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Abstract

The notion of prime ideals is introduced in transitiveBE-algebras. Prime
ideals are characterized with the help of principal ideals. Prime ideal theo-
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Introduction

The concept of BE-algebras was introduced and extensively studied in [7]. The
class of BE-algebras was introduced as a generalization of the class of BCK-
algebras of Iseki and Tanaka [5]. Some properties of filters of BE-algebras were
studied by Ahn and Kim in [1] and by Meng in [9]. The notion of dual ideals in
BCK-algebras was introduced by Deeba [3] in 1979. Later 2000, Sun [11] investi-
gated the homomorphism theorems via dual ideals in bounded BCK-algebras. In
[8], Meng introduced the notion of BCK-filters in BCK-algebras and presented
a description of the BCK-filter generated by a set. In this paper, he discussed
prime decompositions and irreducible decompositions. In [6], Jun, Hong and
Meng, considered the fuzzification of the concept of BCK-filters, and investigate
their properties.

In this work, we initially study some properties of ideals and the ideals gen-
erated by an arbitrary set. The notions of maximal ideals and prime ideals are
introduced in transitive BE-algebras and they are characterized with the help
of principal ideals. Properties of a prime ideal containing an arbitrary ideal are
investigated. A necessary and sufficient condition is obtained for every proper
ideal of a transitive BE-algebra to become a prime ideal. The famous prime
ideal theorem of many algebraic structures is generalized to the case of prime
ideals of transitive BE-algebras. Finally, some properties of prime ideals of tran-
sitive BE-algebras are derived with respect to inverse homomorphic images and
cartesian products.

The concept of minimal prime ideals is introduced in transitive BE-algebras.
Some properties of minimal prime ideals belonging to a proper ideal are investi-
gated. Decomposition of a proper ideal as the intersection of all minimal prime
ideals belonging to that proper ideal is derived. Another version of prime ideal
theorem is derived with respect to a finite ∩-structure. Minimal prime ideals are
characterized with the help of finite ∩-structures.

1. Preliminaries

In this section, we present certain definitions and results which are taken mostly
from the papers [1, 2, 7, 9] and [10] for the ready reference of the reader.

Definition 1.1 [7]. An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if
it satisfies the following properties:

(1) x ∗ x = 1,

(2) x ∗ 1 = 1,

(3) 1 ∗ x = x,
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(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for
all x, y, z ∈ X. A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for
all x, y, z ∈ X. Every self-distributive BE-algebra is transitive. A BE-algebra
X is called commutative if (x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X. We introduce
a relation ≤ on a BE-algebra X by x ≤ y if and only if x ∗ y = 1 for all x, y ∈ X.
Clearly ≤ is reflexive. If X is commutative, then ≤ is both anti-symmetric,
transitive and so it is a partial order on X.

Theorem 1.2 [9]. Let X be a transitive BE-algebra and x, y, z ∈ X. Then

(1) 1 ≤ x implies x = 1,

(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 1.3 [1]. A non-empty subset F of a BE-algebra X is called a filter
of X if, for all x, y ∈ X, it satisfies the following properties:

(1) 1 ∈ F ,

(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

For any a ∈ X, 〈a〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N} is called the
principal filter generated a. If X is self-distributive, then 〈a〉 = {x ∈ X | a ∗ x =
1}. For a commutative BE-algebra, define x ∨ y = (y ∗ x) ∗ x for any x, y ∈ X.
Then x∨ y = y ∨ x and the suprimum of x and y is x∨ y for all x, y ∈ X. Hence
(X,∨) will become a semilattice which is called a BE-semilattice.

A BE-algebra X is called bounded [2], if there exists an element 0 satisfying
0 ≤ x (or 0 ∗ x = 1) for all x ∈ X. Define an unary operation N on a bounded
BE-algebra X by xN = x ∗ 0 for all x ∈ X.

Theorem 1.4 [2]. Let X be a transitive BE-algebra and x, y, z ∈ X. Then

(1) 1N = 0 and 0N = 1,

(2) x ≤ xNN ,

(3) x ∗ yN = y ∗ xN .

An element x of a bounded BE-algebra X is called dense [10] if xN = 0.We
denote the set of all dense elements of a BE-algebra X by D(X).A BE-algebra
X is called a dense BE-algebra if every non-zero element of X is dense (i.e.,
xN = 0 for all 0 6= x ∈ X). Let X and Y be two bounded BE-algebras, then
a homomorphism f : X → Y is called bounded if f(0) = 0. If f is a bounded
homomorphism, then it is easily observed that f(xN) = f(x)N for all x ∈ X.
For any bounded homomorphism f : X → Y , define the dual kernel of the
homomorphism f as Dker(f) = {x ∈ X | f(x) = 0}. It is easy to check that
Dker(f) = {0} whenever f is an injective homomorphism.
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2. Ideals of transitive BE-algebras

In this section, some properties of ideals of a transitive BE-algebra are studied
and the notion of maximal ideals is introduced in transitive BE-algebras. Some
properties of maximal ideals are studied.

Definition 2.1. A non-empty subset I of a BE-algebra X is called an ideal of
X if it satisfies the following conditions for all x, y ∈ X:

(I1) 0 ∈ I,

(I2) x ∈ I and (xN ∗ yN)N ∈ I imply that y ∈ I.

Obviously the single-ton set {0} is an ideal of a BE-algebra X. For, suppose
x ∈ {0} and (xN ∗ yN)N ∈ {0} for x, y ∈ X. Then x = 0 and yNN =
(0N ∗ yN)N ∈ {0}. Hence y ≤ yNN = 0 ∈ {0}. Thus {0} is an ideal of X. In
the following example, we observe non-trivial ideals of a BE-algebra.

Example 2.2. Let X = {1, a, b, c, d, 0}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. It can be easily verified that the
set I = {0, c, d} is an ideal of X. However, the set J = {0, a, b, d} is not an ideal
of X, because of a ∈ J and (aN ∗ cN)N = (d ∗ b)N = aN = d ∈ J but c /∈ J .

Lemma 2.3. Let X be a transitive BE-algebra X. For any x, y, z ∈ X, we have

(1) xNNN ≤ xN ,

(2) x ∗ y ≤ yN ∗ xN ,

(3) x ∗ yN ≤ xNN ∗ yN ,

(4) (x ∗ yNN)NN ≤ x ∗ yNN ,

(5) (xN ∗ yN)NN ≤ xN ∗ yN ,

(6) x ≤ y implies yN ≤ xN ,

(7) x ≤ y implies y ∗ zN ≤ x ∗ zN .

Proof. (1) Let x ∈ X. Then 1 = (x ∗ 0) ∗ (x ∗ 0) = x ∗ ((x ∗ 0) ∗ 0) = x ∗ xNN ≤
x∗xNNNN = xNNN ∗xN . Hence xNNN ∗xN = 1, which gives xNNN ≤ xN .
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(2) Let x, y ∈ X. Since X is transitive, we get yN = y ∗0 ≤ (x∗y)∗ (x∗0) =
(x ∗ y) ∗ xN . Hence 1 = yN ∗ yN ≤ yN ∗ ((x ∗ y) ∗ xN) = (x ∗ y) ∗ (yN ∗ xN).
Thus, we get (x ∗ y) ∗ (yN ∗ xN) = 1. Therefore x ∗ y ≤ yN ∗ xN .

(3) Let x, y ∈ X. Then, we get x ∗ yN = y ∗ xN ≤ y ∗ xNNN = xNN ∗ yN .
(4) Let x, y ∈ X. Clearly (x ∗ yNN)N ≤ (x ∗ yNN)NNN . Since X is

transitive, we get yN ∗ (x ∗ yNN)N ≤ yN ∗ (x ∗ yNN)NNN and so x ∗ (yN ∗
(x ∗ yNN)N) ≤ x ∗ (yN ∗ (x ∗ yNN)NNN). Hence, we get

1 = (x ∗ yNN) ∗ (x ∗ yNN)

= x ∗ ((x ∗ yNN) ∗ yNN)

= x ∗ (yN ∗ (x ∗ yNN)N)

≤ x ∗ (yN ∗ (x ∗ yNN)NNN)

= x ∗ ((x ∗ yNN)NN ∗ yNN

= (x ∗ yNN)NN ∗ (x ∗ yNN).

Thus (x ∗ yNN)NN ∗ (x ∗ yNN) = 1. Therefore (x ∗ yNN)NN ≤ (x ∗ yNN).
(5) Form (4), it can be easily verified.
(6) Let x, y ∈ X be such that x ≤ y. Then by (2), we get 1 = x∗y ≤ yN ∗xN .

Hence yN ∗ xN = 1. Therefore yN ≤ xN .
(7) Let x, y ∈ X be such that x ≤ y. Then by (6), we get yN ≤ xN . Since

X is transitive, we get z ∗ yN ≤ z ∗ xN . Therefore y ∗ zN ≤ x ∗ zN .

Proposition 2.4. Let I be an ideal of a transitive BE-algebra X. Then we have:

(1) For any x, y ∈ X,x ∈ I and y ≤ x imply y ∈ I,

(2) For any x, y ∈ X,xN = yN, x ∈ I imply y ∈ I,

(3) For any x ∈ X,x ∈ I if and only if xNN ∈ I.

Proof. (1) Let x, y ∈ X. Suppose x ∈ I and y ≤ x. Then xN ≤ yN , which
implies xN ∗ yN = 1. Hence (xN ∗ yN)N = 0 ∈ I. Since x ∈ I, we get y ∈ I.

(2) Let x, y ∈ X. Assume that xN = yN . Suppose x ∈ I. Then we get
(xN ∗ yN)N = 1N = 0 ∈ I. Since I is an ideal of X, we get y ∈ I.

(3) Let x ∈ X. Suppose x ∈ I. Then we get (xN ∗ xNNN)N = (xNN ∗
xNN)N = 1N = 0 ∈ I. Since x ∈ I, it yields xNN ∈ I. Conversely, let
xNN ∈ I for any x ∈ X. Since x ≤ xNN , by property (1) we get that x ∈ I.

We denote by I(X) the set of all ideals of a BE-algebra X and F(X) the
set of all filters of X. Let A be a non-empty subset of X, then the set

[A] =
⋂

{I ∈ I(X) | A ⊆ I}

is called the ideal generated by A, written [A]. In the following proposition, we
characterize the elements of a principal ideal generated by a set.
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Theorem 2.5. Let X be a transitive BE-algebra and ∅ 6= A ⊆ X. Then

[A] = {x ∈ X | a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · ·)) = 1 for some

a1, a2, . . . , an ∈ A and n ∈ N}.

Proof. It is enough to show that [A] is the smallest ideal of X containing the
set A. Clearly 0 ∈ [A]. Let x ∈ [A] and (xN ∗ yN)N ∈ [A]. Then there exist
a1, a2, . . . , an, b1, b2, . . . , bm ∈ A such that a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · ·)) = 1
and b1N ∗ (b2N ∗ (· · · (bmN ∗ (xN ∗ yN)NN) · · ·)) = 1. Hence we get

1 = bmN ∗ (· · · ∗ (b1N ∗ (xN ∗ yN)NN) · · ·)

≤ bmN ∗ (· · · ∗ (b1N ∗ (xN ∗ yN)) · · ·)

= bmN ∗ (· · · ∗ (xN ∗ (b1N ∗ yN)) · · ·)

· · ·

· · ·

= xN ∗ (bmN ∗ (· · · ∗ (b1N ∗ yN)) · · ·).

Hence xN ≤ bmN ∗ (· · · ∗ (b1N ∗ yN) · · ·). Since X is transitive, we get 1 =
anN ∗(· · ·∗(a1N ∗xN) · · ·) ≤ anN ∗(· · ·∗(a1N ∗(bmN ∗(· · ·∗(b1N ∗yN) · · ·))) · · ·).
Hence

anN ∗ (· · · ∗ (a1N ∗ (bmN ∗ (· · · ∗ (b1N ∗ yN) · · ·))) · · ·) = 1

where a1, a2, . . . , an, b1, b2, . . . , bm ∈ A. From the structure of [A], it yields that
y ∈ [A]. Therefore [A] is an ideal of X. For any x ∈ A, we get xN ∗ (· · · ∗ (xN ∗
xN) · · ·) = 1. Hence x ∈ [A]. Therefore A ⊆ [A].

Let I be an ideal of X containing A. Let x ∈ [A]. Then there exists
a1, a2, . . . , an ∈ A ⊆ I such that anN ∗ (· · · ∗ (a1N ∗ xN) · · ·) = 1. Hence
(anN ∗ (· · · ∗ (a1N ∗ xN) · · ·)NN)N ≤ (anN ∗ (· · · ∗ (a1N ∗ xN) · · ·))N = 0 ∈ I.
Thus by Proposition 2.4(1), we get (anN ∗(· · · ∗(a1N ∗xN) · · ·)NN)N ∈ I. Since
an ∈ I and I is an ideal, we get (an−1N ∗(· · · ∗(a1N ∗xN) · · ·))N ∈ I. Continuing
in this way, we finally get x ∈ I. Hence [A] ⊆ I. Therefore [A] is the smallest
ideal containing A.

For A = {a}, we then denote [{a}], briefly by [a]. We call this ideal by
principal ideal generated by a and is represented by [a] = {x ∈ X | (aN)n ∗xN =
1 for some n ∈ N }. We can easily observe, if X is self-distributive and a ∈ X,
then [a] = {x ∈ X | aN ∗ xN = 1}.

The following is a direct consequence of the above theorem.

Corollary 2.6. Let X be a transitive BE-algebra. For any a, b ∈ X, and A,B ⊆
X, we have
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(1) [0] = {0},

(2) [X] = X and [1] = X,

(3) A ⊆ B implies [A] ⊆ [B],

(4) a ≤ b implies [a] ⊆ [b],

(5) if A is an ideal, then [A] = A,

(6) if A is an ideal and a ∈ A, then [a] ⊆ A.

Proof. (1) Let x ∈ [0]. Then (0N)n ∗ xN = 1 for some n ∈ N. Hence xN = 1.
Thus x ≤ xNN = 1N = 0. Therefore x = 0, which means [0] = {0}.

(2) For all x ∈ X, we get 1N ∗ xN = 1 = 0 ∗ xN = 1. Hence [1] = X.
(3) Suppose A ⊆ B and let x ∈ [A] then a1N ∗ (a2N ∗ (· · · (anN ∗xN) · · ·)) =

1 for some a1, a2, . . . , an ∈ A and n ∈ N. Since A ⊆ B implies a1N ∗ (a2N ∗
(· · · (anN ∗ xN) · · ·)) = 1 for some a1, a2, . . . , an ∈ B and n ∈ N,we get x ∈ [B]
and hence [A] ⊆ [B].

(4) Suppose a ≤ b. By Lemma 2.3(6), we get bN ≤ aN . Again by Lemma
2.3(7), we get aN ∗ xN ≤ bN ∗ xN for any x ∈ X. Since X is transitive,
we get (bN)n−1 ∗ (aN ∗ xN) ≤ (bN)n−1 ∗ (bN ∗ xN) = (bN)n ∗ xN . Thus
1 = (bN)n−1 ∗ 1 ≤ (bN)n ∗ xN , which gives x ∈ [b]. Therefore [a] ⊆ [b].

(5) From the construction of [A], it is obvious.
(6) Let A be an ideal and a ∈ A. Suppose x ∈ [a]. Then there exists n ∈ N

such that (aN)n ∗ xN = 1. Hence 1 = aN ∗ ((aN)n−1 ∗ xN) ≤ aN ∗ ((aN)n−1 ∗
xN)NN . Hence aN ∗ ((aN)n−1 ∗ xN)NN = 1, which gives (aN ∗ ((aN)n−1 ∗
xN)NN)N = 0 ∈ A. Since a ∈ A and A is an ideal, we get ((aN)n−1∗xN)N ∈ A.
Now

(aN ∗ ((aN)n−2 ∗ xN)NN)N ≤ (aN ∗ ((aN)n−2 ∗ xN))N

= ((aN)n−1 ∗ xN)N ∈ A.

which yields (aN ∗ ((aN)n−2 ∗ xN)NN)N ∈ A. Since a ∈ A, we get (aN)n−2 ∗
xN)N ∈ A. Continuing in this way, we finally get x ∈ A. Therefore [a] ⊆ A.

Corollary 2.7. Let X be a transitive BE-algebra and a ∈ X. For any A ⊆ X,
the set [A ∪ {a}] is the smallest ideal of X that contains both A and a.

Proposition 2.8. Let I an ideal of a transitive BE-algebra X and A ⊆ X.
Then,

[I ∪A] = {x ∈ X | (a1N ∗ (a2N ∗ (· · · (anN ∗ xN))))N ∈ I

for some a1, a2, . . . , an ∈ A and n ∈ N}.

Proof. Let us consider B = {x ∈ X | (a1N ∗ (a2N ∗ (· · · (anN ∗xN))))N ∈ I for
some a1, a2, . . . , an ∈ A and n ∈ N}. It is enough to show that B is the smallest
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ideal of X containing both I and A. Clearly 0 ∈ B. Let x, y ∈ X be such that
x ∈ B and (xN ∗yN)N ∈ B. Then there exists m,n ∈ N such that (a1N ∗ (a2N ∗
(· · · (anN ∗ xN))))N ∈ I and (b1N ∗ (b2N ∗ (· · · (bmN ∗ (xN ∗ yN)NN))))N ∈ I.
By Lemma 2.3(5), we have

(b1N ∗ (b2N ∗ (· · · (bmN ∗ (xN ∗ yN)NN))))

≤ (b1N ∗ (b2N ∗ (· · · (bmN ∗ (xN ∗ yN)))))

= (xN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗ yN))))).

By Lemma 2.3(6), we get (xN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗ yN)))))N ≤ (b1N ∗
(b2N ∗ (· · · (bmN ∗ (xN ∗ yN)NN))))N ∈ I. Therefore (xN ∗ (b1N ∗ (b2N(· · · ∗
(bmN ∗ yN)))))N ∈ I.

By applying the transitivity of X and Lemma 2.3(2), we get

(xN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗ yN))))) ≤ (a1N ∗ (a2N ∗ (· · · (anN ∗xN)))) ∗
(a1N ∗ (a2N ∗ (· · · (anN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗ yN)))))))) ≤ (a1N ∗ (a2N ∗
(· · · (anN ∗ xN))))NN ∗ (a1N ∗ (a2N ∗ (· · · (anN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗
yN))))))))NN .

By Lemma 2.3(6), ((a1N ∗ (a2N ∗ (· · · (anN ∗ xN))))NN ∗ (a1N ∗ (a2N ∗
(· · · (anN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗ yN))))))))NN)N ≤ ((xN ∗ (b1N ∗ (b2N(· · · ∗
(bmN ∗ yN))))))N ∈ I. Therefore ((a1N ∗ (a2N ∗ (· · · (anN ∗xN))))NN ∗ (a1N ∗
(a2N ∗ (· · · (anN ∗ (b1N ∗ (b2N(· · · ∗ (bmN ∗ yN))))))))NN)N ∈ I. Since (a1N ∗
(a2N ∗(· · · (anN ∗xN))))N ∈ I and I is an ideal, we get (a1N ∗(a2N ∗(· · · (anN ∗
(b1N ∗ (b2N(· · · ∗ (bmN ∗ yN))))))))N ∈ I. Hence y ∈ B. Therefore B is an ideal
of X. Let x ∈ I. Clearly (a1N ∗ (a2N ∗ (· · · (anN ∗ xN)))) ≤ (a1N ∗ (a2N ∗
(· · · (anN ∗ xN))))NN . Then by Lemma 2.3(6), we get

(xN ∗ ((a1N ∗ (a2N ∗ (· · · (anN ∗ xN)))))NN)N

≤ (xN ∗ (a1N ∗ (a2N ∗ (· · · (anN ∗ xN)))))N

= (a1N ∗ (a2N ∗ (· · · (anN ∗ (xN ∗ xN)))))N

= (a1N ∗ (a2N ∗ (· · · (anN ∗ (1)))))N

= 0.

Hence (xN ∗((a1N ∗(a2N ∗(· · · (anN ∗xN)))))NN)N = 0 ∈ I. Since x ∈ I and I
is an ideal, we get ((a1N ∗ (a2N ∗ (· · · (anN ∗xN)))))N ∈ I. Therefore x ∈ B and
hence I ⊆ B. Since for any a ∈ A, (aN ∗ aN)N = 0 ∈ I, we get a ∈ B. Therefore
A ⊆ B. Thus B is an ideal of X containing both I and A.

Suppose K is an ideal of X such that I ⊆ K and A ⊆ K. Let x ∈ B. Then
(a1N ∗ (a2N ∗ (· · · (anN ∗xN))))N ∈ I ⊆ K and a1, a2, . . . , an ∈ A ⊆ K for some
n ∈ N. Since (a1N ∗ (a2N ∗ (· · · (anN ∗xN)))NN)N ≤ (a1N ∗ (a2N ∗ (· · · (anN ∗
xN))))N ∈ K. Therefore (a1N ∗ (a2N ∗ (· · · (anN ∗ xN)))NN)N . Since a1 ∈ K
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and K is an ideal, we get (a2N ∗ (· · · (anN ∗ xN)))N ∈ K. Continuing in this
way, we get (anN ∗ xN))N ∈ K and hence x ∈ K. Hence B ⊆ K. Thus B is the
smallest ideal of X containing both I and A.

The following corollaries are direct consequence of the above proposition.

Corollary 2.9. Let X be a transitive BE-algebra and I an ideal of X. For any
a ∈ X,

[I ∪ {a}] = {x ∈ X | ((aN)n ∗ xN)N ∈ I for some n ∈ N}.

Corollary 2.10. Let X be a self-distributive BE-algebra and I an ideal of X.
Then, for any a ∈ X, [I ∪ {a}] = {x ∈ X | (aN ∗ xN)N ∈ I}.

Definition 2.11. An ideal I of a BE-algebra X is said to be proper if I 6= X.

Definition 2.12. A proper ideal M of a BE-algebra X is said to be maximal
if M is not properly contained in any other proper ideal of X (i.e., M ⊆ I ⊆ X
implies M = I or I = X for any ideal I of X).

Example 2.13. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 1 1 d d
b 1 c 1 c d c
c 1 b b 1 d b
d 1 a b c 1 a
0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. It is easy to check that I1 = {0},
I2 = {0, a},I3 = {0, b},I4 = {0, c}, I5 = {0, a, b} and I6 = {0, a, c} are ideals of
X in which I2, I3, I4, I5 and I6 are proper ideals. Also here we can easily observe
that I5 and I6 are only maximal ideals of X.

Theorem 2.14. A proper ideal M of a transitive BE-algebra X is maximal if
and only if [M ∪ {x}] = X for any x ∈ X −M .

Proof. Let M be a proper ideal of X. Assume that M is maximal. Let x ∈
X − M . Suppose [M ∪ {x}] 6= X. Hence M ⊆ [M ∪ {x}] ⊂ X. Since M
is maximal, we get M = [M ∪ {x}]. Then x ∈ M , which is a contradiction.
Therefore [M ∪ {x}] = X.

Conversely, assume the condition. Suppose there exists an ideal I of X such
that M ⊆ I ⊆ X. Let M 6= I. Then M ⊂ I. Choose x ∈ I such that x /∈ M .
By the assumed condition, we get [M ∪ {x}] = X. If a ∈ X, then a ∈ [M ∪ {x}].
Hence ((xN)n ∗ aN)N ∈ M ⊆ I for some n ∈ N. Then
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(xN)n ∗ aN = xN ∗ ((xN)n−1 ∗ aN) ≤ xN ∗ ((xN)n−1 ∗ aN)NN .

By Lemma 2.3(6) and Proposition 2.4(1) we get (xN ∗ ((xN)n−1 ∗ aN)NN)N ≤
((xN)n ∗ aN)N ∈ I. Since x ∈ I, implies ((xN)n−1 ∗ aN)N ∈ I. Continuing in
this way, finally we get a ∈ I. Hence I = X. Therefore M is a maximal ideal
of X.

3. Prime ideals of BE-algebras

In this section, the notion of prime ideals is introduced in transitive BE-algebras.
A necessary and sufficient condition is derived for every proper ideal of a BE-
algebra to become a prime ideal. Prime ideal theorem is stated and derived
analogous to that in a distributive lattice.

Definition 3.1. A proper ideal P of a BE-algebra X is said to be prime if for
any two ideals I and J of X, I ∩ J ⊆ P implies I ⊆ P or J ⊆ P .

Example 3.2. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 1 1 d d
b 1 c 1 c d c
c 1 b b 1 d b
d 1 a b c 1 a
0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. It is easy to check that I1 = {0},
I2 = {0, a},I3 = {0, b},I4 = {0, c}, I5 = {0, a, b} and I6 = {0, a, c} are ideals of
X in which I2, I3, I4, I5 and I6 are proper ideals. Also here we can easily observe
that I5 and I6 are prime ideals of X.

Theorem 3.3. A proper ideal P of a transitive BE-algebra X is prime if and
only if for any x, y ∈ X, [x] ∩ [y] ⊆ P implies x ∈ P or y ∈ P

Proof. Let P be a proper ideal of X. Assume that P is prime. Let x, y ∈ X.
Suppose [x]∩ [y] ⊆ P . By the definition of prime ideal, we get [x] ⊆ P or [y] ⊆ P .
Hence x ∈ [x] ⊆ P or ∈ [y] ⊆ P . Therefore x ∈ P or y ∈ P .

Conversely, assume the condition. Suppose I and J are two ideals of X
such that I ∩ J ⊆ P . Let x ∈ I, y ∈ J . Then [x] ⊆ I and [y] ⊆ J . Hence
[x] ∩ [y] ⊆ I ∩ J ⊆ P . By the assumed condition, we get x ∈ P or y ∈ P . Thus
I ⊆ P or J ⊆ P . Therefore P is a prime ideal of X.

Theorem 3.4. Let I be an ideal of a transitive BE-algebra X. For any A,B ⊆
X,
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[A] ∩ [B] ⊆ I if and only if [I ∪A] ∩ [I ∪B] = I.

Proof. Let I be an ideal of X. Suppose [I ∪A]∩ [I∪B] = I for A,B ⊆ X. Since
A ⊆ [I ∪A] and B ⊆ [I ∪B]. Hence [A] ∩ [B] ⊆ [I ∪A] ∩ [I ∪B] = I. Therefore
[A] ∩ [B] ⊆ I.

Conversely, assume that [A]∩ [B] ⊆ I for any A,B ⊆ X. Clearly I ⊆ [I∪A]∩
[I∪B]. Let x ∈ [I∪A]∩ [I∪B]. Then (a1N ∗(a2N ∗(· · · (amN ∗xN))))N ∈ I and
(b1N ∗(b2N ∗(· · · (bnN ∗xN))))N ∈ I where a1, a2, . . . , am ∈ A; b1, b2, . . . , bn ∈ B
for some m,n ∈ N. Then there exist m1,m2 ∈ I such that m1 = (a1N ∗ (a2N ∗
(· · · (amN ∗xN))))N ∈ I and m2 = (b1N ∗ (b2N ∗ (· · · (bnN ∗xN))))N ∈ I. Now,
Lemma 2.3(5) gives

1 = m1N ∗m1N

= m1N ∗ ((a1N ∗ (a2N ∗ (· · · (amN ∗ xN)))))NN

≤ m1N ∗ ((a1N ∗ (a2N ∗ (· · · (amN ∗ xN)))))

= a1N ∗ (a2N ∗ (· · · (amN ∗ (m1N ∗ xN))))

≤ a1N ∗ (a2N ∗ (· · · (amN ∗ (m1N ∗ xN)NN))).

Therefore a1N ∗(a2N ∗(· · · (amN ∗(m1N ∗xN)NN))) = 1. Then (m1N ∗xN)N ∈
[A]. Similarly, we get (m2N ∗ xN)N ∈ [B]. Observe

(m1N ∗ xN) ≤ m2N ∗ (m1N ∗ xN) = m1N ∗ (m2N ∗ xN)

and (m2N ∗ xN) ≤ m1N ∗ (m2N ∗ xN).

Then by Lemma 2.3(6), we obtain the following:

(m1N ∗ (m2N ∗ xN))N ≤ (m1N ∗ xN)N

and (m1N ∗ (m2N ∗ xN))N ≤ (m2N ∗ xN)N .

Since (m1N ∗ xN)N ∈ [A], (m2N ∗ xN)N ∈ [B] and [A], [B] are ideals, we get

(m1N ∗ (m2N ∗ xN))N ∈ [A] and (m1N ∗ (m2N ∗ xN))N ∈ [B].

Hence (m1N ∗(m2N ∗xN))N ∈ [A]∩ [B] ⊆ I. Since (m1N ∗(m2N ∗xN)NN)N ≤
(m1N ∗ (m2N ∗xN))N , we get (m1N ∗ (m2N ∗xN)NN)N ∈ I. Since m1 ∈ I, we
get (m2N ∗xN)N ∈ I. Since m2 ∈ I, we get x ∈ I. Hence [I∪A]∩ [I ∪B] ⊆ I.

Corollary 3.5. Let I be an ideal of a transitive BE-algebra X. For any a, b ∈ X,

[a] ∩ [b] ⊆ I if and only if [I ∪ {a}] ∩ [I ∪ {b}] = I.

Theorem 3.6. Every maximal ideal of a transitive BE-algebra is prime.
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Proof. Let M be a maximal ideal of a transitive BE-algebra X. Let x, y ∈ X.
Suppose [x] ∩ [y] ⊆ M . If x /∈ M and y /∈ M , then by Theorem 2.14, we have
[M ∪ {x}] = X and [M ∪ {y}] = X. Hence [M ∪ {x}] ∩ [M ∪ {y}] = X 6= M .
Thus [x] ∩ [y] * M , which is a contradiction. So x ∈ M or y ∈ M . Therefore M
is prime.

Theorem 3.7. Let X be a transitive BE-algebra and a ∈ X. If I is an ideal of
X such that a /∈ I, then there exist a prime ideal P such that a /∈ P and I ⊆ P .

Proof. Suppose I is an ideal of X such that a /∈ I. Let T = {G ∈ I(X) | a /∈
G, I ⊆ G}. Clearly I ∈ T . Then T 6= ∅. By Zorn’s lemma, T has a maximal
element say M . Clearly a /∈ M . Now we prove that M is a prime ideal. Let x, y ∈
X such that [x]∩ [y] ⊆ M . By Corollary 3.5, we get [M ∪ {x}]∩ [M ∪ {y}] = M .
Since a /∈ M , we get either a /∈ [M ∪ {x}] or a /∈ [M ∪ {y}]. Since M is maximal,
we get [M ∪ {x}] = M or [M ∪ {y}] = M . Hence x ∈ M or y ∈ M . Therefore M
is a prime ideal such that a /∈ M and I ⊆ M .

Corollary 3.8. Let I be a proper ideal of a transitive BE-algebra X. Then

I = ∩{P / P is a prime ideal of X such that I ⊆ P}.

Proof. Clearly I ⊆ ∩{P / P is a prime ideal of X such that I ⊆ P}. Conversely,
let x /∈ I. Then by the above theorem 3.7, there exist a prime ideal Px such that
x /∈ Px and I ⊆ Px. Hence x /∈ ∩{P / P is a prime ideal of X such that I ⊆ P}.
Therefore ∩{P / P is a prime ideal of X such that I ⊆ P} ⊆ I.

Hence I = ∩{P / P is a prime ideal of X such that I ⊆ P}.

Corollary 3.9. Let X be a transitive BE-algebra and 0 6= x ∈ X. Then there
exist a prime ideal P such that x /∈ P .

Proof. Let 0 6= x ∈ X and I = {0}. Then I is an ideal and x /∈ I. By the above
theorem 3.7, there exist a prime ideal P such that x /∈ P .

Corollary 3.10. The intersection of all prime ideals of a transitive BE algebra
is equal to {0}.

Theorem 3.11. Let X,Y be two transitive BE algebras and f : X → Y is
homomorphism such that f(X) is an ideal of Y . If I is a prime ideal of Y and
f−1(I) 6= X, then f−1(I) is a prime ideal of X.

Proof. Let f : X → Y is homomorphism such that f(X) is an ideal of Y .
Suppose I is an ideal of Y . Let x ∈ f−1(I) and (xN ∗ yN)N ∈ f−1(I). Then
f(x) ∈ I and f(xN∗yN)N ∈ I. Hence (f(x)N∗f(y))N = (f(xN)∗f(yN))N ∈ I.
Since f(x) ∈ I and I is an ideal, we get f(y) ∈ I. Hence y ∈ f−1(I). Therefore
f−1(I) is an ideal of X.
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Let x, y ∈ X such that [x]∩ [y] ⊆ f−1(I). Let u ∈ [f(x)]∩ [f(y)] where u ∈ Y .
Then there exist m,n ∈ N such that (f(x)N)m ∗uN = 1 and (f(y)N)n ∗uN = 1.
Hence ((f(x)N)m ∗ uN)N = 1N = 0 ∈ I and ((f(y)N)n ∗ uN) = 1N = 0 ∈ I.
Since f(x) ∈ f(X) and f(X) is an ideal, we get u ∈ f(X). Then u = f(a) for
some a ∈ X. Now, we have

(f(x)N)m ∗ f(a)N = 1 ⇒ f((xN)m ∗ aN) = 1

⇒ f((xN)m ∗ aN)N = 0 ∈ I

⇒ ((xN)m ∗ aN)N ∈ f−1(I)

⇒ a ∈ [f−1(I) ∪ {x}].

Similarly, we get a ∈ [f−1(I) ∪ {y}]. Hence a ∈ [f−1(I) ∪ {x}] ∩ [f−1(I) ∪ {y}].
Since [x] ∩ [y] ⊆ f−1(I), we get [f−1(I) ∪ {x}] ∩ [f−1(I) ∪ {y}] = f−1(I). Hence
a ∈ f−1(I), which means u = f(a) ∈ I. Therefore [f(x)] ∩ [f(y)] ⊆ I. Since
I is a prime ideal of Y , we get f(x) ∈ [f(x)] ⊆ I or f(y) ∈ [f(y)] ⊆ I. Hence
x ∈ f−1(I) or y ∈ f−1(I). Therefore f−1(I) is a prime ideal of X.

Theorem 3.12. Let X be a transitive BE-algebra. Then I(X) is a totally or-
dered set or a chain if and only if every proper ideal of X is a prime ideal.

Proof. Assume that I(X) is a totally totally ordered set. Suppose I is a proper
ideal of X. Choose a, b ∈ X such that [a] ∩ [b] ⊆ I. Since [a] and [b] are ideals of
X, we get [a] ⊆ [b] or [b] ⊆ [a]. Hence a ∈ I or b ∈ I, which implies I is prime.

Conversely, assume that every proper ideal of X is a prime ideal. Let I and
J be two proper ideals of X. Then I ∩ J is a proper ideal of X. Hence I ∩ J is
a prime ideal of X. Thus I ⊆ I ∩ J or J ⊆ I ∩ J , which implies I ⊆ J or J ⊆ I.
Therefore I(X) is a totally ordered set.

Theorem 3.13. For any two ideals I and J of a transitive BE-algebra, I ∨ J =
{x ∈ X| aN ∗ (bN ∗ xN) = 1 for some a ∈ I, b ∈ J} is the smallest ideal that
is containing both I and J . Hence the set (I(X),∩,∨) is a complete lattice with
smallest element {0} and the greatest element X.

Theorem 3.14. Let I(X) be the set of all ideals of a transitive BE-algebra X.
Then the algebraic structure (I(X),∩,∨) forms a distributive lattice.

Proof. Let I, J,K be three ideals of X. Clearly (I ∩ J)∨ (I ∩K) ⊆ I ∩ (J ∨K).
Conversely, let x ∈ I∩(J∨K). Then x ∈ I and x ∈ J∨K. Hence aN∗(bN∗xN) =
1 for some a ∈ J and b ∈ K. Now, let d1 = (bN ∗ xN)N and d2 = (d1N ∗ xN)N .
Since a ∈ J , we get d1 = (bN ∗ xN)N ∈ I and d2 = (d1N ∗ xN)N ∈ I. Then

(aN ∗ d1N)N = (aN ∗ (bN ∗ xN)NN)N

≤ (aN ∗ (bN ∗ xN))N

= 1N

= 0 ∈ J.
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Since a ∈ J , we get (bN ∗ xN)N = d1 ∈ J . Hence d1 ∈ I ∩ J . Again

(bN ∗ d2N)N = (bN ∗ (d1N ∗ xN)NN)N

≤ (bN ∗ (d1N ∗ xN))N

= (bN ∗ ((bN ∗ xN)NN ∗ xN))N

= ((bN ∗ xN)NN ∗ (bN ∗ xN))N

= 1N

= 0 ∈ K.

Therefore (bN ∗d2N)N = 0 ∈ K. Since b ∈ K implies d2 ∈ K. Hence d2 ∈ I∩K.
Now

d1N ∗ (d2N ∗ xN) = (bN ∗ xN)NN ∗ ((d1N ∗ xN)NN ∗ xN)

≥ (bN ∗ xN)NN ∗ ((d1N ∗ xN) ∗ xN)

= (bN ∗ xN)NN ∗ (((bN ∗ xN)NN ∗ xN) ∗ xN)

= ((bN ∗ xN)NN ∗ xN) ∗ ((bN ∗ xN)NN ∗ xN)

= 1.

Hence d1N ∗ (d2N ∗ xN) = 1. Since d1 ∈ I ∩ J and d2 ∈ I ∩ K, we get x ∈
(I ∩J)∨ (I ∩K). Hence I ∩ (J ∨K) ⊆ (I ∩J)∨ (I ∩K). Therefore I ∩ (J ∨K) =
(I ∩ J) ∨ (I ∩K). Thus (I(X),∩,∨) is a distributive lattice.

We now generalise the famous prime ideal theorem of various algebraic structures
in transitive BE-algebras. Let us define a ∩-closed subset of a BE-algebra as the
subset S of X in which [a] ∩ [b] ⊆ S for all a, b ∈ S.

Proposition 3.15. Let P be a prime ideal of a transitive BE-algebra X and
a ∈ X. Then the set S = {x ∈ X | [x] ⊆ [a] ∨ J for some ideal J with J * P} is
a ∩-closed subset of X.

Proof. Let P be a prime ideal of X and x, y ∈ X. Suppose x, y ∈ S. Then there
exist ideals J1 and J2 of X with J1 * P, J2 * P such that [x] ⊆ [a] ∨ J1 and
[y] ⊆ [a] ∨ J2. Hence

[x] ∩ [y] ⊆ ([a] ∨ J1) ∩ ([a] ∨ J2) = [a] ∨ (J1 ∩ J2).

Since P is prime, we get J1 ∩ J2 * P . Let t ∈ [x] ∩ [y]. Then [t] ⊆ [x] ∩ [y] ⊆
[a]∨ (J1 ∩ J2). Hence t ∈ S, which gives [x]∩ [y] ⊆ S. Therefore S is ∩-closed.

Theorem 3.16 (Prime ideal theorem). Let I be an ideal and S be a ∩-closed
subset of a transitive BE-algebra X such that I ∩ S = ∅. Then there exists a
prime ideal P of X such that I ⊆ P and P ∩ S = ∅.
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Proof. Let I be an ideal and S be a ∩-closed subset of a transitive BE-algebra
X such that I∩S = ∅. Consider F = {J ∈ I(X) | I ⊆ J and J ∩S = ∅}. Clearly
I ∈ F and so F 6= ∅. Let {Jα}α∈∆ be a chain of elements of F . Then clearly⋃

α∈∆ Jα is an upper bound of {Jα}α∈∆. Hence the hypothesis of Zorn’s lemma
is satisfied. Thus F has a maximal element, say M . Clearly M is an ideal such
that I ⊆ M and M ∩ S = ∅. We now prove that M is prime. Let x, y ∈ X be
such that x /∈ M and y /∈ M . Then M ⊂ M ∨ [x] and M ⊂ M ∨ [y]. By the
maximality of M , we should have (M ∨ [x])∩S 6= ∅ and (M ∨ [y])∩S 6= ∅. Choose
a ∈ (M ∨ [x]) ∩ S and b ∈ (M ∨ [y]) ∩ S. Since a, b ∈ S, we get [a] ∩ [b] ⊆ S
because of S is ∩-closed. Now

[a] ∩ [b] ⊆ (M ∨ [x]) ∩ (M ∨ [y]) = M ∨ ([x] ∩ [y]).

If [x] ∩ [y] ⊆ M , then [a] ∩ [b] ⊆ M . Hence [a] ∩ [b] ⊆ M ∩ S, which is a
contradiction. Thus [a] ∩ [b] * M . Therefore M is a prime ideal of X.

In the following, some properties of prime ideals are discussed with respect to
cartesian products or direct products of BE-algebras. For this, we first observe
the following basic properties.

Lemma 3.17. Let X1 and X2 be two transitive BE-algebras. For any a ∈ X1, b ∈
X2, we have

(1) [(a, b)] = [a]× [b],

(2) ([a]× [b]) ∩ ([c]× [d]) = ([a] ∩ [c]) × ([b] ∩ [d]),

(3) [(a, b)] ∩ [(c, d)] = ([a] ∩ [c])× ([b] ∩ [d]).

Proof. (1) Let x ∈ X1 and y ∈ X2. Then (x, y) ∈ X1 ×X2. Hence we have

(x, y) ∈ [(a, b)] ⇔ ((a, b)N)n ∗ (x, y)N = (1, 1) for some n ∈ N

⇔ ((aN, bN))n ∗ (xN, yN) = (1, 1)

⇔ ((aN)n ∗ xN, (bN)n ∗ yN) = (1, 1)

⇔ (aN)n ∗ xN = 1 and (bN)n ∗ yN = 1

⇔ x ∈ [a] and y ∈ [b]

⇔ (x, y) ∈ [a]× [b].

Therefore [(a, b)] = [a]× [b].
(2) Let x ∈ X1 and y ∈ X2. Then (x, y) ∈ X1 ×X2. Hence we have

(x, y) ∈ ([a]× [b]) ∩ ([c] × [d]) ⇔ (x, y) ∈ [a]× [b] and (x, y) ∈ [c]× [d]

⇔ x ∈ [a], y ∈ [a] and x ∈ [c], y ∈ [d]

⇔ x ∈ [a] ∩ [c] and y ∈ [b] ∩ [d]

⇔ (x, y) ∈ ([a] ∩ [c])× ([b] ∩ [d]).
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Therefore ([a]× [b]) ∩ ([c] × [d]) = ([a] ∩ [c]) × ([b] ∩ [d]).

(3) It is straight forward from (1) and (2).

Theorem 3.18. Let X1 and X2 be two transitive BE-algebras, P1 and P2 be the
prime ideals of X1 and X2 respectively. Then P1 × X2 and X1 × P2 are prime
ideals of X1 ×X2

Proof. Let P1 and P2 be the prime ideals of X1 and X2 respectively. It is easy to
verify that P1×X2 and X1×P2 are ideals of X1×X2. Let (a, b), (c, d) ∈ X1×X2.
Suppose [(a, b)] ∩ [(c, d)] ⊆ P1 × X2. Then by the above lemma 3.17, we get
([a]∩ [c])× ([b]∩ [d]) ⊆ P1×X2. Hence [a]∩ [c] ⊆ P1. Since P1 is a prime ideal of
X1, we get a ∈ P1 or c ∈ P1. Thus (a, b) ∈ P1×X2 or (c, d) ∈ P1×X2. Therefore
P1 ×X2 is a prime ideal of X1 ×X2. Similarly, we can prove that X1 ×P2 is also
a prime ideal of X1 ×X2.

Theorem 3.19. Let X1 and X2 be two transitive BE-algebras and P be a prime
ideal of X1×X2. Then P is of the form P1×X2 or X1×P2, where Pi is a prime
ideal of Xi for i = 1, 2.

Proof. Let P be a prime ideal of X1 ×X2. Consider the projections π1(P ) and
π2(P ) of P as

P1 = π1(P ) = {x1 ∈ X1 | (x1, x2) ∈ P, for some x2 ∈ X2}

P2 = π2(P ) = {x2 ∈ X2 | (x1, x2) ∈ P, for some x1 ∈ X1}.

It is easy to verify that P1 and P2 are ideals of X1 and X2 respectively. We
first show that P1 and P2 are prime ideals of X1 and X2 respectively. Suppose
P1 = X1 and P2 = X2. Let (a, b) ∈ X1×X2. Then there exist x ∈ X1 and y ∈ X2

such that (a, y) ∈ P and (x, b) ∈ P . Since (a, 0) ≤ (a, y) and (0, b) ≤ (x, b), we
get (a, 0) ∈ P and (0, b) ∈ P . Since (0, b) ∈ P , (0, bNN) = (0, b)NN ∈ P . Now

((a, 0)N ∗ (a, b)N)N = ((aN, 0N) ∗ (aN, bN))N

= (aN ∗ aN, 0N ∗ bN)N

= (1, bN)N

= (0, bNN) ∈ P.

Since (a, 0) ∈ P and P is an ideal, it gives (a, b) ∈ P . Hence P = X1×X2, which
is a contradiction to that P is proper. Next suppose that P1 6= X1 and P2 6= X2.
Choose a ∈ X1 − P1 and b ∈ X2 − P2. Then (a, 0) /∈ P and (0, b) /∈ P . Since P
is prime, we get

[(0, 0)] = [0]× [0] = ([a] ∩ [0])× ([0] ∩ [b]) = [(a, 0)] ∩ [(0, b)] * P
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which is a contradiction. From the above observations, we get that either P1 = X1

and P2 6= X2 or P1 6= X1 and P2 = X2.

Case (i) Suppose P1 = X1 and P2 6= X2. Let x2, y2 ∈ X2 and [x2]∩ [y2] ⊆ P2.
Then there exists a ∈ X1 = P1 such that [a]× ([x2] ∩ [y2]) ⊆ P . Therefore

[(a, x2)] ∩ [(a, y2)] = ([a] ∩ [a])× ([x2] ∩ [y2])

= [a]× ([x2] ∩ [y2]) ⊆ P.

Since P is prime, we get (a, x2) ∈ P or (a, y2) ∈ P . Hence x2 ∈ P2 or y2 ∈ P2.
Therefore P2 is a prime ideal of X2. We now show that P = X1 × P2. Clearly
P ⊆ X1×P2. On the other hand, suppose (a, y) ∈ X1×P2. Since P1 = X1, there
exists b ∈ X2 such that (a, b) ∈ P and there exists x ∈ X1 such that (x, y) ∈ P .
Since (a, 0) ≤ (a, b) and (0, y) ≤ (x, y), we get (a, 0) ∈ P and (0, y) ∈ P . Since
(0, y) ∈ P , we get (0, yNN) = (0, y)NN ∈ P . Now

((a, 0)N ∗ (a, y)N)N = ((aN, 0N) ∗ (aN, yN))N

= (aN ∗ aN, 0N ∗ yN)N

= (1, yN)N

= (0, yNN) ∈ P.

Since (a, 0) ∈ P and P is an ideal, it gives (a, y) ∈ P . Hence X1 × P2 ⊆ P .
Therefore P = X1 × P2.

Case (ii) Suppose P1 6= X1 and P2 = X2. Similarly, we can prove that P1 is
prime ideal of X1 and P = P1 ×X2.

The following corollary is an extension of the above theorem.

Corollary 3.20. Let {Xi}
n
i=1

be a finite family of transitive BE-algebras. Let P
be an ideal of

∏n
i=1

Xi. Then P is prime if and only if P is of the form
∏n

i=1
Pi,

where Pi = Xi for all except one i,in this case Pi is a prime ideal of Xi.

Theorem 3.21. Let X1 be a subalgebra of a transitive BE-algebra X and P1 is a
prime ideal of X1. Then there exists a prime ideal P of X such that P ∩X1 = P1.

Proof. Let P1 be a prime ideal of X1. Then X1 − P1 is a ∩-closed subset of
X. Write I = [P1], the ideal generated by P1. Then P1 ⊆ I ∩ X1. Suppose
I ∩ (X1 − P1) 6= ∅. Choose x ∈ I ∩ (X1 − P1). Then x ∈ I and x ∈ (X1 − P1).
Since x ∈ I = [P1], there exists a1, a2, . . . , an ∈ P1, n ∈ N such that a1N ∗ (a2N ∗
(· · · (anN ∗ xN) · · ·)) = 1. Then

(a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · ·)))N

= (a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · ·))NN)N

= 1N

= 0 ∈ P1.
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Since a1 ∈ P1, we get (a2N ∗(· · · (anN ∗xN) · · ·))N ∈ P1. Continuing in this way,
finally we get x ∈ P1. Since x ∈ (X1 − P1), we have arrived at a contradiction.
Hence I ∩ (X1 − P1) = ∅. Then by Prime ideal theorem, there exists a prime
ideal P of X such that I ⊆ P and P ∩ (X1 − P1) = ∅. Since I ⊆ P , we get
I ∩ X1 ⊆ P ∩ X1. Since P ∩ (X1 − P1) = ∅, we get P ⊆ P1. Hence both
observations lead to

P1 ⊆ I ∩X1 ⊆ P ∩X1 ⊆ P1 ∩X1 ⊆ P1.

Therefore P1 = P ∩X1.

4. Minimal prime ideals

In this section, the notion of minimal prime ideals is introduced in transitive
BE-algebras. It is derived that every proper ideal of a transitive BE-algebra
can expressed as a decomposition of distinct minimal prime ideals. The notion
of finite ∩-structure is introduced and investigated its relation with the minimal
prime ideal.

Definition 4.1. Let I be an ideal and P a prime ideal of a transitive BE-algebra
X such that I ⊆ P . Then P is called a minimal prime ideal belonging to I if
there exists no prime ideal Q such that I ⊆ Q ⊂ P .

Example 4.2. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 1 1 d d
b 1 c 1 c d c
c 1 b b 1 d b
d 1 a b c 1 a
0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. Clearly I1 = {0}, I2 = {0, a},I3 =
{0, b},I4 = {0, c},I5 = {0, a, b} and I6 = {0, a, c} are ideals of X, in which
I2, I3, I4, I5 and I6 are proper ideals. Here I5 and I6 are prime ideals of X. Also
I5 is a minimal prime ideal of I2, I3 and I6 is a minimal prime ideal of I2, I4.

In a BE-algebra X, the minimal prime ideals belonging to {0} are simply
called minimal prime ideals of X. In the other version, a minimal prime ideal of
a BE-algebra is the minimal element of the partial order set of all prime ideals.
Thus a prime ideal P of X is a minimal prime ideal if for any prime ideal I of
X such that I ⊆ P , then P = I. Using the Zorn’s lemma, we have the following
proposition.
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Proposition 4.3. Let I be a proper ideal of a transitive BE-algebra X. Then
every prime ideal of X, containing I, contains at least a minimal prime ideal
belonging to I.

Proof. Let P be a prime ideal of X such that I ⊆ P . Consider the collection

T = {Q | Q is a prime ideal of X such that I ⊆ Q ⊆ P}.

Clearly P ∈ T and hence T 6= ∅. Let {Qα}α∈∆ be a chain of elements in T.
Since {Qα}α∈∆ is a chain, we get that

⋂
α∈∆ Qα is a prime ideal of X. Since

I ⊆ Qα ⊆ P for all α ∈ ∆, it is clear that I ⊆
⋂

α∈∆ Qα ⊆ P . Hence
⋂

α∈∆Qα

is a lower bound for {Qα}α∈∆. Therefore by Zorn’s lemma, T has a minimal
element, say Q0. Therefore Q0 is a minimal prime ideal such that I ⊆ Q0 ⊆ P .

By taking I = {0}, we get the following easy consequence.

Corollary 4.4. Every prime ideal of a transitive BE-algebra X contains at least
a minimal prime ideal.

Proposition 4.5. Let I be a proper ideal of a transitive BE-algebra X. Then I
is the intersection of all minimal prime ideals of X, belonging to I.

Proof. Since I is contained in every minimal prime ideal of X, belonging to I
and so contained in the intersection of all minimal prime ideals belonging to I.
To prove the converse, let x /∈ I. Then by Corollary 3.9, there exists a prime
ideal P of X such that I ⊆ P and x /∈ P . Then there exists a minimal prime
ideal M of X such that I ⊆ M ⊆ P . Since x /∈ P , we get x /∈ M . Hence M is a
minimal prime ideal of X, belonging to I, such that x /∈ M . Thus x is not in the
intersection of all minimal prime ideals of X, belonging to I.

If we take I = {0} in the above proposition, the following is a direct conse-
quence.

Corollary 4.6. Let X be a transitive BE-algebra. Then the intersection of all
minimal prime ideals of X is equal to {0}.

Corollary 4.7. Let I be a proper ideal of a transitive BE-algebra X. Then the
intersection of all minimal prime ideals of X, belonging to I, coincides with that
of all prime ideals of X, containing I.

By considering I = {0} in the above corollary, we get the following.

Corollary 4.8. In any transitive BE-algebra X, the intersection of all minimal
prime ideals of X coincides with that of all prime ideals of X.

By Corollary 3.8, it is observed that every proper ideal of a BE-algebra X
can be decomposed as the intersection of all minimal prime ideals of X, belonging
to I.
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Theorem 4.9 (Unique decomposition theorem). Let I be a proper ideal of a
transitive BE-algebra X. If there exist positive integers m and n such that

I = P1 ∩ P2 ∩ · · · ∩ Pm and I = Q1 ∩Q2 ∩ · · · ∩Qn

are two representations of distinct minimal prime ideals of X, belonging to I,
then m = n, and for any Pi in the first expression there is Qj in the second
expression such that Pi = Qj .

Proof. Let Pi(i = 1, 2, . . . ,m) be a minimal prime ideal in the first representa-
tion. Clearly I ⊆ Pi. By the second representation, we have Q1∩(Q2∩· · ·∩Qn) ⊆
Pi. Since Pi is prime, we get

Q1 ⊆ Pi or Q2 ∩ · · · ∩Qn ⊆ Pi.

If Q1 ⊆ Pi, then the minimality of Pi provides that Pi = Q1. If Q1 * Pi, then
Q2∩· · ·∩Qn ⊆ Pi. Repeating the same argument, we finally get that there exists
j ∈ {2, 3, . . . ,m} such that Pi = Qj . It remains to show that m = n. Note that
P1, P2, . . . , Pm are distinct, the preceding argument actually implies m ≤ n. If
we begin with the second representation, by the entirely similar argument, we
will obtain n ≤ m. Therefore m = n.

Corollary 4.10. If a proper ideal I of a transitive BE-algebra X can be expressed
as the intersection of a finite number of distinct minimal prime ideals of X,
belonging to I, then such representation is unique except their occurring order.

Corollary 4.11. If the ideal {0} of a transitive BE-algebra X can be expressed
as the intersection of a finite number of distinct minimal prime ideals of X, then
such representation is unique except their occurring order.

Definition 4.12. A nonempty subset S of a BE-algebra X is called a finite
∩-structure, if ([x] ∩ [y]) ∩ S 6= ∅ for all x, y ∈ S.

Example 4.13. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra.
Recall that [α] = {x ∈ X | (αN)n ∗ xN = 1 for some n ∈ N }. Then we have

[a] = {0, a, b, d}, [b] = {0, b}, [c] = {0, c, d}, [d] = {0, d}, [0] = {0} and [1] = X.
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Also [a]∩[b] = {0, b}, [a]∩[c] = {0, d}, [a]∩[d] = {0, d}, [b]∩[c] = {0}, [b]∩[d] =
{0}, [c] ∩ [d] = {0, d}.

Take S1 = {1, a, b} then ([a] ∩ [b]) ∩ S1 = {b}, ([a] ∩ [1]) ∩ S1 = {a, b} and
([1] ∩ [b]) ∩ S1 = {b}. Therefore ([x] ∩ [y]) ∩ S1 6= ∅ for all x, y ∈ S1. Hence S1 is
a finite ∩-structure. Similarly we can observe that the set S2 = {0, c, d} is also a
finite ∩-structure.

However the set S3 = {a, c} is not a finite ∩-structure, because of ([a]∩ [c])∩
S3 = ∅.

Lemma 4.14. Every ideal of a transitive BE-algebra is a finite ∩-structure.

Proof. Let I be an ideal of a transitive BE-algebra X. Let x, y ∈ X. Suppose
that x, y ∈ I. Then [x] ⊆ I and [y] ⊆ I. Hence [x]∩[y] ⊆ I. Thus ([x]∩[y])∩I 6= ∅.
Therefore I is a finite ∩-structure.

Example 4.15. From the above Example 4.13, we can easily observe that S2 =
{0, c, d} is an ideal and also a finite ∩-structure.

Proposition 4.16. Let P be a proper ideal of a transitive BE-algebra X. Then
P is prime if and only if X − P is finite ∩-structure.

Proof. Let P be an ideal of X. Assume that P is prime. Let x, y ∈ X − P .
Then x /∈ P and y /∈ P . Suppose ([x] ∩ [y]) ∩ (X − P ) = ∅. Then [x] ∩ [y] ⊆ P .
Since P is prime, we get x ∈ P or y ∈ P , which is a contradiction. Hence
([x] ∩ [y]) ∩ (X − P ) 6= ∅.

Conversely, assume that X − P is finite ∩-structure. Let x, y ∈ X be such
that [x] ∩ [y] ⊆ P . Suppose x /∈ P and y /∈ P . Then x, y ∈ X − P . Since X − P
is finite ∩-structure, we get ([x] ∩ [y]) ∩ (X − P ) 6= ∅. Hence [x] ∩ [y] * P , which
is a contradiction. Thus x ∈ P or y ∈ P . Therefore P is a prime ideal of X.

Example 4.17. From the above Example 4.13, we can easily observe that S2 =
{0, c, d} is a prime ideal and X − S2 = {1, a, b} = S1 is a finite ∩-structure.

Theorem 4.18 (Prime ideal theorem). Let I be an ideal of a transitive BE-
algebra X. If S is a finite ∩-structure such that I ∩ S = ∅, then there exists a
prime ideal P of X such that I ⊆ P and P ∩ S = ∅.

Proof. Let I be an ideal of X and S be a finite ∩-structure such that I ∩S = ∅.
Consider F = {J ∈ I(X) | I ⊆ J and J ∩ S = ∅}. Clearly I ∈ F and so F 6= ∅.
Let {Jα}α∈∆ be a chain of elements of F . Then clearly

⋃
α∈∆ Jα is an upper

bound of {Jα}α∈∆. Hence the hypothesis of Zorn’s lemma is satisfied. Thus F
has a maximal element, say M . Clearly M is an ideal such that I ⊆ M and
M ∩ S = ∅. We now prove that M is prime. Let I and J be two ideals of X
such that I * M and J * M . Then M ⊂ [M ∪ I] and M ⊂ [M ∪ J ]. By the
maximality of M , we should have [M ∪ I] ∩ S 6= ∅ and [M ∪ J ] ∩ S 6= ∅. Choose
a ∈ [M ∪ I] ∩ S and b ∈ [M ∪ J ] ∩ S. Since a ∈ [M ∪ I] and b ∈ [M ∪ J ], we get
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[a] ∩ [b] ⊆ [M ∪ I] ∩ [M ∪ J ].

Since a, b ∈ S, we get ([a]∩ [b]) ∩ S 6= ∅ because of S is finite ∩-structure. Hence

([M ∪ I] ∩ [M ∪ J ]) ∩ S 6= ∅.

Since M ∈ F , we get M ∩ S = ∅. Comparing this with the last relation, we get
M 6= [M ∪ I] ∩ [M ∪ J ]. By Theorem 3.4, it gives I ∩ J * M . Therefore M is
prime.

Proposition 4.19. Let I be an ideal and P a prime ideal of a transitive BE-
algebra X such that I ⊆ P . Then P is a minimal prime ideal belonging to I if
and only if X − P is a maximal finite ∩-structure with respect to the property
that (X − P ) ∩ I = ∅.

Proof. Assume that P is a minimal prime ideal belonging to I. Then by Propo-
sition 4.16, X − P is a finite ∩-structure such that (X − P ) ∩ I = ∅. Suppose
Q is another finite ∩-structure such that Q ∩ I = ∅ and X − P ⊆ Q. Hence
I ⊆ X −Q ⊆ P . By the minimality of P , we get X −Q = P . Hence X − P is a
maximal ∩-structure with respect to the property (X − P ) ∩ I = ∅.

Conversely, assume that X −P be a maximal finite ∩-structure with respect
to the property (X − P ) ∩ I = ∅. Suppose Q is a prime ideal of X such that
I ⊆ Q ⊂ P . Then by Proposition 4.16, we get that X −Q is a finite ∩-structure
such that X−P ⊆ X−Q and (X−Q)∩I = ∅, which contradicts the maximality
of X − P . Hence P is the minimal prime ideal belonging to I.
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