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Abstract

The structure space of a semigroup endowed with hull kernel topology is
introduced and studied. Also the structure space of a Γ-semigroup is defined
and a homeomorphism has been established between structure space of a Γ-
semigroup and the structure space of its left operator semigroup. Moreover,
various properties of structure space of a Γ-semigroup are studied via its left
operator semigroup.
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1. Introduction

A semigroup is an algebraic structure consisting of a non-empty set S together
with an associative binary operation[3]. The notion of a Γ-semigroup was in-
troduced by Sen and Saha [13] as a generelisation of semigroup and ternary
semigroup, some works on Γ-semigroup may be found in [9, 10, 12, 13].
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The space of prime ideals of a ring was studied by Kohls in [7] and Gillman
studied Rings with Hausdorff structure space in [6]. The structure space of Semi-
ring was studied by Adhikari and Das in [1] while the structure space of uniformly
strongly prime ideals of a Γ-semigroup by Chattopadhyay and Kar in [2]. In this
paper we study structure space of prime ideals of a semigroup as well as structure
space of prime ideals of a Γ-semigroup via its left operator semigroup.

We consider the collection A of all prime ideals of a semigroup and define
a topology τA on A in Definition 3.3 on A in terms of closure operator, we call
the topological space (A, τA) as structure space of the semigroup S and studied
various topological properties such as separation axioms in Theorem 3.8, 3.11,
3.13, 3.15, compactness property in Theorem 3.16, 3.17, 3.20. Then we define the
structure space of prime ideals of a Γ-semigroup in Definition 4.6 and we establish
a homeomorphism in Theorem 4.8 between structure space of a Γ-semigroup and
structure space of its left operator semigroup. Moreover, necessary and sufficient
conditions for the structure space of a Γ-semigroup to be T1, T2, T3, compact are
obtained via left operator semigroup in Theorem 4.10, 4.12, 4.21, Corollary 4.20,
4.25.

2. Preliminaries

In this section we discuss some elementary preliminaries that we use in the sequel.

Definition 2.1 [13]. Let S = {a, b, c, . . .} and Γ = {α, β, γ, . . .} be two non-
empty sets. Then S is called a Γ-semigroup if there exists a mapping S × Γ× S
→ S (images to be denoted by aαb) satisfying

(1) aγb ∈ S,

(2) (aβb)γc = aβ(bγc),∀a, b, c ∈ S,∀γ ∈ Γ.

Example 2.2. Let S = {−i, 0, i} and Γ = S. Then S is a Γ-semigroup under the
multiplication over complex numbers while S is not a semigroup under complex
number multiplication.

Example 2.3. Let S be the set of all m×n matrices with entries from a field F
and Γ be a set of n×m matrices with entries from F. Then S is a Γ-semigroup
with the usual product of matrices.

Definition 2.4 [3]. A non-empty subset I of the semigroup S is said to be an
ideal if SI ⊆ I and IS ⊆ I. An ideal I of S is called a proper ideal if I 6= S.

Definition 2.5 [11]. A proper ideal P of the semigroup S is said to be a prime
ideal if AB ⊆ P then either A ⊆ P or B ⊆ P for any two ideals A,B of S.



On the structure space of a Γ-semigroup via its left ... 123

Definition 2.6 [13]. A non-empty subset I is said to be an ideal of the Γ-
Semigroup S if IΓS ⊆ I and SΓI ⊆ I where for subsets U, V of S and Q of Γ,
UQV = {uqv : u ∈ U, v ∈ V, q ∈ Q}. An ideal I of S is called a proper ideal if
I 6= S.

Definition 2.7 [13]. Let S be Γ-semigroup. A proper ideal P of S is called a
prime ideal if for any two ideals I and J of S, IΓJ ⊆ P implies I ⊆ P or J ⊆ P .

Definition 2.8 [10]. Let S be a Γ-semigroup. Define a relation ρ on S × Γ as
follows: (x, α)ρ(y, β) ⇐⇒ xαs = yβs,∀s ∈ S. Obviously ρ is an equivalence
relation. Let [x, α] denotes the equivalence class containing (x, α). Let L =
{[x, α] : x ∈ S and α ∈ Γ}. Then L is a semigroup under the binary operation
defind as [x, α][y, β] = [xαy, β], for all x, y ∈ S and α, β ∈ Γ. The semigroup L
is called the left operator semigroup of S. Similarly, right operator semigroup R
of a Γ-semigroup S is defind as R = {[α, x] : α ∈ Γ, x ∈ S}, where [α, x][β, y] =
[α, xβy], for all x, y ∈ S and α, β ∈ Γ.

Let S be a Γ-semigroup with left operator semigroup L. For P ⊆ L and
Q ⊆ S we define P+ = {x ∈ S : [x, α] ∈ P for all α ∈ Γ} and Q+′

= {[x, α] ∈ L :
xαs ∈ Q for all s ∈ S}.

Theorem 2.9 [4]. Let S be a Γ-semigroup with left and right unities and L be
its left operator semigroup. Then if P is a prime ideal of L then P+ is a prime
ideal of S and if Q is a prime ideal of S then Q+′

is a prime ideal of L. Moreover

(P+′
)
+
= P and (Q+)+

′
= Q.

The proof is same as the proof of Theorem 3.1.11 and 3.1.12 of [4]. So we
omit it.

Theorem 2.10 [4]. Let S be a Γ- semigroup with left and right unities and let L
and R be its left operator semigroup and right operator semigroup, respectively.
Then there is an inclusion preserving bijection between the set of all prime ideals
of a Γ-semigroup S and that of its left operator semigroup L (respectively, right
operator semigroup R), via the mapping P −→ P+′

(resp P −→ P ∗), where
P is a prime ideal of S, P+′

= {[x, α] ∈ L : xαs ∈ P for all s ∈ S} and
P ∗′ = {[α, x] ∈ R : sαx ∈ P for all s ∈ S}. The proof is same as Theorem 3.1.13
of [4]. So we omit it.

Definition 2.11 [14]. Let (X, τ1) and (Y, τ2) be two topological spaces. Then
a bijection f : X −→ Y is said to be a homeomorphism if both f and f−1 are
continuous.

3. Structure space of Semigroup

Definition 3.1. Let S be a semigroup and A be the collection of all prime ideals
of the semigroup S. For any subset A of A, we define
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A =

{

I ∈ A :
⋂

Iα∈A

Iα ⊆ I

}

.

Throughout this section unless otherwise mentioned the semigroup under consi-
derations denoted by S and A denotes the collection of all prime ideals of S and
for any A ⊆ A, A has the meaning as in the definition.

Note: ∅ = ∅.

Theorem 3.2. Let A,B be any two subsets of A. Then

(1) A ⊆ A

(2) A = A

(3) A ⊆ B ⇒ A ⊆ B

(4) A ∪B = A ∪B.

Proof. (1) Clearly,
⋂

Iα∈A
Iα ⊆ Iα for each α and hence A ⊆ A.

(2) By (1), we have A ⊆ A. For converse part, let Iβ ∈ A. Then
⋂

Iα∈A
Iα ⊆

Iβ . Now Iα ∈ A implies that
⋂

Iγ∈A
Iγ ⊆ Iα for all Iα ∈ A. Thus

⋂

Iγ∈A

Iγ ⊆
⋂

Iα∈A

Iα ⊆ Iβ i.e.,
⋂

Iγ∈A

Iγ ⊆ Iβ.

So Iβ ∈ A and hence A ⊆ A. Consequently, A = A.
(3) Suppose that A ⊆ B. Let Iα ∈ A. Then

⋂

Iβ∈A
Iβ ⊆ Iα. Since A ⊆ B, so

⋂

Iβ∈B

Iβ ⊆
⋂

Iβ∈A

Iβ ⊆ Iα.

This implies that Iα ∈ B and hence A ⊆ B.
(4) Clearly, A ∪ B ⊆ A ∪B. For the converse part, let Iα ∈ A ∪B. Then

⋂

Iβ∈A∪B Iβ ⊆ Iα. It is easy to see that

⋂

Iβ∈A∪B

Iβ =

(

⋂

Iβ∈A

Iβ

)

∩

(

⋂

Iβ∈B

Iβ

)

.

Since
⋂

Iβ∈A
Iβ and

⋂

Iβ∈B
Iβ are ideals of S, We have

(

⋂

Iβ∈A

Iβ

)(

⋂

Iβ∈B

Iβ

)

⊆

(

⋂

Iβ∈A

Iβ

)

∩

(

⋂

Iβ∈B

Iβ

)

=
⋂

Iβ∈A∪B

Iβ ⊆ Iα.

As Iα is a prime ideal of S, either
⋂

Iβ∈A
Iβ ⊆ Iα or

⋂

Iβ∈B
Iβ ⊆ Iα i.e., either

Iα ∈ A or Iα ∈ B i.e., Iα ∈ A ∪ B. Consequently, A ∪B ⊆ A ∪ B and hence
A ∪B = A ∪B.
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Definition 3.3. The closure operator A 7→ A gives a topology τA is called the
hull-kernel topology and the topological space (A, τA) is called the structure space
of the semigroup S.

Definition 3.4. Let I be an ideal of a semigroup S. We define

∆(I) = {I ′ ∈ A : I ⊆ I ′} and C∆(I) = {I ′ ∈ A : I * I ′}.

For the results of the rest of this section we use the same notation as of Definition
3.3 and 3.4.

Proposition 3.5. Any closed set in A is of the form ∆(I), where I is an ideal
of the semigroup S.

Proof. Let A be any closed set in A, where A ⊆ A. Let A = {Iα : α ∈ Λ}, where
Λ is an index set and I =

⋂

Iα∈A
Iα. Then I is an ideal of S. Let I ′ ∈ A. Then

⋂

Iα∈A
Iα ⊆ I ′. This implies that I ⊆ I ′. Consequently, I ′ ∈ ∆(I). So A ⊆ ∆(I).

Again, let I ′ ∈ ∆(I). Then I ⊆ I ′ i.e.,
⋂

Iα∈A
Iα ⊆ I ′. Consequently, I ′ ∈ A and

hence ∆(I) ⊆ A. Thus A = ∆(I).

Corollary 3.6. Any open set in A is of the form C∆(I), where I is an ideal
of S.

Let S be a semigroup and a ∈ S. We define ∆(a) = {I ∈ A : a ∈ I} and
C∆(a) = {I ∈ A : a /∈ I}.

Proposition 3.7. {C∆(a) : a ∈ S} forms an open base for the hull-kernel topol-
ogy τA on A.

Proof. Let U ∈ τA. Then U = C∆(I), where I is an ideal of S. Let J ∈ U =
C∆(I). Then I * J . This implies that there exists a ∈ I such that a /∈ J . Thus
J ∈ C∆(a). Now it remains to show that C∆(a) ⊂ U . Let K ∈ C∆(a). Then
a /∈ K. This implies that I * K. Consequently, K ∈ U and hence C∆(a) ⊂ U .
So we find that J ∈ C∆(a) ⊂ U . Thus C∆(a) is an open base for the hull-kernel
topology τA on A.

Theorem 3.8. The structure space (A, τA) is a T0 space.

Proof. Let I1 and I2 be two distinct elements of A. Then there is an element a
either in I1\I2 or in I2\I1. Suppose that a ∈ I1\I2. Then C∆(a) is a neighbour-
hood of I2 not containing I1. Hence (A, τA) is a T0 space.

Example 3.9 [11]. Let S = Z6, the classes of residues of integers modulo 6
i.e., S = {0̄, 1̄, . . . , 5̄}. Then S forms a semigroup with respect to multiplication
modulo n. Here P1 = {0̄, 2̄, 3̄, 4̄} is a prime ideal and P2 = {0̄, 3̄} is another prime
ideal, which is contained in P1. So this two element P1 and P2 violating the T1

axiom and hence the space (A, τA) is not T1.
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Example 3.10. Consider the Prime ideal I =< 2 > and J =< 3 > of the
semigroup S of Natural number with usual multiplication. Then I ∪ J is also a
prime ideal of S. So this two element violating the T1 axiom and hence the space
(A, τA) is not T1.

We derive a necessary and sufficient condition for the space (A, τA) to be T1

as follows.

Theorem 3.11. (A, τA) is a T1 space if and only if no element of A is contained
in any other element of A.

Proof. Let (A, τA) be a T1 space. Suppose that I1 and I2 be any two distinct
elements of A . Then each of I1 and I2 has a neighbourhood not containing the
other. Since I1 and I2 are arbitary elements of A, it follows that no element of
A is contained in any other element of A.

Conversely, suppose that no element of A is contained in any other element
of A. Let I1 and I2 be any two distinct elements of A. Then by hypothesis,
I1 6⊂ I2 and I2 6⊂ I1. This implies that there exists a, b ∈ S such that a ∈ I1 but
a /∈ I2 and b ∈ I2 but b /∈ I1. Consequently, we have I1 ∈ C∆(b) but I1 /∈ C∆(a)
and I2 ∈ C∆(a) but I2 /∈ C∆(b) i.e., each of I1 and I2 has a neighbourhood not
containing the other. Hence (A, τA) is a T1 space.

Example 3.12 [11]. Let G be a simple semigroup without idempotent. Adjoin
an identity element e and consider the semigroup S = G∪{e}. In this semigroup
S every prime ideal is maximal and so the corresponding structure space (A, τA)
is T1.

The followings are necessary and sufficient condition for a structure space
(A, τA) of a semigroup to be Housdorff and regular, the proofs are analogues to
(Theorem 3.9, 3.11, [2]), hence we omit the proof

Theorem 3.13. (A, τA) is a Housdorff space if and only if for any two distinct
pair of elements I, J of A, there exists a, b ∈ S such that a /∈ I and b /∈ J and
there does not exist any element L such that a /∈ L and b /∈ L.

Theorem 3.14. (A, τA) is a regular space if and only if for any I ∈ A and a /∈ I,
a ∈ S, there exist an ideal J of S and b ∈ S such that I ∈ C∆(b) ⊆ ∆(J) ⊆
C∆(a).

The space (A, τA) is a T0 space and every regular T0 space is a T3 space, so
we have the following corollary:

Corollary 3.15. (A, τA) is a T3 space if and only if for any I ∈ A and a /∈ I,
a ∈ S, there exist an ideal J of S and b ∈ S such that I ∈ C∆(b) ⊆ ∆(J) ⊆
C∆(a).
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Theorem 3.16. (A, τA) is a compact space if and only if for any collection
{aα}α∈Λ ⊂ S (where Λ is an index set) there exists a finite subcollection {ai : i =
1, 2, . . . , n} in S such that for any I ∈ A, there exists ai such that ai /∈ I.

Proof. Let (A, τA) be a compact space. Then the open cover {C∆(aα) : aα ∈ S}
of (A, τA) has a finite subcover {C∆(ai) : i = 1, 2, . . . , n}. Let I be any element
of A. Then I ∈ C∆(ai) for some ai ∈ S. This implies that ai /∈ I. Hence
{ai : i = 1, 2, . . . , n} is the required finite subcollection of elements of S such that
for any I ∈ A, there exists ai such that ai /∈ I.

Conversely, suppose that the given condition holds. Let {C∆(aα) : aα ∈ S}
be an open cover of A. Suppose to the contrary that no finite subcollection of
{C∆(aα) : aα ∈ S} covers A. This means that for any finite set {a1, a2, . . . , an}
of elements of S, C∆(a1) ∪ C∆(a2) ∪ · · · ∪ C∆(an) 6= A.

⇒ ∆(a1) ∩∆(a2) ∩ · · · ∩∆(an) 6= φ.
⇒ there exists I ∈ A such that I ∈ ∆(a1) ∩∆(a2) ∩ · · · ∩∆(an)
⇒ a1, a2, . . . , an ∈ I, which contradicts our hypothesis.

So the open cover {C∆(aα) : aα ∈ S} has a finite subcover and hence (A, τA) is
compact.

Corollary 3.17. If S is finitely generated, then (A, τA) is a compact space.

Proof. Let {ai : i = 1, 2, . . . , n} be a finite set of generators of S. Then for any
I ∈ A, there exists ai such that ai /∈ I, since I is a proper prime ideal of S. Hence
by Theorem 3.16, (A, τA) is a compact space.

Definition 3.18. A semigroup S is called a Noetherian semigroup if it satisfies
ascending chain condition on ideals i.e., if I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · is an ascending
chain of ideals of S, then there exists a positive integer m such that In = Im for
all n ≥ m.

Theorem 3.19. If S is a Noetherian semigroup, then (A, τA) is countably com-
pact.

Proof. Let {∆(In)}
∞
n=1 be a countable collection of closed sets in A with finite

intersection property(FIP ). Let us consider the following ascending chain of
prime ideals of S :< I1 >⊆< I1 ∪ I2 >⊆< I1 ∪ I2 ∪ I3 >⊆ · · · . Since S is a
Noetherian semigroup, there exists a positive integers m such that < I1 ∪ I2 ∪
· · · ∪ Im >=< I1 ∪ I2 ∪ · · · ∪ Im+1 >= · · · .

Thus it follows that < I1 ∪ I2 ∪ · · · ∪ Im >∈
⋂∞

n=1∆(In). Consequently,
⋂∞

n=1 ∆(In) 6= φ and hence (A, τA) is countably compact.
Since countably compact second countable topological space is compact, the

following is an obvious consequence of the above result.

Corollary 3.20. If S is a Noetherian semigroup and (A, τA) is second countable
then (A, τA) is compact.



128 S. Mukherjee (Goswami), M. Mandal and B. Khanra

4. Structure space of Γ-semigroup

Let S be a Γ- semigroup with left and right unities and L be its left operator
semigroup. Let AL be the collection of all prime ideals of L and τL be the hull-
kernel topology as defined in § 3 (Definition 3.3). We call the topological space
(AL, τL) to be the structure space of the operator semigroup L.

Let AS be the collection of all prime ideals of the Γ-semigroup S. Let f :
AS 7→ AL be the inclusion preserving bijection defined as f(P ) = P+′

, where
P ∈ AS and P+′

∈ AL [Theorem 2.10]. We define a map from AL to AS

by f ′ : Q 7→ Q+, where Q ∈ AL and Q+ ∈ AS [Theorem 2.9]. Let A =
{P1, P2, . . . , Pn, . . . } ⊆ AS. We define g : ρ(AS) 7→ ρ(AL) by g(A) = A+′

=
{P+

1

′
, . . . , P+

n
′
, . . . } ⊆ AL, where P+

i

′
∈ AL are images of Pi ∈ AS by the map

f and ρ(AS) and ρ(AL) are power set of AS and AL respectively. In a similar
way, for any B ⊆ AL we define B+ = {Q+

1 , Q
+
2 , . . . , Q

+
n , . . . } ⊆ AS, the images

of Qi ∈ AL by the map f ′.

Theorem 4.1. There is an inclusion preserving bijection from ρ(AS) to ρ(AL)
via the mapping defined by g(A) = A+′

, where A ∈ ρ(AS).

Proof. Let A ∈ ρ(AS). we shall now prove that(A+′
)+ = A. Let I+ ∈ (A+′

)+.
This implies I ∈ A+′

. So there exists J in A such that J+′
= I ∈ A+′

. Now
I+ = (J+′

)+ = J ∈ A. This implies (A+′
)+ ⊆ A.

Let I ∈ A. Then I+
′
∈ A+′

. This implies I = (I+
′
)+ ∈ (A+′

)+, i.e.,
A ⊆ (A+′

)+. So (A+′
)+ = A.

Similarly we can prove that (B+)+
′
= B for all B ∈ ρ(AL). Hence the

mapping g : A 7→ A+′
is a bijection.

Let A ⊆ B ∈ ρ(AS). Now I+
′
∈ A+′

implies I ∈ A ⊆ B. So I+
′
∈ B+′

and
hence A+′

⊆ B+′
. This completes the proof.

Definition 4.2. Let S be a Γ-semigroup and AS denote the set of all prime
ideals of S. For any subset A of AS , we define A = {I ∈ AS :

⋂

Iα∈A
Iα ⊆ I}.

Note: ∅ = ∅.

Lemma 4.3. For any A,B ⊆ AL, we have

(1) (A ∩B)+ = A+ ∩B+

(2) (B+) = (B)+

(3) (A ∪B)+ = A+ ∪B+.

Proof. (1) Let I+ ∈ A+ ∩B+.

⇐⇒ I+ ∈ A+ and I+ ∈ B+ ⇐⇒ I ∈ A and I ∈ B ⇐⇒ I ∈ A ∩B

⇐⇒ I+ ∈ (A ∩B)+. This completes the proof.
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(2) Let I ∈ B+. Then I ∈ AS and
⋂

J∈B J+ ⊆ I ⇐⇒ (
⋂

J∈B J+)+
′
=

((
⋂

J∈B J)+)+
′ ⊆ I+

′
[by (1)] ⇐⇒

⋂

J∈B J ⊆ I+
′ ⇐⇒ I+

′ ∈ B ⇐⇒ (I+
′
)+ ∈

(B)+ ⇐⇒ I ∈ (B)+.

(3) Let I+ ∈ (A ∪B)+ ⇐⇒ I ∈ A∪B ⇐⇒ I ∈ A or I ∈ B ⇐⇒ I+ ∈ A+

or I+ ∈ B+ ⇐⇒ I+ ∈ A+ ∪B+. This completes the proof.

Lemma 4.4. Similarly for any A,B ⊆ AS, we can prove the following

(1) (A ∩B)+
′
= A+′

∩B+′

(2) (A)+
′
= (A+′)

(3) (A ∪B)+
′
= A+′

∪B+′
.

Theorem 4.5. Let A, B be any two subsets of AS. Then

(1) A ⊆ A

(2) A ⊆ B ⇒ A ⊆ B

(3) A = A

(4) A ∪B = A ∪B.

Proof. (1) A+′
⊆ A+′ = (A)+

′
⇒ (A+′

)+ ⊆ ((A)+
′
)+ = A ⇒ A ⊆ A

(2) Let A ⊆ B. Then A+′
⊆ B+′

⇒ (A+′) ⊆ (B+′) [by Theorem 3.2(3)].

⇒ ((A+′))+ ⊆ ((B+′))+ [by Theorem 4.1].

⇒ (A+′)+ ⊆ (B+′)+ [by Lemma 4.3(2)].⇒ A ⊆ B.

(3) As A+′ ∈ AL, so (A+′) = (A+′) [by Theorem 3.2(2)].

⇒ ((A)+
′
) = (A+′) [by Lemma 4.4(2)] ⇒ (A)+

′

= (A+′)

⇒ ((A)+
′

)+ = ((A+′))
+

⇒ A = ((A)
+′

)+ = A.

(4) A ∪B = ((A ∪B)+
′
)+ [by Theorem 4.1]

= (A+′ ∪B+′)+[by Lemma 4.3(2) and 4.3(3)]= (A+′ ∪B+′)+[by Theorem

3.2(4)]

= (A+′)+ ∪ (B+′)+ = (A+′)+ ∪ (B+′)+ = A ∪B.

Definition 4.6. The closure operator A 7→ A gives a topology τS on AS. This
topology is called the hull-kernel topology and the topological space (AS , τS) is
called the structure space of the Γ-semigroup S.

Definition 4.7. Let I be an ideal of a Γ-semigroup S. We define ∆(I) = {I ′ ∈
AS : I ⊆ I ′} and C∆(I) = {I ′ ∈ AS : I * I ′}. For any a ∈ AS, we define
∆(a) = {I ∈ AS : a ∈ I} and C∆(a) = {I ∈ AS : a /∈ I}.

Theorem 4.8. The structure spaces (AS , τS) and (AL, τL) are homeomorphic.
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Proof. Let f : (AS , τS) 7→ (AL, τL) be the map defind by f(P ) = P+′
where

P ∈ AS and P+′
∈ AL. We know that f is an inclusion preserving bijection

(Theorem 2.10).

Let A ⊆ AS. Then A ⊆ A ⇒ A+′
⊆ (A)

+′

⇒ (A+′) ⊆ ((A)
+′

) = (A)
+′

=

(A)
+′

. So f(A) ⊆ f(A) ⇒ f is a closed map. Since f is closed bijection, so f is
open map. Hence f−1 is continuous. Similarly, let B ⊆ AL.

Then B ⊆ B ⇒ B+ ⊆ (B)
+

⇒ (B+) ⊆ ((B)
+
) = (B)+ = (B)

+
i.e.,

f−1(B) ⊆ f−1(B). Since B is arbitary, f−1 is a closed map and also bijection,
so f−1 is an open map, and hence f is continuous.

So f is a homeomorphism. This completes the proof.

Theorem 4.9. The structure space (AS, τS) is a T0 space.

Proof. We know the space (AL, τL) is T0 and is homeomorphic to (AS , τS), so
(AS , τS) is a T0 space.

Theorem 4.10. (AS , τS) is a T1 space if and only if no element of AS is con-
tained in any other element of AS.

Proof. Let (AS, τS) be a T1 space, then (AL, τL) is a T1 space. Then no element
ofAL is contained in any other element ofAL. Since there is a inclusion preserving
bijection between AS and AL, so no element of AS is contained in any other
element of AS.

Conversely, let no element of AS be contained in any other element of AS.
Then no element of AL is contained in any other element of AL which implies
(AL, τL) is T1 by Theorem 3.11 and so (AS , τS) is T1.

Lemma 4.11. For P,Q ∈ AS, P 6= Q there exist p, q ∈ S such that p /∈ P and
q /∈ Q and there does not exists any element F ∈ AS such that p /∈ F, q /∈ F .
Then there exist some γ1, γ2 ∈ Γ such that [p, γ1] /∈ P+′

, [q, γ2] /∈ Q+′
and there

exist no F ′ ∈ AL such that [p, γ1] /∈ F ′, [q, γ2] /∈ F ′ and conversely.

Proof. Let P,Q ∈ AS such that P 6= Q. Then P+′
, Q+′

∈ AL and there exist
some γ1, γ2 ∈ Γ such that [p, γ1] /∈ P+′

, [q, γ2] /∈ Q+′
. Hence there exist no

F ′ ∈ AL such that [p, γ1] /∈ F ′ and [q, γ2] /∈ F ′, otherwise (F ′)+ ∈ AS such that
p /∈ (F ′)+, q /∈ (F ′)+. Similarly we can prove the converse.

By using the Lemma 4.11, Theorems 4.8 and 3.13 we deduce the following
result.

Theorem 4.12. (AS , τS) is T2 if and only if P,Q ∈ AS , P 6= Q there exists
p, q ∈ S such that p /∈ P , q /∈ Q and there does not exist any element F ∈ AS

such that p /∈ F and q /∈ F .
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Proposition 4.13. Let I be an ideal of a Γ-semigroup S. Then (∆(I))+
′
=

∆(I+
′
).

Proof. Let P+′
∈ (∆(I))+

′
. Then P ∈ ∆(I) ⊆ AS which implies P ∈ AS and

I ⊆ P . Thus I+
′
⊆ P+′

∈ AL and I+
′
is an ideal of L. So P+′

∈ ∆(I+
′
).

Therefore (∆(I))+
′
⊆ ∆(I+

′
). Similarly we can prove ∆(I+

′
) ⊆ (∆(I))+

′
(cf.

Theorem 4.1). Hence the result follows.

Similarly we can prove that (∆(I))+ = ∆(I+).

Proposition 4.14. Any closed set in AS is of the form ∆(I) where I is an ideal
of S.

Proof. Let A be any closed set in AS. Then (A)+
′
is a closed set (cf. Lemma

4.3(2)) in AL, so (A)+
′
= ∆(I+

′
) = (∆(I))+

′
(using 4.13)for some ideal I of S.

So ((A)+
′
)+ = ((∆(I))+

′
)+ implies A = ∆(I). Hence the result follows.

In view of the relevant definitions the following is an easy consequence of the
above result.

Corollary 4.15. Any open set in AS is of the form C∆(I), where I is an ideal
of S.

Proposition 4.16. The family of open sets {C∆(a) : a ∈ S) forms a base for
the hull kernel topology τS on AS.

Proof. The following result follows by applying arguments similar to those of
semigroup.

Proposition 4.17. Let S be a Γ-semigroup and a ∈ S, then [C∆(a)]+
′
=

C∆([a, γ]) for some γ ∈ Γ.

Proof. Let I+
′
∈ [C∆(a)]+

′
. Then I ∈ C∆(a), so a /∈ I and hence there

exists some γ ∈ Γ such that [a, γ] /∈ I+
′
implies I+

′
∈ C∆([a, γ]). Therefore

[C∆(a)]+
′ ⊆ C∆([a, γ]).

Again let I ∈ C∆([a, γ]) ⇒ [a, γ] /∈ I ⇒ a /∈ I+ ⇒ I+ ∈ C∆(a) ⇒ I ∈
[C∆(a)]+

′
. So C∆([a, γ]) ⊆ [C∆(a)]+

′
. Therefore [C∆(a)]+

′
= C∆([a, γ]).

Corollary 4.18. (C∆([a, γ]))+ = C∆(a) where a ∈ S and for some γ ∈ Γ.

Theorem 4.19. (AS, τS) is a regular space if and only if for any P ∈ AS and
p /∈ P , p ∈ S, there exists an ideal Q of S and q ∈ S such that P ∈ C∆(q) ⊆
∆(Q) ⊆ C∆(p).
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Proof. Let (AS , τS) is a regular space. Then (AL, τL) is regular. Let P ∈ AS

and p ∈ S such that p /∈ P . Therefore P+′
∈ AL and [p, γ] /∈ P+′

for some
γ ∈ Γ. so there exists an ideal K of L and an element [q, γ1] ∈ L such that P+′

∈
C∆[q, γ1] ⊆ ∆(K) ⊆ C∆[p, γ] ⇒ P+′

∈ [C∆(q)]+
′
⊆ ∆(K) ⊆ [C∆(p)]+

′
⇒ I ∈

C∆(q) ⊆ ∆(Q) ⊆ C∆(p), where Q = K+.

Similarly we can prove the converse.

Since every regular T0 space is a T3 space, we have the following corollary.

Corollary 4.20. (AS , τS) is a T3 space if and only if for any P ∈ AS and p /∈ P ,
p ∈ S, there exists an ideal Q of S and q ∈ S such that P ∈ C∆(q) ⊆ ∆(Q) ⊆
C∆(p).

Theorem 4.21. (AS , τS) is compact space if and only if for any collection
{aα}α∈Λ ⊂ S, (where Λ is an index set) there exists a finite subcollection {ai :
i = 1, 2, . . . , n} in S such that for any I ∈ AS, there exists ai such that ai /∈ I.

Proof. Let (AS , τS) be compact. So (AL, τL) is compact. Let {aα}α∈Λ be any
collection of subsets of S. Then {[aα γ] : α ∈ Λ} is a collection in L. Since (AL, τL)
is compact, there exists a finite subcollection {[ai, γ] ∈ L : i = 1, 2, . . . , n} such
that for any I ∈ AS there exists some ai with [ai, γ] /∈ I+

′
which implies that

ai /∈ I and {ai ∈ S : i = 1, 2, . . . , n} is a finite subcollection in S. Converse follows
similarly.

Definition 4.22. A Γ-semigroup S is called Noetherian Γ-semigroup if it satisfies
ascending chain condition on ideals i.e., if I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ ... is an ascending
chain of ideals of S, then there exists a positive integer m such that In = Im for
all n ≥ m.

Since there exists a inclusion preserving bijection between ideals of S and L,
so we have the following result.

Theorem 4.23. A Γ-semigroup S is Noetherian if and only if L is Noetherian.

Theorem 4.24. If S is Noetherian Γ-semigroup, then (AS , τS) is countably com-
pact.

Proof. Let S is Noetherian Γ- semigroup. Then L is Noetherian semigroup.
Then (AL, τL) is countably compact and hence (AS , τS) is countably compact.

Since countably compact second countable topological space is compact, the
following is an obvious consequence of the above result:

Corollary 4.25. If S is Noetherian Γ-semigroup and (AS , τS) is second countable
then (AS, τS) is compact.
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Concluding Remark. We can obtain analogous results on structure space of
Γ-semigroup via right operator semigroup instead of left operator semigroup by
applying similar arguments as above and Theorem 2.10.

There is a scope to study the structure space of uniformly strongly prime
ideals of a Γ-semigroup via operator semigroup to verify results of S. Kar [2].

If S is a commutative Γ-semigroup, then one can study minimal prime ideal of
a commutative Γ -semigroup via operator semigroup by using results of ”Minimal
prime ideal of a commutative semigroup” of J. Kist [8].
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