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Abstract

In this work, a soft set (F,A) was introduced over a quasigroup (Q, ·)
and the study of finite soft quasigroup was carried out, motivated by the
study of algebraic structures of soft sets. By introducing the order of a
finite soft quasigroup, various inequality relationships that exist between
the order of a finite quasigroup, the order of its soft quasigroup and the
cardinality of its set of parameters were established. By introducing the
arithmetic mean AM(F,A) and geometric mean GM(F,A) of a finite soft
quasigroup (F,A), a sort of Lagrange’s Formula |(F,A)| = |A|AM(F,A) for
finite soft quasigroup was gotten. Some of the inequalities gotten gave an
upper bound for the order of a finite soft quasigroup in terms of the order
of its quasigroup and cardinality of its set of parameters, and a lower bound
for the order of the quasigroup in terms of the arithmetic mean of the finite
soft quasigroup. A chain of inequalities called the Maclaurin’s inequality for
any finite soft quasigroup (F,A)(Q,·) was shown to exist. A necessary and
sufficient condition for a type of finite soft quasigroup to be extensible to a
finite super soft quasigroup was established. This result is of practical use
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whenever a larger set of parameters is required. The results therein were
illustrated with examples. Application to uniformity, equality and equity in
distribution for social living is considered.

Keywords: soft sets, quasigroups, soft quasigroups, soft subquasigroups,
arithmetic and geometric mean, inequalities.
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1. Introduction

Soft set theory introduced by Molodtsov [16] offers a more overall mathematical
tool for dealing with uncertainty, fuzzy and inscrutable objects, because of its
freedom from parametrization inadequacies.

In this current study, soft sets theory will be defined over a non-associative
algebra called quasigroups. Different algebraic notions such as soft quasigroups
and soft subquasigroups are introduced and studied.

Quasigroups are algebraic structures which fail to be groups when restricted
to be of non-associativity. The study of quasigroups and loops started over two
centuries ago. It started with Euler’s 1782 postulations about certain pairs of
mutually orthogonal Latin squares that does not exist. Along the line, Albert [1],
introduced non-associative algebraic structures called quasigroups between 1939
and 1944.

Bruck [9] prepared the ground the development of the theory of quasigroup
by defining multiplication group and the inner mapping group of a quasigroup
(loop), hence linking theories of quasigroup and group.

However, Molodtsov [16] launched the concept of soft sets theory. He estab-
lished better features for soft sets theory over fuzzy sets [26] and rough sets [21]
so that true information and membership grade are excluded. This particularity
enhances some applications because in most three dimensional settings, the ba-
sic data, probabilities and membership grades are unknown to justify the use of
mathematical estimations.

Many algebraic operations and applications on soft sets in decision making
were introduced by Maji et al. [15]. Chen et al. [11] introduced unique definitions
such as restricted union and intersection, restricted difference and extended union
and intersection of soft set parametrization reduction. Aktas and Ozlu [3] defined
soft groups and their basic attributes which includes order of soft group, cyclic
soft group, and properties of homomorphism and normalistic soft groups, and
they corrected some invalid propositions cited in Aktas and Cagman [2]. The
properties of De Morgan Laws was introduced by Sezgin and Atagun [20] into
soft sets theory.

Some recent works on soft sets, soft structures and their applications can be
found in [7, 14,17–19,24].
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Due to our interest in the study of algebraic properties of soft sets, our
purpose in this paper is to pioneer research on the connections between the order
of a finite quasigroup and the order of soft finite quasigroups. In group theory
for example, the order of a subgroup divides the order of its group, hence obeys
Lagrange’s Theorem, but quasigroup theory does not inevitably obey Lagrange’s
Theorem.

2. Preliminaries

We start this section by examining some definitions and results concerning quasi-
groups and soft sets.

Definition 2.1 (Groupoid, Quasigroup). Consider a non-empty set G with a
binary operation (·) defined on it. Whenever x · y ∈ G for all x, y ∈ G, then the
pair (G, ·) is called a magma or groupoid. A groupoid (G, ·) is called a quasigroup

whenever each of the equations:

(1) a · x = b and y · c = d

has unique solution in G for x and y respectively. A quasigroup (G, ·) is called
a loop whenever there exists a unique element e ∈ G called the identity element

such that for all x ∈ G, x · e = e · x = x.

Note that we shall use juxtaposition among factors to be multiplied, that is
xy will mean of x · y, and (·) will have lower priority in the sense that x · yz will
mean x(yz).

Fix an element x in a groupoid (G, ·). The left translation and right transla-
tion maps of x in G, denoted by Lx and Rx respectively are defined by

(2) yLx = x · y = xy and yRx = y · x = yx.

Thus, going by (1), a groupoid (G, ·) is a quasigroup if its left translation and
right translation mappings are permutations. The fact that for quasigroup, the
mappings in (2) are bijective means that their inverse mappings L−1

x and R−1
x

respectively, exist and are defined in

(3) x\y = yL−1
x and x/y = xR−1

y

where the binary operations (\) and (/) in (3) are related to the binary operation
(·) in the following manner for all x, y ∈ G:

x\y = z ⇔ x · z = y and x/y = z ⇔ z · y = x.

For more on quasigroups, readers can check [1, 9, 11,12,22,25].
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Definition 2.2 (Subgroupoid, Subquasigroup). Let (Q, ·) be a groupoid (quasi-
group) and ∅ 6= H ⊆ Q. Then, H is called a subgroupoid (subquasigroup) of Q
if (H, ·) is a groupoid (quasigroup). This is often expressed as H ≤ Q.

We shall now introduce the notion of soft sets and operations defined on
quasigroup. We refer readers to [2,3,6,10,13,15,16,20,21,23,26] for earlier works
on soft sets, soft groups and their operations.

Definition 2.3 (Soft Sets, Soft Subset). Let Q be a set and E be a set of
parameters. For A ⊂ E, the pair (F,A) is called a soft set over Q if F (a) ⊂ Q
for all a ∈ A, where F is a function mapping A into the set of all non-empty
subsets of Q, i.e., F : A −→ 2Q\{∅}. Let (F,A) and (H,B) be two soft sets over
a common universe U , then (H,B) is called a soft subset of (F,A) if

1. B ⊆ A; and

2. H(x) ⊆ F (x) for all x ∈ B.

This is usually expressed as (H,B) ⊂ (F,A) or (F,A) ⊃ (H,B), and (F,A) is
said to be a soft super set of (H,B).

Definition 2.4 (Restricted Intersection). Let (F,A) and (G,B) be two soft sets
over a common universe U such that A∩B 6= ∅. Then their restricted intersection
is (F,A) ∩ (G,B) = (H,C) where (H,C) is defined as H(c) = F (c) ∩G(c) for all
c ∈ C, where C = A ∩B.

Definition 2.5 (Extended Intersection). The extended intersection of two soft
sets (F,A) and (G,B) over a common universe U is the soft set (H,C), where C
= A ∪B, and for all x ∈ C, H(x) is defined as

H(x) =







F (x) if x ∈ A−B
G(x) if x ∈ B −A
F (x) ∩G(x) if x ∈ A ∩B.

Definition 2.6 (Union). The union of two soft sets (F,A) and (G,B) over U is
denoted by (F,A)

⋃

(G,B) and is a soft set (H,C) over U , such that C = A∪B,
∀x ∈ C and

H(x) =







F (x) if x ∈ A−B
G(x) if x ∈ B −A
F (x) ∪G(x) if x ∈ A ∩B.

Lemma 2.1 (Wall [25]). Let (Q, ·) be a finite quasigroup.

1. If X ⊂ Q and a ∈ Q, then |X| = |a ·X| = |X · a|.
2. If X ⊂ Q and (X, ·) is a groupoid, then X ≤ Q.

3. If X ≤ Q, then a ∈ X and b 6∈ X imply ab 6∈ X.
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Theorem 2.1 (Wall [25]). Let Q be a finite quasigroup with a proper subquasi-

group X. Then,

2|X| ≤ |Q|.

Theorem 2.2 (Wall [25]). Let Q be a finite quasigroup with non-disjoint proper

subquasigroups X1 and X2. Then,

|Q| ≥ |X1|+ |X2|+max (X1,X2)− 2|X1 ∩X2|.

Theorem 2.3 (Wall [25]). Let Q be a finite quasigroup with non-disjoint proper

subquasigroups X1 and X2. If

|Q| = |X1|+ |X2|+max (X1,X2)− 2|X1 ∩X2|,

then, |X1| = |X2| if and only if (X1 ∩X2) ∪ (Q\(X1 ∪X2)) ≤ Q.

3. Main results

3.1. Soft groupoid and soft quasigroup

Definition 3.1 (Soft: Groupoid and Quasigroup). Let Q be a groupoid (quasi-
group) and E be a set of parameters. For A ⊂ E, the pair (F,A)Q will be called
a soft groupoid (quasigroup) over Q if F (a) is a subgroupoid (subquasigroup) of
Q for all a ∈ A, where F : A −→ 2Q\{∅}.

Remark 3.1. Based on Definition 3.1, a soft quasigroup is a soft groupoid,
but the converse is not necessarily true. A soft groupoid (quasigroup) will be
considered to be finite if its underlying groupoid (quasigroup) is finite.

· i j k l m n o p

i i j k l m n o p

j j i l k n m p o

k k l i j o p n m

l l k j i p o m n

m n m p o j i l k

n m n o p i j k l

o p o m n k l i j

p o p n m l k j i

Table 1. Quasigroup (Q, ·) of order 8.
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Example 3.1. Let Table 1 represent the Latin square of a finite quasigroup
(Q, ·), Q = {i, j, k, l,m, n, o, p} and let A = {γ1, γ2, γ3} be any set of parameters.
Let F : A −→ 2Q\{∅} be defined by

F (γ1) = {i, j}, F (γ2) = {i, j, k, l}, F (γ3) = {i, j, o, p}.
Then, the pair (F,A) is called a soft quasigroup over quasigroup Q because each
of F (γi) ≤ Q, i = 1, 2, 3 based on their representations in the Latin squares in
Table 2.

· i j

i i j
j j i

≡ F (γ1)

· i j k l

i i j k l
j j i l k
k k l i j
l l k j i

≡ F (γ2)

· i j o p

i i j o p
j j i p o
o p o i j
p o p j i

≡ F (γ3)

Table 2. Soft quasigroup (F,A) over (Q, ·).

Example 3.2. Let Table 1 represent the Latin square of a finite quasigroup
(Q, ·), Q = {i, j, k, l,m, n, o, p} and let B = {γ1, γ2, γ3} be any set of parameters.
Let F : B −→ 2Q\{∅} be defined by

G(γ1) = {i}, G(γ2) = {i, j}, G(γ3) = {i, j,m, n}, G(γ4) = Q.

Then, the pair (G,B) is called a soft quasigroup over quasigroup Q because each
of the G(γi) ≤ Q, i = 1, 2, 3 based on their representations in the Latin squares
in Table 3.

· i

i i
≡ G(γ1)

· i j

i i j
j j i

≡ G(γ2)

· i j m n

i i j m n
j j i n n
m n m i j
n m n j i

≡ G(γ3)

Table 3. Soft quasigroup (G,B) over (Q, ·).

Example 3.3. Let Table 4 represent the Latin square of a finite quasigroup
(R, ◦), R = {1, 2, 3, 4, 5} and let C = {γ1, γ2, γ3, γ4} be any set of parameters.
Let H : C −→ 2R\{∅} be defined by

H(γ1) = {1, 2}, H(γ2) = {1, 3}, H(γ3) = {1}, G(γ4) = R.

Then, the pair (H,C) is a soft quasigroup over quasigroup R because each of the
H(γi) ≤ Q, i = 1, 2, 3, 4.
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◦ 1 2 3 4 5

1 1 2 3 5 4

2 2 1 5 4 3

3 3 4 1 2 5

4 4 5 2 3 1

5 5 3 4 1 2

Table 4. Quasigroup (R, ◦) of order 5.

Example 3.4. Let Table 5 represent the Latin square of a finite quasigroup
(S, •), S = {1, 2, 3, 4, 5, 6, 7, 8} and let D = {a, b, c, d} be any set of parameters.
Let J : D −→ 2S\{∅} be defined by

J(a) = {1, 2}, J(b) = {1, 2, 3, 4}, J(c) = {1, 2, 5, 6}, J(d) = {1, 2, 7, 8}.

• 1 2 3 4 5 6 7 8

1 1 2 3 4 6 5 7 8

2 2 1 4 3 5 6 8 7

3 3 4 1 2 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 8 7 2 1 4 3

6 5 6 7 8 1 2 3 4

7 8 7 5 6 3 4 1 2

8 7 8 6 5 4 3 2 1

Table 5. Quasigroup (S, •) for soft quasigroup (J,D).

Then, the pair (J,D) is a soft quasigroup over quasigroup Q because each of
the J(x) ≤ Q, x ∈ D based on their representations in the Latin squares when
extracted from in Table 5.

3.2. Finite soft quasigroup: order, arithmetic and geometric means

In group theory, the order of a finite group G is its cardinality and the order
of its subgroup H divides the order of the group G. In [22] and [25] it was
stated that a finite quasigroup does not necessarily obey Lagrange’s theorem;
hence the introduction of Lagrange-like property in quasigroup (loop) theory. In
this section, some of the results of [25] on subquasigroup are extended to soft
quasigroup theory. The definition of the order of soft group in [2] is dependent of
the existence of the identity element. Thus, would need a new definition for the
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order of a soft quasigroup. To this effect, we introduce a new definition for the
order of a soft quasigroup (F,A) over a finite quasigroup Q with the intention
of checking if for divisibility between |Q| and |(F,A)| and also the relationships
that could exist between the orders of a quasigroup Q and it’s soft quasigroup.

Definition 3.2 (Order of Soft Quasigroup). Let (F,A) be a soft quasigroup over
a finite quasigroup Q. The order of the soft quasigroup (F,A) will be defined as

|(F,A)|Q = |(F,A)| =
∑

a∈A

|F (a)|, for F (a) ∈ (F,A) and a ∈ A.

where the sum is over distinct proper subquasigroups F (a) ∈ (F,A), a ∈ A.

Definition 3.3 (Arithmetic and Geometric Means of Finite Soft Quasigroup).
Let (F,A) be a soft quasigroup over a finite quasigroup Q. The arithmetic mean
and geometric mean of (F,A) will be defined respectively as

AM(F,A) =
1

|A|
∑

a∈A

|F (a)| and GM(F,A) = |A|

√

∏

a∈A

|F (a)|

Remark 3.2. 1. Let (F,A) be the soft quasigroup over a finite quasigroup Q

in Example 3.1. Then it can be observed that |F (a)|
∣

∣

∣
|(F,A)|, |Q| for just one

case of a ∈ A, |F (a)|
∣

∣

∣
|(F,A)| for just one case of a ∈ A and |F (a)|

∣

∣

∣
|Q| for all

cases of a ∈ A.

2. Let (G,B) be the soft quasigroup over a finite quasigroup Q in Example 3.2.

Then it can be observed that |G(a)|
∣

∣

∣
|(G,B)|, |Q| for just one case of a ∈ B,

|G(a)|
∣

∣

∣
|(G,B)| for just one case of a ∈ B and |G(a)|

∣

∣

∣
|Q| for all cases of a ∈ B.

3. Let (H,C) be the soft quasigroup over a finite quasigroup R in Example 3.3.

Then it can be observed that |H(a)|
∣

∣

∣|(H,C)|, |R| for just one case of a ∈ C,

|H(a)|
∣

∣

∣|(H,C)| for all cases of a ∈ C and |F (a)|
∣

∣

∣|Q| just two cases of a ∈ C.

Lemma 3.1. Let (Q, ·) be a finite quasigroup.

1. Let (F,A) be a soft set over Q. For any a ∈ Q, |F (a)| = |x ·F (a)| = |F (a) ·x|
for all x ∈ Q.

2. Let (F,A) be a soft set over Q. (F,A)(Q,·) is a soft quasigroup if and only if

(F,A)(Q,·) is a soft groupoid.

3. Let (F,A)(Q,·) be a soft quasigroup. Then,

(a) for any a ∈ A, x ∈ F (a) and y 6∈ F (a) imply xy 6∈ X.
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(b) F (a) ·Q\F (a) ⊂ Q\F (a) for all a ∈ A.

Proof. 1. Let (F,A) be a soft set over a finite quasigroup Q. Based on 1 of
Lemma 2.1, since F (a) ⊂ Q for all a ∈ A, then for any x ∈ Q, |F (a)| = |x·F (a)| =
|F (a) · x| for all x ∈ Q.

2. Let (F,A) be a soft set over Q. If (F,A)(Q,·) is a soft quasigroup, then (F,A)(Q,·)

is a soft groupoid. Conversely, if (F,A)(Q,·) is a soft groupoid, then F (a) is
a subgroupoid of (Q, ·) for all a ∈ A. Hence, by 2 of Lemma 2.1, F (a) is a
subquasigroup of (Q, ·) for all a ∈ A. Thence, (F,A)(Q,·) is a soft quasigroup.

3. Let (F,A)(Q,·) be a soft quasigroup.

(a) Then, F (a) ≤ Q for all a ∈ A and so by 3 of Lemma 2.1, for any a ∈ A,
x ∈ F (a) and y 6∈ F (a) imply xy 6∈ X.

(b) This follows from (a).

We now establish some results which reveal the relationships between the
order of a finite quasigroup and the order of its soft quasigroups.

Theorem 3.1. Let (F,A)(Q,·) be a finite soft quasigroup. Then

|(F,A)| = |A|AM(F,A), 2|(F,A)| ≤ |A||Q| and |Q| ≥ 2AM(F,A).

Proof. The first part follows by the definitions of |(F,A)| and AM(F,A). If
(F,A)(Q,·) is a finite soft quasigroup, then F (a) ≤ Q for all a ∈ A. Thus, by
Theorem 2.1, 2|F (a)| ≤ |Q| for all a ∈ A. Hence, with A = {a1, a2, . . . , an},

2|F (a1)|+ 2|F (a2)|+ · · ·+ 2|F (an)| ≤ |A||Q|

⇒ 2
∑

a∈A

|F (a)| ≤ |A||Q| ⇒ 2|(F,A)| ≤ |A||Q|.
Also,

2
∑

a∈A

|F (a)| ≤ |A||Q| ⇒ |Q| ≥ 2

|A|
∑

a∈A

|F (a)| ⇒ |Q| ≥ 2AM(F,A).

Remark 3.3. 1. In Theorem 3.1, the formula |(F,A)| = |A|AM(F,A) can be
viewed as a sort of Lagrange’s Formula for finite soft quasigroup where |A| and
AM(F,A) (which is not necessarily an integer) play the roles of the order of
subgroup and index of the subgroup in the group.

2. The first and second inequalities in Theorem 3.1 respectively give an
upper bound for the order of a finite soft quasigroup in terms of the order of
its quasigroup and cardinality of its set of parameters, and a lower bound for
the order of the quasigroup in terms of the arithmetic mean of the finite soft
quasigroup.
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The second part of Theorem 3.1 can also be proved in the following manner.
By 1 of Lemma 3.1, for any a ∈ Q, |F (a)| = |x · F (a)| = |F (a) · x| for all x ∈ Q.
Now, choose x ∈ Q such that x 6∈ F (a), then, going by 3 of Lemma 3.1,

|(F,A)| ≤
∑

a∈A

|Q\F (a)| ⇒ |(F,A)| ≤
∑

a∈A

(|Q| − |F (a)|) =
∑

a∈A

|Q| −
∑

a∈A

|F (a)|

⇒ |(F,A)| ≤ |A||Q| − |(F,A)| ⇒ 2|(F,A)| ≤ |A||Q|.

Let (F,A) be the soft quasigroup over a finite quasigroup Q in Example 3.1. Then
it can be observed that |A| = 3, |Q| = 8, |(F,A)| = 10. Thus, the inequality
in Theorem 3.1 will be satisfied. But if (F,A) has the improper subquasigroup
Q so that |A| = 4, |Q| = 8, |(F,A)| = 10, then the inequality in Theorem 3.1
will not be satisfied. Hypothetically, Theorem 3.1 should not be applied to the
finite soft quasigroups in Example 3.2 and Example 3.3 because of the improper
subquasigroups in them. But they actually obey the inequality therein.

Theorem 3.2. Let (F,A)(Q,·) be a finite soft quasigroup. Then,

|Q| ≥ 2× |A|

√

∏

a∈A

|F (a)|, |Q| ≥ 2AM(F,A) and |Q| ≥ AM(F,A)+GM(F,A).

Proof. Using Theorem 2.1, we have,

∏

a∈A

2|F (a)| ≤
|A|
∏

i=1

|Q| ⇒ 2|A| ×
∏

a∈A

|F (a)| ≤
|A|
∏

i=1

|Q|

⇒ 2|A| ×
∏

a∈A

|F (a)| ≤ |Q||A| ⇒
( |Q|

2

)|A|

≥
∏

a∈A

|F (a)|

⇒ |Q|
2

≥ |A|

√

∏

a∈A

|F (a)| ⇒ |Q| ≥ 2× |A|

√

∏

a∈A

|F (a)| ⇒ |Q| ≥ 2GM(F,A).

From Theorem 3.1, |Q| ≥ 2AM(F,A), and so 2|Q| ≥ 2AM(F,A) + 2GM(F,A)
⇒ |Q| ≥ AM(F,A) + GM(F,A).

Remark 3.4. The second and third inequalities in Theorem 3.2 give lower
bounds for the order of the quasigroup in terms of the arithmetic and geometric
means of the finite soft quasigroup.

Let (F,A) be the soft quasigroup over a finite quasigroup Q in Example 3.1.
Then it can be observed that

|A| = 3, |Q| = 8, |(F,A)| = 10, AM(F,A) =
10

3
, GM(F,A) =

3
√
32.

Thus, the inequalities in Theorem 3.2 are all satisfied.
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Theorem 3.3. Let (F,A)(Q,·) be a finite soft quasigroup. Then, there exists a

chain of inequalities

|Q|
2

≥ S1 = AM(F,A) ≥
√

S2 ≥ 3
√

S3 ≥ · · · ≥ |A|

√

S|A| = GM(F,A) where

Si =

∑

1≤j1<···<ji≤|A|

|F (aj1)||F (aj2)| · · · |F (aji)|
(

|A|
i

)
and A = {ai}|A|

i=1.

Proof. Note that the numerator of the RHS of Si is the elementary symmetric
polynomial of degree i in the |A| variables |F (a1)|, |F (a2)|, . . . , |F (a|A|)|. That is,
the sum of all products of i of the numbers |F (a1)|, |F (a2)|, . . . , |F (a|A|)|. Using
the Newton’s inequality, the result follows.

Remark 3.5. The chain of inequalities in Theorem 3.3 will be called the Maclau-
rin’s inequality for a finite soft quasigroup (F,A)(Q,·). Its consequence for a family
of finite soft quasigroups (Fi, Ai)(Q,·) will be interesting.

Theorem 3.4. Let (F,A)(Q,·) be a finite soft quasigroup. Then,

1. |Q| ≥ 2

1 + |A| [|(F,A)| + GM(F,A)].

2. |Q| ≥ 2

1 + |A| [|A|AM(F,A) + GM(F,A)].

3. |(F,A)| ≤ |Q|(1 + |A|)
2

− GM(F,A).

4. |Q| ≥ 2×
√

|(F,A)|GM(F,A)

|A| .

5. |Q| ≥ 2×
√

AM(F,A)GM(F,A).

6. |(F,A)| ≤ |A||Q|2
4GM(F,A)

.

Proof. By Theorem 3.1 and Theorem 3.2: |A||Q| ≥ 2|(F,A)| and |Q| ≥ 2 ×
|A|

√

∏

a∈A

|F (a)|.

1. Adding these two inequalities, we have,

|A||Q|+ |Q| ≥ 2
∑

a∈A

|F (a)|+ 2× |A|

√

∏

a∈A

|F (a)|

⇒ |Q|(1 + |A|) ≥ 2





∑

a∈A

|F (a)| + |A|

√

∏

a∈A

|F (a)|
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⇒ |Q| ≥ 2

1 + |A|





∑

a∈A

|F (a)| + |A|

√

∏

a∈A

|F (a)|





⇒ |Q| ≥ 2

1 + |A| [|(F,A)| + GM(F,A)] .

2. Using 1, |Q| ≥ 2
1+|A| [|A|AM(F,A) + GM(F,A)].

3. From 1, |(F,A)| ≤ |Q|(1+|A|)
2 − GM(F,A).

4. Multiplying these two inequalities, we have

|A||Q|2 ≥ 2
∑

a∈A

|F (a)| ×



2× |A|

√

∏

a∈A

|F (a)|





⇒ |A||Q|2 ≥ 4×
∑

a∈A

|F (a)| × |A|

√

∏

a∈A

|F (a)|

⇒ |Q| ≥ 2×

√

√

√

√

√

√

(

∑

a∈A
|F (a)|

)

(

|A|

√

∏

a∈A
|F (a)|

)

|A|

⇒ |Q| ≥ 2×
√

|(F,A)|GM(F,A)

|A| .

5. Using 4, |Q| ≥ 2×
√

AM(F,A)GM(F,A).

6. Following 4, |(F,A)| ≤ |A||Q|2

4GM(F,A) .

Remark 3.6. Let (F,A) be the soft quasigroup over a finite quasigroup Q in
Example 3.1. Then it can be observed that

|A| = 3, |Q| = 8, |(F,A)| = 10, AM(F,A) =
10

3
, GM(F,A) =

3
√
32.

Thus, the inequalities in Theorem 3.4 are all satisfied.

3.3. Finite soft quasigroup with non-disjointed part

Lemma 3.2. Let (F,A)(Q,·) be a finite soft quasigroup such that F (a)∩F (b) 6= ∅
for any a, b ∈ A. Then:

1. |Q| ≥ |F (a)|+ |F (b)|+max (|F (a)|, |F (b)|)−2|F (a)∩F (b)|) for any a, b ∈ A.

2. |Q| ≥ |F (a) ∪ F (b)| − |F (a) ∩ F (b)|+max (|F (a)|, |F (b)|) for any a, b ∈ A.



Order of finite soft quasigroups with ... 147

3. if F (a) ∪ F (b) = Q for any a, b ∈ A, |F (a) ∩ F (b)| ≥ max (|F (a)|, |F (b)|) for
any a, b ∈ A.

Proof. 1. Let (F,A)(Q,·) be a finite soft quasigroup, then F (a), F (b) ≤ Q for any
a, b ∈ A. Thus, by Theorem 2.2, |Q| ≥ |F (a)| + |F (b)| + max (|F (a)|, |F (b)|) −
2|F (a) ∩ F (b)|.
2. Recall that |F (a) ∪ F (b)| = |F (a)| + |F (b)| − |F (a) ∩ F (b)|. So, from 1,
|Q| ≥ |F (a) ∪ F (b)| − |F (a) ∩ F (b)| +max (|F (a)|, |F (b)|) for any a, b ∈ A.

3. If F (a) ∪ F (b) = Q, then by 2, the conclusion follows.

Remark 3.7. Let (F,A) be the soft quasigroup over a finite quasigroup Q in
Example 3.1. Then it can be observed that

|A| = 3, |Q| = 8, |(F,A)| = 10, |F (γ1)| = 2, |F (γ2)| = |F (γ3)| = 4,

|F (γ1) ∩ F (γ2)| = 2, |F (γ2) ∩ F (γ3)| = 2, |F (γ1) ∪ F (γ2)| = 4,

|F (γ2) ∪ F (γ3)| = 6.

Thus, the inequalities in Lemma 3.2 are all satisfied for the pairs (a, b) ∈
{(γ1, γ2), (γ2, γ3)}.
Theorem 3.5. Let (F,A)(Q,·) be a finite soft quasigroup such that F (a) ∩ F (b)
6= ∅ for any a, b ∈ A. Then:

1. |Q| ≥ 1
|A|−1(2|(F,A)| − |F (a) ∪ F (b)| − 3|F (a) ∩ F (b)|+max(|F (a)|, |F (b)|)).

2. |(F,A)| ≤ 1
2((|A|−1)|Q|+|F (a)∪F (b)|+3|F (a)∩F (b)|−max(|F (a)|, |F (b)|)).

3. if F (a) ∪ F (b) = Q for any a, b ∈ A,

|Q| ≥ 1

|A| (2|(F,A)| − 3|F (a) ∩ F (b)|+max (|F (a)|, |F (b)|)) .

4. if F (a) ∪ F (b) = Q for any a, b ∈ A,

|(F,A)| ≤ 1

2
((|A| |Q|+ 3|F (a) ∩ F (b)| −max (|F (a)|, |F (b)|)) .

Proof. 1. By Lemma 3.2(1), for any a, b ∈ A,

|Q| ≥ |F (a)| + |F (b)|+max (|F (a)|, |F (b)|) − 2|F (a) ∩ F (b)|.
For any c ∈ A\{a, b}, |Q| ≥ 2|F (c)| by Theorem 2.2. So, using this,

|Q| ≥ |F (a)| + |F (b)|+max (|F (a)|, |F (b)|) − 2|F (a) ∩ F (b)|

⇒ (|A| − 1)|Q| ≥
∑

c∈A\{a,b}

|F (c)| + |F (a)| + |F (b)|

+
∑

c∈A\{a,b}

|F (c)| +max (|F (a)|, |F (b)|) − 2|F (a) ∩ F (b)|
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⇒ (|A| − 1)|Q| ≥
∑

d∈A

|F (d)| +
∑

d∈A

|F (d)| − |F (a)| − |F (b)|

+ max (|F (a)|, |F (b)|) − 2|F (a) ∩ F (b)|

⇒ (|A| − 1)|Q| ≥ 2|(F,A)| − |F (a)| − |F (b)| − 2|F (a) ∩ F (b)|

+ max (|F (a)|, |F (b)|)

⇒ |Q| ≥ 1

|A| − 1
(2|(F,A)| − |F (a) ∪ F (b)| − 3|F (a) ∩ F (b)|

+ max(|F (a)|, |F (b)|)).

2. This follows from 1.

3. If F (a) ∪ F (b) = Q for only a, b ∈ A, then by 1, the result follows.

4. This following from 3.

Remark 3.8. Let (F,A) be the soft quasigroup over a finite quasigroup Q in
Example 3.1. Then it can be observed that |A| = 3, |Q| = 8,

|(F,A)| = 10, |F (γ1)| = 2, |F (γ2)| = |F (γ3)| = 4,

|F (γ1) ∩ F (γ2)| = |F (γ1) ∩ F (γ3)| = 2, |F (γ2) ∩ F (γ3)| = 2,

|F (γ1) ∪ F (γ2)| = |F (γ1) ∪ F (γ3)| = 4, |F (γ2) ∪ F (γ3)| = 6.

Thus, the inequalities 1, 2 in Theorem 3.5 are satisfied for any of the pairs (a, b) ∈
{(γ1, γ2), (γ2, γ3), (γ1, γ3)} because F (a) ∩ F (b) 6= ∅ is true for those pairs (a, b).

Theorem 3.6. Let (F,A)(Q,·) be a finite soft quasigroup such that F (ai) ∩
F (ai+1) 6= ∅ for all i = 1, 2, . . . , n− 1, where A = {ai}ni=1. Then,

1. |Q| ≥ 1

|A| − 1

[

|F (a1)|+ |F (an)|+ 2
n−1
∑

i=2

|F (ai)|+
n−1
∑

i=1

max(|F (ai)|, |F (ai+1)|)

− 2
n−1
∑

i=1

|F (ai) ∩ F (ai+1)|
]

.

2. |Q| ≥ 1

|A| − 1

[

2|(F,A)| +
n−1
∑

i=1

max(|F (ai)|, |F (ai+1)|)−
(

|F (a1)|+ |F (an)|

+ 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|
)]

.
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3. |(F,A)| ≤ 1

2

[

(|A| − 1)|Q|+ |F (a1)|+ |F (an)|+ 2
n−1
∑

i=1

|F (ai) ∩ F (ai+1)|

−
n−1
∑

i=1

max(|F (ai)|, |F (ai+1)|)
]

.

4. |Q| ≥ 1

|A| − 1

[

n−1
∑

i=1

|F (ai) ∪ F (ai+1)| −
n−1
∑

i=1

|F (ai) ∩ F (ai+1)|

+

n−1
∑

i=1

max(|F (ai)|, |F (ai+1)|)
]

.

5.

n−1
∑

i=1

|F (ai) ∩ F (ai+1)| ≥
n−1
∑

i=1

max(|F (ai)|, |F (ai+1)|) if F (ai) ∪ F (ai+1) = Q

for all i = 1, 2, . . . , n− 1.

Proof. 1. Let A = {ai}ni=1 such that F (ai)∩F (ai+1) 6= ∅ for all i = 1, 2, . . . , n−1.
Then by Lemma 3.2,

|Q| ≥ |F (a1)|+ |F (a2)|+max(|F (a1)|, |F (a2)|)− 2|F (a1) ∩ F (a2)|
|Q| ≥ |F (a2)|+ |F (a3)|+max(|F (a2)|, |F (a3)|)− 2|F (a2) ∩ F (a3)|
|Q| ≥ |F (a3)|+ |F (a4)|+max(|F (a3)|, |F (a4)|)− 2|F (a3) ∩ F (a4)|

...
...

...
...

...

|Q| ≥ |F (an−1)|+ |F (an)|+max(|F (an−1)|, |F (an)|)− 2|F (an−1) ∩ F (an)|.

Adding up gives,

(|A| − 1)|Q| ≥ |F (a1)|+ |F (an)|+ 2
n−1
∑

i=1

|F (ai)|+
n−1
∑

i=1

max(|F (ai|, |F (ai+1)

− 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1|)

⇒ |Q| ≥ 1

|A| − 1



|F (a1)|+ |F (an)|+ 2

|A|−1
∑

i=2

|F (ai)|+
n−1
∑

i=1

max(|F (ai)|, |F (ai+1)|)

− 2
n−1
∑

i=1

|F (ai) ∩ F (ai+1)|
]

.

2. Use 1.

3. Use 2.

4. Use 1.

5. Use 4.
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Remark 3.9. Let (J,D) be the soft quasigroup over a finite quasigroup S in
Example 3.4. Then it can be observed that |D| = 4, |S| = 8. Thus, the inequal-
ities 1, 2, 3, 4 in Theorem 3.6 are satisfied with a1 = a, a2 = b, a3 = c, a4 = d
because J(ai) ∩ J (ai+1) 6= ∅ for all i = 1, 2, 3.

Theorem 3.7. Let (F,A)(Q,·) be a finite soft quasigroup such that F (ai) ∩
F (ai+1) 6= ∅ for all i = 1, 2, . . . , n− 1 where {ai}ni=1 ⊆ A. Then

1. |Q| ≥ 1

|A| − 1

(

2|(F,A)| − 1

n− 1

n−1
∑

i=1

|F (ai) ∪ F (ai+1)|

− 3

n− 1

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|+
1

n− 1

n−1
∑

i=1

max (|F (ai)|, F (ai+1)|)
)

.

2. |(F,A)| ≤ 1

2

(

(|A| − 1)|Q|+ 1

n− 1

n−1
∑

i=1

|F (ai) ∪ F (ai+1)|

+
3

n− 1

n−1
∑

i=1

|F (ai) ∩ F (ai+1)| −
1

n− 1

n−1
∑

i=1

max (|F (ai)|, F (ai+1)|)
)

.

3. |Q| ≥ 1

|A|

(

2|(F,A)| − 3

n− 1

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|

+
1

n−1

n−1
∑

i=1

max (|F (ai)|, F (ai+1)|)
)

if F (ai)∪F (ai+1) = Q ∀ i = 1, 2, . . . , n−1.

4. |(F,A)| ≤ 1

2

(

(|A| |Q|+ 3

n− 1

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|

− 1

n− 1

n−1
∑

i=1

(|F (ai)|, F (ai+1)|)
)

if F (ai) ∪ F (ai+1) = Q ∀ i = 1, 2, . . . , n− 1.

Proof. This is achieved with the judicious use of Theorem 3.5 for each pair
(a, b) = (ai, ai+1) for all i = 1, 2, . . . , n− 1.

Remark 3.10. Let (J,D) be the soft quasigroup over a finite quasigroup S
in Example 3.4. Then it can be observed that |D| = 4, |S| = 8, Thus, the
inequalities 1, 2 in Theorem 3.7 are satisfied with a1 = b, a2 = c, a3 = d because
J(ai) ∩ J (ai+1) 6= ∅ for all i = 1, 2.

Lemma 3.3. Let (F,A)(Q,·) be a finite soft quasigroup such that F (a)∩F (b) 6= ∅
and |F (a)| = |F (b)| for any a, b ∈ A. Then, |Q| ≥ 3|F (a)| − 2|F (a) ∩ F (b)|.

Proof. From Lemma 3.2, |Q| ≥ |F (a)| + |F (b) + max(|F (a)|, |F (b)|) − 2|F (a) ∩
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F (b)|. Since |F (a) = F (b), it implies that,

|Q| ≥|F (a)|+ |F (a)| +max(|F (a)|, |F (a)|) − 2|F (a) ∩ F (b)| ⇒
|Q| ≥|F (a)|+ |F (a)| + |F (a)| − 2|F (a) ∩ F (b)| ⇒|Q| ≥ 3|F (a)| − 2|F (a) ∩ F (b)|.

Remark 3.11. Let (J,D) be the soft quasigroup over a finite quasigroup S in
Example 3.4. Then it can be observed that |D| = 4, |S| = 8, Thus, the inequality
|S| ≥ 3|J(x)|−2|J(x)∩J(y)| in Lemma 3.3 is satisfied for any x, y ∈ {b, c, d} ⊂ D.

Theorem 3.8. Let (F,A)(Q,·) be a finite soft quasigroup such that F (ai) ∩
F (ai+1) 6= ∅ and |F (ai)| = |F (ai+1) | = k for all i = 1, 2, . . . , n − 1 where

A = {ai}ni=1. Then,

1. |Q| ≥ 1

|A|+ 1

(

3|(F,A)| + k − 2
n−1
∑

i=1

|F (ai) ∩ F (ai+1)|
)

.

2. |(F,A)| ≤ 1

3

(

(|A|+ 1)|Q| − k + 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|
)

.

Proof. 1. Let F (ai) ∩ F (ai+1) 6= ∅ and |F (ai)| = |F (ai+1) | for all i = 1, 2,
. . . , n− 1 where A = {ai}ni=1. Then, by Lemma 3.3 and Theorem 2.1,

|Q| ≥ 3|F (ai)| − 2|F (ai) ∩ F (ai+1) | ∀ 1 ≤ i ≤ n− 1 and 2|Q| ≥ 4|F (an)|.

Adding these inequalities, we get

(n + 1)|Q| ≥ 3|(F,A)| + F (an)− 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)| ⇒

|Q| ≥ 1

|A|+ 1

(

3|(F,A)| + k − 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|
)

.

2. This follows from 1.

Remark 3.12. Let (J,D) be the soft quasigroup over a finite quasigroup S in
Example 3.4 and consider a soft subset (J ′,D′) of (J,D) over S where D′ =
{b, c, d} ⊂ D and J : D′ −→ 2S\{∅} is defined by

J ′(b) = {1, 2, 5, 6}, J ′(c) = {1, 2, 3, 4}, J ′(d) = {1, 2, 7, 8}.

Then, (J ′,D′)(S,•) is a soft quasigroup and it can be observed that |D′| = 3, |S| =
8. Thus, the inequalities 1, 2 in Theorem 3.8 are satisfied with a1 = b, a2 =
c, a3 = d because J(ai) ∩ J (ai+1) 6= ∅ and |F (ai)| = |F (ai+1) | = 4 for i = 1, 2.
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Theorem 3.9. Let (F,A)(Q,·) be a finite soft quasigroup such that F (ai) ∩
F (ai+1) 6= ∅ and |F (ai)| = |F (ai+1) | for all i = 1, 2, . . . , n−1 where {ai}ni=1 ⊆ A.
Then:

1. |Q| ≥ 1

2|A|+ 1− n



3|(F,A)| +
∑

c∈A\{ai}
n−1

i=1

|F (c)| − 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|



.

2. |(F,A)| ≤ 1

3



(2|A| + 1− n)|Q| −
∑

c∈A\{ai}
n−1

i=1

|F (c)| + 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|



.

Proof. 1. Let F (ai) ∩ F (ai+1) 6= ∅ and |F (ai)| = |F (ai+1) | for all i = 1, 2,
. . . , n − 1 where {ai}ni=1 ⊆ A Then, by Lemma 3.3 and Theorem 2.1, for all
1 ≤ i ≤ n− 1,

|Q| ≥ 3|F (ai)|−2|F (ai)∩F (ai+1) |, 2|Q| ≥ 4|F (an)|, 2|Q| ≥ 4
∑

c∈A\{ai}ni=1

|F (c)|.

Adding these inequalities, we get

(n− 1)|Q|+ 2|Q|+ 2
∑

c∈A\{ai}ni=1

|Q| ≥ 3

n−1
∑

i=1

|F (ai)|+ 4|F (an)|+ 4
∑

c∈A\{ai}ni=1

|F (c)|

− 2
n−1
∑

i=1

|F (ai) ∩ F (ai+1)| ⇒ [(n−1) + 2 + 2(|A| − n)] |Q| ≥ 3
∑

c∈A

|F (c)|+ |F (an)|

+
∑

c∈A\{ai}ni=1

|F (c)| − 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)| ⇒ [2|A|+ 1− n)] |Q| ≥ 3|(F,A)|

+
∑

c∈A\{ai}
n−1

i=1

|F (c)| − 2
n−1
∑

i=1

|F (ai) ∩ F (ai+1)| ⇒

|Q| ≥ 1

2|A| + 1− n



3|(F,A)| +
∑

c∈A\{ai}
n−1

i=1

|F (c)| − 2

n−1
∑

i=1

|F (ai) ∩ F (ai+1)|



 .

2. This follows from 1.

Remark 3.13. Let (J,D) be the soft quasigroup over a finite quasigroup S in
Example 3.4 and observe that |D| = 4, |S| = 8. Thus, the inequalities 1,2 in
Theorem 3.9 are satisfied with a1 = b, a2 = c, a3 = d because J(ai)∩J (ai+1) 6= ∅
and |F (ai)| = |F (ai+1) | = 4 for i = 1, 2.



Order of finite soft quasigroups with ... 153

Theorem 3.10. Let (F,A)(Q,·) be a finite soft quasigroup such that there does not

exist c ∈ A such that F (c) = (F (a) ∩ F (b)) ∪ [Q\(F (a) ∪ F (b))] for any a, b ∈ A.
For any a, b ∈ A, let

(4) |Q| = |F (a)|+ |F (b)| +max (|F (a)|, |F (b)|) − 2|F (a) ∩ F (b)|

Then, (F,A)(Q,·) can be extended to a super soft quasigroup (G,B)(Q,·) where

A ⊂ B and

(5) G(x) =

{

F (x) if x ∈ A
(F (a) ∩ F (b)) ∪ [Q\(F (a) ∪ F (b))] if x 6∈ A, a, b ∈ A

if and only if |F (a)| = |F (b)| for any a, b ∈ A.

Proof. Let |Q| = |F (a)| + |F (b)| +max (|F (a)|, |F (b)|) − 2|F (a) ∩ F (b)| for any
a, b ∈ A. If (F,A)(Q,·) can be extended to a super soft quasigroup (G,B)(Q,·) of
the soft quasigroup (F,A)(Q,·) where A ⊂ B and (5) is true, then, (F (a)∩F (b))∪
[Q\(F (a) ∪ F (b))] ≤ Q. So, by Theorem 2.3, |F (a)| = |F (b)| for any a, b ∈ A.

Conversely, if |F (a)| = |F (b)| for any a, b ∈ A, then, by Theorem 2.3,
(F (a)∩F (b))∪[Q\(F (a) ∪ F (b))] ≤ Q. Thus, there exists a super soft quasigroup
(G,B)(Q,·) of the quasigroup (F,A)(Q,·) where A ⊂ B and (5) is true.

Remark 3.14. Consider Table 5 representing the Latin square of the finite quasi-
group (S, •), S = {1, 2, 3, 4, 5, 6, 7, 8} and let E = {a, b, c} be a set of parameters.
Let K : E −→ 2S\{∅} be defined by

K(a) = {1, 2}, K(b) = {1, 2, 3, 4}, K(c) = {1, 2, 5, 6}.

Then, (K,E)(S,•) is a soft quasigroup. When x = b and y = c, then (4) of
Theorem 3.10 is satisfied. Note that |K(b)| = |K(c)|, hence, by Theorem 3.10,
there exists an extension of (F,A)(Q,·), that is, a soft quasigroup (G,B)(Q,·) where
E ⊂ B = {a, b, c, d} and

G(a) = K(a) = {1, 2}, G(b) = K(b) = {1, 2, 3, 4}, G(c) = K(c) = {1, 2, 5, 6},
G(d) = (K(b) ∩K(c)) ∪ [S\(K(b) ∪K(c))] = {1, 2, 7, 8}

going by (5).

3.4. Application to uniformity, equality and equity in distribution

According to [8], the equality and equity of distribution of income or wealth or
responsibility or task or economic resources are basically objective and basically
subjective, respectively. In human life, uniformity, equality and equity come to
play for efficient distribution in social living and politics, welfare (e.g. during
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the Covid-19 pandemic), governance. Equality and equity come in forms. For
instance, equality has principles and types. In fact, Aristotle [4, 5] formulated a
formal equality principle in reference to Plato.

Distribution can be on individual basis (e.g. legal will on properties and
belongings), organization basis (e.g. task and responsibility) and federating unit
(e.g. allocation of wealth and budgetary allocation, administrative appointment
and elections). In each of the cases highlighted, challenges spring up for eq-
uity, equality and uniformity in distribution based on differentials like culture,
tradition, ethnicity, population, level of contribution etc.

In this guise, some of our results on finite soft quasigroup can be adopted
as guide for uniformity, equality and equity in distribution. For a finite soft
quasigroup (F,A)(Q,·), the following can be adopted for instance:

F = Owner of Legal Will

A = Benefitiaries of the Will

Q = Wealth, Properties and Belongings.

Then, F : A −→ 2Q\{∅} defines how the will owner (F ) wants to distribute
his wealth, properties and belongings (Q) to beneficiaries (A) such that none
of them gets null thing and none gets the whole alone. The family {F (a)}a∈A
forms the possible allocations to beneficiaries (A). It must be noted that Q has
a structure (as a quasigroup) which determines the possibilities of {F (a)}a∈A.
For uniformity, equality and equity in distribution, the inequalities in Theorem
3.6, Theorem 3.7, Theorem 3.8 and Theorem 3.9 can be used as guide based
on the hypotheses F (ai) ∩ F (ai+1) 6= ∅ or/and |F (ai)| = |F (ai+1) | for all i =
1, 2, . . . , n − 1 where {ai}ni=1 ⊆ A or A = {ai}ni=1.

4. Conclusion

In this work, we have introduced soft set over quasigroup and studied finite soft
quasigroup. which is motivated by the study of algebraic structures of soft sets.
By introducing the order of a finite soft quasigroup, we established various in-
equality relationships that exist between the order of a finite quasigroup, the
order of its soft quasigroup and the cardinality of its set of parameters. By intro-
ducing the arithmetic mean and geometric mean of finite soft quasigroup, we got
a sort of Lagrange’s Formula |(F,A)| = |A|AM(F,A) for finite soft quasigroup.
Some of the inequalities gotten give an upper bound for the order of a finite soft
quasigroup in terms of the order of its quasigroup and cardinality of its set of
parameters, and a lower bound for the order of the quasigroup in terms of the
arithmetic mean of the finite soft quasigroup.
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A chain of inequalities called the Maclaurin’s inequality for a finite soft quasi-
group (F,A)(Q,·) was shown to exist. We envisage that the consequence of the
Maclaurin’s inequality for a finite soft quasigroup in the case of a family of finite
soft quasigroups (Fi, Ai)(Q,·) will be interesting. A necessary and sufficient con-
dition for a type of finite soft quasigroup to be extensible to a finite super soft
quasigroup was established. This result is of practical use whenever a larger set
of parameters is required. Our results were illustrated with examples and found
to be applicable to Egalitarianism of distribution.
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