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Abstract

In this paper, the notions of commutator and derivation in additively
regular I-semirings with (Az,T')-condition are introduced. We also charac-
terize Jordan product for additively regular I'-semiring and establish some
results which investigate the relationship between commutators, derivations
and inner derivations. In 1957, E.C. Posner has shown that if there exists a
non-zero centralizing derivation in a prime ring R, then R is commutative.
This result is extended in the frame work of derivations of prime additively
regular I'-semirings.
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1. INTRODUCTION

The concept of derivation is quite old and plays vital role in algebraic geome-
try and algebra. The algebraists in this direction have studied the concept of
derivation in semirings, I'-rings and I'-semirings. It is pertinent to note here
that the results which are true for rings motivated the researchers to generalize
the analogous results for derivations in I'-rings and I'-semirings. The concept of
derivation in a prime I'—ring was first introduced by Yang [12] in 1991. Over the
years, the researchers studied the concept of derivation in I'-rings and other al-
gebraic structures [2, 3, 6]. The algebraic structure additively regular I'-semiring
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is a generalization of semirings [9, 10, 11], additively regular semirings [5], and
I'-rings.

There are some algebraic structures in which binary operation “multiplica-
tion” fails. For instance, let R be the set of all m X n matrices over a boolean
semiring under usual addition and multiplication of matrices. One can easily
examine that R is not closed under multiplication. This problem has attracted
the attention of various mathematicians for a long period. Therefore, another
algebraic structure I' was introduced; for example, consider A is an additive
semigroup consisting of all homomorphisms from a semiring R; to semiring Ro
and I' is an additive semigroup consisting of all homomorphisms from Ry to Rj.
Here the product gi1hgo belongs to A for any arbitrary elements g1, go of A and
h of T'. So, A is closed under multiplication. The importance of aforementioned
algebraic structure I' motivated us to explore the structure of I'-semirings.

Rao [7, 8] introduced the notion of I'-semirings and additively inverse I'-
semirings. According to Rao, if Rp and I' are additive commutative semigroups
with identity elements Og, and Or respectively, then Rr is said to be a I'-semiring
if there exists a map Rp x I' x Rp — Rp, defined as (z,7,y) — zyy such that
za(y + 2) = zay + zaz; (z + y)az = zaz + yaz; z(a + By = zay + xPy;
(zay)Bz = za(yBz); xy0r, = Oppyr = Og. and 270 = Opyx = O0p V z,y,2 €
Rr, a,8,v € T'. Further, a I'-semiring Rp is said to be additively regular if
for each element z € Rr there exists an element 2’ € Rr such that x = x +
2’ + . If in addition the element 2’ is unique and 2’ = 2’ + x + 2/, then Rp
is called an additively inverse I'-semiring. Such an element z’ is called pseudo
inverse of xz. Consider M = {0,1,2,...,50} and Rr = Z x M = {(a,r) : a €
Z, r € M}. We define binary operations of addition @ and multiplication ©®
by (a,r) & (b,s) = (a + b,max(r,s)) and (a,r) ® (b,s) = (ab,min(r,s)) for all
(a,7),(b,s) € Rp. Take T' = {(0,m) : m € M} with same binary operations
defined as above. One can easily check that Rr and I' are additive commutative
semigroups. Moreover, define map Rpr XI'x Rp — Rr by (a,r)®(0,m)® (b, s) =
(0, min(r,m, s)). Then Rp is a I'-semiring. Further, if we define the pseudo inverse
of an element (a,r) of Rp by (a,r)’ = (—a,r). Then Rr is an additively inverse
I-semiring. Throughout this article, additively inverse I'-semiring along with 1
has been intensively explored and represented as “additively regular I'-semiring”
which will persuade the readers in its accuracy and truthfulness.

In present paper, we introduce and characterize the concept of derivations
for additively regular I'-semirings with (As,T')-condition. Here (As,T')-condition
means that the sum of an element x of Rr and its pseudo inverse ' € R lies in
the centre of Rp. For example, let B= {0,1} and I" = {a, b}, where 0,1 and a,b
are additively idempotent elements of Rp and I', respectively. Further, addition
in Bisdefinedby0+1=1=1+0and in ' by a + b = b = b + a. Moreover, a
map B x I'x B— B is defined as 0a0 = 0al = 1a0 = 060 = 0b1 = 160 = 0 and
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lal = 1b1 = 1. Then Bis an additively regular I'-semiring with (Asg, I')-condition.
Throughout this paper, Rr will denote an additively regular I'-semiring with
(Ag,T')-condition. In continuation, the study of commutators for additively reg-
ular I'-semirings is also initiated which is the generalization of the commutators
of rings. In section 3, some fundamental identities for commutators of additively
regular I'-semiring with (Ag,I')-condition are proved which are the generaliza-
tion of some fundamental results of commutators in ring theory. The last section
of this paper deals with the study of derivations and inner derivations. Also,
some results are proved which establish the relationships between commutators
and derivations. Finally, we extend Posner’s second theorem for prime additively
regular I'-semirings with (Ag, I')-condition.

2.  ADDITIVELY REGULAR I'-SEMIRING WITH (A3, T')-CONDITION

In this section, we prove some basic results and examples of additively regular
I-semirings with (Ag, I')-condition. First we define commutativity and primeness
of additively regular I'-semiring Rr.

Definition 2.1. An additively regular I'-semiring Rr is said to be commutative
if xyy=yyx V x,y € Rp,veT.

Definition 2.2. An additively regular I'-semiring Rr is said to be prime if
' RrT'y = 0 implies that either x = 0 or y = 0.

Now, we give an example of an additively regular I'-semiring which is both
commutative as well as prime.

Example 2.3. Let Rp = {0,1,u} and I = {«, 5}. We define operations with the
help of following tables:

+ 10 1 u al0 1 wu 610 1 wu
010 1 w ;Zg 0l0 0 0 0/0 0 0
1 (1 1 wu 313 8 110 1 wu 110 1 wu
ulu U u u |0 u wu ul0 u u

Then Ry is an additively regular I'-semiring with (A, I')-condition and @’ = a
for all @ € Rr. From the tables, it is clear that additively regular I'-semiring Rp
is prime and commutative.

Note that every additively regular semiring S is an additively regular I'-
semiring with I' = S.

Next two examples show that every additively regular I'-semiring may not
satisfy (Ag,T')-condition.
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Example 2.4. Let Rr be the set of all 2 x 2 matrices over boolean semiring B,

ie., Mayxo(B) and I' = { (g 2) :a € B ;. Define a map Rr xI' x Rr — Rr by
(x,v,y) —> xyy/for all x,y € Rp,v € I'. We define pseudo inverse of an element
of Rr as (Z Z) = (i,, Z:) . Then Rr is an additively regular I'-semiring which
do not satisfy (Ag,I')-condition under the usual multiplication of matrices.

Example 2.5. Let R be a non commutative ring and S be an additively regu-
lar semiring. Then the set K = {(a,) : a € R,a € S} is a non commutative
additively regular semiring with operations pointwise addition and pointwise mul-
tiplication. We define pseudo inverse of an element of K as (a,a) = (—a,d).
Take I' = {(0,0) : 0 € R, 3 € S} with operations pointwise addition and point-
wise multiplication. Then IT' is an additive commutative semigroup. Further,
define a map K xI' x K — K by (z,v,y) = zyy for all z,y € K,y € I". Then K
is an additively regular I'-semiring.
Note that K satisfies (Ag,I")-condition only if S is commutative.

Throughout this paper, we consider an assumption (%) zayfz = xfyaz for
all z,y,z € Rr and o, 3 € T.

Lemma 2.6 [(Theorem 12, [8])]. Let Rr be an additively regular T'-semiring and
a,b € Rp, v €T'. Then we have the following:

(i) " = a,

(i) (a+0b) =d +V,

(iil) (ayb) = a'vb = anb,

b = (a'yb) = (ayb)” = anb.

!

~— — ~— ~—

(iv

Definition 2.7. The centre of an additively regular I'-semiring Rr is the set
Z(Rr)={z€Rr:azyy=yyxVy€Rp,veTl}.

Proposition 2.8. The centre of an additively regular I'-semiring Rr is again an
additively regular I'-semiring.

Proof. Let Rr be an additively regular I'-semiring and Z(Rr) be its centre. The
map Z(Rr) x I' x Z(Rr) — Z(Ry) defined by (a,«,b) — aab V a,b € Z(Ry),
a €T is well defined map. Clearly, Z(Rr) is an additive commutative semigroup
and satisfies all the properties of I'-semiring and hence Z(Rr) is a I'-semiring.
Further, let a € Z(Rr). Then ayz = zya ¥V x € Rp,~ € I implies that (ayz) =
(xzya), ie., a'yr = xya' V x € Rp,y € T and hence ¢’ € Z(Rr). This completes
the proof. [ |
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Remark 2.9. Let Rr be an additively regular I'-semiring and X be a non-
empty set. If Map(X,Rr) is the set of all mappings from X into Rp, then
define ‘+’ in Map(X,Rr) as (f + g)(x) = f(x) +g(x) ¥V f,9 € Map(X, Rr)
and Map(X,Rr) xI' x Map(X, Rr) — Map(X, Rr) as (f,~,9) — fyg where
frg + X — Rp is defined by (fyg)(z) = f (2)vg(z) Vf,g € Map(X, Rr),
v € I,z € X. Then Map(X, Rr) is a I'-semiring. Define f' : X — Rp by
f'(z) = (f(x)) for each f € Map(X, Rr). Then it can be easily checked that f’
is pseudo inverse of f and f' € Map(X, Rr) for each f € Map(X, Rr). Thus,
Map(X, Rr) is an additively regular I'-semiring.

The proofs of the next two propositions are quite easy so we omit the proofs.

Proposition 2.10. If Rr is an additively reqular T'-semiring, then Rr[z] the set
of all polynomials over Rr is an additively reqular I'-semiring.

Proposition 2.11. Let Rr, be an additively regular I'i-semiring and Rr, be an
additively regular T'y-semiring. Then Rr = Rr, x Rp, = {(r,s) : r € Rp,,s €
Rr,} is an additively regular I' = T'; x T'y-semiring.

3. COMMUTATORS OF ADDITIVELY REGULAR ['-SEMIRINGS

In this section, we introduce the concept of a-commutator for additively regular
I'-semirings and generalize some results of commutators of rings.

Definition 3.1. Let Rr be an additively regular I'-semiring and « be a fixed
element of I'. We define a-commutator as a mapping [,]o : Rr X I' X Rpr — Rp
by [z,y]a = zay + (yax) = zay + y'ar = zay + yax’ for all x,y € Rp. Then
[z, y]q is called a- commutator of z,y.

For convenience, we denote x + x’ by z, for each € Rp. Then clearly
To+To=To=aL;0+2,=2and 2’ +x, =2

Lemma 3.2. If Rr is an additively reqular T'-semiring, then (xyy)o = xoyy =
TYYo = ToVWo = Yo VLo = (Y72)o ¥V 2,y € Rr,y €T,

Proof. By using Lemma 2.6, we have (zyy)o = vy + 2'vy = zoyy. Similarly,
(#VY)o = 2YYo- Now, zovyo = (x + 2')y (y +¢) = zyy + vy + 2'yy + 2’y =
vy +ayy +alyy+ayy = eyy+ vy = zoyy. Similarly, yyze = yoyz = yoywe =
(yyx)o. By (Az,T')-condition, we have x, = x4+ 2’ € Z(Rr). Thus vy = yyzo..
Hence (279)o = o7y = 2790 = ToVYo = YoVTo = (y72)o- u

In the next Theorem, we generalize some basic commutator identities of rings
for additively regular I'-semirings.
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Theorem 3.3. Let Rr be an additively regular I'-semiring. Then for all x,y, z, 1,
x2,Y1,Y2 € Rr and o, 8 € T', the following identities hold:

(1) [.Z' + yaz]a = [I’,Z]a + [yaz]a.

(i) [z,y + z]a = [z, yla + [z, 2.
(iii) [x,0Rrp]a = [ORrp, T]a = ORp.
(iv) [z1 + 22,91 + Y2la = [21, y1]a + [71, Y2]a + [T2, Y1]a + [72, ¥2]a.
V) ([z,9]a) = [y, x]la = [, ]a = [/, Y]a- (Anti-commutativity)
(Vi) [[z,yla, 28 = [, ylaBz + 2By, 7]a.
(vil) [nz,yla = n[x,yla, for any positive integer n.

Proof. One can easily prove the identities (i) to (iv) by using Definition 3.1.

(v) By Lemma 2.6 and Definition 3.1, we have ([z,y]s) = (zay + y'azx) =
oy + yaxr = [y, x]o. Again, ([2,9]a) = (vay + ¥ azx) = zay’ + y'az’ = [,y ]a-
Now, [2/,y]a = 2'ay + yaz” = 2'ay + yax = [y, x]4.

(vi) Using Definition 3.1 and (v), we have [[z, y]a, 2] = [z, ylaBz+28([z, y]a)’
= [I’, y]a/BZ + Zﬂ[ya w]a-

(vii) By Lemma 2.6 and Definition 3.1, we have [nx,yl, = nxay + y'anz =
n(zay + y'ax) = nlz, yla. ]

Theorem 3.4. Let Rr be an additively regular T'-semiring. Then for all z,y, z,
u € Rr and o, B,y € I, the following identities are valid:

(i) [z,yBz]a = [x,y]aBz + yB[z, 2]a-
(i) [zBy, z]a = 2By, z]a + [z, 2]aBY.
(iii) [zBy, zyula = 2By, 2]lavu + [z, 2laByyu + 2y2BlY, ula + 2v[x, u]o fy.

Proof. (i) By assumption (*) and Definition 3.1, we have [z, yf8z], = zayfBz +
yBzax’ = xayBz+yBza (2 + z) + yBzaxr’ = xayfz+yp (' + x) az + yBzax’ =
rayBz + yBr’az + yBraz + yBzax’ = vayBz + yax'Bz + yfraz + yBrzar’ =
[, WlaB + Y8z, 7o

Similarly we can prove (ii).

(iii) By using Definition 3.1, Lemma 2.6, Lemma 3.2 and assumption (x) we
have [xfy, 2yu]q = xByazyu + 2'yuaxfy = zByazyu + (2 + z + 2/ )yuax By +
zoyuaxfy = xfyazyu + 2Z'yuaxBy + zoyuaxfy + (zyu)oaxfy = xByazyu +
Zyuaxfy + (zyu)oaxBy + xf(2yu)oy = xfyazyu + Z'yuaxfy + zyusaxfy +
rBzyucy = xfyazyu + 2Z'yuaxfy + zyrau.fy + xlza(yyu). = xfyazyu +
2 yuoax By + zyraufy + zyra(u' +uo) fy +xBzaysyu = By, z|ayu+ zyuax’ By +
zyraufy + zyxfu'ay + zyxByau + zyxfyad’ + xfzayyu = xfly, z]layut
[z, ulaBy + 2y2Bly, ula + zax’ Byyu + zazByyu = zBly, 2lavu + [z, 2o Byyu +
2yzBly, ula + 2v[2, ula By m
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Note that by assumption (x), we have [z,y]o8z = [z,y]paz and zaly, z]g =
xfly, 2] for all z,y,z € Rp,a, 8 €T

Now, we generalize the Jacobian identity of rings for additively regular I'-
semirings which might be useful to develop Lie type theory for additively regular
I'-semirings.

Theorem 3.5. If Rr is an additively reqular T'-semiring, then [x,[y,z]als +
[ya [Z?x]a]ﬁ = [[x’y]a?z]ﬁ holds fO’f’ all T,Y, 2 € Rl",()é,ﬁ el

Proof. Using Lemma 2.6, Lemma 3.2, Definition 3.1 and Theorem 3.3(v), we
have [z, [y, 2]a]g = ([, 2la, 2]8)" = [z, ylaBr+ 2By, 2]q for all z,y,z € Rr,a, B €
I'. Similarly [y, [z, x]a]g = [z, 2]la By+yB[2, ]a. Therefore, [z, [y, z]a]s+y, [2, T]als
= [2,YlaBr+2BlY, 2la+[T, 20 By+yBl2, T]a = zayBr+y azfr+rfyazt+af ay+
razfBy + Zazfy + yBrzax + yBr’'az = (xByaz + ypr'az + zayfx + ZaxBy) +
(Y azfx+yBzax) + (287 ay + xazBy) = (xByaz + yBr'az + zayBx + zaxPy') +
yoBzar+xfzoay = (zfyaz+xBzoay)+ (zayBr+ysBzax)+(yfa’ az+zaxfy') =
(xByaz +xByaz.) + (zayfx + zay.fz) + (yBr’ az + zaxBy') = xfyaz + zayBr +
ypr'az + zaxfy = xaypfz + yor' Bz + zfyax + zfray’ = [[z,yla, 2] [ ]

Theorem 3.6. If Rr is an additively regular I'-semiring, then for all x,y,z € Rr
and o, B,y € ', the following identities hold:

(i) [xay, Z]ﬁ + [yaz7x]5 + [Zax7y]5 = [wv [y7 Z]Oé]ﬁ + [yv [Z,{L']a]g + [27 [x7y]04]5'
(i) [vayBz,ul, = vayBlz,ul, + valy, ul, Bz + o, ulaydz.
(ii) [z,yBzyula = [z, y|laBzyu + yBlz, z]ayu + yB2zy[x, u)y.-

Proof. (i) By using Definition 3.1, Theorem 3.3(v) and Theorem 3.4(ii),
[wa [y7 Z]Oé]ﬁ + [yv [Z,{L']a]g + [27 [wvy]a]ﬁ = wﬁ[% Z]Oé + ([y,z]a)/ﬁw + yﬂ[sz]a +
([Z’ x]a)/ﬁy_}'zﬁ[xa y]a+ ([x’ y]a)lﬁz = xoz[y, Z]B + [Za y]ﬁax+ya[z’ x]ﬁ + [x’ Z]ﬁay+
zalz,yls + ly, xlgaz = [vay, 2] + [yaz, 2] + [zax, y.

(ii) By Definition 3.1 and Lemma 3.2 we have zayf[z,uly + zaly, ul,8z +
[z, u]yoyBz = zayfzyutzoyfu' vz+rayyulztrauyyBz+ryuoyBz+u' yrayfz
= zayBzyu + rayfu.yz + vau.yyLz + uyrayBz = zayBzyu + rayBzyu. +
usryy Pz + uyrayfz = rayfryu + uyrayfz = [rayBfz, ul,.

Similarly we can prove (iii). ]

Theorem 3.7. If Rr is an additively regular I'-semiring, then for all x,y, x1, x2,
e Ty Y1,Y2, -5 Yn € Rp and o, 51, P2,...,0n—1 € I, the following identities
are valid:

(1) [z, y1819262 - Brn—1Ynla = [T, y1]aBry2B2 - - - Bu—1yn + y1 812, y2lafo - -
Brn—1Yn + -+ +y181y262 - - - Bn-1]%, Yn)a

(ii) [z1f122B2 - Prn—1Zn,Yla = 1512202 - - - Bn—1[Tn, Yla + T1P12202 - - -
Brn—2[Tn-1,YlaBn-1Zn + - + (21, ylafr12202 - - Bp—12p.
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Proof. (i) We will prove the result by using induction on n, the result is al-
ready true for n = 2,3 from Theorem 3.4(i) and Theorem 3.6(iii). Now as-
sume that the result is true for n = k — 1, i.e., [z,y1519202 ** Br—2Yk—1]a =
[z, y1]aBry2B2 - - Be—2yr—1 + y1Bi[z,y2labe - Br—2yp—1 + -+ + y1Biy2f2- -
Br—2],Yk—1]a- For n = k, by using Theorem 3.4(i) and induction hypoth-
esis, we have [x,y161y202 Br—1Ykla = [T, (V1519282 Be—2¥k—1)Br—1Ukla =
[z, 91819282 - - - Br—2Ur—1]aBr—1Yx + y1619282 - Br—2Yk—18k—1[7, Yrla = [7,y1]a

Bry2B2 - Br—1yk + 181z, y2labo - - Br—1yk + -+ y151y282 - - Br—1]x, Yla-
Similarly we can prove (ii). n

The following identities are generalizations of commutator identities of ring
theory (c.f. [1, 4]).

Proposition 3.8. Let Rr be an additively regular I'-semiring. Then for all
x,y,z2 € Rp,a, B,y € I, the following identities hold:

(i) [zay, 2] + [yaz, x]g = [y, zaz]g
(ii) [zayBz,uly + [yazPu,x]y + [zaufz,yly = [z, uaxByl,.

Proof. (i) By using Lemma 2.6, Definition 3.1 and Lemma 3.2, (i) becomes
[zay, 2]+ [yoz, ©|g = vayBz + 2/ fray + yazfr + zfyaz’ = 2/ fray + yazfz +
rPyaz, = 2 Bray + yazfr + 2.fray = yazBr + 2 Bray = yBzax + 2 axfy =
ly, zax]g.

(ii) By Lemma 2.6, Definition 3.1 and Lemma 3.2, (ii) reduces to [zayBz, u],+
[yazfu, zly+ [zaufz,yl, = zayBzyu + WyrayBz + yazfuyr + xyyazfu’ +
zauBryy + y'yzaufr = zayfzyus + uyrayfz + zaufayy + yoazfuyr =
uoyrayBz + u'yrayfz + zBuyray, + zpfuyray = u'yrayBz + zfuyray =
v axByyz + zyuoxfy = [z, uazfyl,.

Definition 3.9. Let a be a fixed element of I'. Then we define a-Jordan product
as (roy)q = xay + yax for all z,y € Rr.

Proposition 3.10. Let Rr be an additively regular I'-semiring. Then for all
x,y,z2 € Rp,a, 8 €T, the following a-Jordan identities hold:

(i) (oy)a=(yoz)a
(i) (+y)oz)a =(r02)a+ (yo2)a
(il) [(# 0y)as2]g + [(y 0 2)as @]s = [y, (2 0 T)a]p-

Proof. The proofs of identities (i) and (ii) are quite obvious.

(iii) By Lemma 2.6, Definition 3.1, Lemma 3.2 and Definition 3.9, we have
[(xoy)a, 2lg+[(y02)a, x]g = (zay+yax)Bz+zB(xay +y ax)+ (yaz + zay) Bz +
2By az + zay') = yazfx + yaxfz + zayBz + xay' Bz + 28y ax + zByax +
zBxay’ + razfy' = yazfr + yarfz + ray.fz + zBy.ar + zaxfy + xazBy =



STUDY OF ADDITIVELY REGULAR I'-SEMIRINGS AND DERIVATIONS 209

yBzax+yoBzax+yfraz+y.fraz+(z0x)a By = yB(zax+raz)+(z0x).fy =
[y, (z 0 x)a]ﬁ' u

Proposition 3.11. Let Rr be an additively regular I'-semiring. Then for all
z,y, z € Rr and o, f € T', the a-Jordan identity (x o [y,z]g)a + ([2,2]g 0 Y)a =
[(x 0y)a, 2] holds.

Proof. By Lemma 2.6, Definition 3.1 and Definition 3.9, the left hand side re-
duces to (zo[y, z]g)a + ([, 2] 0y)a = (x0 (yBz + 2'By))a + (w2 + ') 0y)a =
rayBz +raz By +yBzar+ 2 fyax +xfzay + 2’ Bray + yarfz + yai' B = (zay +
yox)Bz+ra(z+2")By+yB(z+ 2 )ax+ 2 Byax + 7' Bray = ( xoy)eBz+ 20Bray +
zoByox + 2 Broy + ' fyar = (xoy)afz + 2/ B(zay + yax) = [(x 0 Y)a, 2]lg. W

4. DERIVATIONS OF ADDITIVELY REGULAR I'-SEMIRING

In this section, we introduce the concept of derivation and inner derivation in
additively regular I'-semiring. Also, we establish the relationships between com-
mutators and derivations of additively regular I'-semirings.

Definition 4.1. A map d: Rr — Rr is called a derivation of additively regular
I-semiring Rr if d is additive and d satisfies d(zvy) = d(z)vyy + zvd(y) for all
x,y € Rp,veTl.

Example 4.2. Let R be an additively regular I'-semiring. Take Rp = { <g i) :

0

by (z,7v,y) — zyy ¥ x,y € Rp,y € I'. Then Rr is an additively regular I'-
semiring under the usual multiplication of matrices. Define d : Rr — Rr by

d(a b) = <0 b), then d is a derivation on Rr.

a,b,CER} andF:{ (a 2) :aER}.DeﬁneamapRerXRr—)Rr

0 ¢ 0 0

Example 4.3. Let Rr be an additively regular I'-semiring. Then by Proposition
2.10, Rr[z] is also an additively regular I'-semiring. We define d : Rrp[z] —
Rr[z] by d(ag + a1z + azx?® + azz® + ---) = a1 + 2a22 + 3azz? + --- for all
ap + a1z + agx? + azz® + -+ € Rr[z]. Then d is a derivation on Rr[z].

Definition 4.4. Let Rr be an additively regular I'-semiring and a be a fixed
element of Rpr and « be a fixed element of I'. Define d : Rr — Rr by d(z) =
[a,x]q, for all x € Rp. The function d so defined can be easily checked to be
additive and d(zyy) = [a, 2YY]a = zY[a, Yla + [a, x]oyy = 2vd(y) + d(z)~yy for all
x,y € Rp,v € I'. Thus, d is a derivation which is called inner derivation of Rp
determined by a and «.
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Remark 4.5. For our convenience, we denote d([z,y|s) = [a, [z,y]s]a by [, y]g.

Proposition 4.6. If Rr is an additively reqular I'-semiring and d is a derivation
on Rr, then

(i) d(z') = (d(z))' V x € Rr.
(i) d': Rr — Rr is also a derivation on Ry.

Proposition 4.7. If Rr is an additively reqular I'-semiring and d is a derivation
on Rr, then d(zvy) = d(x'vy'), V x,y € Rp,vy € T.

Proof. Let x,y € Rp,v € I'. Then by using Lemma 2.6 and Proposition 4.6(i), we
have d(z'vy') = d(a) vy +2'd(y") = (d(x))' vy +2"v(d(y)) = d(x)yy+2vd(y) =
d(xzvy). ]

Theorem 4.8. If Rr is an additively reqular I'-semiring, a € Rr,a € I' and d is
an inner derivation determined by a and «, i.e., d(x) = |a,x]qs, for all x € Ry,
then [y, 20+ [yBz,ald = [y, zB2)¢ for all z,y, > € Rr, 3,7 € T.

Proof. By Lemma 2.6, Definition 3.1 and Remark 4.5, the left hand side re-
duces to [zfy, 29+ [yBz, 2] = [a,[2By, 2] la + [a, [yBz, 2],]a = aa(zByyz +
Z'yzBy) + (xByyz + 2'yrBy)aad’ +aa(yBzyr + 2'vyBz) + (yBzyx + 2'yyBz)aad =
ac(x+2")Byyz+aaz yrfy+(x+a") Byyzad + 2 v Byad +aayBzyr+yBzyraad =
acz'yxBy + ZyxPyad + aayyzB(x + o) + yyzB(xr + xo)ad = acd' fayy +
2 Bryyaad' + acyyzBr + yyzfrad = [y, zﬁx]ﬁf [ ]

Proposition 4.9. Let Rr be an additively reqular I'-semiring, a € Rr,a € T
and d be an inner derivation determined by a and «, i.e., d(x) = [a, x| for all
x € Rp. Then for all x,y,z,u € Rr,5,7v,0 € I, the following identities are valid:

(i) [zByyz,ul§ = (2Byvlz,uls) + (@Bly, uls72)? + ([x,u]sByv2)".
(i) [#Byyz, uld + [yBayu, 2]§ + [zBuvyz, yl¢ = [z, uBzyy]d.

Proof. (i) Taking right hand side of (i) and by using Lemma 2.6, Definition
3.1 and Remark 4.5, we get (xByv[z,uls)? + (28[y, uls72)? + ([z,u]sByy2)? =
a, 2Byy[2, ulslata, 2By, ulsv2latla, [, ulsByy2]a = acxfyyzoutaarfyyudz'+
xPyyzouad + xByyudz’ad + acxfyduyz + acxfu'dyyz + xPyduyzaa+
xfu'dyyzaad + aaxduByyz + acu'dxPyyz + véuByyzad + u'érByyzad =
acxByyzou + acu'dxByyz + xByyzéuca + u'drByyzad + acxByyudzo+
xPyyudzoaad + aaxfucdyyz + xfucdyyzad = aaxByyziu + acu'dxPyyz+
xPyyzouaad + u'dxPyyzad + acxfyyzodu + xByyze.ducad + acueBrdyyz+
usBrdyyzad = acxfyyzéu + xfyyzéuad + aau'dxByyz + u'dxfyyzad = |a,
[2B8yv2,ulsla = [8yy2, ul§.

(ii) Taking left hand side of (ii) and by using Lemma 2.6, Definition 3.1 and
Remark 4.5, we have [z8y7yz, ul¢ + [yBzyu, 24 + [2Buyz, y| = [a, [xByyz, uls)a +
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la, [yBzyu, x]s]a + [a, [2Buye, yls|a = acxfyyzéu + aoudr’ Byyz + xByyzéuaa +
udr' Byyzaad + aayBzyudr + aax'dyBzyu + yBzyudrad + 'dyBzyuca +

aczBuyrdy + acy'dzBuyr + zPBuyxrdyaad + y'dzBuyrad = acx.Byyzdu -+
acyofzyudr + acudr'Byyz + acazBuyrdy + x.Byyzéuad + yoBzyudraa +
udr' Byyzaad + zBuyzdyad = acudz.Byyz + aaudr'Byyz + acazyudxrBy. +
aczyudzfy + udx,Byyzaad + udx'Byyzaad + zyudxrBy.aad + zyudxfyad =
acudr' Byyz + aazyudxfy + udx' Byyzaad + zyudxfyad = aa(uBz'yydz+
20uBzyy) + (uBx'yydz + z0uBryy)ad = [z, uBzyy¢. [ ]

The next Theorem is the generalization of Jordan identity.

Theorem 4.10. If Rr is an additively reqular I'-semiring, a € Rr,a € I" and d
is an inner derivation determined by a and «, then for oll x,y,z € Rr,B,v € T,
the following identities hold:

(1) [(woy)s, 23 + [(y 0 2)s,2]9 = [y, (z 0 )]s

(i) ((zo[y,2l)a)! + ([, 2y 0 y)p)? = [(w 0 y)s, 213.

Proof. (i) Using Lemma 2.6, Definition 3.1, Definition 3.9 and Remark 4.5, the
left hand side of (i) becomes [(zoy)g, z]ﬁ‘é—}—[(yoz)g, x]fl/ = [a, [(xoy)s, 2]y ]a+]a, [(yo
2)8, T)yla = aaxfyyztaayfryz+acz yrfy+aaz yypfr+xfyyzad +yLryzaad +
2 yrByaad +2'yyBraad +aayBzyr+aczByyr+acx’ yyBz+aax’ vz By+yBzyraa +
zPyyraad +2'yyBrzad+x' vz Byaad = acyBryztacyBzyr+aaz yrBy+aax’ vz By+
yBzyrad + yPfayzad + Z'yxfyad + 2'vzfyad + acxefyyz + aazoyyBr+
o Byyzaad' +zoyyfraa = aayBryztacyBzyr+acz' yrfy+aax’ vz By+yBzyraad
+yBryzad + Zyrfyad + ¥'yzByad + aqyyzfre + acyBryze + yyzBroad +
yBryzoaad = aayBzyxr+acyBryz+aaz yrBy+aax’'vzfy+yLzyrad +yBryzaad
+2/yxByad + 'vzByad = aayyzfr + aayyrfz + aczfryy + aaxfzyy’ +
yyzPBrad + yyxfzad + zBxyy ad + xBzyy ad =y, (z 0 x)g]ff

(ii) Using Lemma 2.6, Definition 3.1, Lemma 3.2, Definition 3.9 and Re-
mark 4.5, we have ((z o [y, 2],)s)? + (([z, 2], 0 ¥))? = aczByyz + aaxBzyy +
acyyzprtaczyy Br+xByyzad +xBzyvy ad +yyzfrad +2vy Braad +acxyzBy+
aczyx' fy+aayBryz+aayBzyr’ +xyzByaad +zyx' Byaa +yBryzaad+yBzyr aa'=
acx Byyz+aczyx By+aazyy Br+xByyzad +aayBryz+zyx Byad +yBryzaa +
2vy' Braad + aayyzBr. + vBzyy.ad + yyzBro.ad + acxfzyy, = acxByyz +
aczyr' By+aazyy Br+xPfyyzad +acyBryz+zyr Byaad +yBryzad +z2yy Braa +
aaxoByyz + yoyxfzaad + x.fyyzad + aay.yrBz = aaxByyz + aayBryz +
yBryzaad + xfyyzad + aaz' v Py + aaz yyPx + ZyrByaad + 2 yyBrad = [(x o
Y)8, Z]f'f u

Next, we define a symmetric map.



212 M. DADHWAL AND NEELAM

Definition 4.11. Let Rr be an additively regular I'-semiring. Then a mapping
B : Rr xT' x Rr — Ry is said to be symmetric, if B(z,v,y) = B(y,~,z) for all
x,y € Rp,veT.

Definition 4.12. A mapping f : Rr — Rr defined by f(z) = B(z,v,z) is
called trace of B. Further, for an additively regular I'-semiring Rr and derivation
d: Rr — Rp, we define a map By : Rp xI' X Rr — Rp corresponding to derivation
d as By(z,v,y) = [d(z),yly + [d(y), z], for all z,y € Rp,y €T

The following proposition shows that the mapping By is symmetric.

Proposition 4.13. Let Rr be an additively regular I'-semiring. Then following
statements hold:

(i) If d: Rr — Ry is a derivation, then By is symmetric.

(ii) If f is trace of By, then f(z+y) = f(z)+ f(y)+2By(x,7,y) for all x,y € Rr.

Proof. (i) By Definition 4.11 and Definition 4.12, we have By(z,v,y) = [d(x), y]y
+[d(y),z)y, = [d(y), ]y + [d(x),y], = Baly,v,z) for all z,y € Rp,v € I'. This
shows that By is symmetric.

(ii) As d : Rr — Rr is a derivation, hence by Definition 4.12, we have
f@+y) = Ba(x+y,v,z+y) = [dz+y),z+yly +[dz+y), z+yly = [d(z), 2], +
[d(z), =]y +[d(y), yly +[d(W), yly+2([d(x), yl,+[d(y), 2],) = Balx, v, 2)+Ba(y, 7, y)
+2Ba(z,7,y) = f(x) + f(y) + 2Ba(z,7,y)- .

Proposition 4.14. Let Rr be an additively reqular I'-semiring and d be a deriva-
tion of Rr into itself. Then for all x,y,z € Rp, B,y € T, we have By(x,~, z)By +

zBBa(y,7,2) = [z, d(x)], By + 2'Blz,d(y)]y + d(2), zBy],-

Proof. By Lemma 2.6, Definition 4.12, Theorem 3.4(i) and Theorem 3.3(v), we
have By(z,7,2)By + xB8B4(y,v, z) = [d(z), 2], By + [d(2), x|, By + zB[d(y), 2], +
aBld(2), yly = [d(x), ']y By +2'Bld(y), 21, + [d(2), z], By + xB[d(2), yly = [2,d(z)],
By + ' Bz, d(y)]y + [d(z), Byl u

Theorem 4.15. Let Ry be an additively regular I'-semiring and d be a deriva-
tion of Rr into itself. Then Bgy(zBy,v,z) = Balx,7,2)By + xB4(y,v,z) +
d(.%')/@[y7 Z]’Y + [Z’,Z]y,@d(y) v T,Y,z € RF7577 € F

Proof. By Definition 4.12, Lemma 2.6, Theorem 3.4(i) and Theorem 3.3, we
have Bi(zfBy,v,z) = [d(xBY), z]y + [d(2),2By]y = [d(z)By, 2]y + [xB8d(y), 2]y +
[d(2), 2Byly = [z,d(2)BY']y + [2,2"Bd(y)}y + [d(2), 2By, = [2,d(z)], 8y + 2B,
d(y)]y +d(z)Bly, 2]y + [z, 2], 6d(y) + [d(2), x|y By + 2B[d(2), y]y = Ba(z,~, 2) By +
zBBa(y, v, 2) + d(x)Bly, 2]y + [z, 2], Bd(y). u

Proposition 4.16. Let Rr be an additively reqular I'-semiring with characteristic
2 and d be a derivation of Rr into itself. Then d? is again a derivation on Rr.
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Proof. Let d be a derivation on Rp. Then clearly d? is additive and d? (zyy) =
d(d(x)yy+zyd(y)) = d(d(x))yvy+2d(z)yd(y) +2yd(d(y)) = d*(x)yy+ayd*(y). m

Lemma 4.17. Let Rr be an additively regular T'-semiring such that [x,y], = 0
YV xz,y € Rr,v € I'. Then Rr is commutative.

The proof of this lemma is quite easy so we omit the proof.

Definition 4.18. An additive mapping f of an additively regular I'-semiring
Rr is said to be centralizing if [[f(z),2]a,ylsg = 0 for all z,y € Rr,a,5 € T
Moreover, f is said to be commuting if [f(x),z], =0 for all z € Rp,a € T.

Remark 4.19. Let f be a centralizing map on a prime additively regular I'-
semiring Rp. Then [[f(z),z]a,y]ls = 0 for all z,y € Rr,a,B € TI', that is,
[f(2),#laBy + (v + y)Bf(2),2]a = yBf(2),7]o for all z,y € Rr,a,B € T.
So, (Ag,TI')-condition implies that [f(z), ], belongs to the centre of Rr for all
x € Rr,a € T'. Moreover, the definition of f forces [[f(z),]qa,z]g = 0 for all
x € Rpr,a, 8 €T, that is, for all z € Rp,«, 8 € T we have

0=[f(2),z]aBx+2'B[f(x),z]a = [f(x),x]af(z+2'), since [f(x), z], belongs
to the centre of Rr.

Hence, [f(z),z]oI'(Rr + Ry) = (0) leading to [f(x),z]oT'Rr = (0) for all
z € Rp,a € T" as R} is contained in Rp. Therefore, [f(x), 2], RrI'l = (0) for all
x € Rp,a € T'. By using primeness of Ry we can conclude that [f(x),z], = 0 for
all x € Rp,a € I'. Therefore, every centralizing mapping of a prime additively
regular ['-semiring Ry is also commuting.

Theorem 4.20. Let d be a non-zero derivation of prime additively reqular I'-
semiring Rr such that d([z,yly) = 0 for all x,y € Rr,v € I'. Then Rr is com-
mutative.

Proof. Let d be a derivation of Rr such that d([z,y|,) = 0 for all z,y € Rr,
~v € I'. Then by using Definitions 3.1 and 4.1, we are left with

() [d(@), 4l + [, d(y)], = 0 for all 2,y € Rr, 7 €T.
By replacing y by ySz in (i) and then using Definition 3.1, Theorem 3.4, Defi-
nition 4.1 and equation (i), we get 0 = [d(x), yBz],+[z, d(yBx)]y = d (y) Bz, z],+
[,I, y]’yﬁd(x) SO?
(ii) d(y) Blz,z]y + [x,yl,Bd(x) =0 for all ,y € Rp, 3, v €T.
Replacing y by ray in (i) and then by using Theorem 3.4, Lemma 2.6,
Lemma 3.2, equations (i) and (ii), we have 0 = d (roy) B[z, x|, + [z, royl,Bd(x) =
[z, r]yayBd(x) + rafz, yl,fd(z) + d(r)ayBz, x] + rad(y) Bz, x|, = (xyr +1'yx)
ayBd(z) + royzayfd(z) + d(r)ayBaryze = [z, rlyayfd(x) + d(r)y(z + 2')ay B +
ryzayfd(z)+r'yrayfd(x)+royrayfd(x) = [z, rlyayfd(z)+d(r)y(z+z.)oySr+
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d(r)ye' ayBr + royrayBd(z) + (d(x)) yrayfz + d(z)yrayBfx = [z, rlyayBd(z) +
APy + 2'4d(r) oy + (erd(r) + d(rira’YoyBe + (ryd(z) + (d(@) yr)ayBa +
(ryd(z) +d(z)r)ayba = [o, rlayBd(@)-+ (), 2+ 1r, A}, aySa-+ [z, dr )],
+[d(x),r]y)ayBr = [x,r]yoypd(x) for all z,y,r € Rr,a,B,7v € I'. Then by
primeness of Rr, either [x,r], = 0 for all z,r € Rp,y € T or d(z) = 0 for all
x € Rr. But as d is non-zero so we have [z,r], = 0 for all ,r € Rp,y € I'. Thus
by Lemma 4.17, Rr is commutative. [ |

Theorem 4.21. Let d be a non-zero derivation of prime additively regular I'-
semiring Rr such that [d(z),x]y = 0 for all x € R,y € I'. Then Rr is commu-
tative.

Proof. As 0 = [d(z +y),z +y]y = [d(z),y]y + [d(y), z],. Hence we have
(i) [d(x),yly + [d(y),z]y =0 for all z,y € Ry, v e€T.

By replacing y by yfx in (i) and then using Theorem 3.4 and equation (i),
we gt 0 = [d(z), yBaly + [d(yBr), zly = d (y) Blz, o)y + [y, 2l Bd(z). So,

(ii) d(y) Blz,z]y + ly,z],Bd(x) =0 for all z,y € Rr, B,y €T.

Replacing y by ray in (i) and then by using Theorem 3.4, Lemma 2.6,
Lemma 3.2, equations (i) and (i), we get 0 = [ray, x],fd(x) + d (ray) flz, ], =
[r, z]yayBd(x)+d(r)ayBayze = [r, x| ayfd(x)+zyrayfd(x)+d(r)y(z+z")ay P
= [r,alyoayBd(z) + (d(r)yvz + d(r)yze)oayBz + d(r)ya'ayBz + zyrayfd(z) +
zoyrayfd(x) + 'yraypd(z) = [r, zlyayBd(z) + [d(r), z]yayBz + xyd(r)ayBz +
d(r)ye' ayBr + zoyrayfd(z) + royrayfd(x) = [r, x]yayfd(z) + [d(r), ] ayfz +
(2, d(r)], auBz + rord(@)aybe + d@)yreayfe = malyaypd(z) + (d(r),z), +
[d(z),r]y)oyBz + ([r,d(x)]y + [z,d(r)]y)ayBx = [r,z]yoyfd(x) for all z,y.r €
Rr,a, B,y € I'. Then by primeness of Rr, either [r,z], = 0forall z,7 € Rp,y € T
or d(z) = 0 for all x € Rr. But as d is non-zero so we have [r,z], = 0 for all
z,7 € Rp,v € I'. Thus Rr is commutative. [ |

The next result is a generalization of Posner’s second theorem for additively
regular I'-semiring Rr.

Theorem 4.22. Let Rr be a prime additively regular I'-semiring. If there is a
non-zero centralizing derivation of Rr, then Rr is commutative.

Proof. Let Rr be a prime additively regular I'-semiring and d be a non-zero
centralizing derivation of Rp. Then by using Remark 4.19, we have [d(x),z], =0
for all x € Ry, € I'. Thus from Theorem 4.21, Rr is commutative. [ |
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