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Abstract

In this paper, we transfer Davey‘s characterization for κ-Stone bounded
distributive lattices to lattices with certain kinds of quotients, in particu-
lar to commutator lattices with certain properties, and obtain related re-
sults on prime, radical, complemented and compact elements, annihilators
and congruences of these lattices. We then apply these results to certain
congruence lattices, in particular to those of semiprime members of semi-
degenerate congruence-modular varieties, and use this particular case to
transfer Davey‘s Theorem to commutative unitary rings.
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1. Introduction

We shall refer to [6, Theorem 1] as Davey‘s Theorem. Given an arbitrary infinite
cardinality κ, Davey‘s Theorem provides a characterization for κ-Stone bounded
distributive lattices: those bounded distributive lattices with the property that
the annihilators of their subsets of cardinality at most κ are principal ideals
generated by elements from their Boolean center.

It turns out that commutator lattices with certain properties, in particu-
lar congruence lattices of semiprime algebras from semi-degenerate congruence-
modular varieties, satisfy the equivalences from Davey‘s Theorem; moreover,
changing the cardinalities in those equivalent conditions to any nonzero value
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produces more properties equivalent to those conditions; furthermore, by restrict-
ing the values of these cardinalities, we obtain a generalization of this equivalence
result to a generalization of commutator lattices.

To prove this, we first transfer Davey‘s Theorem to bounded lattices from
certain quotients of theirs which are distributive, or frames, or a generalization
of frames, and then apply this transfer to commutator lattices satisfying certain
conditions and a certain quotient of such commutator lattices.

Then we apply the previous result to the ideal lattices of commutative unitary
rings, from which we transfer this result to the elements of these rings.

2. Definitions and notations

We shall denote by N the set of the natural numbers and by N∗ = N \ {0}. For
any set S, |S| will denote the cardinality of S.

Throughout this paper, all algebras shall be nonempty and, unless there is
danger of confusion, they will be designated by their underlying sets. By trivial
algebra we mean one-element algebra. Recall that a variety V is said to be semi-
degenerate iff no nontrivial algebra in V has trivial subalgebras. For any algebra
A, (Con(A),∨,∩,∆A,∇A) shall be the bounded lattice of the congruences of A,
with the exception of the case when A is a lattice-ordered algebra, mentioned
below, which produces no danger of confusion in what follows; for any X ⊆ A2

and any a, b ∈ A, CgA(X) shall be the congruence of A generated by X and we
will denote CgA(a, b) = CgA({(a, b)}); the set of the principal congruences of A
will be denoted by PCon(A). Recall that the compact congruences of A, that
is the compact elements of the lattice Con(A), are exactly the finitely generated
congruences of A. For any θ ∈ Con(A), pθ : A → A/θ will be the canonical
surjection. For any algebra L having a lattice reduct (in particular for any com-
mutator lattice L), Con(L) will denote the set of the congruences of the lattice
reduct of L.

Now let L be an arbitrary lattice. We denote by Cp(L), Mi(L) and Smi(L)
the sets of the compact, the meet-irreducible and the strictly meet-irreducible
elements of L, respectively. Recall that L is said to be compact iff Cp(L) = L
and L is said to be algebraic iff each of its elements is a join of compact elements.
Note that, if L is compact, then the join of any nonempty U ⊆ L equals the join
of a finite subset of U , and that, if L has finite length, then L is compact, thus L
is algebraic. Note that, if L has a 1, then 1 /∈ Smi(L), because 1 =

∧ ∅ =
∧{x ∈

L | 1 < x}. For each a ∈ Smi(L), we shall denote by a+ =
∧{x ∈ L | a < x}

the unique successor of a in L. If L has a 1, then we shall denote by MaxL the
set of the maximal elements of the ordered set (L \ {1},≤). For any algebra A,
MaxCon(A) will simply be denoted by Max(A). Filt(L) and Id(L) shall be the
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bounded lattices of the filters and ideals of L, respectively, and PId(L) will be
the bounded sublattice of Id(L) of the principal ideals of L. Note that a filter
of L is principal iff it has a minimum and an ideal of L is principal iff it has a
maximum. Recall, also, that any class of a congruence of L is a convex sublattice
of L, so it has a unique writing as the intersection between a filter and an ideal
of L.

Let U ⊆ L and a, b ∈ L, arbitrary. We denote by (U ]L and [U)L the ideal
and the filter of L generated by U , respectively, by (a]L = ({a}]L and [a)L =
[{a})L and, to avoid overlapping with the classical notation for the commutator
operation in commutator lattices (see Section 3), ⌊a, b⌉L = [a)L ∩ (b]L will be the
notation for intervals; if L is the chain of natural numbers with the natural order,
then we denote a, b = ⌊a, b⌉L. Note that, for any lattice M and any surjective
lattice morphism f : L → M , the map I 7→ f(I) is a complete lattice morphism
from Id(L) to Id(M) that satisfies f((U ]L) = (f(U)]M ; in particular, for any
θ ∈ Con(L), we have (U ]L/θ = (U/θ]L/θ, so (a]L/θ = (a/θ]L/θ.

AnnL(a) and AnnL(U) shall be the annihilator of a and U in L, respectively:
AnnL(a) = {x ∈ L | x ∧ a = 0} and AnnL(U) =

⋂

u∈U AnnL(u). We will
denote by Ann(L) = {AnnL(U) | U ⊆ L}, PAnn(L) = {AnnL(a) | a ∈ L},
P2Ann(L) = {AnnL(AnnL(a)) | a ∈ L} and 2Ann(L) = {AnnL(AnnL(U)) | U ⊆
L}. The following notations will also be useful: let Ann<∞(L) = {AnnL(U) | U ⊆
L, |U | < ℵ0} and 2Ann<∞(L) = {AnnL(AnnL(U)) | U ⊆ L, |U | < ℵ0} and, if κ
is a cardinality, let Annκ(L) = {AnnL(U) |U ⊆ L, |U | ≤ κ} and 2Annκ(L) =
{AnnL(AnnL(U)) | U ⊆ L, |U | ≤ κ}.

B(L) will denote the set of the complemented elements of the bounded lattice
L, regardless of whether L is distributive. Unless mentioned otherwise, we shall
denote by ¬ the complementation in every Boolean algebra.

Recall that the bounded lattice L is said to be Stone, respectively strongly
Stone, iff, for all a ∈ L, respectively all U ⊆ L, there exists an e ∈ B(L) such
that AnnL(a) = (e]L, respectively AnnL(U) = (e]L. Also, for any cardinality κ,
L is said to be κ-Stone iff, for all U ⊆ L with |U | ≤ κ, there exists an e ∈ B(L)
such that AnnL(U) = (e]L.

Remember that L is called a frame iff L is complete and the meet in L is
completely distributive w.r.t. the join.

3. The theorem we are going to transfer to commutator

lattices, then to commutative unitary rings

Throughout this section, L will be a bounded lattice. We shall use the following
notations for these conditions on L, where κ is an arbitrary cardinality:



54 C. Mureşan

(1)κ,L L is a κ-Stone lattice;
(1)<∞,L Ann<∞(L) ⊆ {(e]L | e ∈ B(L)};
(1)L L is a strongly Stone lattice;

(2)κ,L L is a Stone lattice and B(L) is a κ-complete Boolean sublattice of L;
(2)<∞,L L is a Stone lattice and B(L) is a Boolean sublattice of L;
(2)L L is a Stone lattice and B(L) is a complete Boolean sublattice of L;

(3)κ,L P2Ann(L) is a κ-complete Boolean sublattice of Id(L) such that
a 7→ AnnL(AnnL(a)) is a lattice morphism from L to P2Ann(L);

(3)<∞,L P2Ann(L) is a Boolean sublattice of Id(L) such that
a 7→ AnnL(AnnL(a)) is a lattice morphism from L to P2Ann(L);

(3)L P2Ann(L) is a complete Boolean sublattice of Id(L) such that
a 7→ AnnL(AnnL(a)) is a lattice morphism from L to P2Ann(L);

(4)κ,L for all a, b ∈ L, AnnL(a ∧ b) = (AnnL(a) ∪AnnL(b)]L, and
2Annκ(L) ⊆ PAnn(L);

(4)<∞,L for all a, b ∈ L, AnnL(a ∧ b) = (AnnL(a) ∪AnnL(b)]L, and
2Ann<∞(L) ⊆ PAnn(L);

(4)L for all a, b ∈ L, AnnL(a ∧ b) = (AnnL(a) ∪AnnL(b)]L, and
2Ann(L) ⊆ PAnn(L);

(iv)L for all a, b ∈ L, AnnL(a ∧ b) = (AnnL(a) ∪AnnL(b)]L;

(5)κ,L for each U ⊆ L with |U | ≤ κ, (AnnL(U) ∪AnnL(AnnL(U))]L = L;
(5)<∞,L for each finite U ⊆ L, (AnnL(U) ∪AnnL(AnnL(U))]L = L;
(5)L for each U ⊆ L, (AnnL(U) ∪AnnL(AnnL(U))]L = L.

Of course, annihilators are nonempty, since each of them contains 0. Note also
that, for any U ⊆ V ⊆ L, we have AnnL(V ) ⊆ AnnL(U), hence AnnL(AnnL(U))
⊆ AnnL(AnnL(V )).

Since 0, 1 ∈ B(L), we have AnnL(∅) = L = (1]L = AnnL(0) ∈ PAnn(L) ∩
{(e]L | e ∈ B(L)} and AnnL(AnnL(∅)) = AnnL(L) = {0} = (0]L = AnnL(1) ∈
PAnn(L)∩ {(e]L | e ∈ B(L)}, hence conditions (1)0,L and (5)0,L are trivially sat-
isfied; we may also note that PAnn(L) = Ann1(L) and P2Ann(L) = 2Ann1(L).

Clearly, if L is distributive, then every annihilator of L is an ideal of L.

Remark 3.1. If L is a frame, then every annihilator of L is a principal ideal of
L. Indeed, if L is a frame, then, clearly, for all U ⊆ L,

∨

AnnL(U) ∈ AnnL(U),
hence the ideal AnnL(U) is principal.

Of course, if B(L) is a distributive sublattice of L, in particular if L is dis-
tributive, then B(L) is a Boolean sublattice of L.

Note that, for any bounded lattice L, any cardinalities κ ≤ µ and any i ∈ 1, 5:

• (4)κ,L implies (iv)L;

• (i)µ,L implies (i)κ,L, hence, if the converse implication holds, as well, then
(i)κ,L is equivalent to (i)ν,L for any cardinality ν with κ ≤ ν ≤ µ;
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• (i)<∞,L is equivalent to (i)ν,L being valid for all finite cardinalities ν;

• (i)L is equivalent to (i)ν,L being valid for all cardinalities ν.

For any nonempty family (Ui)i∈I of subsets of L, clearly AnnL(
⋃

i∈I Ui) =
⋂

i∈I AnnL(Ui). For any family (ai)i∈I ⊆ L having a meet in L, we have
⋂

i∈I(ai]L
= (

∧

i∈I ai]L. Trivially, if L is strongly Stone, then L is Stone, and, by the above,
the converse holds if Ann(L) = PAnn(L) or B(L) is closed w.r.t. arbitrary meets;
in particular, (2)L implies (1)L.

If L is distributive, then, for any n ∈ N∗ and any u1, . . . , un ∈ L, AnnL({u1,
. . . , un}) = AnnL(u1 ∨ · · · ∨ un) ∈ PAnn(L), so Ann<∞(L) = PAnn(L), hence
(1)1,L is equivalent to (1)<∞,L, that is L is a Stone lattice iff it satisfies (1)<∞,L,
and it immediately follows that AnnL(U) = AnnL((U ]L) for all U ⊆ L and thus,
for any family (Ik)k∈K of ideals of L, AnnL(

∨

k∈K Ik) = AnnL((
⋃

k∈K Ik]L) =
AnnL(

⋃

k∈K Ik) =
⋂

k∈K AnnL(Ik).

Remark 3.2. Let κ be a nonzero cardinality.

If (xi)i∈I ⊆ L such that
∨

i∈I xi ∈ L and x ∧ (
∨

i∈I xi) =
∨

i∈I(x ∧ xi) for all
x ∈ L, then clearly AnnL({xi | i ∈ I}) = AnnL(

∨

i∈I xi) ∈ PAnn(L).

Thus, if L is closed w.r.t. the joins of all families of elements of cardinality at
most κ and has the meet distributive w.r.t. the joins of families of cardinalities
at most κ, then AnnL(U) = AnnL(

∨

U) for all U ⊆ L with |U | ≤ κ, thus
Annκ(L) = PAnn(L).

Also, if L is a frame, then AnnL(U) = AnnL(
∨

U) for all U ⊆ L, thus
Ann(L) = PAnn(L).

If Annκ(L) = PAnn(L), in particular if L is closed w.r.t. the joins of fam-
ilies of elements of cardinality at most κ and has the meet distributive w.r.t.
such joins, then (1)1,L is equivalent to (1)κ,L (thus to (1)λ,L for any nonzero car-
dinality λ ≤ κ), and 2Annκ(L) = P2Ann(L), hence P2Ann(L) ⊆ PAnn(L) iff
2Annκ(L) ⊆ PAnn(L), thus (4)1,L is equivalent to (4)κ,L (thus to (4)λ,L for any
nonzero cardinality λ ≤ κ).

If Ann(L) = PAnn(L), in particular if L is a frame, then (1)1,L is equiv-
alent to (1)L (thus to (1)λ,L for any nonzero cardinality λ), and 2Ann(L) =
P2Ann(L) ⊆ Ann(L) = PAnn(L), thus the second part of condition (4)L is sat-
isfied, which means that (4)L is equivalent to (iv)L and thus to (4)λ,L for any
nonzero cardinality λ.

As an example, note that any Boolean lattice is Stone, because, if L is
Boolean, then AnnL(e) = (¬ e]L for all e ∈ L, thus, by the above, any com-
plete Boolean lattice is strongly Stone.

Theorem 3.3. (i) If L is a bounded distributive lattice, then the conditions
(1)κ,L, (2)κ,L, (3)κ,L, (4)κ,L and (5)κ,L are equivalent for any nonzero car-
dinality κ.
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(ii) If L is a bounded distributive lattice, then conditions (1)L, (2)L, (3)L, (4)L
and (5)L are equivalent.

(iii) Let m be a nonzero cardinality. If L is a bounded distributive lattice hav-
ing Annm(L) = PAnn(L), in particular if the bounded lattice L is closed
w.r.t. the joins of all families of elements of cardinality at most m and
has the meet distributive w.r.t. such joins then, for any h, i ∈ 1, 5 and any
nonzero cardinality κ ≤ m, conditions (h)κ,L and (i)<∞,L are equivalent,
in particular the Boolean center of L is m-complete and L is Stone iff it is
m-Stone.

(iv) If L is a bounded distributive lattice with Ann(L) = PAnn(L), in particular
if L is a frame, then, for any h, i, j ∈ 1, 5 and any nonzero cardinality κ,
conditions (iv)L, (h)κ,L, (i)<∞,L and (j)L are equivalent, in particular the
Boolean center of L is complete and L is Stone iff it is strongly Stone.

Proof. (i) is [6, Theorem 1] for κ infinite and part of Remark 3.2 for κ finite,
and it clearly implies (ii).

(iii), (iv) By (i) and Remark 3.2.

Definition 3.4 [2, 5, 18]. Let [·, ·] be a binary operation on L. The algebra
(L,∨,∧, [·, ·], 0, 1) (which we shall also denote, simply, by (L, [·, ·])) is called a
commutator lattice and the operation [·, ·] is called commutator iff (L,∨,∧, 0, 1)
is a complete lattice with lattice bounds 0 and 1 and, for all x, y ∈ L and any
family (yi)i∈I ⊆ L:

• [x, y] = [y, x] ≤ x ∧ y ([·, ·] is commutative and smaller than its arguments);

• [x,
∨

i∈I yi] =
∨

i∈I [x, yi] ([·, ·] is completely distributive w.r.t. the join).

The latter condition in Definition 3.4 implies that the commutator [·, ·] is dis-
tributive w.r.t. the (binary) join (in each argument, since it is commutative),
thus [·, ·] is order-preserving in each argument.

Remark 3.5. For any complete lattice L, we have the equivalence: (L, [·, ·]) is a
commutator lattice with [·, ·] = ∧ iff L is a frame.

Let (L,∨,∧, [·, ·], 0, 1) be a commutator lattice. We call p a prime element
of L iff p ∈ L \ {1} and, for all a, b ∈ L, if [a, b] ≤ p, then a ≤ p or b ≤ p. We
denote by SpecL the set of the prime elements of L. Note that, if [·, ·] = ∧, then
SpecL is the set of the meet-prime elements of L and L is distributive (actually
a frame, by Remark 3.5), hence SpecL = Mi(L) \ {1} ⊇ Smi(L).

For any x ∈ L, we denote by V (x) = [x)L ∩ SpecL, by ρ(x) =
∧

V (x) =
∧{p ∈ SpecL | x ≤ p} and by R(L) = {ρ(x) | x ∈ L}. We call ρ(x) the radical
of x, and the elements of R(L) radical elements of L. Clearly, SpecL ⊆ R(L) =
{x ∈ L | ρ(x) = x}.
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Recall that all elements of an algebraic lattice are meets of strictly meet-
irreducible elements, thus, if L is algebraic and [·, ·] = ∧, then R(L) = L; see also
Remarks 5.3 and 5.11 and Proposition 5.15, (iii), below.

Example 3.6 [1, 7]. If V is a congruence-modular variety, A is a member of V
and [·, ·]A is the (modular) commutator of A, then (Con(A),∨,∩, [·, ·]A,∆A,∇A)
is a commutator lattice.

Let A be an arbitrary member of a congruence-modular variety V. Then we
will denote the modular commutator of A as above and the set SpecCon(A) of the
prime elements of the commutator lattice (Con(A),∨,∩, [·, ·]A,∆A,∇A), called
prime congruences of A, by Spec(A). The elements of R(Con(A)) are called
radical congruences of A. Recall that A is said to be semiprime iff ∆A is a radical
congruence of A.

Recall that, if V is congruence-distributive, then V has no skew congruences
and the commutator [·, ·]A coincides to the intersection of congruences. If [·, ·]A
equals the intersection, then [θ,∇A]A = θ ∩ ∇A = θ for all θ ∈ Con(A), and, by
the above, A is congruence-distributive and, moreover, Con(A) is a frame, and
we have Smi(Con(A)) ⊆ Mi(Con(A)) \ {∇A} = Spec(A), so that R(Con(A)) =
Con(A) since the lattice Con(A) is algebraic, in particular A is semiprime.

If V is semi-degenerate, then C has no skew congruences [7, Theorem 8.5,
p. 85], ∇A is a compact congruence of A, [θ,∇A]A = θ for all θ ∈ Con(A), any
maximal congruence of A is prime and each proper congruence of A is included
in a prime congruence [1, Theorem 5.3]; see also Lemma 5.2 below.

4. Transferring conditions (i)κ,· between bounded lattices and

their quotients, and related results

Throughout this section, M shall be an arbitrary bounded lattice and θ ∈
Con(M), unless mentioned otherwise.

Remark 4.1. Let x ∈ M and U ⊆ M . Then, clearly, x ∈ AnnM (U) implies
x/θ ∈ AnnM/θ(U/θ), hence AnnM (U)/θ ⊆ AnnM/θ(U/θ).

Lemma 4.2. If M is a bounded lattice and a θ ∈ Con(M) has 0/θ = {0}, then,
for all x ∈M and all U, V ⊆M :

(i) x/θ ∈ AnnM/θ(U/θ) iff x ∈ AnnM (U) iff x/θ ⊆ AnnM (U), and x/θ ∈
AnnM/θ(AnnM/θ(U/θ)) iff x ∈ AnnM (AnnM (U)) iff
x/θ ⊆ AnnM (AnnM (U));

(ii) AnnM (U)/θ = AnnM/θ(U/θ) and AnnM (AnnM (U))/θ =
AnnM/θ(AnnM/θ(U/θ));
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(iii) U/θ ⊆ AnnM (V )/θ iff U ⊆ AnnM (V ), and AnnM (U)/θ = AnnM (V )/θ iff
AnnM (U) = AnnM (V ).

Proof. (i) and (ii) If x/θ ∈ AnnM/θ(U/θ), then, for all u ∈ U , we have x ∧ u ∈
0/θ = {0}, thus x ∈ AnnM (U), so x/θ ∈ AnnM (U)/θ, hence AnnM/θ(U/θ) ⊆
AnnM (U)/θ. We have the converse implication and inclusion from Remark 4.1,
therefore AnnM/θ(U/θ) = AnnM (U)/θ and x ∈ AnnM (U) iff x/θ ∈ AnnM/θ(U/θ),
so that: x ∈ AnnM (AnnM (U)) iff x/θ ∈ AnnM/θ(AnnM (U)/θ) = AnnM/θ

(AnnM/θ(U/θ)), thus AnnM (AnnM (U))/θ = AnnM/θ(AnnM/θ(U/θ)).

Clearly, if x/θ ⊆ AnnM (U), then x ∈ AnnM (U), while, if x/θ ⊆ AnnM
(AnnM (U)), then x ∈ AnnM (AnnM (U)). By the above, for any y ∈ x/θ, we
have: x ∈ AnnM (U) iff x/θ ∈ AnnM/θ(U/θ) iff y/θ ∈ AnnM/θ(U/θ) iff y ∈
AnnM (U), and, similarly, x ∈ AnnM (AnnM (U)) iff x/θ ∈ AnnM/θ(AnnM/θ(U/θ))
iff y/θ ∈ AnnM/θ(AnnM/θ(U/θ)) iff y ∈ AnnM (AnnM (U)). Therefore x ∈
AnnM (U) implies x/θ ⊆ AnnM (U), while x ∈ AnnM (AnnM (U)) implies x/θ ⊆
AnnM (AnnM (U)).

(iii) By (ii), for all u ∈ U , we have: u/θ ∈ AnnM (V )/θ = AnnM/θ(V/θ) iff
u ∈ AnnM (V ), hence the first equivalence, therefore: AnnM (U)/θ = AnnM (V )/θ
iff AnnM (U)/θ ⊆ AnnM (V )/θ and AnnM (V )/θ ⊆ AnnM (U)/θ iff AnnM (U) ⊆
AnnM (V ) and AnnM (V ) ⊆ AnnM (U) iff AnnM (U) = AnnM (V ).

Lemma 4.3. Let M be a bounded lattice, θ ∈ Con(M) such that 0/θ = {0} and
κ a cardinality. Then:

(i) the maps P 7→ P/θ from: Ann(M) to Ann(M/θ), Annκ(M) to Annκ(M/θ),
PAnn(M) to PAnn(M/θ), 2Ann(M) to 2Ann(M/θ), 2Annκ(M) to 2Annκ
(M/θ), respectively P2Ann(M) to P2Ann(M/θ), are order isomorphisms;

(ii) Annκ(M/θ) = PAnn(M/θ) iff Annκ(M) = PAnn(M); Ann(M/θ) = PAnn
(M/θ) iff Ann(M) = PAnn(M); 2Annκ(M/θ) ⊆ PAnn(M/θ) iff 2Annκ(M)
⊆ PAnn(M); 2Ann(M/θ) ⊆ PAnn(M/θ) iff 2Ann(M) ⊆ PAnn(M);

(iii) for all U ⊆ M : AnnM (U) ∈ Id(M) iff AnnM/θ(U/θ) ∈ Id(M/θ), and
AnnM (AnnM (U)) ∈ Id(M) iff AnnM/θ(AnnM/θ(U/θ)) ∈ Id(M/θ);

(iv) Ann(M) ⊆ Id(M) iff Ann(M/θ) ⊆ Id(M/θ); PAnn(M) ⊆ Id(M) iff
PAnn(M/θ) ⊆ Id(M/θ); P2Ann(M) ⊆ Id(M) iff P2Ann(M/θ) ⊆ Id(M/θ);

(v) for all U, V ⊆ M such that AnnM (U),AnnM (V ) ∈ Id(M), we have, in
Id(M) and Id(M/θ): AnnM (U ∩ V ) = AnnM (U) ∨ AnnM (V ) ∈ Id(M) iff
AnnM/θ(U/θ ∩ V/θ) = AnnM/θ(U/θ) ∨AnnM/θ(V/θ) ∈ Id(M/θ);

(vi) if Ann(M) ⊆ Id(M) and AnnM (U ∩ V ) = AnnM (U) ∨ AnnM (V ) for all
U, V ⊆ M , then Ann(M) and Ann(M/θ) are sublattices of Id(M) and
Id(M/θ), respectively, and the map P 7→ P/θ from Ann(M) to Ann(M/θ)
is a lattice isomorphism;
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(vii) for all a, b ∈M such that AnnM (a),AnnM (b) ∈ Id(M), we have, in Id(M)
and Id(M/θ): AnnM (a∨b) = AnnM (a)∩AnnM (b) ∈ Id(M) iff AnnM/θ(a/θ∨
b/θ) = AnnM/θ(a/θ) ∩ AnnM/θ(b/θ) ∈ Id(M/θ), and AnnM (a ∧ b) =
AnnM (a) ∨ AnnM (b) ∈ Id(M) iff AnnM/θ(a/θ ∧ b/θ) = AnnM/θ(a/θ) ∨
AnnM/θ(b/θ) ∈ Id(M/θ);

(viii) for all a, b ∈M such that AnnM (AnnM (a)),AnnM (AnnM (b)) ∈ Id(M), we
have, in Id(M) and Id(M/θ): AnnM (AnnM (a ∨ b)) = AnnM (AnnM (a)) ∨
AnnM (AnnM (b)) ∈ Id(M) iff AnnM/θ(AnnM/θ(a/θ ∨ b/θ)) = AnnM/θ

(AnnM/θ(a/θ))∨AnnM/θ(AnnM/θ(b/θ)) ∈ Id(M/θ), and AnnM (AnnM (a∧
b)) = AnnM (AnnM (a)) ∩ AnnM (AnnM (b)) ∈ Id(M) iff AnnM/θ(AnnM/θ

(a/θ ∧ b/θ)) = AnnM/θ(AnnM/θ(a/θ))∩AnnM/θ(AnnM/θ(b/θ)) ∈ Id(M/θ);

(ix) PAnn(M) is a sublattice of Id(M) such that the map x 7→ AnnM (x) is a
lattice anti-morphism from M to PAnn(M) iff PAnn(M/θ) is a sublattice of
Id(M/θ) such that the map y 7→ AnnM/θ(y) is a lattice anti-morphism from
M/θ to PAnn(M/θ), and, if so, then the map P 7→ P/θ from PAnn(M) to
PAnn(M/θ) is a lattice isomorphism;

(x) P2Ann(M) is a sublattice of Id(M) such that the map x 7→ AnnM (AnnM (x))
is a lattice morphism from M to P2Ann(M) iff P2Ann(M/θ) is a sublattice
of Id(M/θ) such that the map y 7→ AnnM/θ(AnnM/θ(y)) is a lattice mor-
phism from M/θ to P2Ann(M/θ), and, if so, then the map P 7→ P/θ from
P2Ann(M) to P2Ann(M/θ) is a lattice isomorphism.

Proof. (i) By Lemma 4.2, (ii), these maps are well defined and surjective; by
Lemma 4.2, (iii), they are also injective, hence they are bijective. By Lemma 4.2,
(ii), these maps, as well as their inverses, preserve inclusion. Therefore they are
order isomorphisms.

(ii) By (i) and Lemma 4.2, (iii).
(iii) From (ii) and the clear fact that I/θ ∈ Id(M/θ) for any I ∈ Id(M), we

get the direct implications.
Now assume that AnnM/θ(U/θ) ∈ Id(M/θ), and let x, y, z ∈ M such that

x, y ∈ AnnM (U) and x ≥ z, so that x/θ, y/θ ∈ AnnM/θ(U/θ) and x/θ ≥ z/θ,
thus (x ∨ y)/θ, z/θ ∈ AnnM/θ(U/θ), hence x ∨ y, z ∈ AnnM (U) by Lemma 4.2,
(i), therefore AnnM (U) ∈ Id(M).

Thus AnnM (U) ∈ Id(M) iff AnnM/θ(U/θ) ∈ Id(M/θ). By Lemma 4.2, (ii),
from this we also get that AnnM (AnnM (U)) ∈ Id(M) iff AnnM/θ(AnnM/θ(U/θ)) =
AnnM/θ(AnnM (U)/θ) ∈ Id(M/θ).

(iv) By (iii).
(v) If AnnM (U),AnnM (V ) ∈ Id(M), then AnnM/θ(U/θ),AnnM/θ(V/θ) ∈

Id(M/θ) by (iii), so the equivalences in the enunciation follow from Lemma 4.2,
(ii), and the fact that the map I 7→ I/θ is a lattice morphism from Id(M) to
Id(M/θ).
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(vi) By (i), (iii) and the fact that, for all U, V ⊆ M , AnnM (U ∪ V ) =
AnnM (U) ∩AnnM (V ) and the same goes for U/θ, V/θ in M/θ.

(vii) and (viii) Similar to the proof of (v).
(ix) By (i), (iii), (iv) and (vii).
(x) By (i), (iii), (iv) and (viii).

Proposition 4.4. Let M be a bounded lattice and θ ∈ Con(M) such that 0/θ
= {0}.

(i) If M/θ is distributive, then Ann(M) ⊆ Id(M) and AnnM (U) = AnnM
((U ]M ), so AnnM (

∨

k∈K Ik) =
⋂

k∈K AnnM (Ik) for any (Ik)k∈K ⊆ Id(M).

(ii) Let κ be a nonzero cardinality. If Annκ(M/θ) = PAnn(M/θ), in particular
if M/θ is closed w.r.t. the joins of families of elements of cardinality at
most κ and has the meet distributive w.r.t. the joins of families of elements
of cardinality at most κ, then Annκ(M) = PAnn(M), so M is Stone iff M
is κ-Stone.

If M and M/θ are closed w.r.t. the joins of families of elements of car-
dinality at most κ, M/θ has the meet distributive w.r.t. such joins and θ
preserves such joins, then AnnM (U) = AnnM (

∨

U) for any U ⊆ M with
|U | ≤ κ.

(iii) If Ann(M/θ) = PAnn(M/θ), in particular ifM/θ is a frame, then Ann(M)
= PAnn(M) ⊆ PId(M), so M is Stone iff M is strongly Stone.

If M is complete, M/θ is a frame and θ preserves arbitrary joins, then
AnnM (U) = AnnM (

∨

U) for any U ⊆M .

Proof. (i) By Lemma 4.2, (ii) and (iii), AnnM (U)/θ = AnnM/θ(U/θ) = AnnM/θ

((U/θ]M/θ) = AnnM/θ((U ]M/θ) = AnnM ((U ]M )/θ, thus AnnM (U) = AnnM
((U ]M ), hence the equality for the family of ideals of M .

Also, AnnM (U)/θ = AnnM/θ(U/θ) ∈ Id(M/θ), so that AnnM/θ(U/θ) =
(AnnM/θ(U/θ)]M/θ = (AnnM (U)/θ]M/θ = (AnnM (U)]M/θ, thus (AnnM (U)]M/θ
⊆ AnnM (U)/θ, hence (AnnM (U)]M ⊆ AnnM (U), therefore AnnM (U) = (AnnM
(U)]M ∈ Id(M).

(ii) By Remark 3.2 and Lemma 4.3, (ii), Annκ(M) = PAnn(M).
If an U ⊆ M has |U | ≤ κ, then AnnM (U)/θ = AnnM/θ(

∨

(U/θ)) = AnnM/θ

((
∨

U)/θ) = AnnM (
∨

U)/θ, hence AnnM (U) = AnnM (
∨

U) by Lemma 4.2, (iii).

(iii) By Remark 3.2 and Lemma 4.3, (ii), Ann(M) = PAnn(M).
Additionally, (

∨

AnnM (U))/θ =
∨

(AnnM (U)/θ) =
∨

AnnM/θ(U/θ) ∈
AnnM/θ(U/θ) = AnnM (U)/θ by Remark 3.1, thus

∨

AnnM (U) ∈ AnnM (U),
hence the ideal AnnM (U) of M is principal.

As in the proof in (ii), here we obtain that, for any U ⊆ M , AnnM (U) =
AnnM (

∨

U).
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Remark 4.5. Let e ∈ M . Then e = max(e/θ) iff, for all x ∈ M , we have the
equivalence: x/θ ≤ e/θ iff x ≤ e.

Indeed, the latter equivalence and the fact that e ∈ e/θ imply that e =
max(e/θ), while, if the latter equality holds and x/θ ≤ e/θ, then (x∨ e)/θ = e/θ,
that is x ∨ e ∈ e/θ, so that x ∨ e ≤ max(e/θ) = e, thus x ≤ e.

Hence, if e = max(e/θ), then, for all U ⊆ M , we have U/θ ⊆ (e]M/θ =
(e/θ]M/θ iff U ⊆ (e]M .

Note that Theorem 3.3, (i), relies on the fact that B(Id(D)) = {(e]D | e ∈
B(D)} for any bounded distributive lattice D. Let us see that we can transfer
this property from M/θ to M .

Remark 4.6. Clearly, B(M)/θ ⊆ B(M/θ), thus the map pθ |B(M): B(M) →
B(M/θ) is well defined.

Recall from [9] that, by definition, θ has the Boolean Lifting Property (BLP)
iff B(M)/θ = B(M/θ), that is iff the map above is surjective.

Remark 4.7. If 0/θ = {0} and 1/θ = {1}, then, clearly, for any e, f ∈M : e is a
complement of f iff e/θ is a complement of f/θ, thus e ∈ B(M) iff e/θ ∈ B(M/θ),
hence B(M/θ) = B(M)/θ (that is θ has the BLP).

Remark 4.8. If e = max(e/θ) for all e ∈ B(M), then, by Remark 4.5, for all
e, f ∈ B(M), we have: e/θ = f/θ iff e/θ ≤ f/θ and f/θ ≤ e/θ iff e ≤ f and
f ≤ e iff e = f , hence the map pθ |B(M): B(M) → B(M/θ) is injective.

Remark 4.9. Clearly, if B(M) is a sublattice, respectively a Boolean sublattice
of M , then B(M)/θ is a sublattice, respectively a Boolean sublattice of M/θ.

Since pθ : M → M/θ is a bounded lattice morphism, it follows that, if
B(M) and B(M/θ) are sublattices, thus bounded sublattices, of M and M/θ,
respectively, then pθ |B(M): B(M) → B(M/θ) is a bounded lattice morphism,
hence, if B(M) and B(M/θ) are Boolean sublattices of M and M/θ, respectively,
then pθ |B(M): B(M) → B(M/θ) is a Boolean morphism, which is surjective iff
B(M)/θ = B(M/θ) and is injective iff 0/θ ∩ B(M) = (pθ |B(M))

−1({0/θ}) = {0}
iff 1/θ ∩ B(M) = (pθ |B(M))

−1({1/θ}) = {1}.
Therefore, if B(M) is a Boolean sublattice of M and B(M)/θ = B(M/θ),

then B(M/θ) is a Boolean sublattice of M/θ and pθ |B(M): B(M) → B(M/θ) is a
surjective Boolean morphism.

Remark 4.10. If the map pθ |B(M): B(M) → B(M/θ) is injective and B(M/θ)
is a Boolean sublattice of M/θ, then B(M) is a Boolean sublattice of M and
pθ |B(M): B(M) → B(M/θ) is an injective Boolean morphism.

Indeed, if this restriction of the bounded lattice morphism pθ : M → M/θ
is injective and its codomain B(M/θ) is a distributive sublattice of M/θ, then
its domain B(M) is a distributive and thus a Boolean sublattice of M and hence
pθ |B(M): B(M) → B(M/θ) is a Boolean embedding.
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Lemma 4.11. Let M be a bounded lattice, θ ∈ Con(M) such that 0/θ = {0} and
e ∈M .

(i) If (e]M ∈ Ann(M) or e ∈ B(M) is the unique complement of an f ∈ B(M),
then e = max(e/θ).

(ii) If {(g]M | g ∈ B(M)} ⊆ Ann(M) or M is uniquely complemented, in
particular if B(M) is a Boolean sublattice of M , then g = max(g/θ) for all
g ∈ B(M).

(iii) If e = max(e/θ), in particular if (e]M ∈ Ann(M) or e ∈ B(M) is the unique
complement of an f ∈ B(M), then, for all U ⊆ M : (e]M/θ = AnnM (U)/θ
iff (e]M = AnnM (U).

(iv) If M/θ is distributive, e ∈ B(M) and f ∈ B(M) is a complement of e, then:
(e]M ∈ Ann(M) iff (e]M ∈ PAnn(M) iff (e]M = AnnM (f) iff e = max(e/θ).

(v) Assume that B(M/θ) is a Boolean sublattice of M/θ. If g = max(g/θ)
for all g ∈ B(M), in particular if {(g]M | g ∈ B(M)} ⊆ Ann(M) or M
is uniquely complemented, then B(M) is a Boolean sublattice of M and
pθ |B(M): B(M) → B(M/θ) is a Boolean embedding.

(vi) If M/θ is distributive and M is uniquely complemented, then B(M) is a
Boolean sublattice of M , pθ |B(M): B(M) → B(M/θ) is a Boolean embedding
and, for all g ∈ B(M), g = max(g/θ) and (g]M = AnnM (¬ g).

Proof. (i) If (e]M = AnnM (U) for some U ⊆ M , then, by Lemma 4.2, (i),
e ∈ e/θ ⊆ AnnM (U) = (e]M , thus e = max(e/θ).

Now assume that e ∈ B(M) is the unique complement of an f ∈ B(M),
and assume by absurdum that there exists an x ∈ e/θ such that x � e. Then,
if we denote by a = x ∨ e, it follows that a > e and thus a ∨ f = 1. But
a/θ = x/θ ∨ e/θ = e/θ ∨ e/θ = e/θ, so (a ∧ f)/θ = a/θ ∧ f/θ = e/θ ∧ f/θ =
(e ∧ f)/θ = 0/θ = {0}, hence a ∧ ¬ e = 0. Since a 6= e, we have a contradiction
to the uniqueness of the complement of f in M . Therefore e = max(e/θ).

(ii) By (i).
(iii) Trivially, if (e]M = AnnM (U), then (e]M/θ = AnnM (U)/θ.
If e = max(e/θ) and (e]M/θ = AnnM (U)/θ, that is (e]M/θ ⊆ AnnM (U)/θ

and AnnM (U)/θ ⊆ (e]M/θ, then (e]M ⊆ AnnM (U) by Lemma 4.2, (iii), and
AnnM (U) ⊆ (e]M by Remark 4.5, so the converse of the implication above also
holds.

We get the particular cases from (i).
(iv) By (i), if (e]M ∈ Ann(M), then e = max(e/θ).
Of course, (e]M = AnnM (f) implies (e]M ∈ PAnn(M), which in turn implies

(e]M ∈ Ann(M).
Now assume that e = max(e/θ). Since e is a complement of f in M and

M/θ is distributive, it follows that e/θ is the unique complement of f/θ in M/θ.
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We have e ∈ AnnM (f), thus (e]M ⊆ AnnM (f). Assume by absurdum that there
exists an x ∈ AnnM (f) such that x � e, and let a = x ∨ e. Then a > e, thus
a ∨ f = 1, so a/θ ∨ f/θ = 1/θ, and a/θ 6= e/θ since e = max(e/θ). Since M/θ is
distributive, we have: a/θ∧f/θ = (x/θ∨e/θ)∧f/θ = (x/θ∧f/θ)∨ (e/θ∧f/θ) =
(x ∧ f)/θ ∨ (e ∧ f)/θ = 0/θ ∨ 0/θ = 0/θ, which gives us a contradiction to the
uniqueness of the complement of f/θ. Therefore (e]M = AnnM (f).

(v) By Remarks 4.8 and 4.10, with the particular cases given by (ii).
(vi) By (ii), (v) and (iv).

Proposition 4.12. Let M be a bounded lattice. Then:

(i) {(e]M | e ∈ B(M)} ⊆ B(Id(M));

(ii) let κ be a nonzero cardinality; if, for all e, f ∈ B(M) such that e is a
complement of f in M , we have (e]M = AnnM (f), in particular if, for
some θ ∈ Con(M) such that 0/θ = {0} and M/θ is distributive, we have
e = max(e/θ) for all e ∈ B(M), or, equivalently, {(e]M | e ∈ B(M)} ⊆
Ann(M), in particular if M is uniquely complemented and has a θ ∈
Con(M) with 0/θ = {0} such that M/θ is distributive, then:

• B(Id(M)) = {(e]M | e ∈ B(M)} ⊆ PAnn(M) ⊆ Annκ(M) ⊆ Ann(M);

• M is a Stone lattice iff PAnn(M) = B(Id(M));

• M is a κ-Stone lattice iff Annκ(M) = B(Id(M));

• M is a strongly Stone lattice iff Ann(M) = B(Id(M)).

Proof. (i) For all e ∈ B(M), if f is a complement of e in M , then (e]M ∨
(f ]M = (e ∨ f ]M = (1]M = M and (e]M ∩ (f ]M = (e ∧ f ]M = (0]M = {0}, so
(e]M ∈ B(Id(M)).

(ii) Let I ∈ B(Id(M)), so that I ∩ J = {0} and I ∨ J = M = (1]M for some
J ∈ Id(M), hence e∨f = 1 for some e ∈ I and f ∈ J , thus e∧f ∈ I∩J = {0}, so
e ∧ f = 0, hence e, f ∈ B(M) and f is a complement of e, thus (e]M = AnnM (f)
by the hypothesis. Since e ∈ I, we have (e]M ⊆ I. For all x ∈ I and all y ∈ J , we
have x ∧ y ∈ I ∩ J = {0}, so x ∧ y = 0, hence I ⊆ AnnM (J) ⊆ AnnM (f) = (e]M .
Therefore I = (e]M = AnnM (f) ∈ PAnn(M). Hence the converse of the inclusion
in (i), thus B(Id(M)) = {(g]M | g ∈ B(M)} ⊆ PAnn(M) ⊆ Ann(M), hence the
last two statements.

We get the particular cases from Lemma 4.11, (ii) and (iv).

Lemma 4.13. Let M be a bounded lattice and θ ∈ Con(M) such that 0/θ = {0}
and 1/θ = {1}.
(i) If B(M) is a Boolean sublattice of M , then B(M/θ) is a Boolean sublattice

of M/θ and pθ |B(M): B(M) → B(M/θ) is a Boolean isomorphism.

(ii) If e = max(e/θ) for all e ∈ B(M), in particular if {(e]M | e ∈ B(M)} ⊆
Ann(M) or M is uniquely complemented, then: B(M) is a Boolean sublat-
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tice of M iff B(M/θ) is a Boolean sublattice of M/θ, and, if so, then
pθ |B(M): B(M) → B(M/θ) is a Boolean isomorphism.

Proof. (i) By Remark 4.7, B(M)/θ = B(M/θ), thus, according to Remark 4.9,
B(M/θ) is a Boolean sublattice of M/θ and pθ |B(M): B(M) → B(M/θ) is a
surjective Boolean morphism. Since 0/θ ∩ B(M) = {0} ∩ B(M) = {0}, Remark
4.9 ensures us that this Boolean morphism is also injective, so it is a Boolean
isomorphism.

(ii) By (i) and Remarks 4.10 and 4.8, with Lemma 4.11, (ii), for the particular
cases.

Proposition 4.14. If M is a bounded lattice and θ ∈ Con(M) such that 0/θ =
{0}, then, for any cardinality κ:

(i) (1)κ,M implies (1)κ,M/θ, thus: if M is Stone, respectively κ-Stone, respec-
tively strongly Stone, then M/θ is Stone, respectively κ-Stone, respectively
strongly Stone;

(ii) if 1/θ = {1}, then: if e = max(e/θ) for all e ∈ B(M), in particular if (e]M ∈
Ann(M) for all e ∈ B(M), in particular if M is uniquely complemented, in
particular if B(M) is a Boolean sublattice of M , then (1)κ,M is equivalent to
(1)κ,M/θ, thus: M is Stone, respectively κ-Stone, respectively strongly Stone
iff M/θ is Stone, respectively κ-Stone, respectively strongly Stone.

Proof. (i) Let V ⊆ M/θ such that |V | ≤ κ, so that V = U/θ for some U ⊆ M
with |U | = |V | ≤ κ. If (1)κ,M is fulfilled, then there exists an e ∈ B(M) such that
AnnM (U) = (e]M , so that e/θ ∈ B(M)/θ ⊆ B(M/θ), and (e/θ]M/θ = (e]M/θ =
AnnM (U)/θ = AnnM/θ(U/θ) = AnnM/θ(V ) by Lemma 4.2, (ii), hence (1)κ,M/θ

is fulfilled.

(ii) By (i), we have the direct implication. For the converse, let U ⊆M such
that |U | ≤ κ, so that |U/θ| ≤ |U | ≤ κ, and thus, if (1)κ,M/θ is fulfilled, then, for
some e ∈M such that e/θ ∈ B(M/θ), so that e ∈ B(M) by Remark 4.7, and thus
e = max(e/θ) by the hypothesis, we have (e]M/θ = (e/θ]M/θ = AnnM/θ(U/θ) =
AnnM (U)/θ, hence (e]M = AnnM (U) by Lemma 4.11, (iii). For the particular
cases, see Lemma 4.11, (i) and (ii).

Proposition 4.15. If M is a bounded lattice and θ ∈ Con(M) such that 0/θ =
{0} and 1/θ = {1}, then, for any cardinality κ:

(i) (2)κ,M implies (2)κ,M/θ;

(ii) if e = max(e/θ) for all e ∈ B(M), in particular if (e]M ∈ Ann(M) for all
e ∈ B(M), in particular if M is uniquely complemented, in particular if
B(M) is a Boolean sublattice of M , then (2)κ,M is equivalent to (2)κ,M/θ.
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Proof. By Proposition 4.14 and Lemma 4.13, (ii), with Lemma 4.11, (i) and (ii),
for the particular cases in (ii).

Proposition 4.16. If M is a bounded lattice and θ ∈ Con(M) such that 0/θ =
{0}, then, for any cardinality κ, (3)κ,M is equivalent to (3)κ,M/θ.

Proof. By Lemma 4.2, (ii), Lemma 4.3, (x), and the fact that the following
diagram is commutative:

M

M/θ

P2Ann(M)

P2Ann(M/θ)

x 7→ x/θ
?

∀x ∈M , AnnM (AnnM (x)) 7→
AnnM (AnnM (x))/θ =
AnnM/θ(AnnM/θ(x/θ))

?

x 7→ AnnM (AnnM (x))
-

x/θ 7→AnnM/θ(AnnM/θ(x/θ))-

Proposition 4.17. If M is a bounded lattice and θ ∈ Con(M) such that 0/θ =
{0}, then, for any cardinality κ, (4)κ,M is equivalent to (4)κ,M/θ.

Proof. By Lemma 4.2, (ii), Lemma 4.3, (x), and the surjectivity of the map
x 7→ x/θ from M to M/θ.

Proposition 4.18. For any bounded lattice M , any θ ∈ Con(M) and any cardi-
nality κ:

(i) (5)κ,M implies (5)κ,M/θ;

(ii) if 0/θ = {0} and 1/θ = {1}, then (5)κ,M is equivalent to (5)κ,M/θ.

Proof. (i) If (5)κ,M if fulfilled and V ⊆ M/θ with |V | ≤ κ, then V = U/θ for
some U ⊆M with |U | ≤ κ, so that (AnnM (U) ∪AnnM (AnnM (U))]M =M , thus
1 = a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bk for some n, k ∈ N∗, a1, . . . , an ∈ AnnM (U)
and b1, . . . , bk ∈ AnnM (AnnM (U)). Then a1/θ, . . . , an/θ ∈ AnnM/θ(U/θ) =
AnnM/θ(V ) and b1/θ, . . . , bk/θ ∈ AnnM/θ(AnnM/θ(U/θ)) = AnnM/θ(AnnM/θ(V )),
therefore 1/θ = a1/θ ∨ · · · ∨ an/θ ∨ b1/θ ∨ · · · ∨ bk/θ ∈ (AnnM/θ(V ) ∪ AnnM/θ

(AnnM/θ(V ))]M/θ, hence (AnnM/θ(V ) ∪AnnM/θ(AnnM/θ(V ))]M/θ =M/θ.

(ii) Assume that 0/θ = {0} and 1/θ = {1}. If (5)κ,M/θ is fulfilled and U ⊆M
with |U | ≤ κ, then |U/θ| ≤ |U | ≤ κ, so that (AnnM/θ(U/θ) ∪ AnnM/θ(AnnM/θ

(U/θ))]M/θ = M/θ, thus 1/θ = a1/θ ∨ · · · ∨ an/θ ∨ b1/θ ∨ · · · ∨ bk/θ for some
n, k ∈ N∗ and a1, . . . , an, b1, . . . , bk ∈M such that a1/θ, . . . , an/θ ∈ AnnM/θ(U/θ)
and b1/θ, . . . , bk/θ ∈ AnnM/θ(AnnM/θ(U/θ)). But then a1, . . . , an ∈ AnnM (U)
and b1, . . . , bk ∈ AnnM (AnnM (U)) by Lemma 4.2, (i), and {1} = 1/θ = (a1 ∨
· · · ∨ an ∨ b1 ∨ · · · ∨ bk)/θ, thus 1 = a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bk ∈ (AnnM (U) ∪
AnnM (AnnM (U))]M , hence (AnnM (U)∪AnnM (AnnM (U))]M =M . We have the
converse from (i), so the equivalence holds.



66 C. Mureşan

Theorem 4.19. Let M be a bounded lattice, θ ∈ Con(M) such that 0/θ = {0}
and 1/θ = {1} and m be a nonzero cardinality. If e = max(e/θ) for all e ∈ B(M),
in particular if (e]M ∈ Ann(M) for all e ∈ B(M), in particular if M is uniquely
complemented, in particular if B(M) is a Boolean sublattice of M , then:

(i) ifM/θ is distributive, then, for any nonzero cardinality κ, conditions (1)κ,M ,
(2)κ,M , (3)κ,M , (4)κ,M and (5)κ,M are equivalent;

(ii) if M/θ is distributive and Annm(M) = PAnn(M), in particular if M/θ
is closed w.r.t. the joins of all families of elements of cardinality at most
m and has the meet distributive w.r.t. the joins of families of cardinalities
at most m, then, for any h, i ∈ 1, 5 and any nonzero cardinality κ ≤ m,
conditions (h)κ,M and (i)<∞,M are equivalent;

(iii) if M/θ is distributive and Ann(M) = PAnn(M), in particular if M/θ is a
frame, then, for any h, i, j ∈ 1, 5 and any nonzero cardinality κ, conditions
(iv)M , (h)κ,M , (i)<∞,M and (j)M are equivalent.

Proof. (i) By Theorem 3.3, (i), Proposition 4.14, (ii), Proposition 4.15, (ii),
Propositions 4.16 and 4.17 and Proposition 4.18, (ii).

(ii) By Theorem 3.3, (iii), Proposition 4.14, (ii), Proposition 4.15, (ii), Propo-
sitions 4.16 and 4.17 and Proposition 4.18, (ii).

(iii) By Theorem 3.3, (iv), Proposition 4.14, (ii), Proposition 4.15, (ii), Propo-
sitions 4.16 and 4.17 and Proposition 4.18, (ii).

Let us also note:

Proposition 4.20. Let M be a bounded lattice, θ ∈ Con(M) such that 0/θ = {0}
and m be a nonzero cardinality.

• If M/θ is distributive, then, for any nonzero cardinality κ, condition (3)κ,M
is equivalent to (4)κ,M .

• If 1/θ = {1} and M/θ is distributive, then, for any nonzero cardinality κ,
conditions (3)κ,M , (4)κ,M and (5)κ,M are equivalent.

• If M/θ is distributive and Annm(M/θ) = PAnn(M/θ), in particular if M/θ
is closed w.r.t. the joins of all families of elements of cardinality at most
m and has the meet distributive w.r.t. such joins, then, for any nonzero
cardinalities κ ≤ m and µ ≤ m, condition (3)κ,M is equivalent to (4)µ,M .

• If 1/θ = {1}, then: if M/θ is distributive and Annm(M/θ) = PAnn(M/θ),
in particular if M/θ is closed w.r.t. the joins of all families of elements of
cardinality at most κ and has the meet distributive w.r.t. the joins of families
of cardinalities at most κ, then, for any nonzero cardinalities κ ≤ m, λ ≤ m
and µ ≤ m, conditions (3)κ,M , (4)λ,M and (5)µ,M are equivalent.
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• If M/θ is distributive and Ann(M/θ) = PAnn(M/θ), in particular if M/θ
is a frame, then, for any nonzero cardinalities κ and µ, conditions (3)κ,M ,
(4)µ,M and (iv)M are equivalent.

• If 1/θ = {1}, then: if M/θ is distributive and Ann(M/θ) = PAnn(M/θ), in
particular if M/θ is a frame, then, for any nonzero cardinalities κ, λ and µ,
conditions (3)κ,M , (4)λ,M , (iv)M and (5)µ,M are equivalent.

Proof. By Theorem 3.3 and Propositions 4.16, 4.17 and 4.18.

Recall from Proposition 4.4 that, if 0/θ = {0} and M/θ is distributive, then
Ann(M) ⊆ Id(M), while, if 0/θ = {0} and M/θ is a frame, then Ann(M) =
PAnn(M) ⊆ Id(M).

If we eliminate the nontrivial implications from Theorem 4.19, (ii) and (iii),
along with those that immediately follow from Proposition 4.4, (ii) and (iii), and
Remark 3.2, then we obtain the following.

Corollary 4.21. LetM be a bounded lattice and θ ∈ Con(M) such that 0/θ = {0}
and 1/θ = {1} and m be a nonzero cardinality. If e = max(e/θ) for all e ∈ B(M),
in particular if (e]M ∈ Ann(M) for all e ∈ B(M), in particular if M is uniquely
complemented, in particular if B(M) is a Boolean sublattice of M , then:

(i) if M/θ is distributive and Annm(M) = PAnn(M), in particular if M/θ
is closed w.r.t. the joins of all families of elements of cardinality at most
m and has the meet distributive w.r.t. such joins, then the following are
equivalent:

• M is Stone;

• M is m-Stone and B(M) is an m-complete Boolean sublattice of M ;

• P2Ann(M) is a Boolean sublattice of Id(M) such that a 7→ AnnM (AnnM
(a)) is a lattice morphism from M to P2Ann(M);

• P2Ann(M) is an m-complete Boolean sublattice of Id(M) such that a 7→
AnnM (AnnM (a)) is a lattice morphism from M to P2Ann(M);

• for all a, b ∈M , AnnM (a ∧ b) = AnnM (a) ∨AnnM (b) and P2Ann(M) ⊆
PAnn(M);

• for all a ∈M , AnnM (a) ∨AnnM (AnnM (a)) =M ;

(ii) if M/θ is distributive and Ann(M) = PAnn(M), in particular if M/θ is a
frame, then the following are equivalent:

• M is Stone;

• M is strongly Stone and B(M) is a complete Boolean sublattice of M ;

• P2Ann(M) is a Boolean sublattice of Id(M) such that a 7→ AnnM (AnnM
(a)) is a lattice morphism from M to P2Ann(M);
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• P2Ann(M) is a complete Boolean sublattice of Id(M) such that a 7→
AnnM (AnnM (a)) is a lattice morphism from M to P2Ann(M);

• for all a, b ∈M , AnnM (a ∧ b) = AnnM (a) ∨AnnM (b);

• for all a ∈M , AnnM (a) ∨AnnM (AnnM (a)) =M .

5. A certain congruence of a commutator lattice

Throughout this section, unless mentioned otherwise, (L,∨,∧, [·, ·], 0, 1) will be
a commutator lattice. Some of the results that follow in this paper generalize
properties obtained in [10] for the particular case of congruence lattices endowed
with the term-condition commutator, under the condition that this commutator
operation is commutative and distributive in both arguments (of course, one
suffices, by the commutativity) w.r.t. arbitrary joins, in particular for congruence
lattices of members of congruence-modular varieties, endowed with the modular
commutator.

Remark 5.1. Since [x, y] ≤ x∧y for all x, y ∈ L, we clearly have SpecL ⊆ Mi(L)\
{1}. If L has finite length, then Mi(L) \ {1} = Smi(L), so that SpecL ⊆ Smi(L).

Lemma 5.2. Let (L, [·, ·]) be a commutator lattice. Then:

(i) {x ∈ Smi(L) | [x+, x+] � x} ⊆ SpecL; if L has finite length, then SpecL =
{x ∈ Smi(L) | [x+, x+] � x};

(ii) SpecL = {x ∈ Mi(L) \ {1} | (∀ a ∈ L) ([a, a] ≤ x⇒ a ≤ x)};
(iii) if [1, 1] = 1, then MaxL ⊆ SpecL;

(iv) if 1 ∈ Cp(L), then, for each x ∈ L \ {1}, there exists a p ∈ MaxL such that
x ≤ p;

(v) if 1 ∈ Cp(L) and [1, 1] = 1, then, for each x ∈ L \ {1}, there exists a
p ∈ SpecL such that x ≤ p.

Proof. (i) Take x ∈ Smi(L) ⊆ L \ {1} with [x+, x+] � x, so that [x+, x+] = x+

since [x+, x+] ≤ x+, and let a, b ∈ L such that [a, b] ≤ x. Assume by absurdum
that a � x and b � x, which means that a∨x 6= x and b∨x 6= x, hence a∨x > x
and b ∨ x > x, so that a ∨ x ≥ x+ and b ∨ x ≥ x+. Then x < x+ = [x+, x+] ≤
[a ∨ x, b ∨ x] = [a, b] ∨ [a, x] ∨ [x, b] ∨ [x, x] ≤ x, so we have a contradiction. Thus
x ∈ SpecL.

By the definition of SpecL, if x ∈ Smi(L) is such that [x+, x+] ≤ x, then
x /∈ SpecL. If L has finite length, then SpecL ⊆ Smi(L), hence the equality for
this case.

(ii) By the proof of [1, Proposition 1.2], which we reproduce here for the sake
of completeness. The left-to-right inclusion is clear. Now let x ∈ Mi(L) \ {1}
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such that, for all a ∈ L, [a, a] ≤ x implies a ≤ x. Let a, b ∈ L such that
[a, b] ≤ x and assume by absurdum that a � x and b � x, so that a ∨ x > x
and b ∨ x > x and thus (a ∨ x) ∧ (b ∨ x) > x since x is meet-irreducible. Then
[(a∨x)∧ (b∨x), (a∨x)∧ (b∨x)] ≤ [a∨x, b∨x] = [a, b]∨ [a, x]∨ [x, b]∨ [x, x] ≤ x,
hence (a∨x)∧ (b∨x) ≤ x by the choice of x, and we have a contradiction. Hence
x ∈ SpecL.

(iii) Clearly, each x ∈ MaxL is strictly meet-irreducible, with x+ = 1. Now
apply (i).

(iv) Assume that 1 ∈ Cp(L) and let x ∈ L \ {1}. We prove that the set
([x)L \ {1},≤) is inductively ordered. Let C ⊆ [x)L \ {1} such that (C,≤) is a
chain, and let t =

∨

C. We can not have t = 1, because then, since 1 ∈ Cp(L),
there would exist an n ∈ N∗ and elements c1, . . . , cn ∈ C such that 1 =

∨n
i=1 ci =

max{c1, . . . , cn} ∈ {c1, . . . , cn} ⊆ C ⊆ L \ {1}, which gives us a contradiction.
Hence t ∈ L \ {1}. But x ≤ t, thus t ∈ [x)L \ {1}, so indeed ([x)L \ {1},≤) is
inductively ordered, therefore it has maximal elements by Zorn‘s Lemma, and
clearly its maximal elements are also maximal elements of L \ {1}, that is they
belong to MaxL, and they are greater than x.

(v) By (iii) and (iv).

Remark 5.3. By Lemma 5.2, (ii), if [·, ·] = ∧, then SpecL = Mi(L) \ {1}.

Remark 5.4. Let x, y ∈ L,M = {a ∈ L | [a, x] ≤ y} andN = {b ∈ L | [b, x] = y}.
Then

∨ ∅ = 0 ∈ M , in particular M is nonempty, and, for any nonempty
family (ai)i∈I ⊆ M , we have [ai, x] ≤ y for all i ∈ I and thus [

∨

i∈I ai, x] =
∨

i∈I [ai, x] ≤ y, hence
∨

i∈I ai ∈ M . Therefore
∨

i∈I ai ∈ M for any family
(ai)i∈I ⊆M , hence the set M has a maximum, namely max(M) =

∨

M .

If N is nonempty, then, for any nonempty family (bj)j∈J ⊆ N , we have
[bj , x] = y for all j ∈ J and thus [

∨

j∈J bj , x] =
∨

j∈J [bj , x] = y, hence
∨

j∈I bj ∈ N ,
and thus N has a maximum, namely max(N) =

∨

N .

Remark 5.5. The radical elements of L are exactly the meets of the families of
prime elements of L, hence SpecL ⊆ R(L) and the map x 7→ ρ(x) is a closure
operator on L with associated closure system R(L) = {ρ(x) | x ∈ L} = {x ∈
L | ρ(x) = x}, so that 1 ∈ R(L) since ρ(1) =

∧ ∅ = 1 and the following hold for
all a, b ∈ L, p ∈ SpecL and r ∈ R(L):

• a ≤ ρ(a);

• a ≤ ρ(b) iff ρ(a) ≤ ρ(b), so that a ≤ r iff ρ(a) ≤ r; in particular, a ≤ p iff
ρ(a) ≤ p, thus V (a) = V (ρ(a));

• a ≤ b implies V (b) ⊆ V (a), which implies ρ(a) ≤ ρ(b), which in turn implies
V (b) = V (ρ(b)) ⊆ V (ρ(a)) = V (a), hence: ρ(a) ≤ ρ(b) iff V (b) ⊆ V (a), and
thus: ρ(a) = ρ(b) iff V (a) = V (b).
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Throughout the rest of this section, unless mentioned otherwise, ≡ will be
the following equivalence on the set L: ≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}. By
Remark 5.5, ≡ = {(a, b) ∈ L2 | V (a) = V (b)}.

Remark 5.6. 1 ∈ 1/≡, thus the equality 1/≡ = {1} means that, for all a ∈ L:
a = 1 iff ρ(a) = ρ(1) = 1 iff V (a) = V (1) = ∅, which in turn is equivalent to
{a ∈ L | ρ(a) = 1} = {1} and to V (a) 6= ∅ for each a ∈ L \ {1}.

Lemma 5.7. If (L, [·, ·]) is a commutator lattice such that 1 ∈ Cp(L) and [1, 1] =
1 and ≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, then 1/≡ = {1}.

Proof. By Lemma 5.2, (v), and Remark 5.6.

Remark 5.8. We use Remark 5.5 in what follows. Let a, b ∈ L and (ai)i∈I ⊆ L.
Then V (a) = V (ρ(a)), V (a ∧ b) = V ([a, b]) = V (a) ∪ V (b) = V (ρ(a) ∧ ρ(b)) =
V ([ρ(a), ρ(b)]) = V (ρ(a))∪V (ρ(b)) and V (

∨

i∈I ai) =
⋂

i∈I V (ai) = V (
∨

i∈I ρ(ai)),
so that ρ(a ∧ b) = ρ([a, b]) = ρ(a) ∧ ρ(b) = ρ(ρ(a) ∧ ρ(b)) = ρ([ρ(a), ρ(b)]) and
ρ(
∨

i∈I ai) = ρ(
∨

i∈I ρ(ai)), otherwise written: a ∧ b ≡ [a, b] ≡ ρ(a) ∧ ρ(b) ≡
[ρ(a), ρ(b)] and

∨

i∈I ai ≡
∨

i∈I ρ(ai).

Indeed, ρ(a) = ρ(ρ(a)), hence the first equality. Since [a, b] ≤ a ∧ b ≤ a, b,
we have V (a)∪ V (b) ⊆ V (a∧ b) ⊆ V ([a, b]). By the definition of prime elements,
V ([a, b]) ⊆ V (a) ∪ V (b). Thus, by also using the first equality, we get the second
set of equalities. Finally, V (

∨

i∈I ai) = [
∨

i∈I ai)L ∩ SpecL =
⋂

i∈I [ai)L ∩ SpecL =
⋂

i∈I([ai)L ∩ SpecL) =
⋂

i∈I V (ai) =
⋂

i∈I V (ρ(ai)) = V (
∨

i∈I ρ(ai)).

For any x ∈ L and any n ∈ N∗, we shall denote: x1 = x and xn+1 = [x, xn].

Proposition 5.9. Let (L, [·, ·]) be a commutator lattice and ≡= {(a, b) ∈ L2 |
ρ(a) = ρ(b)}. Then:

(i) ≡ is a lattice congruence of L which preserves arbitrary joins and the
commutator operation [·, ·] and satisfies [a, b] ≡ a ∧ b for all a, b ∈ L,
R(L) = {max(x/≡) | x ∈ L} = {x ∈ L | x = max(x/≡)}, 0/≡ = (ρ(0)]L,
and, for all x ∈ L, ρ(x) = max(x/≡) = max(ρ(x)/≡) = min([x)L ∩R(L));

(ii) ≡ = CgL({(x, ρ(x)) | x ∈ L}) ⊇ CgL({(x ∧ y, [x, y]) | x, y ∈ L}) ⊇
CgL({(x, [x, x]) |x ∈ L});

(iii) for all x ∈ L such that x/≡ has a minimum and all a ∈ [min(x/≡))L ⊇ x/≡,
[a,min(x/≡)] = min(x/≡);

(iv) if, for each x ∈ L, there exists an nx ∈ N∗ such that ρ(x)nx = min(x/≡),
then: ≡ = CgL({(x, ρ(x)) | x ∈ L}) = CgL({(x∧ y, [x, y]) | x, y ∈ L}) and,
for all a ∈ x/≡ and all n ∈ N with n ≥ nx, a

n = min(x/≡).
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Proof. We denote by σ = CgL({(x, ρ(x)) | x ∈ L}), ∼= CgL({(x∧y, [x, y]) | x, y
∈ L}) and ≈= CgL({(x, [x, x]) | x ∈ L}). We will repeatedly use Remark 5.8.

(i) For all a, b, x, y ∈ L such that a ≡ x and b ≡ y, so that ρ(a) = ρ(x) and
ρ(b) = ρ(y), we have [a, b] ≡ a ∧ b ≡ ρ(a) ∧ ρ(b) = ρ(x) ∧ ρ(y) ≡ x ∧ y ≡ [x, y].
For all (ai)i∈I , (bi)i∈I ⊆ L such that, for all i ∈ I, ai ≡ bi, so that ρ(ai) = ρ(bi),
we have

∨

i∈I ai ≡
∨

i∈I ρ(ai) =
∨

i∈I ρ(bi) ≡
∨

i∈I bi.

For each x ∈ L, we have ρ(ρ(x)) = ρ(x), so that ρ(x) ∈ x/≡, and each
y ∈ x/≡ fulfills y ≤ ρ(y) = ρ(x), thus ρ(x) = max(x/≡) = max(ρ(x)/≡)
since x/≡ = ρ(x)/≡. Therefore max(0/≡) = ρ(0), thus 0/≡ = (ρ(0)]L, since
0/≡ ∈ Id(L). It also follows that R(L) = {ρ(x) | x ∈ L} = {max(x/≡) | x ∈ L}
and, also, R(L) = {x ∈ L | x = ρ(x)} = {x ∈ L | x = max(x/≡)}. Thus, for
any x ∈ L, ρ(x) ∈ [x)L ∩R(L) and, for any r ∈ [x)L ∩R(L), we have r ≥ x, thus
r = ρ(r) ≥ ρ(x), hence ρ(x) = min([x)L ∩R(L)).

(ii) By (i), ∼⊆≡. Obviously, ∼⊇ CgL({(x ∧ x, [x, x]) | x ∈ L}) = CgL({(x,
[x, x]) | x ∈ L}). Each x ∈ L fulfills x ≡ ρ(x), hence σ ⊆≡. If x, y ∈ L fulfill
x ≡ y, then xσρ(x) = ρ(y)σy, hence xσy, therefore σ ⊆≡. Hence ≡ = σ.

(iii) Let x ∈ L such that x/≡ has a minimum and a ∈ [min(x/≡))L. Then
min(x/≡) ≤ a, (x,min(x/≡)) ∈≡ and (min(x/≡), [min(x/≡),min(x/≡)]) ∈≈⊆≡
by (ii), so that min(x/≡) = min(min(x/≡)/≡) ≤ [min(x/≡),min(x/≡)] ≤
[a,min(x/≡)] ≤ min(x/≡), hence [min(x/≡),min(x/≡)] = [a,min(x/≡)] =
min(x/≡).

(iv) Let a ∈ L, arbitrary, and x ∈ L such that min(x/≡) exists, so that
x/≡ = ⌊min(x/≡), ρ(x)⌉L by (i).

For all n ∈ N∗, (a, a2) ∈≈⊆∼ and, if (a, an) ∈∼, then a = a∧ a ∼ a ∧ an ∼
[a, an] = an+1. Thus, by (ii), (an, a) ∈∼⊆≡ for all n ∈ N∗, hence (min(x/≡),
max(x/≡)) = (ρ(x)nx , ρ(x)) ∈∼, therefore ≡⊆∼, so ≡=∼.

If a ∈ x/≡ and n ∈ N with n ≥ nx, then, by the above, an ≡ a ≡ x, hence,
by (ii) and (iii), min(x/≡) ≤ a ≤ ρ(x), thus min(x/≡) ≤ an ≤ anx ≤ ρ(x)nx =
min(x/≡), hence an = min(x/≡).

Remark 5.10. Of course, for all a ∈ L, since a ≤ ρ(a), ρ(a) = 0 implies a = 0.
By Proposition 5.9, (i), 0 ∈ R(L) iff ρ(0) = 0 iff 0/≡ = {0} iff (∀ a ∈ L) (ρ(a) =
ρ(0) ⇔ a = 0) iff (∀ a ∈ L) (ρ(a) = 0 ⇔ a = 0).

Remark 5.11. Note from Proposition 5.9, (i), that each class of ≡ contains
exactly one element of R(L), namely the maximum of that class.

≡ ∩ R(L)2 = ∆R(L), because, for all x, y ∈ L, ρ(x) ≡ ρ(y) iff ρ(x) =
ρ(ρ(x)) = ρ(ρ(y)) = ρ(y). Hence, if R(L) = L, then ≡ = ∆L. Moreover:
R(L) = L iff x = ρ(x) for all x ∈ L iff CgL({(x, ρ(x)) | x ∈ L}) = ∆L iff ≡ = ∆L.
Obviously, if ≡ = ∆L, then we also have CgL({(x ∧ y, [x, y]) | x, y ∈ L}) =
CgL({(x, [x, x]) | x ∈ L}) = ∆L, thus [·, ·] = ∧.
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If L is algebraic and Smi(L) ⊆ SpecL, in particular if L is algebraic and
[·, ·] = ∧ (see Remark 5.3) or L has finite length and all x ∈ Smi(L) = Mi(L)
fulfill [x+, x+] � x (see Lemma 5.2, (i))), in particular if L has finite length and
[·, ·] = ∧, then R(L) = L, thus ≡ = ∆L.

Now recall that: [x, x] = x for all x ∈ L iff [x, y] = x ∧ y for all x, y ∈ L.
Indeed, the converse implication is trivial, while, if [x, x] = x for all x ∈ L, then we
have, for all x, y ∈ L: x∧y ≥ [x, y] ≥ [x∧y, x∧y] = x∧y, therefore [x, y] = x∧y.
Hence: CgL({(x, [x, x]) | x ∈ L}) = ∆L iff CgL({(x ∧ y, [x, y]) | x, y ∈ L}) = ∆L.

Remark 5.12. Obviously, all congruences of a lattice of finite length are com-
plete. Note, also, that a distributive lattice of finite length is a frame.

Let M be a lattice and θ ∈ Con(M). Then, for any x, y ∈ M such that
x/θ, y/θ, (x ∨ y)/θ and (x ∧ y)/θ have minima and maxima: min((x ∨ y)/θ) =
min(x/θ)∨min(y/θ), max((x∧ y)/θ) = max(x/θ)∧max(y/θ) and: x/θ ≤ y/θ iff
min(x/θ) ≤ min(y/θ) iff max(x/θ) ≤ max(y/θ). Indeed, the argument below for
the family (xi)i∈I ⊆ M holds, without further hypotheses, for the finite family
{x, y}, hence the first two equalities. Now, if x/θ ≤ y/θ, that is (x ∨ y)/θ =
x/θ ∨ y/θ = y/θ, then min(y/θ) = min((x ∨ y)/θ) = min(x/θ) ∨ min(y/θ),
hence min(x/θ) ≤ min(y/θ). Conversely, since (x,min(x/θ)), (y,min(y/θ)) ∈ θ,
if min(x/θ) ≤ min(y/θ), then x/θ = min(x/θ)/θ ≤ min(y/θ)/θ = y/θ. There-
fore x/θ ≤ y/θ iff min(x/θ) ≤ min(y/θ). Similarly, x/θ ≤ y/θ iff max(x/θ) ≤
max(y/θ).

If M is complete and θ preserves arbitrary meets, then each class of θ has
a minimum, because, for all x ∈ M ,

∧

(x/θ) ∈ x/θ, thus
∧

(x/θ) = min(x/θ).
Dually for joins and maxima of classes. Hence, if M is a complete lattice and θ
is a complete congruence, then all classes of θ have minima and maxima, so that
x/θ = ⌊min(x/θ),max(x/θ)⌉M for all x ∈M .

Note, also, that, if M is complete and θ preserves arbitrary joins, then, for
any family (xi)i∈I ⊆ M , there exists in M/θ

∨

i∈I xi/θ = (
∨

i∈I xi)/θ, thus M/θ
is a complete lattice. Similarly if θ preserves arbitrary meets.

If M is a complete lattice and θ is a complete congruence, then, for any
nonempty family (xi)i∈I ⊆M , we have, in the complete latticeM/θ: min(

∨

i∈I xi/
θ) =

∨

i∈I min(xi/θ) and max(
∧

i∈I xi/θ) =
∧

i∈I max(xi/θ). Indeed, if we denote
by ai = min(xi/θ) for all i ∈ I and by a = min((

∨

i∈I xi)/θ) = min(
∨

i∈I xi/θ),
then, since ai ∈ xi/θ for all i ∈ I, we have

∨

i∈I ai ∈ (
∨

i∈I xi)/θ =
∨

i∈I xi/θ,
hence

∨

i∈I ai ≥ a. For all k ∈ I, a∧ak ∈ (
∨

i∈I xi)/θ∧xk/θ = ((
∨

i∈I xi)∧xk)/θ =
((xk∨

∨

i∈I\{k} xi)∧xk)/θ = xk/θ, thus a ≥ a∧ak ≥ ak, hence a ≥ ∨

i∈I ai. There-
fore a =

∨

i∈I ai, that is min(
∨

i∈I xi/θ) =
∨

i∈I min(xi/θ). By duality, it follows
that we also have max(

∧

i∈I xi/θ) =
∧

i∈I max(xi/θ).

For any latticeM and any θ ∈ Con(M) such that all classes of θ have minima,
let us denote by [·, ·]θ the binary operation on Con(M) defined by: [x, y]θ =
min((x ∧ y)/θ) for all x, y ∈M .
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Proposition 5.13. If M is a complete lattice and θ ∈ Con(M) is a complete
congruence such that M/θ is a frame, then:

• (M, [·, ·]θ) is a commutator lattice;

• θ = CgM ({(x ∧ y, [x, y]θ) | x, y ∈ M}) = CgM ({(x, [x, x]θ) | x ∈ M}) =
CgM ({(min(x/θ),max(x/θ)) | x ∈M}) = CgM ({(x,max(x/θ)) | x ∈M});

• w.r.t. the commutator operation [·, ·]θ, SpecM = Mi(M) ∩ {max(x/θ) | x ∈
M \ 1/θ} and R(M) ⊆ {max(x/θ) | x ∈M};

• if M has finite length, then R(M) = {max(x/θ) | x ∈M}, ρ(y) = max(y/θ)
for all y ∈M , and θ = CgM({(x, ρ(x)) | x ∈M}).

Proof. We are using Remark 5.12.
For each x ∈ M , x/θ has a minimum and a maximum, so that x/θ =

⌊min(x/θ),max(x/θ)⌉M . For all x, y ∈ M , [x, y]θ = min((x ∧ y)/θ) = [y, x]θ ≤
x∧ y and [x, y]θ ∈ (x∧ y)/θ, thus [x, y]θ/θ = (x∧ y)/θ. Trivially, [·, ·]θ distributes
over

∨ ∅ = 0. Now let us consider a nonempty family (xi)i∈I ⊆ M and and
a ∈ M . Since M/θ is a frame, we get: [

∨

i∈I xi, a]θ = min(((
∨

i∈I xi) ∧ a)/θ) =
min((

∨

i∈I(xi∧a))/θ) =
∨

i∈I min((xi∧a)/θ) =
∨

i∈I [xi, a]θ. Therefore (M, [·, ·]θ)
is a commutator lattice.

Let us denote by ≈= CgM ({(x, [x, x]θ) | x ∈ M}) and by ∼= CgM ({(x ∧
y, [x, y]θ) |x, y ∈ M}). Then ≈= CgM({(x ∧ x, [x, x]θ) | x ∈ M}) ⊆∼⊆ θ since
(x ∧ y, [x, y]θ) ∈ θ for all x, y ∈M . But, for all x ∈M , [max(x/θ),max(x/θ)]θ =
min((max(x/θ) ∧ max(x/θ))/θ) = min(max(x/θ)/θ) = min(x/θ) since (x,max
(x/θ)) ∈ θ. Therefore (max(x/θ),min(x/θ)) = (max(x/θ), [max(x/θ),max
(x/θ)]θ) ∈≈. Hence, for all y, z ∈ M such that (y, z) ∈ θ, we have min(y/θ) =
min(z/θ) ≤ y, z ≤ max(y/θ) = max(z/θ), and (min(y/θ),max(y/θ)) ∈≈, hence
(y, z) ∈≈. Thus θ ⊆≈. Therefore θ =∼=≈= CgM({(min(x/θ),max(x/θ)) | x ∈
M}) = CgM({(x,max(x/θ)) | x ∈M}), since, as above, all inclusions hold.

By Lemma 5.2, (ii), SpecM = {x ∈ Mi(M) \ {1} | (∀ a ∈ M) ([a, a]θ ≤ x ⇒
a ≤ x)}. Thus, if x ∈ SpecM and a = max(x/θ), then [a, a]θ = min(x/θ) ≤ x,
thus max(x/θ) = a ≤ x ≤ max(x/θ), hence x = max(x/θ). For all x ∈ M
such that x = max(x/θ) and all a ∈ M , if min(a/θ) = [a, a]θ ≤ x, then a/θ =
min(a/θ)/θ ≤ x/θ, hence a ≤ max(a/θ) ≤ max(x/θ) = x, thus, if x ∈ Mi(M) \
{1}, then x ∈ SpecM . Therefore SpecM = {x ∈ Mi(M) \ {1} | x = max(x/θ)},
otherwise written SpecM = Mi(M) ∩ {max(x/θ) | x ∈ M \ 1/θ}, since, clearly,
{x ∈M | x = max(x/θ)} = {max(x/θ) | x ∈M} and 1 = max(1/θ).

The set {max(x/θ) | x ∈ M} is closed w.r.t. arbitrary meets, in particular
all meets of prime elements of M belong to {max(x/θ) | x ∈M}, that is R(M) ⊆
{max(x/θ) | x ∈ M}. R(M) ⊇ {1} ∪ SpecM = {1} ∪ (Mi(M) ∩ {max(x/θ) | x ∈
M \ 1/θ}) by the above. Let x ∈ M such that x = max(x/θ), but x 6= 1 and
x /∈ Mi(M), so that x /∈ 1/θ and x = a ∧ b for some a, b ∈ M with x < a and
x < b. Then x = max(x/θ) = max((a ∧ b)/θ) = max(a/θ) ∧max(b/θ), so x is a
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meet of two elements of {max(y/θ) | y ∈ M}, both of which are strictly greater
than x, so that none of them equals 1, thus none of them belongs to 1/θ. If
the lattice M has finite length, it follows that x is a finite meet of elements of
Mi(M) ∩ {max(y/θ) | y ∈ M \ 1/θ} = SpecM , thus x ∈ R(M). Therefore, if M
has finite length, then R(M) = {max(x/θ) | x ∈M}, hence ρ(x) = max(x/θ) for
all x ∈M , and thus θ = CgM ({(x,max(x/θ)) | x ∈ M}) = CgM ({(x, ρ(x)) | x ∈
M}).

Proposition 5.14. Let M be a lattice, 〈·, ·〉 be a binary operation on M , γ =
CgM ({(x∧ y, 〈x, y〉) | x, y ∈M}) and θ, ζ ∈ Con(M) such that all classes of γ, θ
and ζ have minima. Then:

(i) for all x ∈M , min(x/(θ ∩ ζ)) = min(x/θ) ∨min(x/ζ);

(ii) [·, ·]θ∩ζ = [·, ·]θ ∨ [·, ·]ζ ;
(iii) if ζ ⊆ θ, then [·, ·]θ ≤ [·, ·]ζ ;
(iv) [·, ·]γ ≤ 〈·, ·〉.

Proof. (i) Let a = min(x/θ), b = min(x/ζ) and c = min(x/(θ ∩ ζ)) = min(x/θ ∩
x/ζ) since x/(θ ∩ ζ) = x/θ ∩ x/ζ. Then a ∨ b ∈ x/θ ∩ x/ζ, hence a ∨ b ≥ c. But
c∧a ∈ x/θ, hence c ≥ c∧a ≥ a and, analogously, c ≥ b, thus c ≥ a∨ b. Therefore
c = a ∨ b.

(ii) By (i).

(iii) By (ii), or simply noticing that ζ ⊆ θ means that, for all x ∈ M ,
x/ζ ⊆ x/θ, so that min(x/ζ) ≥ min(x/θ), hence the inequality in the enunciation.

(iv) For all x, y ∈ M , 〈x, y〉 ∈ (x ∧ y)/γ, thus 〈x, y〉 ≥ min((x ∧ y)/γ) =
[x, y]γ .

Recall that a latticeM with 0 is said to be 0-regular iff, for any θ, ζ ∈ Con(M),
0/θ = 0/ζ implies θ = ζ.

Proposition 5.15. If (L, [·, ·]) is a commutator lattice and ≡ = {(a, b) ∈ L2 | ρ(a)
= ρ(b)}, then:

(i) R(L) = L iff ≡ = ∆L;

(ii) if R(L) = L, then [·, ·] = ∧ in L, in particular L is a frame;

(iii) if L is algebraic, in particular if L has finite length, then: R(L) = L iff
[·, ·] = ∧ in L;

(iv) if L is 0-regular and ρ(0) = 0, then R(L) = L, so [·, ·] = ∧ in L and L is a
frame.

Proof. Recall from Proposition 5.9, (i), that ≡ ∈ Con(L).
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(i), (ii), (iii) By Remark 5.11.
(iv) If L is 0-regular, then, by (ii) and Remarks 5.10 and 5.11: if ρ(0) = 0,

which means that 0/≡ = {0} = 0/∆L, then ≡ = ∆L, so that R(L) = L, thus
[·, ·] = ∧ in L and L is a frame.

Remark 5.16. Let (L, [·, ·]) be a commutator lattice and consider a θ ∈ Con(L)
that preserves arbitrary joins and the commutator. If we define [·, ·](θ) : L/θ ×
L/θ → L/θ by [x/θ, y/θ](θ) = [x, y]/θ for all x, y ∈ L, then it is straightforward
that (L/θ, [·, ·](θ)) is a commutator lattice. In particular, L/≡ is a commutator
lattice in which [·, ·](≡) = ∧. See also the proof of Proposition 5.17.

Proposition 5.17. If (L, [·, ·]) is a commutator lattice and ≡ = {(a, b) ∈ L2 | ρ(a)
= ρ(b)}, then L/≡ is a frame, thus:

• Ann(L/≡) = PAnn(L/≡) ⊆ PId(L/≡);

• L/≡ is Stone iff L/≡ is strongly Stone.

Proof. For all x ∈ L and any family (yi)i∈I ⊆ L, x/ ≡ ∧ (
∨

i∈I yi/ ≡) =
x/≡ ∧ (

∨

i∈I yi)/≡ = (x ∧ (
∨

i∈I yi))/≡ = [x,
∨

i∈I yi]/≡ = (
∨

i∈I [x, yi])/≡ =
∨

i∈I [x, yi]/≡ =
∨

i∈I(x ∧ yi)/≡ =
∨

i∈I(x/≡ ∧ yi/≡).
This also followed from Remarks 3.5 and 5.16.

Lemma 5.18. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0, then:

(i) for all a, b ∈ L, a ∧ b = 0 iff [a, b] = 0;

(ii) for any U ⊆ L, AnnL(U) = {x ∈ L | (∀u ∈ U) ([x, u] = 0)}.

Proof. (i) Let ≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}. By Remarks 5.10 and 5.8, if
ρ(0) = 0, then, for all a, b ∈ L: a∧b = 0 iff a∧b ∈ 0/≡ iff [a, b] ∈ 0/≡ iff [a, b] = 0.

(ii) By (i) and the definition of AnnL(U).

Proposition 5.19. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0, then:

• for all U ⊆ L, AnnL(U) = AnnL((U ]L) = AnnL(
∨

U);

• for any family (Ik)k∈K ⊆ Id(L), AnnL(
∨

k∈K Ik) =
⋂

k∈K AnnL(Ik);

• Ann(L) = PAnn(L) ⊆ PId(L);

• L is Stone iff L is strongly Stone.

Proof. By Propositions 5.17 and 4.4 and Proposition 5.9, (i), we have the equal-
ities. By Proposition 4.4, (iii), L is Stone iff it is strongly Stone.

Remark 5.20. By Proposition 5.17, the second part of condition (4)L/≡ is triv-
ially fulfilled, so that (4)L/≡ is equivalent to (iv)L/≡. By Proposition 5.19, if
ρ(0) = 0, then the second part of condition (4)L is trivially fulfilled, so that (4)L
is equivalent to (iv)L.
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6. Transferring Davey‘s Theorem to commutator lattices and

related results

Throughout this section, unless mentioned otherwise, (L,∨,∧, [·, ·], 0, 1) will be
a commutator lattice and, as in Section 5, we will denote by ≡ = {(x, y) ∈
L2 | ρ(x) = ρ(y)} ∈ Con(L). Recall from Remark 5.10 that 0/≡ = {0} iff
ρ(0) = 0.

Let us define
•∨: R(L)2 → R(L) by ρ(x)

•∨ ρ(y) = ρ(ρ(x)∨ ρ(y)) for all x, y ∈
L, and, for any family (xi)i∈I ⊆ L, let us denote by

•
∨

i∈I ρ(xi) = ρ(
∨

i∈I ρ(xi)) ∈
R(L).

Remark 6.1. Note from the definitions of
•∨ and ≡ and Proposition 5.9, (i), that

≡ preserves
•∨ over arbitrary families of elements of R(L).

Proposition 6.2. If (L, [·, ·]) is a commutator lattice and
•∨ is the binary opera-

tion defined on R(L) as above, then:

(i) (R(L),
•∨,∧, ρ(0), 1) is a frame, isomorphic to L/≡;

(ii) in the commutator lattice (R(L),
•∨,∧,∧, ρ(0), 1), SpecR(L) = SpecL and

R(R(L)) = R(L), in particular ρ(0) ∈ R(R(L));

(iii) in the commutator lattice (L/≡,∨,∧,∧, 0/≡, 1/≡), SpecL/≡ = {p/≡ | p ∈
V (ρ(0)) = [ρ(0))L ∩ SpecL} and R(L/≡) = L/≡, in particular ρ(0/≡) =
0/≡.

Proof. (i) 1 = ρ(1) ∈ R(L) and, for all a, b ∈ L, ρ(a) ∧ ρ(b) = ρ(a ∧ b) ∈ R(L),

and ρ(a)
•∨ ρ(b) = ρ(ρ(a)∨ ρ(b)) = ρ(a∨ b), from which it is straightforward that

(R(L),
•∨,∧, ρ(0), 1) is a bounded lattice.

Let f : L → R(L), for all x ∈ L, f(x) = ρ(x). Then f is surjective and, by

the above, for all a, b ∈ L, f(a∧b) = f(a)∧f(b) and f(a∨b) = f(a)
•∨ f(b), hence

f is a surjective lattice morphism. By the definition of ≡, Ker(f) = ≡. Hence
the Main Isomorphism Theorem gives us a lattice isomorphism h : L/≡ → R(L),
defined by h(x/≡) = ρ(x) for all x ∈ L. By Proposition 5.17, it follows that R(L)
is a frame and h is a frame isomorphism.

(ii) Since (R(L),
•∨,∧, ρ(0), 1) is a frame by (i), (R(L),

•∨,∧,∧, ρ(0), 1) is a
commutator lattice. SpecL ⊆ R(L) = {ρ(u) | u ∈ L}, and, for any a, b, x ∈ L:
ρ(a)∧ ρ(b) ≤ ρ(x) iff ρ(a∧ b) ≤ ρ(x) iff ρ([a, b]) = ρ(a∧ b) ≤ ρ(x) iff [a, b] ≤ ρ(x),
and a ≤ ρ(x) iff ρ(a) ≤ ρ(x) and similarly for b, hence: ρ(x) ∈ SpecR(L) iff
ρ(x) ∈ SpecL, therefore SpecL = SpecR(L). Thus, in R(L), for any x ∈ L, the
radical of ρ(x) is

∧{p ∈ SpecR(L) | ρ(x) ≤ p} =
∧{p ∈ SpecL | ρ(x) ≤ p} =

ρ(ρ(x)) = ρ(x), which means that every element of the commutator lattice R(L)
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is a radical element, in particular the first element of this lattice, ρ(0), is a radical
element.

(iii) By (i) and (ii) and the definition of the frame isomorphism h.

Remark 6.3. By Remarks 4.1 and 5.10, we have AnnL(U)/≡ ⊆ AnnL/≡(U/≡)
for any U ⊆ L and, if ρ(0) = 0, then the properties of Lemma 4.2 hold for M
and θ replaced by L and ≡, respectively.

For all x, y ∈ L, let us define x → y =
∨{a ∈ L | [x, a] ≤ y} and ¬x = x →

0 =
∨{a ∈ L | [x, a] = 0}.

Remark 6.4. Let x, y ∈ L. By Remark 5.4, x → y = max{a ∈ L | [x, a] ≤ y}
and ¬x = max{a ∈ L | [x, a] = 0}, so that, by Lemma 5.18, (ii), if ρ(0) = 0, then
¬x =

∨

a∈AnnL(x)
a = max(AnnL(x)).

Lemma 6.5. If (L, [·, ·]) is a commutator lattice, then, for all x, y, z ∈ L:

(i) [x, y] ≤ z iff x ≤ y → z;

(ii) if [y, 1] = y, then: y → z = 1 iff y ≤ z.

Proof. (i) y → z = max{a ∈ L | [a, y] ≤ z}, so both implications hold.

(ii) If [y, 1] = y, then, by (i): y → z = 1 iff 1 ≤ y → z iff y = [1, y] ≤ z.

Lemma 6.6. If (L, [·, ·]) is a commutator lattice, then, for all e ∈ B(L) and all
a ∈ L such that [1, e ∧ a] = e ∧ a, we have e ∧ a = [e, a].

Proof. Since e ∈ B(L), we have e ∨ f = 1 and e ∧ f = 0 for some f ∈ L. Then
[e, a] ≤ e∧a = [1, e∧a] = [e∨f, e∧a] = [e, e∧a]∨[f, e∧a] ≤ [e, e∧a]∨(f ∧e∧a) =
[e, e ∧ a] ∨ 0 = [e, e ∧ a] ≤ [e, a], hence e ∧ a = [e, a].

Proposition 6.7. If (L, [·, ·]) is a commutator lattice such that [x, 1] = x for all
x ∈ L, then e ∧ a = [e, a] for all e ∈ B(L) and all a ∈ L, in particular [·, ·] = ∧
in B(L), and B(L) is a Boolean sublattice of L whose complementation is defined
by ¬ e = e→ 0 = max{a ∈ L | [e, a] = 0} = max(AnnL(e)) for all e ∈ B(L).

Proof. By Lemma 6.6, e∧ a = [e, a] for all e ∈ B(L) and all a ∈ L, in particular
for all e, a ∈ B(L).

Obviously, 0, 1 ∈ B(L). Now let x, y ∈ B(L), so that x ∨ x = y ∨ y = 1 and
x ∧ x = y ∧ y = 0 for some x, y ∈ B(L), so that [x, x] = [y, y] = 0, as well. Then
[x ∨ y, x ∧ y] = [x, x ∧ y] ∨ [y, x ∧ y] ≤ [x, x] ∨ [y, y] = 0, so [x ∨ y, x ∧ y] = 0. By
Lemma 6.6, [x, x ∨ y] = x ∧ (x ∨ y) = x, hence x ∨ y ∨ (x ∧ y) = x ∨ y ∨ [x, y] =
[1, x∨y]∨[x, y] = [x∨x, x∨y]∨[x, y] = [x, x∨y]∨[x, x∨y]∨[x, y] = x∨[x, x∨y∨y] =
x∨ [x, 1] = x∨x = 1, hence x∨y ∈ B(L) and x∧y ∈ B(L), thus also x∧y ∈ B(L),
since we can interchange x and x, respectively y and y in the above.
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Therefore B(L) is a bounded sublattice of L in which the meet coincides to
[·, ·], thus B(L) is a bounded distributive lattice, and it is clearly complemented,
so B(L) is a Boolean sublattice of L. Let e ∈ B(L). As in every Boolean algebra,
the complement of e in B(L) is max{a ∈ B(L) | e∧ a = 0} ≤ max{a ∈ L | e∧ a =
0} = max{a ∈ L | [e, a] = 0} = ¬ e, hence e ∨ ¬ e = 1. But, by the above,
¬ e = max(AnnL(e)) ∈ AnnL(e), thus e ∧ ¬ e = 0. Hence ¬ e ∈ B(L) and ¬ e is
the complement of e in B(L).

Remark 6.8. If [1, 1] = x < 1, then no y ∈ [x)L can be prime, thus ρ(x) =
∧ ∅ = 1 = ρ(1), hence 1 6= x ∈ 1/≡. Therefore 1/≡ = {1} implies [1, 1] = 1.

Proposition 6.9. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0, then:

(i) for all x ∈ L, AnnL(x) = (¬x]L;
(ii) L is a Stone lattice iff, for all x ∈ L, ¬x ∈ B(L);
(iii) if [x, 1] = x for all x ∈ L, then, for all e ∈ B(L), (e]L = AnnL(¬ e) ∈

PAnn(L).

Proof. (i) By Proposition 5.19 and Remark 6.4.

(ii) By (i) and the definition of a Stone lattice.

(iii) By (i) and Proposition 6.7, for all e ∈ B(L), (e]L = (¬¬ e]L = AnnL(¬ e)
∈ PAnn(L).

Proposition 6.10. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0 and
[x, 1] = x for all x ∈ L, then:

• B(Id(L)) = {(e]L | e ∈ B(L)} ⊆ PAnn(L) ⊆ Ann(L);
• L is a Stone lattice iff PAnn(L) = B(Id(L));
• L is a strongly Stone lattice iff Ann(L) = B(Id(L)).

Proof. By Proposition 4.12, (ii), and Proposition 6.9, (iii).

Let us see, in the following proposition, some side results on compact ele-
ments.

Proposition 6.11. Let (L, [·, ·]) be a commutator lattice and ≡ = {(a, b) ∈
L2 | ρ(a) = ρ(b)}.

(i) If 1 ∈ Cp(L), then {x ∈ B(L) | [x, 1] = x} ⊆ Cp(L).

(ii) If 1 ∈ Cp(L) and [x, 1] = x for all x ∈ B(L), then B(L) ⊆ Cp(L).

(iii) If 1 ∈ Cp(L) and 1/≡ = {1}, then 1/≡∈ Cp(L/≡), B(L/≡) ⊆ Cp(L/≡)
and, in L/≡, V (x/≡) 6= ∅ for all x ∈ L \ {1}.
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Proof. (i) Let x ∈ B(L), so that x ∨ y = 1 and x ∧ y = 0 for some y ∈ L, so we
also have [x, y] = 0. Assume that [x, 1] = x and 1 ∈ Cp(L), and let ∅ 6= M ⊆ L
such that x ≤ ∨

M , so that 1 = x ∨ y ≤ ∨

M ∨ y, therefore, since 1 ∈ Cp(L),
1 = x ∨ y =

∨n
i=1 xi ∨ y for some n ∈ N∗ and some x1, . . . , xn ∈ M . Then

x = [x, 1] = [x,
∨n

i=1 xi ∨ y] = [x,
∨n

i=1 xi] ∨ [x, y] = [x,
∨n

i=1 xi] ≤
∨n

i=1 xi, hence
x ≤ ∨n

i=1 xi.
(ii) By (i).

(iii) Let ∅ 6= M ⊆ L such that (
∨

x∈M x)/≡ =
∨

x∈M x/≡ = 1/≡. If
1/≡ = {1}, then it follows that

∨

x∈M x = 1. If, furthermore, 1 ∈ Cp(L), then
we obtain that 1 =

∨n
i=1 xi = 1 for some n ∈ N∗ and some x1, . . . , xn ∈M , hence

1/≡ = (
∨n

i=1 xi)/≡ =
∨n

i=1 xi/≡ , therefore 1/≡ ∈ Cp(L/≡).
Since L/≡ is a commutator lattice with [·, ·] = ∧, L/≡ fulfills [x/≡, 1/≡]

= x/≡ ∧ 1/≡ = x/≡ for all x ∈ L. Now apply (ii) to obtain that B(L/≡)
⊆ Cp(L/≡), and Lemma 5.2, (v), to obtain that, in L/≡, V (x/≡) 6= ∅ for all
x ∈ L \ 1/≡ = L \ {1}.

Proposition 6.12. If (L, [·, ·]) is a commutator lattice such that [x, 1] = x for
all x ∈ L and ≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, then:

(i) p≡ |B(L): B(L) → B(L/≡) is a Boolean morphism, which is injective iff
1/≡ ∩ B(L) = {1} iff 0/≡ ∩ B(L) = {0};

(ii) if ρ(0) = 0 or 1/≡ = {1}, in particular if ρ(0) = 0 or 1 ∈ Cp(L), then the
Boolean morphism p≡ |B(L): B(L) → B(L/≡) is injective;

(iii) if ρ(0) = 0 and 1/≡ = {1}, in particular if ρ(0) = 0 and 1 ∈ Cp(L), then:

• for all x ∈ L: x/≡∈ B(L/≡) iff x ∈ B(L);
• p≡ |B(L): B(L) → B(L/≡) is a Boolean isomorphism.

Proof. Assume that [x, 1] = x for all x ∈ L, so that B(L) is a Boolean sublattice
of L by Proposition 6.7.

(i) By the above and Remark 4.9.

(ii) By (i) and Remark 5.10, with Lemma 5.7 for the particular case.
(iii) By Lemma 4.13, (i) and Remark 5.10, with Lemma 5.7 for the particular

case.

Remark 6.13. By Proposition 6.12, (iii), if 1/≡ = {1} and ρ(0) = 0, then ≡
has the BLP (see [9]).

Proposition 6.14. Let (L, [·, ·]) be a commutator lattice such that ρ(0) = 0 and
[x, 1] = x for all x ∈ L, ≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, U ⊆ L, a ∈ L and
e ∈ B(L). Then:

(i) a/≡ ≤ e/≡ iff a ≤ e; e = max(e/≡) = ρ(e); B(L) ⊆ R(L);
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(ii) if L is complemented, then R(L) = L, [·, ·] = ∧ in L and L is a complete
Boolean algebra;

(iii) (ρ(a)]L/≡ = AnnL(U)/≡ iff (ρ(a)]L = AnnL(U); (e]L/≡ = AnnL(U)/≡ iff
(e]L = AnnL(U).

Proof. (i) By Lemma 4.11, (ii), Proposition 6.7, Proposition 5.9, (i), and Remark
4.5, e = max(e/≡) = ρ(e) ∈ R(L), so that B(L) ⊆ R(L) and a/≡ ≤ e/≡ iff a ≤ e.

(ii) By (i), if L is complemented, then L = B(L) ⊆ R(L) ⊆ L, so that
L = B(L) = R(L), thus L is a complete Boolean algebra and has [·, ·] = ∧ by
Proposition 6.7 and the fact that L is a complete lattice.

(iii) By (i), Lemma 4.11, (iii), and Proposition 5.9, (i).

Proposition 6.15. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0 and
≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, then, for any cardinality κ:

(i) (1)κ,L implies (1)κ,L/≡ (that is, if L is κ-Stone, then L/≡ is κ-Stone);

(ii) if 1/≡ = {1} and [x, 1] = x for all x ∈ L, in particular if 1 ∈ Cp(L) and
[x, 1] = x for all x ∈ L, then properties (1)κ,L and (1)κ,L/≡ are equivalent
(that is L is κ-Stone iff L/≡ is κ-Stone).

Proof. (i) By Remark 5.10 and Proposition 4.14, (i).

(ii) By Remark 5.10, Proposition 6.14, (i), and Proposition 4.14, (ii), with
Lemma 5.7 for the particular case.

Corollary 6.16. Let (L, [·, ·]) be a commutator lattice such that ρ(0) = 0 and
≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}.
• If L is Stone, respectively strongly Stone, then L/≡ is Stone, respectively

strongly Stone.

• If 1/≡ = {1} and [x, 1] = x for all x ∈ L, in particular if 1 ∈ Cp(L) and
[x, 1] = x for all x ∈ L, then L is Stone, respectively strongly Stone, iff L/≡
is Stone, respectively strongly Stone.

Proof. By Proposition 6.15 applied for κ = 1, then for all cardinalities κ.

Proposition 6.17. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0 and
≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, then, for any cardinality κ:

(i) if 1/≡ = {1}, in particular if 1 ∈ Cp(L) and [1, 1] = 1, then (2)κ,L implies
(2)κ,L/≡;

(ii) if 1/≡ = {1} and [x, 1] = x for all x ∈ L, in particular if 1 ∈ Cp(L) and
[x, 1] = x for all x ∈ L, then properties (2)κ,L and (2)κ,L/≡ are equivalent.
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Proof. We get the particular cases from Lemma 5.7.

(i) By Remark 5.10 and Proposition 4.15, (i).

(ii) By Remark 5.10, Proposition 6.14, (i), and Proposition 4.15, (ii).

Proposition 6.18. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0 and
≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, then, for any cardinality κ, the properties (3)κ,L
and (3)κ,L/≡ are equivalent.

Proof. By Remark 5.10 and Proposition 4.16.

Proposition 6.19. If (L, [·, ·]) is a commutator lattice such that ρ(0) = 0 and
≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)}, then, for any cardinality κ, the properties (iv)L,
(4)κ,L and (4)κ,L/≡ are equivalent.

Proof. By Remarks 5.10 and 5.20 and Proposition 4.17.

Proposition 6.20. If (L, [·, ·]) is a commutator lattice and ≡ = {(a, b) ∈ L2 | ρ(a)
= ρ(b)}, then, for any cardinality κ:

(i) (5)κ,L implies (5)κ,L/≡;

(ii) if ρ(0) = 0 and 1/≡ = {1}, in particular if ρ(0) = 0, 1 ∈ Cp(L) and
[1, 1] = 1, then (5)κ,L is equivalent to (5)κ,L/≡.

Proof. (i) By Proposition 4.18, (i).

(ii) By Remark 5.10 and Proposition 4.18, (ii), with Lemma 5.7 for the par-
ticular case.

Theorem 6.21. Let (L, [·, ·]) be a commutator lattice with ρ(0) = 0, and consider
the congruence ≡ = {(a, b) ∈ L2 | ρ(a) = ρ(b)} of L. If 1/≡ = {1} and [x, 1] = x
for all x ∈ L, in particular if 1 ∈ Cp(L) and [x, 1] = x for all x ∈ L, then:

(i) for any h, i, j ∈ 1, 5 and any nonzero cardinality κ, conditions (iv)L, (h)κ,L,
(i)<∞,L and (j)L are equivalent, thus L satisfies the equivalences from
Corollary 4.21, (ii);

(ii) letm be a nonzero cardinality; if, in Definition 3.4, we replace the conditions
that L is complete and [·, ·] is completely distributive w.r.t. the join by L
being closed w.r.t. the joins of all families of elements of cardinalities at
most m and [·, ·] being distributive w.r.t. such joins, then we get that: for
any h, i ∈ 1, 5 and any nonzero cardinality κ ≤ m, conditions (h)κ,L and
(i)<∞,L are equivalent, thus L satisfies the equivalences from Corollary 4.21,
(i).

Proof. We get the particular case from Lemma 5.7.
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(i) By Theorem 3.3, (iv), Proposition 6.15, (ii), Proposition 6.17, (ii), Propo-
sitions 6.18 and 6.19, Proposition 6.20, (ii), and Proposition 5.17.

(ii) By Theorem 4.19, (ii), Proposition 6.15, (ii), Proposition 6.17, (ii), Propo-
sitions 6.18 and 6.19, Proposition 6.20, (ii), and the fact that, in this case, L/≡
is closed w.r.t. the joins of all families of elements of cardinalities at most κ and
has the meet distributive w.r.t. the joins of families of elements of cardinalities
at most κ, which follows imediately through an argument analogous to the first
proof of Proposition 5.17.

Corollary 6.22. Let (L, [·, ·]) be a commutator lattice with ρ(0) = 0. Then:

• for any nonzero cardinalities κ and µ, conditions (3)κ,L, (4)µ,L and (iv)L are
equivalent;

• if {a ∈ L | ρ(a) = 1} = {1}, in particular if 1 ∈ Cp(L) and [1, 1] = 1, then,
for any nonzero cardinalities κ, λ and µ, conditions (3)κ,L, (4)λ,L, (iv)L and
(5)µ,L are equivalent.

Letm be a nonzero cardinality. If, in Definition 3.4, we replace the conditions
that L is complete and [·, ·] is completely distributive w.r.t. the join by L being
closed w.r.t. the joins of all families of elements of cardinalities at most m and
[·, ·] being distributive w.r.t. such joins, then:

• for any nonzero cardinalities κ ≤ m and µ ≤ m, conditions (3)κ,L and (4)µ,L
are equivalent;

• if {a ∈ L | ρ(a) = 1} = {1}, in particular if 1 ∈ Cp(L) and [1, 1] = 1, then,
for any nonzero cardinalities κ ≤ m, λ ≤ m and µ ≤ m, conditions (3)κ,L,
(4)λ,L, and (5)µ,L are equivalent.

Proof. By Remark 5.10 and Propositions 4.20 and 5.17, with Lemma 5.7 for the
particular cases.

7. Transferring Davey‘s Theorem to congruence lattices and

preservation of the conditions from Davey‘s Theorem by direct

products and sublattices

Throughout this section, unless mentioned otherwise, A will be a member of a
congruence-modular variety V. Following [10], we use these notations for the rad-
ical of a congruence of A in the commutator lattice (Con(A),∨,∩, [·, ·]A,∆A,∇A)
and the lattice congruence ≡ associated to the same commutator lattice: ρA(α) =
⋂

(Spec(A)∩ [α)Con(A)) for all α ∈ Con(A) and ≡A= {(θ, ζ) ∈ Con(A)2 | ρA(θ) =
ρA(ζ)}.

Recall from the end of Section 3 that A is semiprime, that is ρA(∆A) = ∆A, if
the commutator [·, ·]A of A equals the intersection, in particular if V is congruence-
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distributive. Recall, also, that ∇A is a compact congruence of A if V is semi-
degenerate, and that [θ,∇A]A = θ for all θ ∈ Con(A) if V is semi-degenerate or
the commutator of A equals the intersection, in particular if V is congruence-
distributive. Of course, ∇A is a compact congruence of A in other particular
cases such as the case when Con(A) is compact, in particular when Con(A) has
finite height, in particular when Con(A) is finite, in particular when A is finite.

Remark 7.1. By Lemma 5.7 and the above, the class of ∇A w.r.t. ≡A is a
singleton if V is semi-degenerate, or if, for instance, Con(A) is compact and V is
congruence-distributive. Actually, compactness is not necessary and, moreover,
all congruence classes of ≡A are singletons if the commuatator of A equals the
intersection (see the remarks after Example 3.6 and Corollary 7.3 below for the
converse).

≡A satisfies the properties from Proposition 5.9, in particular, by (i), ≡A is a
lattice congruence of Con(A) that preserves arbitrary joins and the commutator
of A and satisfies [α, β]A ≡A α ∩ β for all α, β ∈ Con(A). Moreover, since the
meet in Con(A) is the intersection of congruences, the surjectivity of the map
p≡A

: Con(A) → Con(A)/≡A ensures us that:

Proposition 7.2. If A is a member of a congruence-modular variety and ≡A=
{(θ, ζ) ∈ Con(A)2 | ρA(θ) = ρA(ζ)}, then ≡A is a complete congruence of the
complete lattice Con(A), so all its classes are intervals.

Again by Proposition 5.9, the radical congruences of A are the maxima of
the classes of ≡A and, for each radical congruence θ of A, min(θ/≡A) = min{α ∈
Con(A) | ρA(α) = θ}; also, for all β ∈ θ/≡A, we have [β,min(θ/≡A)]A =
min(θ/≡A). By Proposition 5.17, Con(A)/≡A is a frame, so Proposition 5.15,
(iii), gives us:

Corollary 7.3. If A is a member of a congruence-modular variety, then all
congruences of A are radical iff the commutator of A equals the intersection of
congruences.

Note that, if A is semiprime, then, for θ = ≡A, the annihilators in Con(A)
satisfy the properties from Lemmas 4.2 and 4.3. Also, if A is semiprime, then the
properties from Lemmas 5.18 and 4.11 and Proposition 5.19 hold, in particular:

Corollary 7.4. If A is a semiprime member of a congruence-modular variety,
in particular if A belongs to a congruence-distributive variety, then:

• Ann(Con(A)) = PAnn(Con(A)) ⊆ PId(Con(A));

• Con(A) is Stone iff Con(A) is strongly Stone.
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So, if A is semiprime, then all annihilators in Con(A) have maxima, so that
Con(A) is Stone iff these maxima are complemented; see also Proposition 6.9,
(ii).

By Lemma 6.6 and Proposition 6.7, if V is semi-degenerate or congruence
-distributive, then [α, θ]A = α ∩ θ for all α ∈ Con(A) and all θ ∈ B(Con(A)) and
B(Con(A)) is a Boolean sublattice of Con(A) in which the complementation is
defined by ¬ θ = max(AnnCon(A)(θ)) for all θ ∈ B(Con(A)). By Proposition 6.11,
if V is semi-degenerate, then all complemented congruences of A are compact.

Remark 7.5. By Proposition 6.10 and Proposition 6.12, (iii), if A is semiprime
and ∇A/≡A= {∇A}, in particular if A is semiprime and V is semi-degenerate,
then the complemented elements of Id(Con(A)) are the principal ideals of Con(A)
generated by complemented congruences of A, B(Con(A))/≡A= B(Con(A)/≡A),
that is ≡A has the BLP, and, for all θ ∈ Con(A), we have: θ ∈ B(Con(A)) iff
θ/≡A∈ B(Con(A)/≡A).

By Proposition 6.12, if V is semi-degenerate or congruence-distributive, then
p≡A

|B(Con(A)): B(Con(A)) → B(Con(A)/≡A) is an injective Boolean morphism,
which is an isomorphism if A is semiprime and ∇A/≡A= {∇A}, in particular if
V is congruence-distributive or A is semiprime and V is semi-degenerate.

If A is semiprime, ∇A/≡A = {∇A} and [α,∇A]A = α for all α ∈ Con(A),
in particular if A is semiprime and V is semi-degenerate or, for instance, V is
congruence-distributive, then Con(A) satisfies the properties from Proposition
6.14.

Corollary 7.6. Let A be a member of a congruence-modular variety V, ≡A=
{(θ, ζ) ∈ Con(A)2 | ρA(θ) = ρA(ζ)} and κ be an arbitrary cardinality.

Then (5)κ,Con(A) implies (5)κ,Con(A)/≡A
.

If A is semiprime, in particular if the commutator of A equals the intersec-
tion, in particular if V is congruence-distributive, then:

• if Con(A) is Stone (equivalently, strongly Stone), then Con(A)/≡A is Stone
(equivalently, strongly Stone); in particular, if κ is nonzero, then, for any
cardinality λ, (1)κ,Con(A) implies (1)λ,Con(A)/≡A

;

• (3)κ,Con(A) is equivalent to (3)κ,Con(A)/≡A
;

• (iv)Con(A), (4)κ,Con(A) and (4)κ,Con(A)/≡A
are equivalent.

If A is semiprime and {θ ∈ Con(A) | ρA(θ) = ∇A} = {∇A}, in particu-
lar if V is congruence-distributive or A is semiprime, ∇A ∈ Cp(Con(A)) and
[∇A,∇A]A = ∇A, in particular if A is semiprime and V is semi-degenerate, then:

• (2)κ,Con(A) implies (2)κ,Con(A)/≡A
;

• (5)κ,Con(A) is equivalent to (5)κ,Con(A)/≡A
.
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If A is semiprime, {θ ∈ Con(A) | ρA(θ) = ∇A} = {∇A} and [α,∇A]A = α
for all α ∈ Con(A), in particular if V is congruence-distributive or A is semiprime
and V is semi-degenerate, then:

• Con(A) is Stone iff Con(A) is strongly Stone iff Con(A)/≡A is Stone iff
Con(A)/≡A is strongly Stone;

• for each i ∈ 1, 5, (i)κ,Con(A) is equivalent to (i)κ,Con(A)/≡A
.

Proof. By Propositions 6.15, 6.17, 6.18, 6.19 and 6.20 and Corollary 6.16.

Corollary 7.7. Let A be a member of a congruence-modular variety V. If A
is semiprime, {θ ∈ Con(A) | ρA(θ) = ∇A} = {∇A} and [α,∇A]A = α for all
α ∈ Con(A), in particular if V is congruence-distributive or A is semiprime and
V is semi-degenerate, then, for any i, j ∈ 1, 5 and any nonzero cardinalities κ
and µ, conditions (iv)Con(A), (i)κ,Con(A) and (j)µ,Con(A) are equivalent, and thus
each of them is equivalent to (i)<∞,Con(A) and to (i)Con(A) and Con(A) satisfies
the equivalences from Corollary 4.21, (ii).

Corollary 7.8. Let A be a member of a congruence-modular variety V.
• If A is semiprime, in particular if the commutator of A equals the inter-

section, in particular if V is congruence-distributive, then, for any nonzero
cardinalities κ and µ, conditions (3)κ,Con(A), (4)µ,Con(A) and (iv)Con(A) are
equivalent.

• If {θ ∈ Con(A) | ρA(θ) = ∇A} = {∇A}, in particular if ∇A ∈ Cp(Con(A))
and [∇A,∇A]A = ∇A or the commutator of A equals the intersection, in
particular if V is congruence-distributive, then, for any nonzero cardinalities
κ, λ and µ, conditions (3)κ,Con(A), (4)λ,Con(A), (iv)Con(A) and (5)µ,Con(A) are
equivalent.

Proof. By Corollary 6.22.

Remark 7.9. Note that, for any nonempty family (Li)i∈I of bounded lattices,
B(∏i∈I Li) =

∏

i∈I B(Li) and, for all (ai)i∈I ∈ ∏

i∈I Li, Ann∏
i∈I

Li
((ai)i∈I) =

∏

i∈I AnnLi
(ai) and ((ai)i∈I ]∏

i∈I
Li

=
∏

i∈I(ai]Li
. Moreover, if prj :

∏

i∈I Li →
Lj is the canonical projection for each j ∈ I, then, for all U ⊆ ∏

i∈I Li,
Ann∏

i∈I
Li
(U) =

∏

i∈I AnnLi
(pri(U)) and (U ]∏

i∈I
Li

=
∏

i∈I(pri(U)]Li
. Hence,

for any cardinality κ and each h ∈ 1, 5, (h)κ,
∏

i∈I
Li

is satisfied iff (h)κ,Li
is satisfied

for all i ∈ I.

Corollary 7.10. Let A and B be members of a congruence-modular variety V
and κ be a cardinality.

• If the direct product A × B has no skew congruences, in particular if V is
semi-degenerate, then: A×B is semiprime iff A and B are semiprime.
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• If the direct product A × B has no skew congruences and A and B are
semiprime, then: Con(A×B) is Stone iff Con(A) and Con(B) are Stone.

• If the direct product A×B has no skew congruences, A and B are semiprime
and B(Con(A)) and B(Con(B)) are closed w.r.t. the intersection, in partic-
ular if they are (Boolean) sublattices of Con(A) and Con(B), respectively,
then: Con(A×B) is κ-Stone iff Con(A) and Con(B) are κ-Stone.

• If V is semi-degenerate and A and B are semiprime, then: Con(A × B) is
κ-Stone iff Con(A) and Con(B) are κ-Stone.

• If V is congruence-distributive, then: Con(A×B) is κ-Stone iff Con(A) and
Con(B) are κ-Stone.

Proof. According to [16, Theorem 5.17, p. 48], for all α, θ ∈ Con(A) and all
β, ζ ∈ Con(B), we have [α × β, θ × ζ]A×B = [α, θ]A × [β, ζ]B , hence, if the
direct product A×B has no skew congruences, in particular if V is congruence-
distributive or semi-degenerate ([7, Theorem 8.5, p. 85],[1, Lemma 5.2]), then
Spec(A×B) = {φ×∇B ,∇A×ψ | φ ∈ Spec(A), ψ ∈ Spec(B)}, so that R(Con(A×
B)) = R(Con(A)) × R(Con(B)) and hence A × B is semiprime iff A and B are
semiprime (see also [10]).

Since, for any bounded lattice L, if B(L) is closed w.r.t. the meet, in par-
ticular if B(L) is a (Boolean) sublattice of L, then 11,L is equivalent to 1<∞,L,
and, if κ is an infinite cardinality, then, for any U ⊆ A and any V ⊆ B, we have:
|U | ≤ κ and |V | ≤ κ iff |U × V | ≤ κ, by Remark 7.9 we get the statements in the
enunciation.

Remark 7.11. Let M be a bounded sublattice of a bounded lattice L and
U, V ⊆ L. Then it is straightforward that AnnL(U) ∩ M ⊆ AnnM (U ∩ M),
(U ∩M ]L∩M = (U ∩M ]M and, if L is distributive, then (U ]L∩ (V ]L = (U ∩V ]L.

Lemma 7.12. Let L be a bounded distributive lattice and M a bounded sublattice
of L.

(i) If U ⊆ M is such that AnnL(U) ∨ AnnL(AnnL(U)) = L, then AnnM (U) ∨
AnnM (AnnM (U)) =M .

(ii) For any cardinality κ, (5)κ,L implies (5)κ,M .

Proof. (i) If U is as in the hypothesis, then AnnM (U) ∨ AnnM (AnnM (U)) ⊇
(AnnL(U)∩M)∨ (AnnM (AnnL(U)∩M) ⊇ (AnnL(U)∩M)∨ (AnnL(AnnL(U))∩
M) ⊇ (AnnL(U)∩M)∪ (AnnL(AnnL(U))∩M) = (AnnL(U)∪AnnL(AnnL(U))∩
M , thus AnnM (U)∨AnnM (AnnM (U)) ⊇ (AnnL(U)∪AnnL(AnnL(U))]M ∩(M ]M
= (AnnL(U)∪AnnLAnnL(U))]L∩M∩M = (AnnL(U)∨AnnL(AnnL(U)))∩M =
L ∩M =M .
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(ii) Assume that (5)κ,L is fulfilled, and let U ⊆ M ⊆ L with |U | ≤ κ, so
that AnnL(U)∨AnnL(AnnL(U)) = L, hence AnnM (U)∨AnnM (AnnM (U)) =M
by (i).

Let us assume that the set Cp(Con(A)) of the compact congruences of A
contains ∇A and is closed w.r.t. the commutator of A. In [10], under these
hypotheses we have constructed the reticulation L(A) of A, which, by defini-
tion, is a bounded distributive lattice whose prime spectrum of ideals (or fil-
ters, but our construction in [10] fulfills this property for ideals) is homeomor-
phic to the prime spectrum of congruences of A, w.r.t. the Stone topologies.
L(A) is unique modulo a lattice isomorphism and, by our construction from [10]:
L(A) = Cp(Con(A))/≡A, which is a bounded sublattice of Con(A)/≡A.

Proposition 7.13. Let A be a member of a congruence-modular variety V such
that ∇A ∈ Cp(Con(A)) and Cp(Con(A)) is closed w.r.t. the commutator of A.
Then, for any cardinality κ, (5)κ,Con(A) implies (5)κ,L(A).

Proof. By Corollary 7.6 and Lemma 7.12, (ii).

Corollary 7.14. Let A be a member of a congruence-modular variety V such
that ∇A ∈ Cp(Con(A)) and Cp(Con(A)) is closed w.r.t. the commutator of A.
If A is semiprime and Con(A) is Stone, then L(A) is strongly Stone.

Proof. By Proposition 7.13, Corollary 7.6, the distributivity of L(A) and Theo-
rem 3.3, (ii).

8. Transferring Davey‘s Theorem to commutative unitary rings

Let us see how we can to obtain versions of Davey’s Theorem for the elements
of semiprime algebras from congruence-modular varieties by transferring results
such as Corollary 7.7 from their congruence lattices. We exemplify here for
semiprime commutative unitary rings.

Let (T,∨,∧,⊙,→, 0, 1) be a residuated lattice (otherwise called a commuta-
tive integral bounded lattice-ordered monoid), which means that (T,∨,∧, 0, 1) is
a bounded lattice, (T,⊙, 1) is a commutative monoid and → is a binary oper-
ation on T which fulfills the law of residuation: for all a, b, c ∈ T , a ≤ b → c
iff a ⊙ b ≤ c. See more about residuated lattices in [8], [12], [17]. Residuated
lattices form a semi-degenerate congruence-distributive variety, hence they are
semiprime and thus their congruence lattices satisfy Theorem 3.3, (i), and even
the equivalences from Corollary 7.7. But they also fulfill a theorem of this form
for elements, which can be expressed in the following way, since we notice that
the bounded lattice of the filters of T is a bounded sublattice of that of the filters
of the underlying bounded lattice of T .
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Theorem 8.1 [14, Theorem 5.2.6], [15, Theorem 3.13]. If S is the dual of the
underlying bounded lattice of a residuated lattice, then conditions (1)m,S , (2)m,S ,
(3)m,S , (4)m,S and (5)m,S are equivalent.

In [14, 15], we have proven Theorem 8.1 by transferring the dual of The-
orem 3.3 from bounded distributive lattices to residuated lattices through the
reticulation functor for residuated lattices.

Remark 8.2. Note from Lemma 6.5 that, if (L,∨,∧, [·, ·], 0, 1) is a commutator
lattice in which the operation [·, ·] is associative and satisfies [a, 1] = a for all
a ∈ L, then L is a complete residuated lattice with the residuation → defined
above Remark 6.4.

For instance, rings form a semi-degenerate congruence-modular variety with
associative commutators, so that, for any commutative unitary ring R, (Con(R),
∨,∩, [·, ·]R,→,∆R,∇R) is a complete residuated lattice.

Throughout the rest of this section, unless mentioned otherwise, (R,+, ·, 0, 1)
will be a commutative unitary ring.

We denote by (Id(R),∨ = +,∩, [·, ·] = ·, {0}, R) the commutator lattice of
the ideals of R and by ιγR : Id(R) → Con(R) the canonical lattice isomorphism:
for all I ∈ Id(R), ιγR(I) = {(x, y) ∈ I2 | x− y ∈ I}. We denote by SpecId(R) =
SpecId(R) the set of the prime ideals of R (w.r.t. the commutator operation
given by the multiplication of ideals). Recall that ιγR preserves the commutator
operation, that is [ιγR(I), ιγR(J)]R = ιγR(I · J) for all I, J ∈ Id(R), from which
it is easy to deduce that ιγR(SpecId(R)) = Spec(R) and thus ιγR(R(Id(R))) =
R(Con(R)). If we denote, for each I ∈ Id(R), by

√
I =

⋂{P ∈ SpecId(R) | I ⊆ P}
the radical of I, then note that R is semiprime iff {0} ∈ R(Id(R)) iff

√

{0} = {0}.
For every U ⊆ R, 〈U〉R shall be the ideal of R generated by U , so, for each

x ∈ R, 〈{x}〉R = xR. Let PId(R) be the set of the principal ideals of R and note
that Cp(Id(R)) is the set of the finitely generated ideals of R. It is straightforward
that, for all x, a, b ∈ R, ιγR(xR) = CgR(x, 0) and CgR(a, b) = CgR(a − b, 0),
hence ιγR(PId(R)) = PCon(R) and thus ιγR(Cp(Id(R))) = Cp(Con(R)). Notice
that, for any k, n ∈ N∗ and any x1, . . . , xk, y1, . . . , yn ∈ R, 〈{x1, . . . , xk}〉R ·
〈{y1, . . . , yk}〉R = (x1R + . . . + xkR) · (y1R + . . . + ynR) = 〈{xiyj | i ∈ 1, k, j ∈
1, n}〉R, so Cp(Id(R)) is closed w.r.t. ·, thus Cp(Con(R)) is closed w.r.t. [·, ·]R.
Let R∗ be the reticulation of R, as constructed in [3, 4] (see also [13, 19]): R∗ =
Id(R)/∼R, where ∼R is the complete lattice congruence of Id(R) defined by:
∼R= {(I, J) ∈ (Id(R))2 |

√
I =

√
J} (see also Proposition 7.2); by the above, R∗

is isomorphic to Con(R)/≡R. Regarding the results from [3] we are using, note
that, since R is commutative, it follows that R is quasicommutative, thus, by [3,
Theorem 3], R fulfills condition (∗) from [3].
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Remark 8.3. By [3, Lemma, p. 1861], for all I ∈ Id(R), there exists a K ∈
Cp(Id(R)) such thatK⊆I and

√
K=

√
I, henceR∗= Id(R)/∼R= Cp(Id(R))/∼R,

therefore Con(R)/≡R = Cp(Con(R))/≡R = L(R), thus, as expected by the
uniqueness of the reticulation, R∗ is isomorphic to L(R).

The fact that the variety of commutative unitary rings is semi-degenerate
and congruence-modular and Corollary 7.7, along with the fact that the lattices
Con(R) and Id(R) are isomorphic, give us:

Corollary 8.4. If R is a semiprime commutative unitary ring, then, for any
i, j ∈ 1, 5 and any nonzero cardinalities κ and µ, conditions (iv)Id(R), (i)κ,Id(R)

and (j)µ,Id(R) are equivalent, in particular Id(R) is a Stone lattice iff it is a
strongly Stone lattice.

Let us see that, similarly to what happens in residuated lattices, commutative
unitary rings also fulfill an analogue of Davey‘s Theorem for elements instead of
congruences.

Let κ be an arbitrary cardinality.
For any a ∈ R and any U ⊆ R, AnnR(a) and AnnR(U) will denote the an-

nihilator of a and that of U , respectively: AnnR(a) = {x ∈ R | xa = 0} and
AnnR(U) =

⋂

u∈U AnnR(u). As in the case of bounded lattices, let us denote
by Ann(R) = {AnnR(U) | U ⊆ R}, Ann<∞(R) = {AnnR(U) | U ⊆ R, |U | <
ℵ0}, Annκ(R) = {AnnR(U) | U ⊆ R, |U | ≤ κ}, PAnn(R) = {AnnR(a) | a ∈
R} = Ann1(R), 2Ann(R) = {AnnR (AnnR(U)) | U ⊆ R}, 2Ann<∞(R) =
{AnnR(AnnR(U)) | U ⊆ R, |U | < ℵ0}, 2Annκ(R) = {AnnR(AnnR(U)) |U ⊆
R, |U | ≤ κ} and P2Ann(R) = {AnnR(Ann)R(a)) | a ∈ R} = 2Ann1(R). It is well
known and straightforward that Ann(R) ⊆ Id(R).

E(R) will denote the set of the idempotent elements of R. Recall that
(E(R),∨,∧ = ·,¬ , 0, 1) is a Boolean algebra, where, for every e, f ∈ E(R),
¬ e = 1− e and e ∨ f = ¬ (¬ e ∧ ¬ f) = 1− (1− e) · (1− f).

R is called a Baer ring iff, for any a ∈ R, there exists an e ∈ E(R) such
that AnnR(a) = eR. By analogy to the case of bounded lattices, we shall call R
a strongly Baer ring, respectively a κ-Baer ring iff, for any U ⊆ R, respectively
any U ⊆ R with |U | ≤ κ, there exists an e ∈ E(R) such that AnnR(U) = eR.

Let us consider the following conditions on R, where κ is an arbitrary cardi-
nality:

(1◦)κ,R R is a κ-Baer ring;
(1◦)<∞,R Ann<∞(R) ⊆ {eR | e ∈ E(R)};
(1◦)R R is a strongly Baer ring;

(2◦)κ,R R is a Baer ring and E(R) is a κ-complete Boolean algebra;
(2◦)<∞,R R is a Baer ring and E(R) is a Boolean algebra;
(2◦)R R is a Baer ring and E(R) is a complete Boolean algebra;
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(3◦)κ,R 2Ann(R) is a κ-complete Boolean sublattice of Id(R) such that
I 7→ AnnR(AnnR(I)) is a lattice morphism from Id(R) to 2Ann(R);

(3◦)<∞,R 2Ann(R) is a Boolean sublattice of Id(R) such that
I 7→ AnnR(AnnR(I)) is a lattice morphism from Id(R) to 2Ann(R);

(3◦)R 2Ann(R) is a complete Boolean sublattice of Id(R) such that
I 7→ AnnR(AnnR(I)) is a lattice morphism from Id(R) to 2Ann(R);

(4◦)κ,R for all I, J ∈ Id(R), AnnR(I ∩ J) = AnnR(I) ∨AnnR(J), and
2Annκ(R) ⊆ Ann<∞(R);

(4◦)<∞,R for all I, J ∈ Id(R), AnnR(I ∩ J) = AnnR(I) ∨AnnR(J), and
2Ann<∞(R) ⊆ Ann<∞(R);

(4◦)R for all I, J ∈ Id(R), AnnR(I ∩ J) = AnnR(I) ∨AnnR(J), and
2Ann(R) ⊆ Ann<∞(R);

(iv◦)R for all I, J ∈ Id(R), AnnR(I ∩ J) = AnnR(I) ∨AnnR(J);

(5◦)κ,R for each U ⊆ R with |U | ≤ κ, AnnR(U) ∨AnnR(AnnR(U)) = R;
(5◦)<∞,R for each finite U ⊆ R, AnnR(U) ∨AnnR(AnnR(U)) = R;
(5◦)R for each U ⊆ R, AnnR(U) ∨AnnR(AnnR(U)) = R.

Obviously, conditions (iv◦)R, (h
◦)κ,R, (i

◦)<∞,R and (j◦)R satisfy the proper-
ties stated after Remark 3.1 for conditions (iv)L, (h)κ,L, (i)<∞,L and (j)L, where
h, i, j ∈ 1, 5.

Remark 8.5. If n ∈ N∗, u1, . . . , un ∈ R and, for each i ∈ 1, n, AnnR(ui) = eiR
for some ei ∈ E(R), then AnnR({u1, . . . , un}) =

⋂n
i=1 AnnR(ui) =

⋂n
i=1 eiR =

e1R · . . . · enR = e1 · · · enR, with e1 · · · en = e1 ∧ · · · ∧ en ∈ E(R), hence (1◦)1,R
implies (1◦)<∞,R. Therefore (1

◦)1,R is equivalent to (1◦)<∞,R, that is R is a Baer
ring iff R satisfies (1◦)<∞,R.

Hence, if Ann(R) = Ann<∞(R), so that (1◦)<∞,R is equivalent to (1◦)R,
then (1◦)1,R is equivalent to (1◦)R, that is R is a Baer ring iff R is a strongly
Baer ring.

Remark 8.6. Proposition 6.7 and the fact that the lattices Con(R) and Id(R)
are isomorphic ensure us that B(Id(R)) is a Boolean sublattice of Id(R).

If R is semiprime, then, by [3, Lemma, p. 1863], the map e 7→ eR/∼R from
E(R) to B(R∗) is a Boolean isomorphism, so, by Proposition 6.12, (iii), it follows
that the map e 7→ eR from E(R) to B(Id(R)) is a Boolean isomorphism.

Lemma 8.7. If R is a semiprime commutative unitary ring, then:

(i) B(Id(R)) = {eR | e ∈ E(R)} and the map e 7→ eR from E(R) to B(Id(R))
is a Boolean isomorphism;

(ii) if U ⊆ R, then U ∩AnnR(U) ⊆ {0}; if I ∈ Id(R), then I ∩AnnR(I) = {0};
(iii) if U ⊆ R such that AnnR(U) ∨AnnR(AnnR(U)) = R, then AnnR(U) = eR

for some e ∈ E(R).
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Proof. (i) By Remark 8.6.
(ii) If U ⊆ R and x ∈ U ∩ AnnR(U), then x · x = 0, so that x = 0 since a

semiprime commutative unitary ring has no nonzero nilpotents [11, p.125,126].
Now, if I ∈ Id(R), then 0 ∈ I ∩AnnR(I).

(iii) By (ii), it follows that AnnR(U) ∈ B(Id(R)), having AnnR(AnnR(U)) as
a complement, so that AnnR(U) = eR for some e ∈ E(R) by (i).

Lemma 8.8. If R is a commutative unitary ring, then:

• for any U ⊆ R, AnnR(U) = AnnR(〈U〉R);
• if all ideals of R are finitely generated, then 2Ann(R) = 2Ann<∞(R) ⊆

Ann(R) = Ann<∞(R);

• for any I ∈ Id(R), AnnId(R)(I) = (AnnR(I)]Id(R) and AnnId(R)(AnnId(R)(I))
= (AnnR(AnnR(I))]Id(R).

Proof. Let U ⊆ R, arbitrary. Since U ⊆ 〈U〉R, we have AnnR(〈U〉R) ⊆
AnnR(U). The converse inclusion holds, as well, since, given any a ∈ 〈U〉R
and any x ∈ AnnR(U), we have a = a1 · u1 + · · · + an · un for some n ∈ N∗,
a1, . . . , an ∈ R and u1, . . . , un ∈ U , so that x · u1 = · · · = x · un = 0, therefore
x · a = 0, so x ∈ AnnR(〈U〉R).

Thus, in the particular case when all ideals of R are finitely generated, so
that there exists a finite F ⊆ R such that 〈U〉R = 〈F 〉R, then AnnR(U) =
AnnR(〈U〉R) = AnnR(〈F 〉R) = AnnR(F ), hence Ann(R) = Ann<∞(R).

Let J ∈ Id(R). Then: J ∈ (AnnR(I)]Id(R) iff J ⊆ AnnR(I) iff x ∈ AnnR(I)
for all x ∈ J iff x·y = 0 for all x ∈ J and all y ∈ I iff J ·I = {0} iff J ∈ AnnId(R)(I).
Hence AnnId(R)(I) = (AnnR(I)]Id(R), therefore AnnId(R)(AnnId(R)(I)) = AnnId(R)

((AnnR(I)]Id(R)) = AnnId(R)(AnnR(I)) = (AnnR(AnnR(I))]Id(R).

Lemma 8.9. If R is a semiprime commutative unitary ring, then, for any U ⊆
R, there exists a finite subset S ⊆ 〈U〉R such that AnnR(U) = AnnR(S), so
2Ann(R) = 2Ann<∞(R) ⊆ Ann(R) = Ann<∞(R).

Proof. By Remark 8.3 and Lemmas 8.8 and 4.2, for an appropriate finite subset
S ⊆ 〈U〉R, we have 〈U〉R/∼R = 〈S〉R/∼R , thus AnnId(R)(〈U〉R)/∼R= AnnR∗

(〈U〉R/∼R) = AnnR∗(〈S〉R/∼R) = AnnId(R)(〈S〉R)/∼R, hence (AnnR(U)]Id(R) =
(AnnR(〈U〉R)]Id(R) = AnnId(R)(〈U〉R) = AnnId(R)(〈S〉R) = (AnnR(〈S〉R)]Id(R) =
(AnnR(S)]Id(R), thus AnnR(U) = AnnR(S).

Proposition 8.10. Let R be a commutative unitary ring.

(i) If all ideals of R are finitely generated, then R is a Baer ring iff R is a
strongly Baer ring.

(ii) If R is semiprime, then: R is a Baer ring iff R is a strongly Baer ring iff
Id(R) is a Stone lattice iff Id(R) is a strongly Stone lattice.
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Proof. (i) By Remark 8.5 and Lemma 8.8.

(ii) By Remark 8.5 and Lemma 8.9, R is Baer iff R is strongly Baer.
For any U ⊆ R, we have (AnnR(U)]Id(R) = (AnnR(〈U〉R)]Id(R) = AnnId(R)(〈U〉R)
by Lemma 8.8, so that, for any e ∈ R, AnnR(U) = eR iff AnnId(R)(〈U〉R) =
(eR]Id(R). According to Lemma 8.7, (i), e ∈ E(R) iff eR ∈ B(Id(R)). Hence
(1)1,Id(R) is equivalent to (1◦)R, that is Id(R) is a Stone lattice iff R is a strongly
Baer ring.

Finally, by Corollary 8.4, Id(R) is a Stone lattice iff Id(R) is a strongly Stone
lattice.

See also [3, Theorem 8] and [19, Theorem 2.6], according to which, if R is
semiprime, then R is a Baer ring iff R∗ is a Stone lattice, which, by Corollary 7.6
and the fact that the lattices Con(R) and Id(R) are isomorphic, is equivalent to
Id(R) being a Stone lattice.

Proposition 8.11. For any semiprime commutative unitary ring R and any
cardinality κ, conditions (2◦)κ,R and (2)κ,Id(R) are equivalent.

Proof. By Lemma 8.7, (i), and Proposition 8.10, (ii).

For the next lemma, recall that 2Ann(R) ⊆ Ann(R) ⊆ Id(R), PAnn(Id(R)) ⊆
Id(Id(R)) and P2Ann(Id(R)) ⊆ Id(Id(R)), and we will be referring to these sets
of annihilators as subposets of Id(R), respectively Id(Id(R)).

Lemma 8.12. For any commutative unitary ring R, the map x 7→ (x]Id(R) from
Ann(R) to PAnn(Id(R)), as well as from 2Ann(R) to P2Ann(Id(R)), is an order
isomorphism.

Proof. By Lemma 8.8, Ann(R) = {AnnR(I) | I ∈ Id(R)} and 2Ann(R) =
{AnnR(AnnR(I)) | I ∈ Id(R)}, hence these maps are completely defined. By
the same lemma, these maps are well defined and surjective. Clearly, they
are injective, thus bijective, and both these maps and their inverses are order-
preserving.

Proposition 8.13. For any commutative unitary ring R and any cardinality κ,
the properties (3◦)κ,R and (3)κ,Id(R) are equivalent.

Proof. By Lemma 8.12 and the fact that, by Lemma 8.8, the map x 7→ (x]Id(R)

from 2Ann(R) ⊆ Id(R) to P2Ann(Id(R)) composed with the map I 7→ AnnR
(AnnR(I)) from Id(R) to 2Ann(R) equals the map I 7→ AnnId(R)(AnnId(R)(I))
from Id(R) to P2Ann(Id(R)) ⊆ Id(Id(R)).

Proposition 8.14. Let R be a commutative unitary ring. Then:

(i) (iv◦)R is equivalent to (iv)Id(R);
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(ii) if R has all ideals finitely generated, then conditions (iv)Id(R), (iv
◦)R and

(4◦)R are equivalent;

(iii) if R is semiprime, then conditions (iv)Id(R), (4)Id(R), (iv
◦)R and (4◦)R are

equivalent.

Proof. (i) Let I, J ∈ Id(R). By Lemma 8.8, AnnId(R)(I∩J) = (AnnR(I∩J)]Id(R)

and AnnId(R)(I) ∨AnnId(R)(J) = (AnnR(I)]Id(R) ∨ (AnnR(J)]Id(R) = (AnnR(I) ∨
AnnR(J)]Id(R), hence: AnnR(I ∩ J) = AnnR(I) ∨AnnR(J) iff AnnId(R)(I ∩ J) =
AnnId(R)(I) ∨AnnId(R)(J).

(ii), (iii) By Lemmas 8.8 and 8.9, ifR has all ideals principal or it is semiprime,
then the second part of condition (4◦)R is trivially satisfied, so that (4◦)R is
equivalent to (iv◦)R.

By (i), (iv◦)R is equivalent to (iv)Id(R).
Finally, by Corollary 8.4, if R is semiprime, then (iv)Id(R) is equivalent to

(4)Id(R).

Proposition 8.15. Let R be a commutative unitary ring. Then:

• (5)1,Id(R) is equivalent to (5◦)R;

• if all ideals of R are finitely generated, then (5)1,Id(R), (5
◦)R and (5◦)<∞,R

are equivalent;

• if R is semiprime, then (5)1,Id(R), (5)Id(R), (5
◦)R and (5◦)<∞,R are equivalent.

Proof. By Lemma 8.8, for any U ⊆ R, we have AnnId(R)(〈U〉R) ∨ AnnId(R)

(AnnId(R)(〈U〉R)) = (AnnR(〈U〉R)]Id(R) ∨ (AnnR(AnnR(〈U〉R))]Id(R) = (AnnR
(U)]Id(R) ∨ (AnnR(AnnR(U))]Id(R) = (AnnR(U) ∨ AnnR(AnnR(U))]Id(R) ∈ PId
(Id(R)) since AnnR(U) ∨ AnnR(AnnR(U) ∈ Id(R), hence AnnId(R)(〈U〉R) ∨
AnnId(R)(AnnId(R)(〈U〉R)) = Id(R) = (R]Id(R) iff AnnR(U) ∨AnnR(AnnR(U)) =
R. Therefore (5)1,Id(R) is equivalent to (5◦)R.

Clearly, if Ann(R) = Ann<∞(R), in particular if R has all ideals principal
or R is semiprime, then (5◦)R is equivalent to (5◦)<∞,R.

By Corollary 8.4, if R is semiprime, then (5)1,Id(R) is equivalent to (5)Id(R).

Theorem 8.16. If R is a semiprime commutative unitary ring, then, for any
nonzero cardinality κ and any h, i, j ∈ 1, 5, (iv◦)R, (h

◦)κ,R, (i
◦)<∞,R and (j◦)R

are equivalent.

Proof. By Corollary 8.4 and Propositions 8.10, 8.11, 8.13, 8.14 and 8.15.

Remark 8.17. Let S be a commutative unitary ring. Since the variety of com-
mutative unitary rings is semi-degenerate and thus it has no skew congruences,
it follows that Id(R×S) = Id(R)× Id(S), hence, if R and S are semiprime, then,
for any cardinality κ, the ring R× S is κ-Baer iff R and S are κ-Baer, according
to Corollary 7.10.
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If we eliminate from Theorem 8.16 the trivial implications, along with those
that immediately follow from Lemma 8.9, then we obtain the following.

Corollary 8.18. If R is a semiprime commutative unitary ring, then the follow-
ing are equivalent:

• R is a Baer ring;

• R is a strongly Baer ring and E(R) is a complete Boolean algebra;

• 2Ann(R) is a Boolean sublattice of Id(R) such that I 7→ AnnR(AnnR(I)) is
a lattice morphism from Id(R) to 2Ann(R);

• 2Ann(R) is a complete Boolean sublattice of Id(R) such that I 7→ AnnR
(AnnR(I)) is a lattice morphism from Id(R) to 2Ann(R);

• for all I, J ∈ Id(R), AnnR(I ∩ J) = AnnR(I) ∨AnnR(J);

• for any U ⊆ R, AnnR(U) ∨AnnR(AnnR(U)) = R.

Propositions 8.10, 8.11, 8.13, 8.14 and 8.15, along with Theorem 3.3, (iii),
also give us:

Corollary 8.19. Let R be a commutative unitary ring and m be a nonzero cardi-
nality such that the intersection in Id(R) is distributive w.r.t. the joins of families
of cardinality at most m. Then, for any nonzero cardinalities κ ≤ m, λ ≤ m and
µ ≤ m and any infinite cardinality ι ≤ m:

• conditions (2◦)κ,R, (3
◦)λ,R and (5◦)R are equivalent;

• if all ideals of R are finitely generated, then conditions (2◦)κ,R, (3◦)λ,R,
(iv◦)R, (4

◦)µ,R, (4
◦)R, (5

◦)<∞,R, (5
◦)ι,R and (5◦)R are equivalent.

9. Conclusions

Determining what kinds of complete algebraic modular lattices are congruence
lattices of semiprime algebras from semi-degenerate congruence-modular varieties
may be of interest, since it will follow that the equivalences in Corollary 7.7 hold
for all those kinds of lattices.

Another theme for future research is studying further extensions of Davey‘s
Theorem to different kinds of lattices, as well as finding more classes of algebras
in which, given an appropriate setting (regarding definitions for annihilators and
a Boolean center), Davey‘s Theorem holds not only for congruences, but also for
elements, as in the case of bounded distributive lattices, commutator lattices,
residuated lattices and commutative unitary rings.
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[11] J.E. Kist, Two characterizations of commutative Baer rings, Pacific J. Math. 50
(1974).
https://doi.org/10.2140/pjm.1974.50.125

[12] A. Iorgulescu, Algebras of Logic as BCK Algebras (Editura ASE, Bucharest, 2008).
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