leq a N *\left((a N)^{n-1} *\right.$ $x N) N N$. Hence $a N *\left((a N)^{n-1} * x N\right) N N=1$, which gives $\left(a N *\left((a N)^{n-1} *\right.\right.$ $x N) N N) N=0 \in A$. Since $a \in A$ and A is an ideal, we get $\left((a N)^{n-1} * x N\right) N \in A$. Now

$$
\begin{aligned}
\left(a N *\left((a N)^{n-2} * x N\right) N N\right) N & \leq\left(a N *\left((a N)^{n-2} * x N\right)\right) N \\
& =\left((a N)^{n-1} * x N\right) N \in A .
\end{aligned}
$$

which yields $\left(a N *\left((a N)^{n-2} * x N\right) N N\right) N \in A$. Since $a \in A$, we get $(a N)^{n-2} *$ $x N) N \in A$. Continuing in this way, we finally get $x \in A$. Therefore $[a] \subseteq A$.

Corollary 2.7. Let X be a transitive $B E$-algebra and $a \in X$. For any $A \subseteq X$, the set $[A \cup\{a\}]$ is the smallest ideal of X that contains both A and a.

Proposition 2.8. Let I an ideal of a transitive $B E$-algebra X and $A \subseteq X$. Then,

$$
\begin{aligned}
{[I \cup A]=} & \left\{x \in X \mid\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) N \in I\right. \\
& \text { for some } \left.a_{1}, a_{2}, \ldots, a_{n} \in A \text { and } n \in \mathbb{N}\right\} .
\end{aligned}
$$

Proof. Let us consider $B=\left\{x \in X \mid\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) N \in I\right.$ for some $a_{1}, a_{2}, \ldots, a_{n} \in A$ and $\left.n \in \mathbb{N}\right\}$. It is enough to show that B is the smallest
ideal of X containing both I and A. Clearly $0 \in B$. Let $x, y \in X$ be such that $x \in B$ and $(x N * y N) N \in B$. Then there exists $m, n \in \mathbb{N}$ such that $\left(a_{1} N *\left(a_{2} N *\right.\right.$ $\left.\left(\cdots\left(a_{n} N * x N\right)\right)\right) N \in I$ and $\left(b_{1} N *\left(b_{2} N *\left(\cdots\left(b_{m} N *(x N * y N) N N\right)\right)\right)\right) N \in I$. By Lemma 2.3(5), we have

$$
\begin{aligned}
& \left(b_{1} N *\left(b_{2} N *\left(\cdots\left(b_{m} N *(x N * y N) N N\right)\right)\right)\right) \\
& \leq\left(b_{1} N *\left(b_{2} N *\left(\cdots\left(b_{m} N *(x N * y N)\right)\right)\right)\right) \\
& =\left(x N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right) .\right.
\end{aligned}
$$

By Lemma 2.3(6), we get $\left(x N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right) N \leq\left(b_{1} N *\right.\right.$ $\left(b_{2} N *\left(\cdots\left(b_{m} N *(x N * y N) N N\right)\right)\right) N \in I$. Therefore $\left(x N *\left(b_{1} N *\left(b_{2} N(\cdots *\right.\right.\right.$ $\left.\left.\left.\left(b_{m} N * y N\right)\right)\right)\right) N \in I$.

By applying the transitivity of X and Lemma 2.3(2), we get
$\left(x N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right) \leq\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) *\right.$ $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right)\right)\right)\right) \leq\left(a_{1} N *\left(a_{2} N *\right.\right.\right.$ $\left.\left(\cdots\left(a_{n} N * x N\right)\right)\right) N N *\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N *\right.\right.\right.\right.\right.\right.\right.\right.$ $y N())))))) N N$.

By Lemma 2.3(6), $\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) N N *\left(a_{1} N *\left(a_{2} N *\right.\right.\right.$ $\left.\left.\left(\cdots\left(a_{n} N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right)\right)\right)\right) N N\right) N \leq\left(\left(x N *\left(b_{1} N *\left(b_{2} N(\cdots *\right.\right.\right.\right.$ $\left.\left.\left.\left.\left(b_{m} N * y N\right)\right)\right)\right)\right) N \in I$. Therefore $\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) N N *\left(a_{1} N *\right.\right.$ $\left.\left(a_{2} N *\left(\cdots\left(a_{n} N *\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right)\right)\right)\right) N N\right) N \in I$. Since $\left(a_{1} N *\right.$ $\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right) N \in I$ and I is an ideal, we get $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N *\right.\right.\right.\right.$ $\left.\left.\left.\left(b_{1} N *\left(b_{2} N\left(\cdots *\left(b_{m} N * y N\right)\right)\right)\right)\right)\right)\right) N \in I$. Hence $y \in B$. Therefore B is an ideal of X. Let $x \in I$. Clearly $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) \leq\left(a_{1} N *\left(a_{2} N *\right.\right.$ $\left.\left(\cdots\left(a_{n} N * x N\right)\right)\right) N N$. Then by Lemma 2.3(6), we get

$$
\begin{aligned}
& \left(x N *\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right)\right) N N\right) N \\
& \leq\left(x N *\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right)\right) N \\
& =\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N *(x N * x N)\right)\right)\right) N\right. \\
& =\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N *(1)\right)\right)\right)\right) N \\
& =0 .
\end{aligned}
$$

Hence $\left(x N *\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right) N N\right) N=0 \in I\right.$. Since $x \in I$ and I is an ideal, we get $\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right)\right)\right) N \in I$. Therefore $x \in B$ and hence $I \subseteq B$. Since for any $a \in A,(a N * a N) N=0 \in I$, we get $a \in B$. Therefore $A \subseteq B$. Thus B is an ideal of X containing both I and A.

Suppose K is an ideal of X such that $I \subseteq K$ and $A \subseteq K$. Let $x \in B$. Then $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right) N \in I \subseteq K\right.$ and $a_{1}, a_{2}, \ldots, a_{n} \in A \subseteq K$ for some $n \in \mathbb{N}$. Since $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right) N N\right) N \leq\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N *\right.\right.\right.\right.$ $x N))) N \in K$. Therefore $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right) N N\right) N$. Since $a_{1} \in K$
and K is an ideal, we get $\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right)\right)\right) N \in K$. Continuing in this way, we get $\left.\left(a_{n} N * x N\right)\right) N \in K$ and hence $x \in K$. Hence $B \subseteq K$. Thus B is the smallest ideal of X containing both I and A.

The following corollaries are direct consequence of the above proposition.
Corollary 2.9. Let X be a transitive BE-algebra and I an ideal of X. For any $a \in X$,

$$
[I \cup\{a\}]=\left\{x \in X \mid\left((a N)^{n} * x N\right) N \in I \text { for some } n \in \mathbb{N}\right\} .
$$

Corollary 2.10. Let X be a self-distributive $B E$-algebra and I an ideal of X. Then, for any $a \in X,[I \cup\{a\}]=\{x \in X \mid(a N * x N) N \in I\}$.
Definition 2.11. An ideal I of a $B E$-algebra X is said to be proper if $I \neq X$.
Definition 2.12. A proper ideal M of a $B E$-algebra X is said to be maximal if M is not properly contained in any other proper ideal of X (i.e., $M \subseteq I \subseteq X$ implies $M=I$ or $I=X$ for any ideal I of X).
Example 2.13. Let $X=\{0, a, b, c, d, 1\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	1	1	d	d
b	1	c	1	c	d	c
c	1	b	b	1	d	b
d	1	a	b	c	1	a
0	1	1	1	1	1	1

Clearly $(X, *, 0,1)$ is a bounded $B E$-algebra. It is easy to check that $I_{1}=\{0\}$, $I_{2}=\{0, a\}, I_{3}=\{0, b\}, I_{4}=\{0, c\}, I_{5}=\{0, a, b\}$ and $I_{6}=\{0, a, c\}$ are ideals of X in which $I_{2}, I_{3}, I_{4}, I_{5}$ and I_{6} are proper ideals. Also here we can easily observe that I_{5} and I_{6} are only maximal ideals of X.

Theorem 2.14. A proper ideal M of a transitive $B E$-algebra X is maximal if and only if $[M \cup\{x\}]=X$ for any $x \in X-M$.

Proof. Let M be a proper ideal of X. Assume that M is maximal. Let $x \in$ $X-M$. Suppose $[M \cup\{x\}] \neq X$. Hence $M \subseteq[M \cup\{x\}] \subset X$. Since M is maximal, we get $M=[M \cup\{x\}]$. Then $x \in M$, which is a contradiction. Therefore $[M \cup\{x\}]=X$.

Conversely, assume the condition. Suppose there exists an ideal I of X such that $M \subseteq I \subseteq X$. Let $M \neq I$. Then $M \subset I$. Choose $x \in I$ such that $x \notin M$. By the assumed condition, we get $[M \cup\{x\}]=X$. If $a \in X$, then $a \in[M \cup\{x\}]$. Hence $\left((x N)^{n} * a N\right) N \in M \subseteq I$ for some $n \in \mathbb{N}$. Then

$$
(x N)^{n} * a N=x N *\left((x N)^{n-1} * a N\right) \leq x N *\left((x N)^{n-1} * a N\right) N N
$$

By Lemma 2.3(6) and Proposition 2.4(1) we get $\left(x N *\left((x N)^{n-1} * a N\right) N N\right) N \leq$ $\left((x N)^{n} * a N\right) N \in I$. Since $x \in I$, implies $\left((x N)^{n-1} * a N\right) N \in I$. Continuing in this way, finally we get $a \in I$. Hence $I=X$. Therefore M is a maximal ideal of X.

3. Prime ideals of $B E$-algebras

In this section, the notion of prime ideals is introduced in transitive $B E$-algebras. A necessary and sufficient condition is derived for every proper ideal of a $B E$ algebra to become a prime ideal. Prime ideal theorem is stated and derived analogous to that in a distributive lattice.

Definition 3.1. A proper ideal P of a $B E$-algebra X is said to be prime if for any two ideals I and J of $X, I \cap J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$.

Example 3.2. Let $X=\{0, a, b, c, d, 1\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	1	1	d	d
b	1	c	1	c	d	c
c	1	b	b	1	d	b
d	1	a	b	c	1	a
0	1	1	1	1	1	1

Clearly $(X, *, 0,1)$ is a bounded $B E$-algebra. It is easy to check that $I_{1}=\{0\}$, $I_{2}=\{0, a\}, I_{3}=\{0, b\}, I_{4}=\{0, c\}, I_{5}=\{0, a, b\}$ and $I_{6}=\{0, a, c\}$ are ideals of X in which $I_{2}, I_{3}, I_{4}, I_{5}$ and I_{6} are proper ideals. Also here we can easily observe that I_{5} and I_{6} are prime ideals of X.

Theorem 3.3. A proper ideal P of a transitive $B E$-algebra X is prime if and only if for any $x, y \in X,[x] \cap[y] \subseteq P$ implies $x \in P$ or $y \in P$

Proof. Let P be a proper ideal of X. Assume that P is prime. Let $x, y \in X$. Suppose $[x] \cap[y] \subseteq P$. By the definition of prime ideal, we get $[x] \subseteq P$ or $[y] \subseteq P$. Hence $x \in[x] \subseteq P$ or $\in[y] \subseteq P$. Therefore $x \in P$ or $y \in P$.

Conversely, assume the condition. Suppose I and J are two ideals of X such that $I \cap J \subseteq P$. Let $x \in I, y \in J$. Then $[x] \subseteq I$ and $[y] \subseteq J$. Hence $[x] \cap[y] \subseteq I \cap J \subseteq P$. By the assumed condition, we get $x \in P$ or $y \in P$. Thus $I \subseteq P$ or $J \subseteq P$. Therefore P is a prime ideal of X.

Theorem 3.4. Let I be an ideal of a transitive $B E$-algebra X. For any $A, B \subseteq$ X,

$$
[A] \cap[B] \subseteq I \text { if and only if }[I \cup A] \cap[I \cup B]=I .
$$

Proof. Let I be an ideal of X. Suppose $[I \cup A] \cap[I \cup B]=I$ for $A, B \subseteq X$. Since $A \subseteq[I \cup A]$ and $B \subseteq[I \cup B]$. Hence $[A] \cap[B] \subseteq[I \cup A] \cap[I \cup B]=I$. Therefore $[A] \cap[B] \subseteq I$.

Conversely, assume that $[A] \cap[B] \subseteq I$ for any $A, B \subseteq X$. Clearly $I \subseteq[I \cup A] \cap$ $[I \cup B]$. Let $x \in[I \cup A] \cap[I \cup B]$. Then $\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{m} N * x N\right)\right)\right)\right) N \in I$ and $\left(b_{1} N *\left(b_{2} N *\left(\cdots\left(b_{n} N * x N\right)\right)\right)\right) N \in I$ where $a_{1}, a_{2}, \ldots, a_{m} \in A ; b_{1}, b_{2}, \ldots, b_{n} \in B$ for some $m, n \in \mathbb{N}$. Then there exist $m_{1}, m_{2} \in I$ such that $m_{1}=\left(a_{1} N *\left(a_{2} N *\right.\right.$ $\left.\left.\left(\cdots\left(a_{m} N * x N\right)\right)\right)\right) N \in I$ and $m_{2}=\left(b_{1} N *\left(b_{2} N *\left(\cdots\left(b_{n} N * x N\right)\right)\right)\right) N \in I$. Now, Lemma 2.3(5) gives

$$
\begin{aligned}
1 & =m_{1} N * m_{1} N \\
& =m_{1} N *\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{m} N * x N\right)\right)\right)\right)\right) N N \\
& \leq m_{1} N *\left(\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{m} N * x N\right)\right)\right)\right)\right) \\
& =a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{m} N *\left(m_{1} N * x N\right)\right)\right)\right) \\
& \leq a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{m} N *\left(m_{1} N * x N\right) N N\right)\right)\right) .
\end{aligned}
$$

Therefore $a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{m} N *\left(m_{1} N * x N\right) N N\right)\right)\right)=1$. Then $\left(m_{1} N * x N\right) N \in$ [A]. Similarly, we get $\left(m_{2} N * x N\right) N \in[B]$. Observe

$$
\begin{gathered}
\left(m_{1} N * x N\right) \leq m_{2} N *\left(m_{1} N * x N\right)=m_{1} N *\left(m_{2} N * x N\right) \\
\text { and } \quad\left(m_{2} N * x N\right) \leq m_{1} N *\left(m_{2} N * x N\right) .
\end{gathered}
$$

Then by Lemma 2.3(6), we obtain the following:

$$
\left(m_{1} N *\left(m_{2} N * x N\right)\right) N \leq\left(m_{1} N * x N\right) N
$$

and $\quad\left(m_{1} N *\left(m_{2} N * x N\right)\right) N \leq\left(m_{2} N * x N\right) N$.
Since $\left(m_{1} N * x N\right) N \in[A],\left(m_{2} N * x N\right) N \in[B]$ and $[A],[B]$ are ideals, we get

$$
\left(m_{1} N *\left(m_{2} N * x N\right)\right) N \in[A] \text { and }\left(m_{1} N *\left(m_{2} N * x N\right)\right) N \in[B] .
$$

Hence $\left(m_{1} N *\left(m_{2} N * x N\right)\right) N \in[A] \cap[B] \subseteq I$. Since $\left(m_{1} N *\left(m_{2} N * x N\right) N N\right) N \leq$ $\left(m_{1} N *\left(m_{2} N * x N\right)\right) N$, we get $\left(m_{1} N *\left(m_{2} N * x N\right) N N\right) N \in I$. Since $m_{1} \in I$, we get $\left(m_{2} N * x N\right) N \in I$. Since $m_{2} \in I$, we get $x \in I$. Hence $[I \cup A] \cap[I \cup B] \subseteq I$.

Corollary 3.5. Let I be an ideal of a transitive $B E$-algebra X. For any $a, b \in X$,

$$
[a] \cap[b] \subseteq I \text { if and only if }[I \cup\{a\}] \cap[I \cup\{b\}]=I .
$$

Theorem 3.6. Every maximal ideal of a transitive BE-algebra is prime.

Proof. Let M be a maximal ideal of a transitive $B E$-algebra X. Let $x, y \in X$. Suppose $[x] \cap[y] \subseteq M$. If $x \notin M$ and $y \notin M$, then by Theorem 2.14, we have $[M \cup\{x\}]=X$ and $[M \cup\{y\}]=X$. Hence $[M \cup\{x\}] \cap[M \cup\{y\}]=X \neq M$. Thus $[x] \cap[y] \nsubseteq M$, which is a contradiction. So $x \in M$ or $y \in M$. Therefore M is prime.

Theorem 3.7. Let X be a transitive BE-algebra and $a \in X$. If I is an ideal of X such that $a \notin I$, then there exist a prime ideal P such that $a \notin P$ and $I \subseteq P$.

Proof. Suppose I is an ideal of X such that $a \notin I$. Let $\mathcal{T}=\{G \in \mathcal{I}(X) \mid a \notin$ $G, I \subseteq G\}$. Clearly $I \in \mathcal{T}$. Then $\mathcal{T} \neq \emptyset$. By Zorn's lemma, \mathcal{T} has a maximal element say M. Clearly $a \notin M$. Now we prove that M is a prime ideal. Let $x, y \in$ X such that $[x] \cap[y] \subseteq M$. By Corollary 3.5, we get $[M \cup\{x\}] \cap[M \cup\{y\}]=M$. Since $a \notin M$, we get either $a \notin[M \cup\{x\}]$ or $a \notin[M \cup\{y\}]$. Since M is maximal, we get $[M \cup\{x\}]=M$ or $[M \cup\{y\}]=M$. Hence $x \in M$ or $y \in M$. Therefore M is a prime ideal such that $a \notin M$ and $I \subseteq M$.

Corollary 3.8. Let I be a proper ideal of a transitive BE-algebra X. Then

$$
I=\cap\{P / P \text { is a prime ideal of } X \text { such that } I \subseteq P\}
$$

Proof. Clearly $I \subseteq \cap\{P / P$ is a prime ideal of X such that $I \subseteq P\}$. Conversely, let $x \notin I$. Then by the above theorem 3.7, there exist a prime ideal P_{x} such that $x \notin P_{x}$ and $I \subseteq P_{x}$. Hence $x \notin \cap\{P / P$ is a prime ideal of X such that $I \subseteq P\}$. Therefore $\cap\{P / P$ is a prime ideal of X such that $I \subseteq P\} \subseteq I$.

Hence $I=\cap\{P / P$ is a prime ideal of X such that $I \subseteq P\}$.
Corollary 3.9. Let X be a transitive $B E$-algebra and $0 \neq x \in X$. Then there exist a prime ideal P such that $x \notin P$.

Proof. Let $0 \neq x \in X$ and $I=\{0\}$. Then I is an ideal and $x \notin I$. By the above theorem 3.7, there exist a prime ideal P such that $x \notin P$.

Corollary 3.10. The intersection of all prime ideals of a transitive $B E$ algebra is equal to $\{0\}$.

Theorem 3.11. Let X, Y be two transitive $B E$ algebras and $f: X \rightarrow Y$ is homomorphism such that $f(X)$ is an ideal of Y. If I is a prime ideal of Y and $f^{-1}(I) \neq X$, then $f^{-1}(I)$ is a prime ideal of X.

Proof. Let $f: X \rightarrow Y$ is homomorphism such that $f(X)$ is an ideal of Y. Suppose I is an ideal of Y. Let $x \in f^{-1}(I)$ and $(x N * y N) N \in f^{-1}(I)$. Then $f(x) \in I$ and $f(x N * y N) N \in I$. Hence $(f(x) N * f(y)) N=(f(x N) * f(y N)) N \in I$. Since $f(x) \in I$ and I is an ideal, we get $f(y) \in I$. Hence $y \in f^{-1}(I)$. Therefore $f^{-1}(I)$ is an ideal of X.

Let $x, y \in X$ such that $[x] \cap[y] \subseteq f^{-1}(I)$. Let $u \in[f(x)] \cap[f(y)]$ where $u \in Y$. Then there exist $m, n \in \mathbb{N}$ such that $(f(x) N)^{m} * u N=1$ and $(f(y) N)^{n} * u N=1$. Hence $\left((f(x) N)^{m} * u N\right) N=1 N=0 \in I$ and $\left((f(y) N)^{n} * u N\right)=1 N=0 \in I$. Since $f(x) \in f(X)$ and $f(X)$ is an ideal, we get $u \in f(X)$. Then $u=f(a)$ for some $a \in X$. Now, we have

$$
\begin{aligned}
(f(x) N)^{m} * f(a) N=1 & \Rightarrow f\left((x N)^{m} * a N\right)=1 \\
& \Rightarrow f\left((x N)^{m} * a N\right) N=0 \in I \\
& \Rightarrow\left((x N)^{m} * a N\right) N \in f^{-1}(I) \\
& \Rightarrow a \in\left[f^{-1}(I) \cup\{x\}\right] .
\end{aligned}
$$

Similarly, we get $a \in\left[f^{-1}(I) \cup\{y\}\right]$. Hence $a \in\left[f^{-1}(I) \cup\{x\}\right] \cap\left[f^{-1}(I) \cup\{y\}\right]$. Since $[x] \cap[y] \subseteq f^{-1}(I)$, we get $\left[f^{-1}(I) \cup\{x\}\right] \cap\left[f^{-1}(I) \cup\{y\}\right]=f^{-1}(I)$. Hence $a \in f^{-1}(I)$, which means $u=f(a) \in I$. Therefore $[f(x)] \cap[f(y)] \subseteq I$. Since I is a prime ideal of Y, we get $f(x) \in[f(x)] \subseteq I$ or $f(y) \in[f(y)] \subseteq I$. Hence $x \in f^{-1}(I)$ or $y \in f^{-1}(I)$. Therefore $f^{-1}(I)$ is a prime ideal of X.

Theorem 3.12. Let X be a transitive BE-algebra. Then $\mathcal{I}(X)$ is a totally ordered set or a chain if and only if every proper ideal of X is a prime ideal.
Proof. Assume that $\mathcal{I}(X)$ is a totally totally ordered set. Suppose I is a proper ideal of X. Choose $a, b \in X$ such that $[a] \cap[b] \subseteq I$. Since $[a]$ and $[b]$ are ideals of X, we get $[a] \subseteq[b]$ or $[b] \subseteq[a]$. Hence $a \in I$ or $b \in I$, which implies I is prime.

Conversely, assume that every proper ideal of X is a prime ideal. Let I and J be two proper ideals of X. Then $I \cap J$ is a proper ideal of X. Hence $I \cap J$ is a prime ideal of X. Thus $I \subseteq I \cap J$ or $J \subseteq I \cap J$, which implies $I \subseteq J$ or $J \subseteq I$. Therefore $\mathcal{I}(X)$ is a totally ordered set.

Theorem 3.13. For any two ideals I and J of a transitive $B E$-algebra, $I \vee J=$ $\{x \in X \mid a N *(b N * x N)=1$ for some $a \in I, b \in J\}$ is the smallest ideal that is containing both I and J. Hence the set $(\mathcal{I}(X), \cap, \vee)$ is a complete lattice with smallest element $\{0\}$ and the greatest element X.
Theorem 3.14. Let $\mathcal{I}(X)$ be the set of all ideals of a transitive BE-algebra X. Then the algebraic structure $(\mathcal{I}(X), \cap, \vee)$ forms a distributive lattice.

Proof. Let I, J, K be three ideals of X. Clearly $(I \cap J) \vee(I \cap K) \subseteq I \cap(J \vee K)$. Conversely, let $x \in I \cap(J \vee K)$. Then $x \in I$ and $x \in J \vee K$. Hence $a N *(b N * x N)=$ 1 for some $a \in J$ and $b \in K$. Now, let $d_{1}=(b N * x N) N$ and $d_{2}=\left(d_{1} N * x N\right) N$. Since $a \in J$, we get $d_{1}=(b N * x N) N \in I$ and $d_{2}=\left(d_{1} N * x N\right) N \in I$. Then

$$
\begin{aligned}
\left(a N * d_{1} N\right) N & =(a N *(b N * x N) N N) N \\
& \leq(a N *(b N * x N)) N \\
& =1 N \\
& =0 \in J
\end{aligned}
$$

Since $a \in J$, we get $(b N * x N) N=d_{1} \in J$. Hence $d_{1} \in I \cap J$. Again

$$
\begin{aligned}
\left(b N * d_{2} N\right) N & =\left(b N *\left(d_{1} N * x N\right) N N\right) N \\
& \leq\left(b N *\left(d_{1} N * x N\right)\right) N \\
& =(b N *((b N * x N) N N * x N)) N \\
& =((b N * x N) N N *(b N * x N)) N \\
& =1 N \\
& =0 \in K
\end{aligned}
$$

Therefore $\left(b N * d_{2} N\right) N=0 \in K$. Since $b \in K$ implies $d_{2} \in K$. Hence $d_{2} \in I \cap K$. Now

$$
\begin{aligned}
d_{1} N *\left(d_{2} N * x N\right) & =(b N * x N) N N *\left(\left(d_{1} N * x N\right) N N * x N\right) \\
& \geq(b N * x N) N N *\left(\left(d_{1} N * x N\right) * x N\right) \\
& =(b N * x N) N N *(((b N * x N) N N * x N) * x N) \\
& =((b N * x N) N N * x N) *((b N * x N) N N * x N) \\
& =1
\end{aligned}
$$

Hence $d_{1} N *\left(d_{2} N * x N\right)=1$. Since $d_{1} \in I \cap J$ and $d_{2} \in I \cap K$, we get $x \in$ $(I \cap J) \vee(I \cap K)$. Hence $I \cap(J \vee K) \subseteq(I \cap J) \vee(I \cap K)$. Therefore $I \cap(J \vee K)=$ $(I \cap J) \vee(I \cap K)$. Thus $(\mathcal{I}(X), \cap, \vee)$ is a distributive lattice.

We now generalise the famous prime ideal theorem of various algebraic structures in transitive $B E$-algebras. Let us define a \cap-closed subset of a $B E$-algebra as the subset S of X in which $[a] \cap[b] \subseteq S$ for all $a, b \in S$.

Proposition 3.15. Let P be a prime ideal of a transitive $B E$-algebra X and $a \in X$. Then the set $S=\{x \in X \mid[x] \subseteq[a] \vee J$ for some ideal J with $J \nsubseteq P\}$ is $a \cap$-closed subset of X.

Proof. Let P be a prime ideal of X and $x, y \in X$. Suppose $x, y \in S$. Then there exist ideals J_{1} and J_{2} of X with $J_{1} \nsubseteq P, J_{2} \nsubseteq P$ such that $[x] \subseteq[a] \vee J_{1}$ and $[y] \subseteq[a] \vee J_{2}$. Hence

$$
[x] \cap[y] \subseteq\left([a] \vee J_{1}\right) \cap\left([a] \vee J_{2}\right)=[a] \vee\left(J_{1} \cap J_{2}\right)
$$

Since P is prime, we get $J_{1} \cap J_{2} \nsubseteq P$. Let $t \in[x] \cap[y]$. Then $[t] \subseteq[x] \cap[y] \subseteq$ $[a] \vee\left(J_{1} \cap J_{2}\right)$. Hence $t \in S$, which gives $[x] \cap[y] \subseteq S$. Therefore S is \cap-closed.

Theorem 3.16 (Prime ideal theorem). Let I be an ideal and S be a \cap-closed subset of a transitive BE-algebra X such that $I \cap S=\emptyset$. Then there exists a prime ideal P of X such that $I \subseteq P$ and $P \cap S=\emptyset$.

Proof. Let I be an ideal and S be a \cap-closed subset of a transitive $B E$-algebra X such that $I \cap S=\emptyset$. Consider $\mathcal{F}=\{J \in \mathcal{I}(X) \mid I \subseteq J$ and $J \cap S=\emptyset\}$. Clearly $I \in \mathcal{F}$ and so $\mathcal{F} \neq \emptyset$. Let $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$ be a chain of elements of \mathcal{F}. Then clearly $\bigcup_{\alpha \in \Delta} J_{\alpha}$ is an upper bound of $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$. Hence the hypothesis of Zorn's lemma is satisfied. Thus \mathcal{F} has a maximal element, say M. Clearly M is an ideal such that $I \subseteq M$ and $M \cap S=\emptyset$. We now prove that M is prime. Let $x, y \in X$ be such that $x \notin M$ and $y \notin M$. Then $M \subset M \vee[x]$ and $M \subset M \vee[y]$. By the maximality of M, we should have $(M \vee[x]) \cap S \neq \emptyset$ and $(M \vee[y]) \cap S \neq \emptyset$. Choose $a \in(M \vee[x]) \cap S$ and $b \in(M \vee[y]) \cap S$. Since $a, b \in S$, we get $[a] \cap[b] \subseteq S$ because of S is \cap-closed. Now

$$
[a] \cap[b] \subseteq(M \vee[x]) \cap(M \vee[y])=M \vee([x] \cap[y]) .
$$

If $[x] \cap[y] \subseteq M$, then $[a] \cap[b] \subseteq M$. Hence $[a] \cap[b] \subseteq M \cap S$, which is a contradiction. Thus $[a] \cap[b] \nsubseteq M$. Therefore M is a prime ideal of X.

In the following, some properties of prime ideals are discussed with respect to cartesian products or direct products of $B E$-algebras. For this, we first observe the following basic properties.

Lemma 3.17. Let X_{1} and X_{2} be two transitive $B E$-algebras. For any $a \in X_{1}, b \in$ X_{2}, we have
(1) $[(a, b)]=[a] \times[b]$,
(2) $([a] \times[b]) \cap([c] \times[d])=([a] \cap[c]) \times([b] \cap[d])$,
(3) $[(a, b)] \cap[(c, d)]=([a] \cap[c]) \times([b] \cap[d])$.

Proof. (1) Let $x \in X_{1}$ and $y \in X_{2}$. Then $(x, y) \in X_{1} \times X_{2}$. Hence we have

$$
\begin{aligned}
(x, y) \in[(a, b)] & \Leftrightarrow((a, b) N)^{n} *(x, y) N=(1,1) \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow((a N, b N))^{n} *(x N, y N)=(1,1) \\
& \Leftrightarrow\left((a N)^{n} * x N,(b N)^{n} * y N\right)=(1,1) \\
& \Leftrightarrow(a N)^{n} * x N=1 \text { and }(b N)^{n} * y N=1 \\
& \Leftrightarrow x \in[a] \text { and } y \in[b] \\
& \Leftrightarrow(x, y) \in[a] \times[b] .
\end{aligned}
$$

Therefore $[(a, b)]=[a] \times[b]$.
(2) Let $x \in X_{1}$ and $y \in X_{2}$. Then $(x, y) \in X_{1} \times X_{2}$. Hence we have

$$
\begin{aligned}
(x, y) \in([a] \times[b]) \cap([c] \times[d]) & \Leftrightarrow(x, y) \in[a] \times[b] \text { and }(x, y) \in[c] \times[d] \\
& \Leftrightarrow x \in[a], y \in[a] \text { and } x \in[c], y \in[d] \\
& \Leftrightarrow x \in[a] \cap[c] \text { and } y \in[b] \cap[d] \\
& \Leftrightarrow(x, y) \in([a] \cap[c]) \times([b] \cap[d]) .
\end{aligned}
$$

Therefore $([a] \times[b]) \cap([c] \times[d])=([a] \cap[c]) \times([b] \cap[d])$.
(3) It is straight forward from (1) and (2).

Theorem 3.18. Let X_{1} and X_{2} be two transitive BE-algebras, P_{1} and P_{2} be the prime ideals of X_{1} and X_{2} respectively. Then $P_{1} \times X_{2}$ and $X_{1} \times P_{2}$ are prime ideals of $X_{1} \times X_{2}$

Proof. Let P_{1} and P_{2} be the prime ideals of X_{1} and X_{2} respectively. It is easy to verify that $P_{1} \times X_{2}$ and $X_{1} \times P_{2}$ are ideals of $X_{1} \times X_{2}$. Let $(a, b),(c, d) \in X_{1} \times X_{2}$. Suppose $[(a, b)] \cap[(c, d)] \subseteq P_{1} \times X_{2}$. Then by the above lemma 3.17 , we get $([a] \cap[c]) \times([b] \cap[d]) \subseteq P_{1} \times X_{2}$. Hence $[a] \cap[c] \subseteq P_{1}$. Since P_{1} is a prime ideal of X_{1}, we get $a \in P_{1}$ or $c \in P_{1}$. Thus $(a, b) \in P_{1} \times X_{2}$ or $(c, d) \in P_{1} \times X_{2}$. Therefore $P_{1} \times X_{2}$ is a prime ideal of $X_{1} \times X_{2}$. Similarly, we can prove that $X_{1} \times P_{2}$ is also a prime ideal of $X_{1} \times X_{2}$.

Theorem 3.19. Let X_{1} and X_{2} be two transitive $B E$-algebras and P be a prime ideal of $X_{1} \times X_{2}$. Then P is of the form $P_{1} \times X_{2}$ or $X_{1} \times P_{2}$, where P_{i} is a prime $i d e a l$ of X_{i} for $i=1,2$.

Proof. Let P be a prime ideal of $X_{1} \times X_{2}$. Consider the projections $\pi_{1}(P)$ and $\pi_{2}(P)$ of P as

$$
\begin{aligned}
& P_{1}=\pi_{1}(P)=\left\{x_{1} \in X_{1} \mid\left(x_{1}, x_{2}\right) \in P, \text { for some } x_{2} \in X_{2}\right\} \\
& P_{2}=\pi_{2}(P)=\left\{x_{2} \in X_{2} \mid\left(x_{1}, x_{2}\right) \in P, \text { for some } x_{1} \in X_{1}\right\}
\end{aligned}
$$

It is easy to verify that P_{1} and P_{2} are ideals of X_{1} and X_{2} respectively. We first show that P_{1} and P_{2} are prime ideals of X_{1} and X_{2} respectively. Suppose $P_{1}=X_{1}$ and $P_{2}=X_{2}$. Let $(a, b) \in X_{1} \times X_{2}$. Then there exist $x \in X_{1}$ and $y \in X_{2}$ such that $(a, y) \in P$ and $(x, b) \in P$. Since $(a, 0) \leq(a, y)$ and $(0, b) \leq(x, b)$, we get $(a, 0) \in P$ and $(0, b) \in P$. Since $(0, b) \in P,(0, b N N)=(0, b) N N \in P$. Now

$$
\begin{aligned}
((a, 0) N *(a, b) N) N & =((a N, 0 N) *(a N, b N)) N \\
& =(a N * a N, 0 N * b N) N \\
& =(1, b N) N \\
& =(0, b N N) \in P
\end{aligned}
$$

Since $(a, 0) \in P$ and P is an ideal, it gives $(a, b) \in P$. Hence $P=X_{1} \times X_{2}$, which is a contradiction to that P is proper. Next suppose that $P_{1} \neq X_{1}$ and $P_{2} \neq X_{2}$. Choose $a \in X_{1}-P_{1}$ and $b \in X_{2}-P_{2}$. Then $(a, 0) \notin P$ and $(0, b) \notin P$. Since P is prime, we get

$$
[(0,0)]=[0] \times[0]=([a] \cap[0]) \times([0] \cap[b])=[(a, 0)] \cap[(0, b)] \nsubseteq P
$$

which is a contradiction. From the above observations, we get that either $P_{1}=X_{1}$ and $P_{2} \neq X_{2}$ or $P_{1} \neq X_{1}$ and $P_{2}=X_{2}$.

Case (i) Suppose $P_{1}=X_{1}$ and $P_{2} \neq X_{2}$. Let $x_{2}, y_{2} \in X_{2}$ and $\left[x_{2}\right] \cap\left[y_{2}\right] \subseteq P_{2}$. Then there exists $a \in X_{1}=P_{1}$ such that $[a] \times\left(\left[x_{2}\right] \cap\left[y_{2}\right]\right) \subseteq P$. Therefore

$$
\begin{aligned}
{\left[\left(a, x_{2}\right)\right] \cap\left[\left(a, y_{2}\right)\right] } & =([a] \cap[a]) \times\left(\left[x_{2}\right] \cap\left[y_{2}\right]\right) \\
& =[a] \times\left(\left[x_{2}\right] \cap\left[y_{2}\right]\right) \subseteq P .
\end{aligned}
$$

Since P is prime, we get $\left(a, x_{2}\right) \in P$ or $\left(a, y_{2}\right) \in P$. Hence $x_{2} \in P_{2}$ or $y_{2} \in P_{2}$. Therefore P_{2} is a prime ideal of X_{2}. We now show that $P=X_{1} \times P_{2}$. Clearly $P \subseteq X_{1} \times P_{2}$. On the other hand, suppose $(a, y) \in X_{1} \times P_{2}$. Since $P_{1}=X_{1}$, there exists $b \in X_{2}$ such that $(a, b) \in P$ and there exists $x \in X_{1}$ such that $(x, y) \in P$. Since $(a, 0) \leq(a, b)$ and $(0, y) \leq(x, y)$, we get $(a, 0) \in P$ and $(0, y) \in P$. Since $(0, y) \in P$, we get $(0, y N N)=(0, y) N N \in P$. Now

$$
\begin{aligned}
((a, 0) N *(a, y) N) N & =((a N, 0 N) *(a N, y N)) N \\
& =(a N * a N, 0 N * y N) N \\
& =(1, y N) N \\
& =(0, y N N) \in P .
\end{aligned}
$$

Since $(a, 0) \in P$ and P is an ideal, it gives $(a, y) \in P$. Hence $X_{1} \times P_{2} \subseteq P$. Therefore $P=X_{1} \times P_{2}$.

Case (ii) Suppose $P_{1} \neq X_{1}$ and $P_{2}=X_{2}$. Similarly, we can prove that P_{1} is prime ideal of X_{1} and $P=P_{1} \times X_{2}$.

The following corollary is an extension of the above theorem.
Corollary 3.20. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a finite family of transitive $B E$-algebras. Let P be an ideal of $\prod_{i=1}^{n} X_{i}$. Then P is prime if and only if P is of the form $\prod_{i=1}^{n} P_{i}$, where $P_{i}=X_{i}$ for all except one i, in this case P_{i} is a prime ideal of X_{i}.
Theorem 3.21. Let X_{1} be a subalgebra of a transitive BE-algebra X and P_{1} is a prime ideal of X_{1}. Then there exists a prime ideal P of X such that $P \cap X_{1}=P_{1}$.
Proof. Let P_{1} be a prime ideal of X_{1}. Then $X_{1}-P_{1}$ is a \cap-closed subset of X. Write $I=\left[P_{1}\right]$, the ideal generated by P_{1}. Then $P_{1} \subseteq I \cap X_{1}$. Suppose $I \cap\left(X_{1}-P_{1}\right) \neq \emptyset$. Choose $x \in I \cap\left(X_{1}-P_{1}\right)$. Then $x \in I$ and $x \in\left(X_{1}-P_{1}\right)$. Since $x \in I=\left[P_{1}\right]$, there exists $a_{1}, a_{2}, \ldots, a_{n} \in P_{1}, n \in \mathbb{N}$ such that $a_{1} N *\left(a_{2} N *\right.$ $\left.\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right)=1$. Then

$$
\begin{aligned}
& \left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right)\right) N \\
& =\left(a_{1} N *\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right) N N\right) N \\
& =1 N \\
& =0 \in P_{1} .
\end{aligned}
$$

Since $a_{1} \in P_{1}$, we get $\left(a_{2} N *\left(\cdots\left(a_{n} N * x N\right) \cdots\right)\right) N \in P_{1}$. Continuing in this way, finally we get $x \in P_{1}$. Since $x \in\left(X_{1}-P_{1}\right)$, we have arrived at a contradiction. Hence $I \cap\left(X_{1}-P_{1}\right)=\emptyset$. Then by Prime ideal theorem, there exists a prime ideal P of X such that $I \subseteq P$ and $P \cap\left(X_{1}-P_{1}\right)=\emptyset$. Since $I \subseteq P$, we get $I \cap X_{1} \subseteq P \cap X_{1}$. Since $P \cap\left(X_{1}-P_{1}\right)=\emptyset$, we get $P \subseteq P_{1}$. Hence both observations lead to

$$
P_{1} \subseteq I \cap X_{1} \subseteq P \cap X_{1} \subseteq P_{1} \cap X_{1} \subseteq P_{1} .
$$

Therefore $P_{1}=P \cap X_{1}$.

4. Minimal prime ideals

In this section, the notion of minimal prime ideals is introduced in transitive $B E$-algebras. It is derived that every proper ideal of a transitive $B E$-algebra can expressed as a decomposition of distinct minimal prime ideals. The notion of finite \cap-structure is introduced and investigated its relation with the minimal prime ideal.

Definition 4.1. Let I be an ideal and P a prime ideal of a transitive $B E$-algebra X such that $I \subseteq P$. Then P is called a minimal prime ideal belonging to I if there exists no prime ideal Q such that $I \subseteq Q \subset P$.
Example 4.2. Let $X=\{0, a, b, c, d, 1\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	1	1	d	d
b	1	c	1	c	d	c
c	1	b	b	1	d	b
d	1	a	b	c	1	a
0	1	1	1	1	1	1

Clearly $(X, *, 0,1)$ is a bounded $B E$-algebra. Clearly $I_{1}=\{0\}, I_{2}=\{0, a\}, I_{3}=$ $\{0, b\}, I_{4}=\{0, c\}, I_{5}=\{0, a, b\}$ and $I_{6}=\{0, a, c\}$ are ideals of X, in which $I_{2}, I_{3}, I_{4}, I_{5}$ and I_{6} are proper ideals. Here I_{5} and I_{6} are prime ideals of X. Also I_{5} is a minimal prime ideal of I_{2}, I_{3} and I_{6} is a minimal prime ideal of I_{2}, I_{4}.

In a $B E$-algebra X, the minimal prime ideals belonging to $\{0\}$ are simply called minimal prime ideals of X. In the other version, a minimal prime ideal of a $B E$-algebra is the minimal element of the partial order set of all prime ideals. Thus a prime ideal P of X is a minimal prime ideal if for any prime ideal I of X such that $I \subseteq P$, then $P=I$. Using the Zorn's lemma, we have the following proposition.

Proposition 4.3. Let I be a proper ideal of a transitive $B E$-algebra X. Then every prime ideal of X, containing I, contains at least a minimal prime ideal belonging to I.

Proof. Let P be a prime ideal of X such that $I \subseteq P$. Consider the collection

$$
\mathfrak{T}=\{Q \mid Q \text { is a prime ideal of } X \text { such that } I \subseteq Q \subseteq P\}
$$

Clearly $P \in \mathfrak{T}$ and hence $\mathfrak{T} \neq \emptyset$. Let $\left\{Q_{\alpha}\right\}_{\alpha \in \Delta}$ be a chain of elements in \mathfrak{T}. Since $\left\{Q_{\alpha}\right\}_{\alpha \in \Delta}$ is a chain, we get that $\bigcap_{\alpha \in \Delta} Q_{\alpha}$ is a prime ideal of X. Since $I \subseteq Q_{\alpha} \subseteq P$ for all $\alpha \in \Delta$, it is clear that $I \subseteq \bigcap_{\alpha \in \Delta} Q_{\alpha} \subseteq P$. Hence $\bigcap_{\alpha \in \Delta} Q_{\alpha}$ is a lower bound for $\left\{Q_{\alpha}\right\}_{\alpha \in \Delta}$. Therefore by Zorn's lemma, \mathfrak{T} has a minimal element, say Q_{0}. Therefore Q_{0} is a minimal prime ideal such that $I \subseteq Q_{0} \subseteq P$.

By taking $I=\{0\}$, we get the following easy consequence.
Corollary 4.4. Every prime ideal of a transitive BE-algebra X contains at least a minimal prime ideal.
Proposition 4.5. Let I be a proper ideal of a transitive BE-algebra X. Then I is the intersection of all minimal prime ideals of X, belonging to I.

Proof. Since I is contained in every minimal prime ideal of X, belonging to I and so contained in the intersection of all minimal prime ideals belonging to I. To prove the converse, let $x \notin I$. Then by Corollary 3.9, there exists a prime ideal P of X such that $I \subseteq P$ and $x \notin P$. Then there exists a minimal prime ideal M of X such that $I \subseteq M \subseteq P$. Since $x \notin P$, we get $x \notin M$. Hence M is a minimal prime ideal of X, belonging to I, such that $x \notin M$. Thus x is not in the intersection of all minimal prime ideals of X, belonging to I.

If we take $I=\{0\}$ in the above proposition, the following is a direct consequence.

Corollary 4.6. Let X be a transitive BE-algebra. Then the intersection of all minimal prime ideals of X is equal to $\{0\}$.

Corollary 4.7. Let I be a proper ideal of a transitive BE-algebra X. Then the intersection of all minimal prime ideals of X, belonging to I, coincides with that of all prime ideals of X, containing I.

By considering $I=\{0\}$ in the above corollary, we get the following.
Corollary 4.8. In any transitive BE-algebra X, the intersection of all minimal prime ideals of X coincides with that of all prime ideals of X.

By Corollary 3.8, it is observed that every proper ideal of a $B E$-algebra X can be decomposed as the intersection of all minimal prime ideals of X, belonging to I.

Theorem 4.9 (Unique decomposition theorem). Let I be a proper ideal of a transitive $B E$-algebra X. If there exist positive integers m and n such that

$$
I=P_{1} \cap P_{2} \cap \cdots \cap P_{m} \quad \text { and } \quad I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}
$$

are two representations of distinct minimal prime ideals of X, belonging to I, then $m=n$, and for any P_{i} in the first expression there is Q_{j} in the second expression such that $P_{i}=Q_{j}$.

Proof. Let $P_{i}(i=1,2, \ldots, m)$ be a minimal prime ideal in the first representation. Clearly $I \subseteq P_{i}$. By the second representation, we have $Q_{1} \cap\left(Q_{2} \cap \cdots \cap Q_{n}\right) \subseteq$ P_{i}. Since P_{i} is prime, we get

$$
Q_{1} \subseteq P_{i} \quad \text { or } \quad Q_{2} \cap \cdots \cap Q_{n} \subseteq P_{i} .
$$

If $Q_{1} \subseteq P_{i}$, then the minimality of P_{i} provides that $P_{i}=Q_{1}$. If $Q_{1} \nsubseteq P_{i}$, then $Q_{2} \cap \cdots \cap Q_{n} \subseteq P_{i}$. Repeating the same argument, we finally get that there exists $j \in\{2,3, \ldots, m\}$ such that $P_{i}=Q_{j}$. It remains to show that $m=n$. Note that $P_{1}, P_{2}, \ldots, P_{m}$ are distinct, the preceding argument actually implies $m \leq n$. If we begin with the second representation, by the entirely similar argument, we will obtain $n \leq m$. Therefore $m=n$.

Corollary 4.10. If a proper ideal I of a transitive BE-algebra X can be expressed as the intersection of a finite number of distinct minimal prime ideals of X, belonging to I, then such representation is unique except their occurring order.

Corollary 4.11. If the ideal $\{0\}$ of a transitive $B E$-algebra X can be expressed as the intersection of a finite number of distinct minimal prime ideals of X, then such representation is unique except their occurring order.

Definition 4.12. A nonempty subset S of a $B E$-algebra X is called a finite \cap-structure, if $([x] \cap[y]) \cap S \neq \emptyset$ for all $x, y \in S$.
Example 4.13. Let $X=\{0, a, b, c, d, 1\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Clearly $(X, *, 0,1)$ is a bounded $B E$-algebra.
Recall that $[\alpha]=\left\{x \in X \mid(\alpha N)^{n} * x N=1\right.$ for some $\left.n \in \mathbb{N}\right\}$. Then we have $[a]=\{0, a, b, d\},[b]=\{0, b\},[c]=\{0, c, d\},[d]=\{0, d\},[0]=\{0\}$ and $[1]=X$.

Also $[a] \cap[b]=\{0, b\},[a] \cap[c]=\{0, d\},[a] \cap[d]=\{0, d\},[b] \cap[c]=\{0\},[b] \cap[d]=$ $\{0\},[c] \cap[d]=\{0, d\}$.

Take $S_{1}=\{1, a, b\}$ then $([a] \cap[b]) \cap S_{1}=\{b\},([a] \cap[1]) \cap S_{1}=\{a, b\}$ and $([1] \cap[b]) \cap S_{1}=\{b\}$. Therefore $([x] \cap[y]) \cap S_{1} \neq \emptyset$ for all $x, y \in S_{1}$. Hence S_{1} is a finite \cap-structure. Similarly we can observe that the set $S_{2}=\{0, c, d\}$ is also a finite \cap-structure.

However the set $S_{3}=\{a, c\}$ is not a finite \cap-structure, because of $([a] \cap[c]) \cap$ $S_{3}=\emptyset$.
Lemma 4.14. Every ideal of a transitive $B E$-algebra is a finite \cap-structure.
Proof. Let I be an ideal of a transitive $B E$-algebra X. Let $x, y \in X$. Suppose that $x, y \in I$. Then $[x] \subseteq I$ and $[y] \subseteq I$. Hence $[x] \cap[y] \subseteq I$. Thus $([x] \cap[y]) \cap I \neq \emptyset$. Therefore I is a finite \cap-structure.

Example 4.15. From the above Example 4.13, we can easily observe that $S_{2}=$ $\{0, c, d\}$ is an ideal and also a finite \cap-structure.
Proposition 4.16. Let P be a proper ideal of a transitive BE-algebra X. Then P is prime if and only if $X-P$ is finite \cap-structure.
Proof. Let P be an ideal of X. Assume that P is prime. Let $x, y \in X-P$. Then $x \notin P$ and $y \notin P$. Suppose $([x] \cap[y]) \cap(X-P)=\emptyset$. Then $[x] \cap[y] \subseteq P$. Since P is prime, we get $x \in P$ or $y \in P$, which is a contradiction. Hence $([x] \cap[y]) \cap(X-P) \neq \emptyset$.

Conversely, assume that $X-P$ is finite \cap-structure. Let $x, y \in X$ be such that $[x] \cap[y] \subseteq P$. Suppose $x \notin P$ and $y \notin P$. Then $x, y \in X-P$. Since $X-P$ is finite \cap-structure, we get $([x] \cap[y]) \cap(X-P) \neq \emptyset$. Hence $[x] \cap[y] \nsubseteq P$, which is a contradiction. Thus $x \in P$ or $y \in P$. Therefore P is a prime ideal of X.

Example 4.17. From the above Example 4.13, we can easily observe that $S_{2}=$ $\{0, c, d\}$ is a prime ideal and $X-S_{2}=\{1, a, b\}=S_{1}$ is a finite \cap-structure.
Theorem 4.18 (Prime ideal theorem). Let I be an ideal of a transitive BEalgebra X. If S is a finite \cap-structure such that $I \cap S=\emptyset$, then there exists a prime ideal P of X such that $I \subseteq P$ and $P \cap S=\emptyset$.

Proof. Let I be an ideal of X and S be a finite \cap-structure such that $I \cap S=\emptyset$. Consider $\mathcal{F}=\{J \in \mathcal{I}(X) \mid I \subseteq J$ and $J \cap S=\emptyset\}$. Clearly $I \in \mathcal{F}$ and so $\mathcal{F} \neq \emptyset$. Let $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$ be a chain of elements of \mathcal{F}. Then clearly $\bigcup_{\alpha \in \Delta} J_{\alpha}$ is an upper bound of $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$. Hence the hypothesis of Zorn's lemma is satisfied. Thus \mathcal{F} has a maximal element, say M. Clearly M is an ideal such that $I \subseteq M$ and $M \cap S=\emptyset$. We now prove that M is prime. Let I and J be two ideals of X such that $I \nsubseteq M$ and $J \nsubseteq M$. Then $M \subset[M \cup I]$ and $M \subset[M \cup J]$. By the maximality of M, we should have $[M \cup I] \cap S \neq \emptyset$ and $[M \cup J] \cap S \neq \emptyset$. Choose $a \in[M \cup I] \cap S$ and $b \in[M \cup J] \cap S$. Since $a \in[M \cup I]$ and $b \in[M \cup J]$, we get

$$
[a] \cap[b] \subseteq[M \cup I] \cap[M \cup J]
$$

Since $a, b \in S$, we get $([a] \cap[b]) \cap S \neq \emptyset$ because of S is finite \cap-structure. Hence

$$
([M \cup I] \cap[M \cup J]) \cap S \neq \emptyset
$$

Since $M \in \mathcal{F}$, we get $M \cap S=\emptyset$. Comparing this with the last relation, we get $M \neq[M \cup I] \cap[M \cup J]$. By Theorem 3.4, it gives $I \cap J \nsubseteq M$. Therefore M is prime.

Proposition 4.19. Let I be an ideal and P a prime ideal of a transitive $B E$ algebra X such that $I \subseteq P$. Then P is a minimal prime ideal belonging to I if and only if $X-P$ is a maximal finite \cap-structure with respect to the property that $(X-P) \cap I=\emptyset$.

Proof. Assume that P is a minimal prime ideal belonging to I. Then by Proposition 4.16, $X-P$ is a finite \cap-structure such that $(X-P) \cap I=\emptyset$. Suppose Q is another finite \cap-structure such that $Q \cap I=\emptyset$ and $X-P \subseteq Q$. Hence $I \subseteq X-Q \subseteq P$. By the minimality of P, we get $X-Q=P$. Hence $X-P$ is a maximal \cap-structure with respect to the property $(X-P) \cap I=\emptyset$.

Conversely, assume that $X-P$ be a maximal finite \cap-structure with respect to the property $(X-P) \cap I=\emptyset$. Suppose Q is a prime ideal of X such that $I \subseteq Q \subset P$. Then by Proposition 4.16, we get that $X-Q$ is a finite \cap-structure such that $X-P \subseteq X-Q$ and $(X-Q) \cap I=\emptyset$, which contradicts the maximality of $X-P$. Hence P is the minimal prime ideal belonging to I.

Acknowledgments

The authors wish to thank the referees for their valuable suggestions.

References

[1] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Commun. Korean. Math. Soc. 27 (2012) 233-242. https://doi.org/10.4134/CKMS.2012.27.2.233
[2] Z. Ciloglu and Y. Ceven, Commutative and bounded BE-algebras, Algebra 2013 (2013), Article ID 473714, 5 pages. https://doi.org/10.1155/2013/473714
[3] E.Y. Deeba, A characterization of complete BCK-algebras, Math. Seminar Notes, 7 (1979) 343-349.
[4] E.Y. Deeba, Filter theory of BCK-algebras, Math. Japon. 25 (1980) 631-639.
[5] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1979) 1-26.
[6] Y.B. Jun, S.M. Hong, and J. Meng, Fuzzy BCK-filters, Math. Japon. 47 (1998) 45-49.
[7] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon. 66 (2006) 1299-1302. https://doi.org/10.32219/isms.66.1_-13
[8] J. Meng, BCK-filters, Math. Japon. 44 (1996) 119-129.
[9] B.L. Meng, On filters in BE-algebras, Sci. Math. Japon. 71 (2010) 201-207. https://doi.org/10.32219/isms.71.2_-201
[10] C. Muresan, Dense Elements and Classes of Residuated Lattices, Bull. Math. Soc. Sci. Math. Roumanie Tome 53(101) (2010) 11-24. https://www.jstor.org/stable/43679159.
[11] P. Sun, Homomorphism theorems on dual ideals in BCK-algebras, Soo. J. Math. 26 (2000) 309-316.

Received 9 October 2020
Revised 8 December 2020
Accepted 8 December 2020

[^0]: ${ }^{1}$ Corresponding author.

